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Abstract—Gradient descent is an iterative method of 

determining the minima or maxima of a function. The algorithm 

can be used to solve a linear system of equations when the 

computational cost of a matrix inverse is too expensive for an 

application. Here, gradient descent is applied to Adaptive Pulse 

Compression (APC), yielding the GraD-APC algorithm. 

Specifically, a unit-gain constrained version of GraD-APC with 

optimal step size is derived for use with frequency modulated 

(FM) waveforms, particularly for cases in which the waveform 

time-bandwidth product is large enough to prohibit practical use 

of the original matrix inverse based APC. The range-profile 

estimation of GraD-APC is compared to that of fully adaptive 

APC using both simulated and experimentally measured data. 
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I. INTRODUCTION 

The Adaptive Pulse Compression (APC) algorithm [1,2] 
was developed to mitigate the sidelobe interference that arises 
during pulse compression by generating an adaptive filter for 
each range cell. Since the inception of APC, it has branched in 
to many variants from joint-domain adaptive filtering [3,4] to 
applicability for FM waveforms [5,6]. APC employs re-
iterative minimum mean-square error (RMMSE) estimation to 
obtain a range-adaptive filter for each range cell and requires at 
least one matrix inversion (of a structured covariance matrix) 
for each filter. The need for a matrix inverse is problematic 
when considering waveforms with high time-bandwidth 
product   and/or the need for real-time implementation.  

An early attempt to avoid full matrix inversion relied on the 
matrix inversion lemma [2] which performed reliably in low 
dynamic range scenarios. However, modifications to the 
algorithm were required to address high dynamic range 
scenarios due to numerical imprecision when using the matrix 
inversion lemma leading to error propagation for the APC filter 
update as a function of range. Dimensionality reduction 
techniques were also investigated to trade-off adaptive degrees 
of freedom for lower computational cost [7]. These reduction 
techniques split the full dimension covariance matrix into 
multiple lower dimension covariance matrices, thus reducing 
the overall computation cost. Interestingly, in [5] it was shown 
that this dimensionality reduction is also useful to compensate 
for the “oversampling” (relative to waveform 3 dB bandwidth) 
that is needed to represent FM waveforms with sufficient 
fidelity for application of APC. Here, the FM-amenable 
version of APC from [5] is formulated using a gradient descent 
implementation (yielding what is denoted as GraD-APC) as a 
means to avoid the matrix inverse altogether with minimal 
degradation in performance. 

Descent methods are in most cases non-optimal (with less 
than infinite iterations), yet they have the desirable qualities of 

reduced computational complexity, which is usually ( )O M  for 

filter length M, and better numerical stability [8]. Because of 
the reduction in computational cost, GraD-APC allows for the 
application of APC and its variants to problems with high 
dimensionality (e.g. high time-bandwidth product waveforms) 
and a lower computational threshold to achieve real-time 
operation.  

An analog to APC and GraD-APC is the application of 
gradient descent to the deterministic minimum mean-square 
error (MMSE) beamformer or, if the problem is constrained, 
the linearly-constrained minimum variance (LCMV) 
beamformer [8]. The difference between these two sets of 
algorithms is that for APC/GraD-APC the desired signal and 
the covariance matrix are unknown (albeit structured), and 
therefore estimation of the covariance matrix and desired 
signal are determined using an alternating bootstrapping 
approach based on the initial matched filter (or mismatched 
filter) response.  

With the incorporation of gradient descent, GraD-APC has 
two distinct iterative elements: an “inner loop” to estimate the 
filter (via gradient descent) and the original “outer loop” to 
estimate the range cell complex amplitude (the APC structure).  
This formulation could be directly extended to also incorporate 
joint adaptivity in the spatial [3], fast-time Doppler [9], slow-
time Doppler [4], and/or polarization [6] domains. 

Section II summarizes the signal model and FM-based  
APC filter derivation from [5]. Section III then introduces the 
gradient descent formulation and how it is applied to APC to 
form GraD-APC. In Section IV, the performance of GraD-APC 
is demonstrated in both a simulated environment and using free 
space measurements made with an LFM waveform.  

II. ADAPTIVE PULSE COMPRESSION 

The received signal captured at discretized delay  can be 
modeled as 

   ( ) ( ) ( )T
y u x s        (1) 

where s is a length-M discretized version of the transmitted 

waveform )(s t , )(u  is a sample of additive noise present at 

the receiver, 
T

( ) [ ( ) ( 1) ( 1)]x x x M   x  are M 

contiguous complex samples of the range profile ground truth 

(not known), and ( )T  is the transpose operation. The range 

profile vector ( )x  contains the complex scaling that includes 
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transmitted power, antenna gain, spherical spreading losses, 
and radar cross section of the illuminated scatterers.  

The signal-to-noise ratio (SNR) maximizing matched filter 
is denoted as 

MF MF
ˆ ( ) ( )H
x  w y ,             (2) 

where 
T

( ) [ ( ) ( 1) ( 1)]y y y M   y  is the 

collection of M contiguous discrete received samples that all 

contain the scatterer response ( )x  and ( )H  is the Hermitian 

operation. Here it is assumed that the matched filter, which is 
delay independent, is normalized as 

MF H


s
w

s s
.                 (3)  

Now define the delay dependent filtering as 

 ˆ( ) ( ) ( )H
x  w y ,      (4) 

where the delay dependent filter is found by minimizing the 
generalized APC cost function [5]  
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for use with FM waveforms, where K is the degree of 
“oversampling” on receive with respect to the 3-dB bandwidth 
of the transmitted waveform, which is needed to represent the 

FM waveform with sufficient fidelity. Thus ( )kw , ( )ky  and 

ks are the kth  length M K  polyphase-decomposed versions of 

the APC filter, receive vector, and transmitted waveform, 
respectively. The decomposition is necessary when applying 
the APC formulation for FM waveforms to avoid a noise 
enhancement effect that otherwise occurs in the inversion of 
the full M M  covariance matrix. Here it is assumed the data 
is resampled such that K is an integer. The bottom term in (5) 
is a unit gain constraint on the overall (non-decomposed) APC 
filter where λ is the Lagrange multiplier. Minimizing (5) with 

respect to ( )k


w  yields the APC filter [5] 
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where 
kR  is the kth decomposed M K M K  noise 

covariance matrix, and ( )kC  is the kth decomposed 

M K M K structured covariance matrix.  

Fig. 1 shows a flowchart of the APC process. The blue box 
represents the range profile initialization using the matched 
filter, the green boxes represent polyphase decomposition or 
recombining and the red boxes represent steps in the APC 
procedure. The APC loop is enclosed in the dashed box and 

flows according to the bold arrows. The box labeled ( )kw  is 

found using (6). The flowchart in Fig. 1 is for a single range 
cell and it is assumed that estimation updates for all the range 
cells of interest are performed before the next iteration of filter 
updates is performed. It typically takes 2-5 iterations for this 
instantiation of APC to converge depending on the density of 
significant scatterers in the illuminated environment. 

    
Fig. 1. Flowchart of APC operation 

III. GRADIENT DESCENT - ADAPTIVE PULSE COMPRESSION 

Given the gradient of cost function J  as 
* J

w
, the 

gradient descent (GD) structure is [10] 

1 *( ( ))n n n J  
w

w w w ,               (7) 

where n is the GD iteration index and 
n  is a non-negative 

step size that may be iteration dependent. 

The APC cost function for use with FM waveforms in (5) 
employed a polyphase decomposition to avoid noise 
enhancement effects that arose during matrix inversion (due to 
the need to “over-sample” the FM waveform for sufficient 
fidelity). Because the GD structure in (7) avoids the need for 
matrix inversion, this polyphase decomposition is also no 
longer required. As such, the gain-constrained (and non-
decomposed) APC cost function can be expressed as 

  2
H H( ; ( )) ( ) ( ) ( ) +Re ( ) 1J E x      

w w y w s . (8) 

Taking the gradient of (8) and assuming each range cell is 
uncorrelated with neighboring range cells and the noise yields 

 * ( ; ( )) ( ) ( ) ( )J x     
w

w C R w s s ,         (9) 

where R is the M M full-dimension noise covariance (for 

uncorrelated noise 
2

u MR I , where 
2

u  is the noise power 

and MI  is an M M identity matrix). The M M  full-

dimension structured covariance matrix  ( )C  is defined as 
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where 
2ˆ( ) ( )x   is the power of the current estimate of 

range cell ( )x  and 
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are delay-shifted versions of the discretized waveform. 

As in [5], the 1K   range cells on either side of the 
current range index are zeroed in (11) as 

( ) 0k      (12) 

for 0,1, , 1k K  . This zeroing has the effect of widening 

the beam in range to that of the matched filter resolution, 
which serves to minimize straddling loss [5] and focuses the 
adaptive degrees of freedom on sidelobe suppression instead 
of narrowing the mainbeam for super-resolution, which yields 
significant SNR loss and greatly increases convergence time. 

Inserting (9) into the GD structure of (7) produces 

  1( ) ( ) ( ) ( ) ( ) ( )n n n x 
    w w C R w s s . (13) 

The Lagrange multiplier can be determined by solving for λ in 

   1

( ) 1

    = ( ) ( ) ( ) ( ) ( )

H

n

H

n n x 




   

w s

w C R w s s s
,  (14) 

resulting in 
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Subsequently inserting (15) into (13) and simplifying yields 

   1 q( ) ( ) ( ) ( )n M n n
   

s
w P I C R w w ,     (16) 

where 

s

P  is the orthogonal projection matrix  

  1
H H

M

  
s

P I s s s s       (17) 

and qw  is the quiescent filter  

  1

q

H


w s s s             (18) 

that is identical to the normalized matched filter of (3). 

The optimal step size ,opt ( )n at the nth iteration can be 

determined by solving 

 
( )

min ; ( )
n

nJ


w ,             (19) 

where ( )nw is defined in (16). Plugging (16) into (8) and 

minimizing with respect to ( )n  yields the optimal step size 

  
 

1 q

,opt

Re ( ) ( ) ( )
( )

( ) ( ) ( )

H

n n

n H

n n


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
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
s

g C R P w w

g C R g
,      (20) 

where 

  1( ) ( ) ( )n n


 

s
g P C R w .            (21) 

While calculation of the optimal step size at each iteration may 
be computationally prohibitive, the formulation in (20) and 
(21) may provide a good guide to establish practical rules for 
selecting the step-size in practice (such as with LMS [10]).  

We have now defined the two iterative processes for GraD-
APC: the APC-based “outer loop” to converge to an estimate 

of ( )x ; and the GD-based “inner loop” to converge to an 

estimate of the APC filter for a given range cell. Table I 
provides the details of the GraD-APC algorithm. Denote N as 
the total number of inner loop (GD) iterations. The number of 
outer loop (APC) iterations depends on the desired sidelobe 
suppression. A convergence criterion for the inner loop could 
also be implemented in lieu of a fixed number of iterations.  

 

The outer loop comprises steps 3 thru 8 in Table I while the 
inner loop is steps 5 thru 7. Note the initialization of the inner 
loop filter is dependent on the outer loop iteration. For the first 
iteration of the outer loop, the initial filter of the inner loop 

0 ( )w is set to the quiescent or matched filter. For the 

remaining outer loop iterations, 0 ( )w  is set to the final filter 

of the previous inner loop (step 9). Per outer loop iteration per 

range cell, APC from (6) requires 
3 3( / )O M K  complex 

operations, while GraD-APC requires 
2( )O M N  and is readily 

amenable for further reduction via parallel processing. 

The nested loop structure of GraD-APC presents an 
interesting trade-off between filter convergence and 

TABLE I:  IMPLEMENTATION OF GRAD-APC ALGORITHM 

1. Collect M range samples corresponding to range index into the 

vector  y . 

2. Obtain the initial range profile estimate MFˆ ˆ ( ) ( )x x via (2) and (3) 

and initialize the APC filter to the quiescent filter via (18) 

0 q( ) w w . 

3. Compute the power estimates 
2ˆ( ) | ( )|x   and use to calculate the 

structured covariance matrice  C from (10) while implementing the 

zero-filling constraint for ( )  from (12). 

4. Initialize inner loop iteration index to 1n  . 

5. Calculate the optimal step size 
,opt ( )n via (20) and (21). 

6. Calculate ( )nw  via (16) – (18) . 

7. If n N , go to step 5 and increment inner loop index 1n n  . 

Otherwise, go to step 8. 

8. Apply each GraD-APC filter to the associated data vector to obtain the 

updated range profile estimate as 
Hˆ( ) ( ) ( )Nx  w y . 

9. Initialize filters for next outer loop iteration as 
0 ( ) ( )Nw w  using 

current final filter estimates.  

10. Go to step 3 unless convergence or desired suppression is achieved. 

 



convergence of the range-profile estimate (or covariance 
matrix). It is advantageous in terms of time to not fully 
converge to a filter solution before updating the range profile 
estimate, but to find a “good enough” solution. This 
compromise permits a more rapid update of the gradient 
descent direction. These choices give flexibility to the desired 
amount of adaptivity/suppression. A comprehensive 
convergence analysis on the nested loop structure of GraD-
APC is needed to understand fully the “optimal” choice in 
parameters. 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

To judge the effectiveness of GraD-APC in estimating the 
range profile, it will be compared to the range profiles 
generated by the matched filter and by APC from (6). First, a 
high dynamic range profile containing two target responses is 
simulated using a linear frequency modulated waveform with 
time-bandwidth product of 100. Second, measured data 
captured in an open air environment using an LFM of time-
bandwidth product of 64 is examined. 

A. Simulation Results 

Consider a range profile containing two point scatterers 
located at range indices 150 and 160. The magnitudes of these 
targets are 70 dB and 20 dB, respectively, relative to the noise 
power that is normalized to 0 dB. The phases of the two 
scatterers are randomly chosen from a uniform distribution on 
U[0,2π]. The illuminating waveform is an LFM with time-
bandwidth product of 100. The sampling frequency is chosen 
to be K=3 times that of the 3-dB bandwidth of the waveform. 
Therefore 1 2K   range cells are zeroed on either side of the 
“current” range index  for both GraD-APC and APC. 

To start, the number of outer loop iterations is chosen to be 
5 for GraD-APC and 2 for APC as it takes more iterations for 
GraD-APC to converge. GraD-APC is tested with two 
different amounts of inner loop iterations: 5N   and 10N  . 

 

Fig. 2. Two-target range profile estimation using matched filter (blue), APC 
(red), GraD-APC (N=5) (yellow) and GraD-APC (N=10) (purple) 

Figure 2 shows the simulation results for the two-target 
scenario. The yellow trace denoting GraD-APC1 is the 
scenario with 5N   inner loop iterations and the purple trace 

denoting GraD-APC2 has 10N   inner loop iterations. All 

APC variants exposed the 20 dB target after processing. The 
best overall sidelobe suppression is provided by the APC 
implementation of (7). The additional 5 inner loop iterations in 
GraD-APC2 reduce the range sidelobes an additional 5 dB as 
compared to GraD-APC1.  Compared to APC, both GraD-APC 
variants have higher close-in sidelobes near the mainlobe of the 
larger target. These sidelobes are due to the GraD-APC 
solutions not fully converging during the given outer and inner 
loop iterations. Although the sidelobes for GraD-APC are not 
suppressed as much as with APC, the GraD-APC suppression 
is still close to 30 dB better than the matched filter response. 

B. Open-Air Experimental Results 

The dataset used here is the same used in [5] that was 
captured in part to test the modifications to APC to make it 
amenable to FM waveforms. Figure 3 shows the field of view 
for the experiment obtained from Google Maps. The main 
scatterers in the scene are indicated by the orange triangles 
and the radar location is marked by the orange circle. Figure 4 
shows the quasi-monostatic setup of two quad-ridge antennas 
for simultaneous transmit and receive. An LFM with an 
approximate time-bandwidth of product of 64 occupies 80 
MHz of bandwidth. The center frequency was 2.3 GHz and 
the transmit power was approximately 24 dBm. The baseband 
data were resampled to a sampling frequency 3K   times the 

3-dB bandwidth of the LFM waveform. 

 
Fig. 3.  Field of view for measured results 

 
Figure 5 shows the range profile estimates using a matched 

filter (blue), APC (red), GraD-APC for 5N   inner loop 

iterations (yellow) and GraD-APC for 10N  inner loop 

iterations (purple). The number of outer loop iterations was 
the same as for the simulated results with 2 for APC and 5 for 
GraD-APC. 



 
Fig. 4.  Test setup for experimental measurements 

 
Fig. 5. Experimental range profile estimation using matched filter (blue), APC 

(red), GraD-APC (N=5) (yellow) and GraD-APC (N=10) (purple) 

 

 The difference between the two GraD-APC range-profiles 
is negligible, with the maximum difference between them 
being ~1 dB. APC again outperforms the two GraD-APC 
implementations, which is to be expected considering the 
simulation results. However all three of these APC-based 
schemes outperform the matched filter, with sidelobe 
suppression improvement ranging from 15 to 20 dB for APC 
and 10 to 15 dB for GraD-APC. 

V. CONCLUSIONS 

A new method for implementing adaptive pulse 
compression (APC) using gradient descent has been 
developed (denoted GraD-APC). The resulting absence of a 
matrix inverse opens the door for application of GraD-APC to 
higher dimensionality problems and may enable real-time 
operation. Further investigation is needed as to the “optimal” 
number of iterations, for both the inner and outer loops. 
Simulation and experimental results show that GraD-APC is a 
viable practical alternative to APC for suppression of range 
sidelobes.  Ongoing work is exploring methods to reduce the 

eigenspread of the structured covariance matrix to accelerate 
convergence. 

REFERENCES 

[1] S. D. Blunt and K. Gerlach, “A novel pulse compression scheme based 

on minimum mean-square error reiteration,” IEEE Intl. Radar Conf., 

Adelaide, Australia, Sept. 2003. 

[2] S.D. Blunt and K. Gerlach, “Adaptive pulse compression via MMSE 

estimation,” IEEE Trans. Aerospace & Electronic Systems, vol. 42, no. 

2, pp. 572-584, Apr. 2006. 

[3] P. McCormick, T. Higgins, S.D. Blunt, and M. Rangaswamy, 

"Adaptive receive processing of spatially modulated physical radar 

emissions," IEEE Journal of Special Topics in Signal Processing, vol. 

9, no. 8, pp. 1415-1426, Dec. 2015. 

[4] T. Higgins, S. Blunt, and A. Shackelford, "Time-range adaptive 

processing for pulse agile radar," Intl. Waveform Diversity and Design 

Conf., Niagara Falls, Canada, Aug. 2010. 

[5] D. Henke, P. McCormick, S.D. Blunt, and T. Higgins, “Practical 
aspects of optimal mismatch filtering and adaptive pulse compression 

for FM waveforms,” IEEE Intl. Radar Conf., Washington, DC, May 

2015. 

[6] P. McCormick, J. Jakabosky, S.D. Blunt, C. Allen, and B. 

Himed, "Joint polarization/waveform design and adaptive receive 

processing", IEEE Intl. Radar Conf., Washington, DC, May 2015. 

[7] S.D. Blunt, T. Higgins, and K. Gerlach, “Dimensionality reduction 

techniques for efficient adaptive pulse compression,” IEEE Trans. 

Aerospace and Electronic Systems, vol. 46, no. 1, pp. 349-362, Jan. 

2010. 

[8] Van Trees, H.L., Optimum Array Processing, John Wiley & Sons, 

2002, Chap. 2. 

[9] S.D. Blunt, A. Shackelford, K. Gerlach, and K.J. Smith, "Doppler 

compensation & single pulse imaging via adaptive pulse compression," 

IEEE Trans. Aerospace & Electronic Systems, vol. 45, no. 2, pp. 647-

659, Apr. 2009. 

[10] S. Haykin, Adaptive Filter Theory, 5th ed., Prentice Hall, 2013. 
 

 


