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Abstract— We consider a set of non-linear transformations of
order statistics incorporated into a machine learning approach
to perform distribution identification from data with low sample
support with the ultimate goal of determining the appropriate
detection threshold. The set of transformations provide a means
with which data may be compared to a library of known clutter
distributions. Several common non-Gaussian distributions are
discussed and incorporated into the initial implementation of
the library. This approach allows for the addition of empirically
measured clutter distributions, which may not have a known
analytic form. The adaptive threshold estimation reduces the
probability of false alarm when non-Gaussian clutter is present..

I. INTRODUCTION

At a fundamental level, the problem of radar detection is
expressed as a statistical hypothesis test: does the sampled
data correspond to a null distribution of clutter and noise
or to the alternate, target-present distribution. Both the null
and alternate distributions are dependent on the radar system
under consideration, as well as the operating environment in
which the radar will be expected to perform. By taking a
machine learning approach, the flexibility and robustness of
the radar may be enhanced so that it may successfully operate
in unforeseen, adverse scenarios.

The succeeding layers of processing in a radar system (e.g.
tracker, target identification) depend on reliable performance
by the detector. To provide a reliable detection of targets, the
detector must closely approximate the true statistical distri-
bution of both hypotheses with a modeled distribution. If the
true and alternate hypotheses are known, the Neyman-Pearson
(NP) criterion may be applied to determine a threshold that
maximizes the probability of detection while maintaining a
desirable, constant rate of false alarm [1]. However, in practice
the true distribution, as well as its parameters (e.g. shape, scale,
variance) cannot be clairvoyantly known. At the very least, the
mean and variance of the null distribution must be known to
set the NP threshold optimally.

With the absence of a priori information about the clutter
distribution, it is common to assume that the clutter is homo-
geneous and complex Gaussian distributed with an unknown
covariance structure. An adaptive, sub-optimal detector can
then be formed by using range cells near the cell-under-test
(CUT) to estimate the clutter statistics and form a detection
threshold. The well known Kelly generalized likelihood ratio
test (GLRT) follows this logic [2]. As an alternative, the
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adaptive matched filter (AMF) has a lower computational cost
when compared to the GLRT, but suffers a penalty in SNR
[3]. However, the performance of both the GLRT and AMF
depend on the assumption of homogenous, Gaussian data [4].

Non-Gaussian clutter distributions with heavier tails have
long been observed in practice, most notably in measurements
of sea clutter [5]. For a non-Gaussian distribution, additional
parameters such as shape and scale must also be estimated
from the data. Therefore, to establish a reliable detection
threshold the true distribution of the clutter must be identified
and any relevant parameters must be estimated. Previous
work proposed a graphically-based approach to distribution
identification [6], [7].

Here we extend the work of [6], [7] to a general machine
learning framework for distribution, and ultimately threshold,
estimation. Current radar signal processing research empha-
sizes the role of knowledge-aided and cognitive approaches
to future radar systems. In a knowledge-aided approach,
measured data can be leveraged to provide candidate models
for radar clutter. However, the framework established here
is open to future innovations which may allow the radar
system to add to its knowledge base in a cognitive manner. In
particular, it has been shown that measured data may fit two
analytical distributions equally well [8]. This fact raises the
question of the existence of an unknown distribution whose
parameters may be inferred from known distributions. More
importantly, the primary motivation of modeling the clutter
with a statistical distribution is to maximize the accuracy of
an estimated threshold via the NP criterion. Therefore, our true
goal is to establish a robust, low complexity implementation
of a radar clutter threshold estimator. In this implementation,
a collection of threshold information may then be used to
determine a proper threshold for detection in non-Gaussian
clutter that may be distributed according to an unknown,
empirically measured distribution. In this paper we describe
the framework and provide an intuition to the overall strategy
and illuminate the discussion with preliminary results.

II. MODELING RADAR CLUTTER

In general, it is difficult to predict the clutter characteristics
that a radar might encounter in its operational life. Clutter
characteristics depend on both radar parameters (e.g. range
resolution, grazing angle, beamwidth) as well as the physical
characteristics of the illuminated area (e.g. mountainous vs.



littoral regions). In particular, the likelihood of encountering
”spiky” or heavy-tailed clutter increases as range resolution
becomes finer and as grazing angle decreases [8]-[11]. The
spiky nature of the clutter naturally leads to an increase in false
alarms by the detector. A general characterization of a clutter
process must be able to model both the amplitude statistics
of a single pulse as well as the correlation between individual
pulses [9], [12].

Clutter is often modeled as the backscattered radiation from
a large number of random scatterers. Therefore, by the central
limit theorem (CLT) the clutter is assumed to be Gaussian
in nature [9]. However, if the number of scatterers can be
expressed as a mixture of Poisson random variables, the clutter
distribution takes the form of a spherically invariant random
process (SIRP) [9], [13]. The theory of SIRPs allows the
analysis and simulation of a class of multidimensional, cor-
related, non-Gaussian random vectors, denoted as spherically
invariant random vectors (SIRVs). An individual SIRV is a
conditionally Gaussian random vector that has been modulated
by an instantiation of a positive random variable. Therefore a
SIRV distributed clutter process is locally Gaussian, but the
large scale sampling of the radar causes a power modulation to
appear across an illuminated area. Many of the non-Gaussian
distributions that have been empirically fit to measured clutter
data belong to the class of SIRVs (e.g. the K distribution
and the Weibull distribution for certain values of the shape
parameter) [6], [7], [9], [13].

A length L complex SIRV y can be expressed in the
quadratic form

g=y"sly (D

where (@) denotes complex conjugate transpose and X is the
covariance matrix of y. Using (1), the pdf of y can be defined
as
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where |X| is the determinant of the covariance matrix and
V' is the modulating random variable with pdf fi (v). It is
straightforward to prove that the Gaussian distribution is a
SIRV with fy (v) = d(v — 1) for §(v) the delta function [7].

While not admissable as a SIRV [7], it has been suggested
that the log-normal distribution is a good fit to measured clutter
[14], [15]. Multivariate, correlated log-normal clutter may be
generated by taking the complex exponential of zero mean,
complex Gaussian random vectors [15].

A. Consequences of Non-Gaussian Clutter

To illustrate the consequences of non-Gaussian clutter, con-
sider the increase in threshold required to maintain a constant
false alarm rate in spiky clutter versus Gaussian clutter. Define
the change in threshold to be

. T
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where Tng is the threshold required to maintain a constant
false alarm rate in a particular non-Gaussian distribution
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Fig. 2. Increased Py, from K distributed clutter

and Tg is the threshold required to maintain an identical
false alarm rate in complex Gaussian clutter. This change
in threshold must be estimated, and directly corresponds to
loss of detection probability. For K distributed clutter Figure
1 illustrates the increase in threshold for increasing shape
parameter (note: the K distribution tends towards Gaussian
as the shape parameter goes to infinity). Considered another
way, if the detector uses a threshold derived from the Gaussian
assumption but encounters heavy tailed clutter, the probability
of false alarm will inevitably rise. Figure 2 shows the encoun-
tered probability of false alarm when a detector using 7T¢ is
used in the presence of K distributed clutter with increasing
shape parameter. For Figures 1 and 2, the desired probability
of false alarm was set to P, = 1076,

III. OZTURK ALGORITHM

We denote the algorithm presented in [6], [7], [16]-[18] as
the Ozturk algorithm after its lead author. The goal of the Oz-
turk algorithm was to provide a graphical measure of distance
between sampled data and the Gaussian distribution [16]-[18]
using order statistics. The algorithm was then extended to
provide a distance between various SIRV distributions and the



Gaussian distribution [7]. Through this extension, a library
of candidate distributions can be formed. Here we describe
the Ozturk algorithm in the context of arbitrary data (i.e. not
necessarily in terms of radar clutter returns). We then show
an example using SIRV distributed data and consider clutter
returns in general in Section IV.

To provide a graphical distance between distributions, a
set of vectors are formed from expected values of candidate
distributions. These vectors are linked, and the endpoint of the
linked vectors are plotted on a two dimensional plane, with
coordinates (U, V). This process results in a unique endpoint
for each candidate distribution in the library [7]. Sampled
data may then be similarly transformed and compared to the
endpoints in the library.

The nonlinear transformation of the Ozturk algorithm uses
the studentized order statistics of candidate distributions. To
begin, consider a collection of N complex independent, iden-
tically distributed (IID) data samples q = [q1,92,.-.,qN]-
The sample mean and variance of q are denoted as ¢ and
&2, respectively. The samples of q are then ordered, forming
the order statistics

qn <92 << quv- “4)

Finally, the studentized order statistics of y are defined as

"
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Studentization allows for the order statistics to be normalized
to zero mean and unit variance, to facilitate the comparison of
sampled data from different distributions.

As mentioned above, the Ozturk algorithm is a two di-
mensional graphical approach. Therefore, the vectors may be
represented by a magnitude and an angle. Let the angles ¢;
be a uniform sampling of (0, 7), or

1
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The magnitude of each vector is given by |z(;[, and the
angle with respect to the V axis is ¢;. Starting at (0,0), the
coordinates of the endpoint of each vector is then given as
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The endpoint (U, Vi) for each distribution in the library is
then plotted.

Note that the number of data samples considered must
be pre-determined when forming the library. However, the
library may be created offline via Monte Carlo simulation
for commonly expected data sizes. Further, observe that the
Ozturk algorithm yields a hypothesis suggestion rather than
an hypothesis test. In addition, the location of the endpoints
are a function of the shape parameter of the data. Therefore,
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Fig. 3. Example Ozturk Library, Linked Vectors (endpoints highlighted)

the Ozturk algorithm transforms sample data and returns both
a distribution as well as a likely shape parameter.

As an example, Figure 3 shows a small library formed by
three candidate distributions that have been transformed by
the Ozturk algorithm. All three are length L = 16 SIRVs, that
have been collapsed into the quadratic form given by (1). To
generate Figure 3, 100,000 collections of N = 16 quadratic
data samples were formed via Monte Carlo. The endpoints
were then plotted for the complex Gaussian distribution as well
as K distributions with shape parameters v = 0.5 and 1. Figure
3 illustrates the separation between the expected endpoints
(yellow circles) associated with Gaussian distributed data and
the heavier tailed K distribution.

A. Extension of the Ozturk Algorithm

The original intuition of the Ozturk algorithm was based
on a graphical distance in a two dimensional plane. This
formulation naturally led to the use of the sine and cosine
functions to weight the magnitudes given by the order statistics
of the candidate distributions. However, notice that in general
(7) is a weighted sum of magnitudes. When considered in this
light, the choice of sine and cosine functions become arbitrary.

Therefore, we propose the use of multiple weightings to
provide further diversity. As a first approach, the aforemen-
tioned sine and cosine are included, along with their respective
squares, the hyperbolic functions sinh, cosh, and tanh, and
their squares. These additional weightings act to emphasize
and de-emphasize different regions of the pdf of the sampled
data. For example, when sin(¢;) is applied to the order
statistics, the samples around the median are emphasized
and the extreme values (maximum and minimum) are de-
emphasized. Alternatively, the squared cosine emphasizes the
extremes of a sample data set (minimum and maximum), while
excising the median value from the sum. Note that by using
the quadratic form of a SIRV in (1), the Ozturk algorithm
is in essence performing a weighted summation of the order
statistics of the generalized inner product (GIP) of sample data
[19]. Thus, this extension can encompass multivariate non-
Gaussian distributions which are not admissible as SIRVs (e.g.



log-normal distribution).

As a second extension, we propose the use of the Ozturk
algorithm to directly estimate a threshold from sampled data.
In other words, using the diversity of multiple weighting
functions, we wish to provide a low complexity and low
sample support method to directly infer a threshold to achieve
a desired probability of false alarm from measured data.
We refer to the combination of these two extensions as the
extended Ozturk algorithm (EOA).

IV. LIBRARY IMPLEMENTATION

To test the new adaptive threshold estimation algorithm, a
library is populated with a combination of weighting functions
and candidate distributions. The individual elements of the
receive vector are given by the returns from a single range
cell over a coherent processing interval. Therefore, a collection
of N range cells (assumed homogenous) is gathered with L
complex returns per range cell (i.e. L pulses in a coherent
processing interval). The distribution may then be described
by the quadratic form of the SIRV, ¢, where the covariance
matrix is estimated from the N vectors in the data sample.
Note that the optimal estimation of the covariance matrix of
SIRV data is not straightforward [20]. However, the use of
studentized order statistics causes the Ozturk algorithm to be
robust to scaling errors when estimating the covariance matrix
[7].

The initial implementation of this library includes the clas-
sical K, Weibull, and log-normal distributions. Specifically,
we consider collections of N = 16 length L = 4 complex
random vectors. The Weibull distributed data was generated
with shape parameters of v = 0.1 — 2, generated at increments
of Av = 0.1. The K distributed data was generated with
a range of shape parameters 0.3 < v < 200, with smaller
sample increments at lower values of v (i.e. where the clutter is
“spikier” and the required threshold is much greater). For each
distribution/shape parameter pair in the library, the optimal
detection threshold has been computed via Monte Carlo, using
107 sample vectors for a Py, = 107°. For the 10 weighting
functions given in Section III-A, we performed 10° Monte
Carlo simulations to find an average endpoint, providing a 10
dimensional space.

Figure 4 shows a cut from the 10 dimensional space using
the sine and cosine weighting functions. Note that Figure
4 is equivalent to the original Ozturk algorithm, where stu-
dentized order statistics are weighted by the sine and cosine
functions, and each resulting vector is summed to produce a
two dimensional coordinate. The arcs plotted for each SIRV
are parameterized by changing the shape parameter such that
the distribution becomes increasingly heavy-tailed. Notice that
each SIRV converges to the Gaussian distribution for a value
of the shape parameter v (e.g. v — oo for the K distribution,
v — 2 for the Weibull distribution [7]). However, the log-
normal distribution is not parametrized by a shape parameter,
and therefore occupies a single point near the bottom center.
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V. SIMULATION RESULTS

The results in this section were generated via Monte Carlo
with 10° runs per data point. As with the previous results, each
data set consists of N = 16 length L = 4 complex vectors
that are compressed into the quadratic, or GIP, form of (1). For
this initial work, the true covariance matrix is used to form
the GIP, as the Ozturk algorithm is robust to covariance matrix
estimation error [7]. Future work will address the impact of
using a sample covariance matrix.

A. Distribution Identification

Conventionally, to establish a detection threshold a modeled
distribution must first be selected. Each sample data set
is processed via equations (4)-(7), with different weighting
functions substituted in (7) when indicated. For the K and
Weibull distributions, the average endpoints in the library are
linked linearly to form a piecewise linear curve. The sample
end point is then compared to the two curves (for K and
Weibull distributions) and the log-normal point. The closest
curve (or point) is found and the corresponding distribution
is chosen as the hypothesis suggestion as to which clutter
distribution is present.

Figure 5 shows the rate at which the Weibull, K, and
log-normal distributions are selected when sine and cosine
weightings are used on K distributed data of varying shape
parameters. Figure 6 shows the classification accuracy when
the cosine and cosine squared weighting functions are used.
Notice in both cases that the algorithm correctly selects the K
distribution for very low shape parameters, but increasingly
selects the Weibull distribution as the shape parameter in-
creases (i.e. as the data tends towards Gaussian). In addition,
the log-normal distribution is more likely to be chosen when
the cosine and sine weightings are used as opposed to the
cosine and cosine squared weightings. However, if distribution
identification is desired so as to subsequently estimate the
threshold, the direct determination of this threshold also bears
consideration
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Fig. 6. Classifying K data using cosine and cosine squared weightings

B. Threshold Estimation

In Section V-A it was shown that the Ozturk algorithm
struggled with correctly classifying K distributed clutter for
high shape parameters. However, the ultimate goal of a detec-
tor is to set an optimal threshold. In this section we investigate
the capability of the EOA to determine a correct threshold,
regardless of which distribution is selected. As the focus
here is on a low computational complexity implementation, a
lookup table/interpolation approach with desired Py, = 1075
is employed. By finding the nearest point on the curve associ-
ated with a distribution, the shape parameter associated with
a sample data point may be generated via linear interpolation
between the two closest shape parameters that have known
(i.e. pre-computed) thresholds. This process relies on adequate
sampling by the library in regions where the shape parameter
and threshold are related in a highly non-linear fashion, so
that the behavior may be approximated in a piecewise linear
fashion. To summarize the processing steps:

1) Collect a data set of N length L vectors (i.e. samples
from N training range cells over a period of L pulses.)
2) Compress to a set of N GIPs via (1).
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3) Sort and studentize the GIPs as (4) and (5).

4) Choose weighting functions and generate a sample end-
point from (6) and (7).

5) Find the closest point on a curve in the library.

6) Find the associated shape parameter via lookup or inter-
polation between the two nearest shape parameters that
have known thresholds.

7) Find the corresponding threshold to the hypothesized
distribution/shape parameter pair.

Note that with respect to the number of range cells used, the
additional processing steps 3-4 increase linearly in complexity,
and are unchanged with respect to the number of pulses. The
remainder of the algorithm incurs a computational cost that
depends on the size and sampling of the library, rather than
the dimensionality of the data.

First, we examine the threshold estimation accuracy of the
EOA on K distributed data. For comparison, the classical
method of moments (MoM) estimator [21] is used to estimate
the shape parameter of the data. Note that in this case the
clairvoyant covariance matrix was also used, and the MoM
has L x N = 48 samples to estimate the shape parameter.
The MoM estimated shape parameter was then translated into
a threshold in the same way as the EOA estimated shape
parameter, albeit with the K distribution always correctly
selected. The average threshold estimated was then compared
to the true threshold for varying shape parameters in decibel
scale. The results for several pairs of weighting functions are
shown in Figure 7.

Note that a threshold error above 0 dB produces an equal
amount of detection loss, and any error below 0 dB corre-
sponds to increasing Py, . The selection of weighting functions
appears to have a large amount of influence on the accuracy
of the estimated threshold, especially at large values of v.
Recalling the behavior of Figure 1, an incorrect estimate of
the shape parameter at high or low values causes a non-linearly
related increase in error in the threshold estimate. However, the
EOA selects a threshold corresponding to the data, and thereby
produces an accurate result. Equation (7) can be extended to
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an arbitrary number of weighting functions, so we investigated
the use of all 10 weighting functions under consideration to
form an endpoint. That result is denoted as “All Statistics”.
Recall from Figures 5 and 6 that the cosine and cosine
squared combination was less likely to select a log-normal
distribution at high shape parameters than the sine and cosine
weighting functions. For the parameters under consideration,
the threshold for the log-normal distribution is 9.5 dB greater
than the K distribution at v = 40, while it has approximately
the same threshold for v = 0.3. Therefore, as the log-normal
distribution has no degrees of freedom, it provides a strong
bias to the average results when it is incorrectly selected for
high shape parameter clutter.

In Figure 8, the use of the EOA is examined for threshold
determination under Weibull distributed clutter. In this experi-
ment, the EOA performs very well in Weibull clutter, capable
of an average detection loss of ~ 1 dB for v = 2, and a
threshold within 1 dB for v = 1.1, which has a threshold 7.3
dB greater than the threshold required for complex Gaussian
clutter of similar power.

VI. CONCLUSIONS

The approach shown here is an inherently sub-optimal
approach to distribution identification. However, it is low
complexity, robust, and amenable to expansion in the form
of a cognitive radar. A true cognitive radar will have the
capability to infer the distributional properties of a measured
set of data from the entries in the distribution library. If enough
deviation from previous known distributions is detected, a new
distribution may be added to the library. The strategy presented
here focuses on the desired result (a desired probability of false
alarm) and allows the data to speak for itself (i.e. distribution
agnostic) and selects the most appropriate threshold for the
situation at hand.
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