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Abstract—The reiterative super-resolution (RISR) algorithm 

was previously developed to enable adaptive beamforming with 

as few as one time snapshot, is robust to temporally correlated 

signals, and accounts for array calibration errors. Here a gain-

constrained version (denoted GC-RISR) is derived followed by a 

partially-constrained version (PC-RISR). It is shown that an 

interesting trait of the latter is spatial super-resolution at SNR 

values lower than is typical for adaptive beamforming techniques 

as a trade-off for requiring more iterations to converge. The PC-

RISR formulation is controlled by a selectable parameter that 

serves a role similar to that of an adaptive step-size which 

balances between convergence speed and accuracy. 

I. INTRODUCTION 

Direction of Arrival (DOA) estimation is the process of 

determining the spatial angle from which an incident signal 

impinges on a sensor array. In most applications, several 

signals may be present simultaneously, some of which may 

possess a high degree of temporal correlation (e.g. multipath). 

Classical DOA estimation techniques such as Capon 

beamforming, MUSIC, and ESPRIT [1] rely on the 

determination of a sample covariance matrix (SCM) from a 

set of spatial snapshots. This SCM estimate may use forward / 

backward averaging [2] and/or spatial smoothing [3] to 

address space-time coupling of temporally correlated signals.  

The reiterative super-resolution (RISR) algorithm [4,5] was 

developed from the reiterative minimum mean-square error 

(RMMSE) framework [6] to provide accurate DOA regardless 

of signal correlation by employing a structured covariance 

matrix that avoids calculation of the SCM, thus making it 

suitable for applications requiring low sample support due to 

non-stationarity. Further, RISR can incorporate unknown 

calibration errors based on known tolerances. A modified 

version was subsequently demonstrated on measured 

magnetoencephalography (MEG) data to facilitate high 

resolution functional brain imaging [7]. 

 Paralleling the formulation in [8], here a gain-constrained 

version of RISR is derived. It observed that the resulting GC-

RISR realizes resolution that is somewhat better than standard 

non-adaptive beamforming, but is inferior to RISR as well as 

previous SCM-based techniques in this regard. However, 

when RISR and GC-RISR are combined, a new partially-

constrained version (PC-RISR) enables spatial super-

resolution at lower SNR than is typical for SCM-based 

methods (generally at least 10 dB, particularly for low sample 

support [1]). Simulations to characterize performance show 

that it is possible to achieve super-resolution at single digit 

SNR values (inclusive of beamforming gain). 

II. RE-ITERATIVE SUPER-RESOLUTION (RISR) 

Consider a uniform linear array with N elements and half 

wavelength spacing (noting arbitrary arrays are also feasible 

[5]). For 𝐾 < 𝑁  incident signals satisfying the narrowband 

assumption, and with calibration and mutual coupling effects 

included to the degree known, the received signal for the ℓth 

snapshot can be expressed as the 𝑁 × 1 complex vector 

𝐲(ℓ) ≜ [𝐒𝐱(ℓ)] ⊙ 𝐳 + 𝐯(ℓ) (1) 

                                       = 𝐒𝐱(ℓ) + 𝐯(ℓ) + 𝐯z(ℓ),  

where 𝐱(ℓ) is an 𝑀 × 1 vector, the 𝑀 ≫ 𝑁 elements of which 

are the complex received amplitudes as a function of spatial 

angle. The vector 𝐯(ℓ)  is additive noise of arbitrary 

distribution, and S is an 𝑁 × 𝑀  matrix of spatial steering 

vectors parameterized over the array manifold. The term ⊙ is 

the Hadamard product and the 𝑁 × 1  vector 𝐳  accounts for 

array modelling errors with the 𝑛th element represented as 

𝑧𝑛 = [1 +  ∆a,𝑛] ej∆φ,𝑛, (2) 

where ∆a,𝑛  is the error in amplitude and  ∆φ,𝑛  is the phase 

error, both with arbitrary distributions (though errors are 

assumed to be relatively small). The second line in (1) arises 

from the model in (2) where  𝐯z(ℓ) = (𝐳 − 𝟏𝑁×1)⨀[𝐒𝐱(ℓ)]. 
It is shown in [5] that minimizing the MMSE cost function 

𝐽 = 𝔼{‖𝐱(ℓ) − 𝐖𝐻(ℓ) 𝐲(ℓ)‖2}                (3) 

yields the 𝑁 × 𝑀 filter bank 𝐖(ℓ), having the 𝑚th column  

𝐰𝑚(ℓ) = 𝐏𝑚,𝑚(ℓ)(𝐒𝐏(ℓ)𝐒𝐻 + 𝐑 + 𝐑z (ℓ))
−1 

𝐬𝑚.       (4) 

The 𝑀 × 𝑀  diagonal matrix 𝐏(ℓ)  contains the incident 

powers for the 𝑀 spatial directions for the ℓth snapshot, the 

𝑁 × 𝑁 matrix 𝐑 is the noise covariance, and the 𝑁 × 𝑁 matrix 

𝐑z(ℓ) is the calibration error covariance defined as [5] 

𝐑z(ℓ) = 𝐈𝜎z
2 ⨀ [𝐒𝐏(ℓ)𝐒𝐻],                        (5) 

for 𝐈  an 𝑁 × 𝑁  identity matrix and 𝜎z
2  the calibration error 

variance (which may be known based on design tolerances). 

Note that (5) is dependent on the incident signals. The terms 

𝐬𝑚  and 𝐏𝑚,𝑚(ℓ) in (4) specify the 𝑚th column of 𝐒 and the 

𝑚th diagonal element of 𝐏(ℓ), respectively.   

Clearly the values in 𝐏(ℓ)  are not known and must be 

estimated. An initial estimate is obtained by applying the 

standard (non-adaptive) beamformer as [5] 

�̂�(ℓ) = 𝐒𝐻𝐲(ℓ),                              (6) 
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from which the matrix of power estimates is determined via 

�̂�(ℓ) =  [�̂�(ℓ) �̂�𝐻(ℓ)] ⨀ 𝐈 .                       (7) 

Using (4), the adaptive filter bank can be computed and 

subsequently applied to revise the estimates of 

�̂�(ℓ) = 𝐖𝐻(ℓ) 𝐲(ℓ)                            (8) 

that are subsequently used to update (7). This process of 

applying (4), (8), and (7) is repeated until acceptable 

convergence is achieved. It is also discussed in [5] how the 

signal estimates over multiple snapshots can be combined 

non-coherently within RISR, which serves to average out 

variations to further enhance super-resolution capability. 

III. INCORPORATING A GAIN CONSTRAINT 

In [8] a gain constraint was introduced for RMMSE-based 

adaptive pulse compression of radar as a way to improve 

robustness to mismatch effects. For RISR, which relies on the 

same RMMSE framework, such mismatch effects (due to 

imperfect calibration and mutual coupling) translate into small 

spurious peaks. The calibration error term of (5) addresses this 

condition to some degree. However, it is worth considering 

how further robustness may be achieved. 

A unity gain constraint can be readily incorporated by 

modifying the cost function of (3) for the 𝑚th  column of 

𝐖(ℓ) as 

𝐽𝑚 = 𝔼{‖x𝑚(ℓ) − 𝐰𝑚
𝐻 (ℓ) 𝐲(ℓ)‖2} + 𝜆∗(𝐰𝑚

𝐻 (ℓ) 𝐬𝑚 − 1)  (9) 

where 𝜆  is the Lagrange multiplier. It is straightforward to 

show that, like [8], the gain-constrained RISR (GC-RISR) 

takes the form 

𝐰GC,𝑚(ℓ) = (
1

𝐬𝑚
𝐻  𝐃(ℓ) 𝐬𝑚

) 𝐃(ℓ) 𝐬𝑚                (10) 

in which 

𝐃(ℓ) = (𝐒𝐏(ℓ)𝐒𝐻 + 𝐑 + 𝐑z (ℓ))
−1 

.            (11) 

The original RISR formulation from (4) could likewise be 

expressed using (11) as 

𝐰𝑚(ℓ) = 𝐏𝑚,𝑚(ℓ) 𝐃(ℓ) 𝐬𝑚  .                    (12) 

Figure 1 illustrates the distinction between RISR and GC-

RISR for a uniform linear array of N = 10 antenna elements 

(so Rayleigh resolution of 36 in electrical angle) and for the 

case of two sources (of SNR = 30 dB after array gain) 

separated by an electrical angle of 20. It is observed that GC-

RISR still separates the two signals (unlike the standard 

beamformer of (6)), though the rounded peaks so often 

associated with a gain constraint clearly imply less super-

resolution capability than RISR. That said, the flattened 

response exhibited by GC-RISR further away from the two 

signals also provides a more physically meaningful noise floor 

for subsequent detection than is achieved by RISR, which 

tends to “over-suppress” the spatial directions that are not 

present. In fact it is this very attribute that prevents 

identification of low SNR signals that we shall remedy here. 

 

 
Fig. 1.  Comparison of RISR, GC-RISR, and standard beamformer for two 

sources with SNR of 30dB and located at ±10°. 

IV. PARTIAL GAIN CONSTRAINT 

The responses for RISR and GC-RISR as demonstrated in 

Fig. 1 can be viewed as the two extremes that could be 

achieved for this manner of DOA estimation. Examination of 

the filter implementations in (10) and (12) reveal that, for the 

𝑚th filter, these formulations only differ by an adaptive scale 

factor. Given the potential for significant dynamic range 

among received signals, a prospective approach to facilitate a 

selectable “dial” between these two extremes is 

𝐰PC,𝑚(ℓ) = [(
1

𝐬𝑚
𝐻  𝐃(ℓ) 𝐬𝑚

)
α

(𝐏𝑚,𝑚(ℓ))
1−α

]  𝐃(ℓ) 𝐬𝑚   (13) 

where the exponent 0 ≤ α ≤ 1 is a weighting factor that can 

be used to balance between RISR ( α = 0 ) and GC-RISR 

(α = 1). We shall refer to this exponentially weighted version 

as partially-constrained RISR (PC-RISR). The value of α 

controls the convergence speed and super-resolution 

capability of PC-RISR. While (13) is a rather simple 

modification, the prospective benefit it provides is quite 

pronounced. Table I illustrates the general behavior of PC-

RISR as it has been observed thus far. 

 
TABLE I 

BEHAVIOR OF PC-RISR FOR DIFFERENT VALUES OF  

α = 0– 0.35 0.35 – 0.45 0.45 – 0.5 

Required 
Iterations 

10 ~ 20 20 ~ 50 50 ~ 300 

Utility 
Suitable for   

mid-high SNR 
Suitable for   

low-mid SNR 
Limit of low SNR 

performance 

Behavior 
Low SNR signals 

are suppressed 
Modest SNR 

signals observed 

Low SNR signals 
observed after long 

convergence 

 

For values of α below 0.5, PC-RISR converges to point 

solutions such as that of RISR in Fig. 1. As α increases, the 

speed of convergence decreases (akin to a step-size parameter) 

and in turn the ability to separate closely spaced signals is 

enhanced. Based on simulation trials, for α up to about 0.4, the 

ability of RISR to operate in the low SNR regime is 



significantly enhanced with little risk of spurious peaks. 

Setting α between 0.4 and 0.5 yields the best probability of 

separating closely spaced signals, but can produce small 

spurious peaks above the noise at low sample support. PC-

RISR typically converges in 30 iterations, with diminishing 

returns in signal separability for further iterations as α 

approaches 0.5.  

If α is above 0.5, PC-RISR does not converge to point 

solutions, but instead resembles GC-RISR from Fig. 1, albeit 

with narrower peaks and deeper nulls. In these cases, the 

converged results may exhibit loss in the peak values relative 

to RISR (α = 0) or GC-RISR (α = 1) (see Fig. 2). 

Figure 2 shows how, for α = 0.35 , PC-RISR converges 

iteratively to point solutions while suppressing the response 

from directions in which no signal is incident. For this same 

10 dB two-signal scenario and 30 iterations, Fig. 3 illustrates 

how different values of α affect the final estimate. Note that 

full convergence has been obtained for the α = 0.6  and 

α = 0.75 cases, which exhibit SNR loss, while the α = 0.45 

case would require many more iterations to converge to the 

same point solutions obtained in the α = 0.35 case. 

 

 
Fig. 2.  Illustration of the convergence of PC-RISR for α = 0.35 and two 

signals of SNR = 10 dB (after array gain) and 20˚ separation. 

 

 
Fig. 3.  Example of PC-RISR convergence as a function of α for two signals 

with SNR = 10 dB and 20˚ separation after 30 iterations. The α = 0.45 case 
would converge to point solutions for higher iterations. 

Figure 4 provides an anecdotal result for two signals with 

SNR = 15 dB and 20 separation for N = 10 antenna elements 

and 10 snapshots. After 30 iterations, PC-RISR (α = 0.4) can 

separate signals that RISR [5] and MUSIC [1] cannot.  

 

 
Fig. 4.  Anecdotal comparison showing PC-RISR can separate signals when 

RISR and MUSIC cannot. Two signals at -10⁰ and 10⁰ with SNR = 15dB, N = 

10, and 10 snapshots. (a) MUSIC, (b) RISR, (c) PC-RISR with α = 0.40 

V. MONTE CARLO ANALYSIS 

Consider 𝑁 = 10  antenna elements in a uniform linear 

array with half-wavelength spacing (Rayleigh resolution = 

36°). All trials are based on 𝐿 = 10 independent snapshots, 

which, for RISR and its variants, are combined non-coherently 

as described in [5]. Different values of α are considered and 

the results compared with root-MUSIC [9] as a benchmark. 

Stated SNR values include the array gain of N = 10. Noise 

is modeled as additive white Gaussian. Incident signals have 

uniformly distributed random phase and constant amplitude. 

The array calibration terms  ∆a,𝑛  and ∆φ,𝑛  from (2) are each 

uniformly distributed such that the gain and phase error of 

each antenna element may be as much as 1% of the expected 

value. The resulting overall calibration error variance is  

𝜎z
2  =  1.5 × 10−3. 

For each trial, 500 Monte Carlo runs were performed with 

two signals present. The first arrives from electrical angle 

𝜑1 = 0° (antenna boresight) and the other is placed at some 

predetermined offset 𝜑2. For these results both signals have 

equal power with random phases and are uncorrelated in time.  

A simple criterion is used to decide if signals are separable 

for the RISR-based methods. Once convergence is halted, all 

values of the spatial power estimate below the noise floor are 

set equal to the noise floor. If precisely two peaks remain 

above the noise floor, and both are within one-half  

beamwidth (2𝜋/𝑁)of their corresponding true DOA values 

𝜑1and 𝜑2, then they are deemed correctly separated. 

Root-MUSIC was implemented using forward-backward 

averaging [2] and the Bayesian Information Criteria (BIC) [10] 

was used to estimate the dimensionality of the signal subspace. 

For root-MUSIC the signals are deemed separable if they 

occur within one-half beamwidth of their true DOA and the 

BIC order estimate equals 2. 



Figure 5 depicts the probability of separation of the two 

signals for an SNR of 5 dB (includes array gain). Here it is 

observed that the SNR is simply too low for root-MUSIC, yet 

after 30 iterations PC-RISR (α = 0.4) is able to separate the 

signals at about 0.67 the Rayleigh resolution (~24° separation) 

for 50% of the trials.  

The SNR = 10 dB case is shown in Fig. 6, where root-

MUSIC outperforms PC-RISR ( α = 0.2 ), which behaves 

more like RISR [5], while PC-RISR (α = 0.4) now separates 

signals about 0.28 the Rayleigh resolution (~10° separation) 

in 50% of the trials. In both of these cases, RISR [5] and GC-

RISR do not separate the signals due to the low SNR. 

 
Fig. 5.  Probability of separation as a function of signal separation for SNR of 

5dB for PC-RISR (α = 0.4) and root-MUSIC.  

 
Fig. 6.  Probability of separation as a function of signal separation for SNR of 

10dB for root-MUSIC, PC-RISR (α = 0.2) and PC-RISR (α = 0.4). 

Finally, Fig. 7 illustrates the relationship between α and the 

number of iterations employed for PC-RISR as a function of 

SNR (in the low regime) for signals separated by half the 

Rayleigh resolution. It is observed that α = 0.2  performs 

qualitatively similar to root-MUSIC. For 30 iterations, 

α = 0.4 clearly outperforms α = 0.49 for PC-RISR. However, 

increasing the number of iterations by a factor of 10 to 300 

enables the α = 0.49 case to separate the two signals at very 

low SNR values. The 0.49 case does not reach a probability of 

1 because a small spurious peak sometimes occurs (which 

fails the separation metric used here) arising from the low 

sample support of 10 (relative to N). Increasing the sample 

support (result not shown) alleviates this effect. 

 
Fig. 7.  Probability of separation for PC-RISR vs. SNR for α = 0.2, 0.4, and 

0.49 for 30 iterations. Signal separation is half the Rayleigh resolution. 

VI. CONCLUSIONS 

Leveraging the original RISR algorithm and a subsequent 

gain-constrained version, a partially-constrained formulation 

denoted as PC-RISR has been demonstrated to enable super-

resolved signal separation at low SNR. By virtue of leveraging 

the RISR structure, this formulation is robust to array 

calibration errors, temporal correlation of signals, and can be 

employed with very few data snapshots (even just 1). The 

trade-off factor α serves as a form of step-size to slow down 

convergence enough to identify closely spaced signals at low 

SNR that would otherwise have been suppressed by the 

original RISR algorithm.  
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