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Abstract 
A novel waveform optimization metric is proposed that 
encapsulates both the continuous-time nature of a frequency-
modulated (FM) waveform and the discrete-time nature of the 
pulse compression receive filter. A continuous-time 
waveform model is used whose phase function is defined as a 
weighted sum of Legendre polynomials, thus parameterizing 
the continuous-time waveform with a discrete set of 
coefficients. Leveraging a novel correlation function that 
captures receiver range straddling effects, a q-norm integrated 
sidelobe metric is minimized using the gradient with respect 
to the discrete waveform parameters within a quasi-Newton 
formulation. 

1 Introduction 
A considerable portion of traditional FM waveform design 
relies on the principle of stationary phase (POSP) [1-4] 
where, given a prescribed amplitude envelope, the phase 
function of an FM waveform that approximates a desired 
spectral shape can be determined. This approximation 
becomes more accurate as the time-bandwidth product 
increases. By leveraging the power spectrum / autocorrelation 
Fourier pair, the power spectrum shape is thus chosen to 
correspond to an autocorrelation with low sidelobes.  

It has recently been shown that polyphase codes, the 
parameterized structures of which permit the use of various 
optimization techniques, can be implemented as polyphase-
coded FM (PCFM) waveforms [5] via a variant of continuous 
phase modulation from communications. Subsequently, [6] 
demonstrated that the continuous-time PCFM waveforms can 
be optimized using gradient-based methods since the 
waveform is defined using a discrete set of parameters. 

In [6], a generalized integrated sidelobe (GISL) metric for FM 
waveforms was introduced that takes the q-norm ratio of the 
autocorrelation sidelobes to the autocorrelation mainlobe 
according to a specified receiver sampling rate. Here, the 
GISL metric is extended to include subsample shifts of the 
waveform inside the correlation function to minimize 
degradation of the pulse compression response due to range 
straddling effects [7].  

Denoted generally as coded FM (CFM), the phase function 
model of the PCFM definition [5] is now expanded to include 
arbitrary weighted basis functions. Here, the particular case 

involving a weighted-sum of Legendre polynomials is 
examined. As an example, it is demonstrated that for 
waveforms of time-bandwidth less than 1024, only a small 
number of these polynomials (less than 12) are needed to 
produce a waveform with low autocorrelation sidelobes (with 
diminishing returns thereafter).  

As further examples, two waveforms are optimized for 
experimental loopback testing using the CFM Legendre 
polynomial model: one with a rectangular amplitude envelope 
and the other with a Tukey envelope. The loopback 
correlation response agrees with the theoretical response in 
the rectangular case but deviates in Tukey case due to 
hardware distortion. The distortion was estimated and applied 
to the waveform model to produce a correlation response 
resembling that of the loopback test. 

2 Coded FM waveform model 
A complex-baseband FM waveform can be represented as 

( ) ( ) exp( ( ))s t u t j t ,       (1) 

where ( )u t  is the positive, real-valued, amplitude envelope 
and ( )t  is the continuous phase function. For pulsewidth T, 
define ( )s t  over the interval [ 0.5 ,0.5 ]Tt T . In general, the 
coded FM (CFM) phase function ( )t  can be represented as a 
weighted sum of N continuous-time basis functions as 
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where ( )ng t  is the nth basis function and n  is its 
corresponding real-valued weighting. For a given amplitude 
envelope ( )u t  and set of basis functions ( )ng t , the FM 
waveform is completely parameterized by the N parameters 
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T

Nα = T
N . Note that this coded model 

subsumes PCFM [5] as one possible instantiation. 

A natural basis for the phase function defined in (2) is a 
polynomial basis. Furthermore, it is advantageous to select 
functions that are orthogonal over a certain interval to avoid 
highly correlated basis functions. Thus we consider Legendre 
polynomial functions which are orthogonal over [ 1, 1]x , 
where the vth polynomial is defined as [8] 
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For example, Fig. 1 depicts the Legendre polynomial 
functions for {1, 4,7,12}v . Since the Legendre polynomial 
functions are orthogonal over [ 1, 1]x , each parameter n  
corresponds to a unique basis function ( )ng t . 

 
Fig. 1: Legendre polynomial functions ( )vP x  for {1,4,7,12}v  

Note that even values of v  produce even (symmetric) 
functions, while odd values produce odd (antisymmetric) 
functions. Thus we shall limit attention to the even symmetric 
functions {2, 4,6...}v  as they yield symmetric frequency 
responses (given that ( )u t  is also symmetric). Therefore the 
CFM basis functions are set as 

2( ) (2 / )nng t P t T   for  1, ,n N, N, .   (4) 

3 Continuous correlation using a digital filter  
The ambiguity function is a standard tool with which to 
evaluate the “goodness” of a radar waveform. For the 
waveform model in (1), the ambiguity function is defined as 
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for delay  and Doppler frequency df . The zero Doppler 
slice of the delay/Doppler ambiguity function (i.e. the 
continuous-time waveform autocorrelation) is  
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which is the ideal matched filter response for waveform ( )s t . 
However, the expression in (6) does not capture the 
interaction of the continuous-time waveform that is physically 
emitted by the transmitter with the digital (and thus discrete-
time) pulse compression filter on receive, though the ideal 
response can be well approximated if the receiver sampling 
rate is much higher than the waveform  3-dB bandwidth [5,9]. 
With rapid advances in diverse waveform design and 
generation [10], this interaction is becoming increasingly 
more common. 

To address this limitation, we propose the alternative 
correlation function 
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is a train of M weighted impulses at time instants smT  for  
{0, , 1}m M, 1}, . The term 1s sT f T M  is the receiver 

sampling period and , )(0 sT  is a sub-sample delay offset. 
The impulse train weights, which are discretized samples of 
waveform ( )s t , correspond to the length-M discrete matched 
filter ( [ ( ( () ( )) ) )]1 T

s ss s T s M Ts( [ (( [ ([ (([ (s ((((((((((((  for delay 
offset  and sampling period sT .  

The receiver sampling rate sf  is K times (over-sampled) the 
3-dB bandwidth B to provide sufficient fidelity of the FM 
waveform. Therefore, the length of the discrete matched filter 
is M = KBT, which corresponds to the available waveform 
design degrees of freedom [6]. Here we shall use an over-
sampling factor of 2K  which is practically achievable for 
many radar applications. 

Correlating the waveform ( )s t  with the weighted impulse 
train ( ; )s t( ; )s( )  naturally accounts for the continuous nature of 
the physical radar emissions and the subsequent digital 
filtering in the radar receiver. The particular delay values 

sTsT  for discrete index 1 1M M 1 of the 
correlation function )(A  represent the discrete-time 
autocorrelation of ( )s( )( )s  as 
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All other delays in T T  correspond to range straddling 
conditions that can elicit mismatch loss [7] and possibly 
sidelobe degradation [5,9]. By defining the waveform/filter 
correlation using (7) so that these range straddling effects are 
included, subsequent evaluation of the range sidelobes via 
metrics such as peak sidelobe level (PSL) or integrated 
sidelobe level (ISL) inherently address the finite degrees of 
freedom of the receive filter. 

4 Optimization Procedure for CFM waveforms  
In [6], a q-norm optimization metric for FM waveforms called 
the Generalized Integrated Sidelobe Level (GISL) was 
introduced and defined as 
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for 2q . Note that 2q  is the Integrated Sidelobe Level 
(ISL) and q  yields the Peak Sidelobe Level (PSL). 
Values of q between these cases strike a balance between the 
ISL and PSL metrics. A similar metric to (10) has also 
recently been proposed for the design of phase codes [11,12]. 
Here, the modified correlation function defined in (7) is 
included in (10) to incorporate sub-sample shifts in the 
waveform. 

The variability of the cost function in (10) with norm q can 
drastically change the autocorrelation properties of a resulting 
(iteratively) optimized waveform given the same waveform 
initialization. For the case of a rectangular-envelope u(t), a    
q = 5 norm has been found to retain both ISL and PSL 
properties.  

The term  in (10) defines the peak-to-null mainlobe width 
and is related to 3-dB bandwidth as 1 B . Thus the time-
bandwidth product is BT T . Therefore, the time-
bandwidth for waveform optimization can effectively be set 
by establishing the relative peak-to-null mainlobe width 
T  without explicit shaping of the waveform spectrum.  

Observe that, for 2 q , the metric in (10) is a continuous 
function of the length-N parameter vector α  through the 
combination of (1), (2), and (7). As such, gradient-based 
optimization methods (e.g. nonlinear conjugate gradient [6], 
quasi-Newton method, etc.) can be implemented to minimize 
this metric [13]. Of course, it should be noted that the 
gradient of ( )qJ α  is discontinuous, and thus gradient-based 
PSL optimization can only be approximated for q large.  

Here, a quasi-Newton gradient-descent method with a 
Broyden-Fletcher-Goldfarb-Shanno Hessian approximation 
update is used to minimize (10), with the gradient calculated 
using a finite-difference approximation [13]. As for all 
gradient-based methods, the algorithm descends onto a locally 
optimal solution which is not guaranteed to be globally 
optimal. Therefore the locally optimal solution is highly 
dependent on the initialization. As such, an order-recursive 
approach is implemented to ensure the quasi-Newton method 
is initialized with a waveform that already has good 
autocorrelation properties.  

Given the N basis functions from (4), the order-recursive 
approach is initiated by first performing the quasi-Newton 
search only using the lowest order basis function 1( )g t , 
which corresponds to an order-2 polynomial. The converged 
waveform after gradient-descent optimization is then used as 
an initialization for the order-4 polynomial that uses basis 
functions 1( )g t  and 2 ( )g t , for the quasi-Newton search is 
likewise performed. For a predefined N, this order-recursive 

process is repeated until all basis functions ( )ng t , for 
, ,1n N , have been incorporated into the optimization.  

5 Simulations and Loopback Measurements  
It is first useful to determine the optimal offset delay  for 
the receive filter and the sufficient number of basis functions  
N as a function of BT. Using this knowledge, two waveforms 
are then optimized: one with a rectangular amplitude 
envelope and one with a 10% Tukey tapered envelope. These 
waveforms are evaluated on hardware in a loopback 
configuration and their filter responses are compared to the 
theoretical autocorrelation responses.  

5.1 Sample offset and number of basis functions  

The quasi-Newton gradient-descent optimization procedure 
was implemented to determine the optimal sample offset , 
for ( ; )s t( ; )s( )  the digital receive filter. The normalized offset 
parameter is varied from 0sT  to 1sT , with the 
remaining  parameters set to 128BT , 2K , 32N  basis 
functions, a rectangular amplitude envelope ( )u t , and 5q .  

Figure 2 shows the converged values of n5 mi( )J α  versus 
normalized sample delay sT , where we find that 

0.5sT  provides the minimum value. Unsurprisingly, this 
condition arises because delay 0.5sT  is equidistant (in 
time) from the extremes of range-straddling that may occur. 
The subsample offset of 0.5sT  is used for the remainder 
of the paper. 

 
Fig. 2: Values of n5 mi( )J α  versus normalized offset / sT  

To determine a sufficient number of basis functions to 
characterize the phase function ( )t , Fig. 3 plots the cost 
function n5 mi( )J α  from (10) as a function of N for the values 

{64, 128, 256, 512, 1024}BT . As before, 2K  and ( )u t  
has a rectangular envelope. It is observed that for each BT 
there are two regimes: one in which n5 mi( )J α  decreases 
rapidly with increasing N and then a ‘diminishing return’ 
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region where n5 mi( )J α  decreases much more slowly with 
increasing N. The transition between these regions depends 
on BT but is found to be between 6N  and 12N  for the 
cases considered. For the remainder of the paper we shall use 

32N  basis functions which resides well within the second 
region.  

 
Fig. 3: Values of n5 mi( )J α  versus N for different BT 

5.2 Optimized CFM waveforms  

Two waveforms of 200BT  are optimized for an over-
sampling of 2K  using 32N  Legendre polynomials as 
basis functions (polynomial order of 64). The first waveform 
has a rectangular amplitude envelope (labelled RECT) and its 
optimization uses q = 5 in (10). The second waveform has a 
10% Tukey tapered envelope (labelled TUKEY) and its 
optimization uses q = 2 in (10), which has been found to 
produce a lower overall sidelobe level than q = 5 for this 
amplitude envelope.  

Figure 4 shows the power spectra of the RECT-envelope 
(blue) and TUKEY-envelope (red) waveforms with the 
receiver sampled bandwidth ( 2 )s KBf B  indicated by the 
vertical dashed lines. Note that by setting the relative peak-to-
null width T  in the optimization, we have effectively 
established the desired 3-dB bandwidth of the RECT and 
TUKEY-envelope waveforms. While the in-band spectral 
content of the two waveforms is nearly identical, the 
TUKEY-envelope case has a much sharper roll-off. This 
result is not unexpected since the abrupt on/off transition of 
the rectangular envelope will exhibit a sin(x)/x spectral skirt. 
For comparison, a rectangular-windowed linear FM (LFM-R) 
and Tukey-windowed linear FM (LFM-T) with similar time-
bandwidth products are included. While all the waveforms 
have similar 3-dB power bandwidths, the optimized 
waveform spectra clearly exhibit some spectral broadening. 

While the optimization via (10) uses the hybrid 
continuous/discrete autocorrelation of (7) to account for 
straddling effects, it is easier to depict the final result using 
the discrete autocorrelation of (9). The autocorrelation 
responses (using (9)) are shown in Fig. 5 for the RECT-
envelope optimized waveform (blue) and the rectangular-
windowed LFM (red). The maximum straddled responses 

from (7) are also shown in dark blue and dark red, 
respectively, which represent the worst-case responses for 
these waveforms. The maximum PSL of the optimized 
waveform is –44.75 dB, as compared to –13.36 dB for the 
LFM-R case.  

 
Fig. 4: Power spectra of LFM-R (gray), LFM-T (black), optimized 
RECT-envelope waveform (blue), and optimized TUKEY-envelope 
waveform (red). Receiver sampled bandwidth indicated by vertical 
dashed lines. 

 
Fig. 5: Autocorrelation via (9) for LFM-R (red) and optimized 
RECT-envelope waveform (blue). Maximum straddled responses in 
dark blue and dark red, respectively. 

Figure 6 shows the autocorrelation responses (using (9)) for 
the TUKEY-envelope optimized waveform (blue) and the 
Tukey-windowed LFM (red). The maximum straddled 
responses from (7) are likewise shown in dark blue and dark 
red, respectively. The Tukey-tapered waveform achieves 
much lower sidelobes compared to the RECT-envelope 
optimized waveform from Figure 5 while only incurring 0.56 
dB in SNR loss due to the tapering. As compared to the LFM-
T response, the energy close to the mainlobe is reduced for 
the TUKEY-envelope optimized waveform, though sidelobes 
of approximately –57 dB are observed at the autocorrelation 
edges. These further-out sidelobes can be readily mitigated 
through the use of appropriate optimal mismatch filtering on 
receive with minimal additional loss (see [9]). 
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Fig. 6: Autocorrelation via (9) for LFM-T (red) and optimized 
TUKEY-envelope waveform (blue). Maximum straddled responses 
in dark blue and dark red, respectively. 

Figures 7 and 8 depict the ambiguity functions (via (5)) for 
both the RECT-envelope and TUKEY-envelope optimized 
waveforms, respectively. Both waveforms exhibit a delay-
Doppler ridge similar to that of an LFM waveform indicating 
these waveforms are relatively Doppler tolerant.  

 

 
Fig. 7: Ambiguity function ,( )df  (in dB) via (5) of the 
RECT-envelope optimized waveform. 

Fig. 8: Ambiguity function ,( )df  (in dB) via (5) of the 
TUKEY-envelope optimized waveform. 

5.3 Hardware loopback measurements 

The two optimized waveforms were tested in a loopback 
configuration using a Tektronix AWG70002A arbitrary 
waveform generator (10-bit) and a Rohde & Schwarz FSW 26 
real-time spectrum analyzer (18-bit) to evaluate the 
degradation of the waveforms when filtered, down-sampled, 
and represented with finite bit-depth. The bandwidth of the 
waveforms was set at 50B  MHz with a pulse duration of 

4 T s . For 2K  over-sampling the receiver sampling 
rate was set to 100sf  MHz. 

Figure 9 shows the loopback response (red) and the 
theoretical autocorrelation via (9) (blue) for the RECT-
envelope optimized waveform. The loopback measurement 
results in 0.01 dB in mismatch loss due to either straddling or 
filtering, while the sidelobe responses are almost identical. 
Figure 10 likewise shows the loopback and theoretical 
autocorrelation responses for the Tukey-tapered optimized 
waveform. A mismatch loss of only 0.01 dB is once again 
observed. However, the sidelobe response of the loopback 
data is noticeably different from the lower sidelobes of 
theoretical response. 

 
Fig. 9:  Theoretical autocorrelation (blue) via (9) and hardware 
loopback correlation (red) for the RECT-envelope optimized 
waveform. 

 
Fig. 10:  Theoretical autocorrelation (blue) via (9) and hardware 
loopback correlation (red) for the TUKEY-envelope optimized 
waveform. 
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The distortion of the waveform due to up-conversion, down-
conversion, linear filtering, and finite bit-depths of the 
loopback setup was estimated and applied to the continuous-
time waveform model in (1) for the TUKEY-envelope 
optimized waveform. Figure 11 shows the correlation 
response of the loopback test and the estimated response 
when incorporating the knowledge of these practical effects. 
The responses now resemble one another much more closely 
than was observed in Figure 10. In the same manner as the 
ultra-low sidelobes achieved in [14], this result indicates that 
more knowledge of the distortion imposed by the RF 
transmit/receive chain needs to be incorporated into the 
waveform model to realize the fidelity necessary to achieve 
the promised performance gains of advanced waveform  
design and, by extension, waveform diversity [10].  
 

 
Fig. 11:  Correlation response with estimated loopback distortion 
(blue) and hardware loopback correlation (red) for the TUKEY-
envelope optimized waveform. 

5 Conclusion  
The design of Legendre-polynomial coded waveforms was 
demonstrated using quasi-Newton method optimization. A 
correlation function was also defined that allows this 
optimization to account for range straddling effects. It was 
found that the orthogonal nature of Legendre polynomials 
facilitates the design of waveforms with quite low sidelobe 
levels with a very small number of code values. Experimental 
loopback measurements demonstrated the efficacy of this 
design procedure for both rectangular-envelope and Tukey-
envelope optimized waveforms. Below 80 dB it was 
observed that the distortion of the RF test equipment had to 
be taken into account to represent the waveform with 
sufficient fidelity. 
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