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Abstract – A multi-waveform version of space-time adaptive 

processing, denoted as MuW-STAP (or μ-STAP), was recently 

developed as a single-input multiple-output (SIMO) emission 

scheme that incorporates training data generated by multiple 

secondary filters into the estimation of the sample covariance 

matrix. This integration of additional training data was found to 

increase robustness to non-homogeneous clutter because the 

secondary filters serve to “homogenize” the interference in 
range. Here we incorporate μ-STAP into multi-window post-

Doppler STAP (specifically PRI-Staggered and Adjacent-Bin 

implementations) to assess the impact when dimensionality 

reduction techniques are employed. SINR analysis was used to 

evaluate the performance of these reduced dimension μ-STAP 

formulations under various simulated clutter conditions.  
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I. INTRODUCTION  

In [1-3] a multi-waveform version of space-time adaptive 

processing (STAP) denoted as μ-STAP was proposed for 

ground moving target indication (GMTI) from an airborne 

platform. The purpose of STAP in general is to provide clutter 

(and other interference) cancellation through estimation of the 

covariance matrix in a given cell-under-test (CUT) for 

subsequent determination of whether a moving target is 

present [4,5]. However, due to non-homogeneity effects such 

as clutter non-stationary, internal clutter motion, and 

contamination of training data by targets of interest, precise 

estimation of the clutter covariance matrix remains a difficult 

problem [6-9]. In addition, STAP has practical constraints due 

to the computational complexity involved with repeatedly 

estimating and inverting a sample covariance matrix and the 

requirements on representative sample support  [4]. 

The μ-STAP approach was developed [1-3] to address non-

homogeneity effects through the use of secondary pulse 

compression filters that serve to homogenize the range domain 

response. Both single-input multiple-output (SIMO) and 

multiple-input multiple-output (MIMO) instantiations of μ-
STAP have been examined [1-3], with the latter also 

transmitting the waveforms corresponding to the secondary 

receive filters. Because it does not require modification to an 

existing airborne radar system, here we consider the SIMO 

formulation of μ-STAP and assess the impact of incorporating 

well-known reduced-dimension STAP implementations. 

II. MULTI-WAVEFORM STAP 

The SIMO version of μ-STAP relies on the traditional 

STAP emission structure of a single waveform, here denoted 

as the “primary” waveform 
prime ( )s t , in a given spatial 

direction via array beamforming. Thus the received response 

from the illuminated scattering and noise for the mth pulse of 

M in the coherent processing interval (CPI) at the nth antenna 

element of N can be modelled as [3] 
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where 
prime look( , , , )x t    is the collection of scattering induced 

by the primary waveform as a function of Doppler  , spatial 

angle  , and the transmit beampattern, with 
noise ( )v t  additive 

noise and 
jam ( )v t  barrage jamming. Per [1-3], the μ-STAP 

formulation performs pulse compression filtering using 

prime ( )h t , that is the matched/mismatched filter for the primary 

waveform, as well as with the set of K secondary filters 

denoted 
sec,1 sec,2 sec,( ), ( ), , ( )Kh t h t h t  as 

.             (2) 

The secondary filters produce a smearing in range, with a 

different (low) cross-correlation sidelobe structure for each 

primary waveform / secondary filter pair. The result is a 

mixing in range of the ubiquitous clutter, smeared de-

emphasis of targets in the training data, and smeared capture 

in the training data of large discretes that may reside in the 

CUT. Discretizing the filter outputs of (2) in the range domain 

and collecting the MN samples of each for range index  

yields the 1K   space-time snapshots prime ( )z  and sec, ( )kz

for 1,2, ,k K . Defining s prime( )c  as the spatial steering 

vector for look direction prime  and t D( )c  as the temporal 

steering vector for Doppler frequency 
D , the combined 

space-time steering vector is 

st prime D t D s prime( , ) ( ) ( )    c c c ,                (3) 

where   is the Kronecker product. For the space-time 

covariance matrix CUT( )R  corresponding to the CUT, the 

STAP filter is [4,5] 
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CUT prime D CUT st prime D( , , ) ( ) ( , )   w R c ,        (4) 

for application to the CUT snapshot as  

CUT D CUT look D prime CUT( , ) ( , , ) ( )H    w z ,       (5) 

followed by comparison with a detection threshold. 

The well-known sample covariance matrix (SCM) estimate 

is  
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for n(Lprime )  the cardinality of the set primeL  of primary 

snapshots, with 
CUT

 excluded to avoid self-cancellation. The 

SCM is often diagonally loaded to ensure full rank by adding 
2

v MN I   to (6), for 2

v  the noise power and MNI  an MN MN
identity matrix. In [1-3] a new SCM matrix was proposed that 

instead relies on the space-time snapshots obtained from the 

secondary filtering in (2) based on the logic that, since the 

SCM formulation aggregates the interference across range 

snapshots anyway, a mixing in range beforehand preserves 

this property while also smoothing out the non-stationary 

effects. The “no primary” (NP) version of the μ-STAP SCM is  

sec

,NP CUT sec, sec,

1sec
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where it should be noted that, unlike (6), the CUT snapshot is 

included in the SCM estimate of (7) because a) the range 

domain smearing makes it pointless to remove and b) the 

smearing also serves to diminish the response of a target of 

interest in the CUT. As above, diagonal loading may likewise 

be used with (7). Finally, the SCM estimates in (6) and (7) can 

also be combined as 

CUT prime CUT ,NP CUT
ˆ ˆ ˆ( ) ( ) ( )  R R R ,            (8) 

again with the prospect of including diagonal loading. 

III. MULTI-WINDOW POST-DOPPLER  -STAP 

As outlined in [4], practical implementation of STAP 

requires reduced dimension techniques due to real world 

limitations on sample support and computational cost. 

Following in the steps of [10], here we use forms of element-

space multi-window post-Doppler STAP developed in [11,12] 

to implement reduced dimension μ-STAP. 

Multi-window post-Doppler STAP applies different 

Doppler filters to the pulsed echoes received at the N antenna 

elements. Each antenna element has an identical bank of D 

filters for the mth Doppler bin. Let 
mF  be a M D  matrix 

comprised of D length-M filters for the mth Doppler bin. A 

MN DN space-time transformation matrix is formed from 

this Doppler filter matrix as  

,                                   (9) 

where NI is the N N  identity matrix corresponding to the N 

antenna elements. For the collection of space-time snapshots 

resulting from application of the 1K   range-domain filters in 

(2), the transformation of (9) is applied to produce the set of 

1DN  transformed primary and secondary space-time 

snapshots for the mth Doppler bin as                

.                    (10) 

Similarly, this transformation matrix is applied to the space-

time steering vector such that  

.              (11) 

Incorporating (10) into (6)-(8) realizes the mth transformed 

SCMs where 

              (12) 

              (13) 

.          (14) 

The mth transformed adaptive filter  is 

then obtained by inserting (11) and the given SCM into (4) as 

 (15) 

where 
CUT

ˆ ( )R  could be from (12), (13), or (14). 

For the purpose of analysis, the mth transformed adaptive 

filter is best expressed by mapping it onto the full MN-

dimensional space using the composite filter as [4] 

CUT prime D CUT prime D( , , ) ( , , )m m m   w T w          (16) 

via the transformation from (9). Thus 
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(17) 
is the full-dimension representation of the adaptive filter from 
(15) that shall be used for SINR analysis. 

A. PRI-Staggered Post-Doppler 

For this implementation, given M pulses in a CPI there 

will be M =M - D+1  sub-CPIs, for D the number of 

successive pulses in a sub-CPI. Let 
0 1 1[ ]MU u u u  be an 

M M matrix constructed from the first M   rows of an 

M M  DFT matrix and 
PRIb  an 1M   taper. Thus define 

the mth Doppler filter as [11] 

*

PRIm mf b u                               (18) 

for 0, 1, , 1m M   and ( )  complex conjugation. This 

filter is used to construct the mth Toeplitz Doppler filter 

matrix [11] 



 (19) 

for the PRI-Staggered implementation. 

B. Adjacent-Bin Post-Doppler 

For this implementation let U  be an M M  DFT matrix 

and 
ABb  be an 1M   taper. The Doppler filter bank is defined 

as [12] 

ABm m

f b u                            (20) 

for 0, 1, , 1.m M  The mth Doppler filter matrix 

comprises the surrounding Doppler filters from 

, ,m P m P   for ( 1) / 2P D  , such that [12] 

.                   (21) 

This Doppler filter matrix is designed to wrap around edges of 

the Doppler space.   

IV. SINR ANALYSIS 

Using the SNR-normalized SINR metric from [5] within 

this reduced dimension framework, we compare standard 

STAP and μ-STAP to the optimal SINR as a function of 

sample support. Using the clairvoyant covariance matrix 
optR  

and the adaptive filter formulation from (17), which is 

dependent on the choice of SCM from (12)-(14), the SINR for 

the reduced dimension implementation is [4] 

SINR(w ) = max
m
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where the dependencies on
CUT

, prime , and 
D  have been 

suppressed.  If we set CUT opt
ˆ ( ) R R  and T

m
= I

NM
,  then 

(22) becomes the full-dimension optimum SINR denoted as 

1

opt st opt stSINR ( ) H  c R c .                        (23) 

We use the ratio of (22) to (23), 
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to evaluate the performance of STAP (using (12)) and μ-STAP 

(using (14)) for these reduced-dimension implementations as a 

function of sample support. For each clutter scenario, the 

mean performance is assessed across Doppler, excluding the 

clutter notch. In addition, SNR-normalized SINR Doppler is 

also examined for 2NM samples. 

The analysis for partially adaptive μ-STAP follows that 

used in [2,3]. We considered a side-looking radar with N = 11 

antenna elements in a uniform linear array (with 2  

spacing), M = 21 pulses in the CPI, no crab angle, and β=1, 

where β is the number of half-interelement spacings traveled 

during one CPI. The clutter-to-noise ratio is 54 dB, where the 

noise is complex white Gaussian and the clutter is generated 

by dividing the range ring in azimuth into 241 equal-sized 

clutter patches, with each patch nominally being i.i.d. complex 

Gaussian (and further modified for non-homogeneous clutter). 

To account for angle-independent channel mismatch, a 30-dB 

Chebychev taper is applied to the spatial steering vector in (3) 

per 

   
prime primec ( ) t c ( )s s  .                     (25) 

where t is a 1N   taper [14].  

For dimension reduction, D  = 5 and 10 pulses in a sub-

CPI are examined. Per [10], a 20-dB Chebychev taper is used 

for PRI-Staggered while Adjacent-Bin uses a uniform taper. 

The number of range sample intervals used for SCM 

estimation is varied from 1 to 2NM = 462, noting that for      

μ-STAP this number is actually (K+1) to 2(K+1)NM due to the 

inclusion of training data from the K secondary filters. All 

SCM estimates are diagonally loaded with the noise power. 

For each scenario, 50 independent Monte Carlo trials are 

performed. 

For all cases the emitted waveform is an optimized 

polyphase-coded FM (PCFM) waveform with time-bandwidth 

product BT = 100 [13]. The SISO mode (standard STAP via 

(12)), then applies the associated matched filter on receive. 

The SIMO mode (μ-STAP via (14)) additionally employs the 

K = 4 secondary pulse compression filters from (2). All of 

these filters correspond to different PCFM waveforms that are 

not transmitted and are related to the primary per Table I. 

TABLE I.  PRIMARY/SECONDARY PULSE COMPRESSION FILTERS FOR (2) 

Filter Characteristics 

Primary MF for optimized waveform with BT = 100 [13] 

Secondary (k = 1) Low cross-correlation with primary 

Secondary (k = 2) Time-reversed complex conjugate of primary 

Secondary (k = 3) Time-reversed complex conjugate of  k = 1 

Secondary (k = 4) PCFM-implemented LFM [13] 

TABLE II.  RECEIVE PROCESSING CONFIGURATIONS 

Filtering  Line style/color 

STAP (K = 0), Full (M = 21) solid blue 

STAP(K = 0), Reduced (D = 10) solid green 

STAP(K = 0), Reduced (D = 5) solid red 

-STAP (K = 4), Full (M = 21) dashed blue 

-STAP (K = 4), Reduced (D = 10) dashed green 

-STAP (K = 4), Reduced (D = 5) dashed red 



Four clutter environments are used to assess performance 

of reduced dimension μ-STAP: 1) homogenous clutter, 2) non-

homogeneous clutter, 3) homogeneous clutter with a large 

discrete in the CUT, and 4) large target in training data. Table 

II delineates the different receive processing configurations 

that are applied to the different clutter environments.  

A. Homogenous Clutter 

For Adjacent-Bin and PRI-Staggered, respectively, Figs. 

1 and 2 show the mean SINR loss over Doppler (excluding the 

clutter notch) as a function of range sample intervals. In 

general, every version of μ-STAP outperforms its standard 

STAP counterpart in terms of convergence speed 

(significantly so) and SINR loss (at least by a small amount). 

Note that, for both reduced dimension implementations, as the 

dimensionality decreases from full dimension M = 21 (blue) to 

D = 10 (green) and again to D = 5 (red), the SINR loss at 2NM 

suffers about 1 dB loss relative to full STAP.  Likewise, Figs. 

3 and 4 depict SINR vs. Doppler for 2ND = 220 (for D=10).  
 

 
Fig. 1.  Mean SINR/ SNRopt for Adjacent-Bin in homogenous clutter 

 
Fig. 2. Mean SINR/ SNRopt for PRI-Staggered in homogenous clutter  

 
Fig. 3.  SNR-normalized SINR for Adjacent-Bin in homogeneous clutter 

using 2ND range sample intervals 

 
Fig. 4. SNR-normalized SINR for PRI-Staggered in homogeneous clutter 

using 2ND range sample intervals 

B. Non-homogenous Clutter 

Non-homogeneous clutter is modeled by randomly 

modulating the magnitude of each (already random) clutter 

patch in range/angle, based on a uniform distribution drawn 

from [0, 30] dB. Further, internal clutter motion is modeled as 

a uniform distribution on ±2% of the normalized Doppler. 

Figures 5 and 6 illustrate the Adjacent-Bin and PRI-

Staggered results, respectively, for this case. Aside from the 

expected slower convergence due to non-homogeneous 

clutter, it is observed that the performance relationships 

between the various cases is more or less unchanged.  

Figures 7 and 8 depict the Adjacent-Bin and PRI-

Staggered SNR-normalized SINR results at 2ND (for D=10) 

range sample intervals, respectively, as a function of Doppler. 

It is observed that, as expected, the clutter notch is wider and 

performance across all cases degraded to some degree (though 

the reduced-dimension -STAP results experience the least 

degradation). 
 



 
Fig. 5. Mean SINR/ SNRopt for Adjacent-Bin in non-homogenous clutter 

 
Fig. 6. Mean SINR/ SNRopt for PRI-Staggered in non-homogenous clutter 

 
Fig. 7. SNR-normalized SINR for Adjacent-Bin in non-homogeneous 

clutter using 2ND range sample intervals 

 
Fig. 8. SNR-normalized SINR for Adjacent-Bin in non-homogeneous 

clutter using 2ND range sample intervals 

C. Clutter Discrete in CUT 

In this case a large clutter discrete (40 dB > average 

clutter power) is present in the CUT, with the clutter otherwise 

being homogeneous. The convergence results are generally 

similar to the previous results (and thus not shown), but it is 

observed across Doppler in Figs. 9 and 10 (for 2ND range 

sample intervals with D=10) that the faster convergence of the 

reduced dimension implementations yield less SINR loss than 

full-dimension. Here the reduced dimension μ-STAP results 

only marginally surpass that of reduced dimension STAP.  

 

 
Fig. 9. SNR-normalized SINR for Adjacent-Bin with clutter discrete using 

2ND range sample intervals 



 
Fig. 10. SNR-normalized SINR for PRI-Staggered with clutter discrete using 

2ND range sample intervals 

D. Large Target in Training Data 

In this scenario, a large target (30 SNR) is placed in the 

first training data sample with a normalized Doppler of 0.5. 

The μ-STAP convergence advantage is again similar to earlier 

results. However, the additional benefit observed here is the 

shallower null produced by the large training data target when 

using μ-STAP with the D = 5 (dashed red) implementations. 

 

 
Fig. 11. SNR-normalized SINR for Adjacent-Bin with target in training data 

using 2ND range sample intervals 

V. CONCLUSIONS 

It was previously shown that -STAP provides some 

enhanced robustness to non-stationary interference due to the 

smearing effect it produces in range prior to SCM estimation. 

Here it was shown that -STAP is likewise amenable to 

reduced-dimension implementations that are more practical 

than full-dimension STAP due to computational cost and 

sample support limitations. Further, within the reduced-

dimension context, it was observed that -STAP provides an 

SINR advantage over standard STAP, particularly at low 

sample support. Note that for 5NM sample intervals (not 

shown) full-dimension performance does surpass that of 

reduced dimension as expected. 
 

 
Fig. 12. SNR-normalized SINR for PRI-Staggered with target in training data 

using 2ND range sample intervals 
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