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Abstract—In order to fully test detector frameworks, it is
important to have representative simulated clutter data read-
ily available. While measured clutter data has often been fit
to the Weibull distribution, generation of simulated complex
multivariate Weibull data with prescribed covariance structure
has been a challenging problem. As the multivariate Weibull
distribution is admissible as a spherically invariant random
vector for a specific range of shape parameter values, it can be
decomposed as the product of a modulating random variable
and a complex Gaussian random vector. Here we use this
representation to compare the traditional method of generating
multivariate Weibull data using the Rejection Method to a new
approximation of the modulating random variable that lends
itself to efficient computer generation.

I. INTRODUCTION

Classical detector theory relies on the assumption of a null
hypothesis distributed as independent, identically distributed
Gaussian data [1]. However, sensing applications, radar in par-
ticular, often encounter heavy-tailed distributions with a higher
frequency of outliers than is described by the Gaussian distri-
bution (e.g. [2]–[5]). In the particular case of radar detection,
the Gaussian assumption is commonly violated by measured
radar clutter. Further complicating matters, measured clutter
can often be fit to multiple possible statistical models equally
well [5]. In addition, measured data is necessarily limited
in scope and new experimental data is expensive to obtain.
Hence, it is important to have a library of clutter models with
which to test potential robust radar detectors before they are
validated with experimental data [6]–[9]. A library of clutter
models is also useful to validate the emerging field of cognitive
radar detection, which continues the legacy of knowledge-
aided detector research [8], [10]. Specifically, data under test
may be compared to the library of clutter models to provide a
null hypothesis suggestion [8], [9], [11]. This null hypothesis
suggestion may be used to inform either a distribution specific
detector or to estimate directly the detection threshold [9],
[11]–[14].

The family of spherically invariant random processes
(SIRPs) has been shown to encompass the majority of the
models for non-Gaussian radar clutter, including the K,
Pareto/Student-t, and Weibull distributions [6], [7], [15]–[17].
However, it should be noted that the lognormal distribution,
while experimentally validated, is not admissable as a SIRP
[6], [15], [18]. A spherically invariant random vector (SIRV)
is a sample drawn from a SIRP. By definition, a SIRV may

be formed as a Gaussian random vector (real or complex)
multiplied by a positive random variable [6], [7], [17]. In other
words, a length L, zero mean, white SIRV X is formed as

X = V Z, (1)

where Z ∼ CN(0, I) is a length L vector and I is the
L×L identity matrix. Therefore, clutter modeled as a SIRV is
locally Gaussian (i.e. a single draw from V ), but globally non-
Gaussian. As such, the modulating random variable provides
a power modulation over the scene, resulting in an increased
number of outlier samples as compared to the Gaussian
assumption.

In addition to being experimentally validated, the SIRV
model possesses several convenient properties. Perhaps the
most useful property of SIRVs is the property of closure under
linear transforms [6], [7]. Specifically, linearly transforming a
SIRV results in a SIRV with the same modulating random
variable V , but with a different covariance matrix and mean
vector. Therefore, if the modulating random variable V is
both known and can be generated (e.g. via Matlab), then it is
straightforward to generate efficiently the desired data with an
arbitrary mean and covariance matrix of any dimensionality.
Such simulation capability allows for the quick comparison of
detector performance with multiple models.

The Weibull distribution has been suggested as a good fit
for heavy tailed, non-Gaussian clutter since at least 1969 [19].
While Waloddi Weibull noted that the Weibull distribution
had no physical justification in general [20], the admissibility
of the Weibull distribution as a SIRV provides a physical
justification for the Weibull distribution to model radar clutter
returns [6], [7], [15]–[17].

For SIRVs such as the K and Pareto distribution, the
modulating random variables are known and can be formed
from transformed Gamma distributed random variables [6],
[7], [21]. Unfortunately, the general closed form solution to
the modulating variable for the Weibull distribution is only
known in the form of two equivalent infinite summations
[17]. Previous work has used the norm of the Weibull SIRV
to generate Weibull data via the Rejection Method [6], [7].
However, this method is dependent on the dimensionality of
the desired vector, and can be computationally infeasible for
high dimensionalities or low values of the shape parameter. In
contrast, here we bound a novel approximation of the modu-
lating random variable using one of the infinite summations



from [17]. This bound may then be used in conjunction with
the Rejection Method to generate previously computationally
infeasible instantiations of Weibull distributed data.

II. TRADITIONAL WEIBULL DATA GENERATION

A. The Weibull Distribution

The univariate envelope of the Weibull distribution (i.e. the
amplitude of a complex Weibull random variable) is defined
as

fR(r) = abrb−1 exp(−arb), r > 0, (2)

where a > 0 is the scale parameter of the distribution, and the
shape parameter is 0 < b ≤ 2. Notably, for b = 1 the Weibull
coincides with the exponential distribution, and for b = 2 the
Weibull coincides with the Rayleigh distribution.

It can be shown that the envelope of the complex multivari-
ate Weibull distribution is [6], [7], [17]
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and Γ(t) is the Gamma function. To simplify the examination
of the two parameter Weibull distribution, consider a nor-
malized form of the distribution where the scale parameter
is restricted to enforce E[r2] =

√
L. This normalization can

be accomplished by relating the scale parameter to the shape
parameter b as

a =

[
Γ

(
2

b
+ 1

)]b/2
. (5)

Unless noted otherwise, hereafter the scale parameter is as-
sumed to be set according to (5).

For the univariate case, Weibull distributed data is readily
generated via a zero-memory non-linear (ZMNL) transform
[22]. However, the ZMNL transform does not lend itself well
to generating correlated vector valued data. The difficulty in
generating vector valued data is due to the fact that the ZMNL
does not afford independent control over the first order pdf
and correlation structure. Therefore, the Method of Norms was
used in [6], [7], [9] to generate Weibull distributed data.

B. Method of Norms

SIRVs are notable in that a length L SIRV may be gen-
eralized into a set of spherical coordinates. These spherical
coordinates are constructed from a set of L independent
random variables, of which only one random variable in the
set has a distribution dependent on the SIRV distribution
[6]. As might be expected from the form of (1), there is
thus one ”degree of freedom” that differentiates individual
SIRV distributions. This random variable is by definition the
norm of the distribution. Therefore, if the exact distribution
of the modulating random variable is not known or able to be

generated, the Method of Norms may be used to generate the
random variable. The Method of Norms requires the ability
to generate random variables distributed according to the
norm of the desired random variable and the generation of
random vectors from a different SIRV distribution (typically
the Gaussian distribution). The method is summarized as [6],
[9]

1) Generate a white, zero mean complex Gaussian random
vector with identity covariance matrix, denoted as z.

2) Compute the norm of z as rZ = ||z|| =
√
zHz.

3) Generate a random variable distributed according to the
desired norm of the SIRV x, rX = ||x|| =

√
xHx.

4) Generate x as x = z rXrZ .

While the norm of the multivariate Weibull distribution is
given in (3), the generation of random variables distributed
according to (3) is not a straightforward task.

C. Generating Data from an Unknown Distribution via the
Rejection Method

In practice, the most common methods of generating arbi-
trary random variables are via the transformation of a random
variable that can be generated (e.g. transformation of Gaussian
or Uniform distributed data) or by using the inverse of the
cumulative distribution function (cdf) [23]. Let R be the
random variable to be generated, and assume that the inverse
cdf of R is unavailable. Further, let U1 be a random variable
that can be readily generated and whose scaled pdf bounds the
pdf of R. In other words, fR(r) ≤ kfU1

(r), ∀r, k > 0.
The Rejection Method [6], [9], [23] is then:

1) Generate a sample u1.
2) Generate u2 ∼ U(0, kfU1

(u1)).
3) If u2 ≤ fR(u1), then accept the point (i.e. r = u1)
4) Otherwise, reject u1.

The overall process is illustrated in Figure 1. The Rejection
Method thus performs a uniform sampling under kfU1

(u1),
and rejects the points that fall between kfU1

(u1) and fR(r).
For efficient use of the Rejection Method, it is important to
minimize the quantity kfU1(r)− fR(r).

Fig. 1: Rejection Method



D. Generating Weibull Norm Values via the Rejection Method

In order to use the Rejection Method, a suitable bounding
distribution must be found. In [6], [9] the Uniform distribution
was suggested as a bounding distribution. However, note
that truly accurate data generation via the Rejection Method
requires accurate bounding of both the domain and range
of the desired random variable. By definition, the Uniform
distribution has limited support, and the pdf of (3) has support
r > 0. Therefore, it is impossible to bound the distribution
with a finite Uniform random variable.

In order to mitigate the impact of the support mismatch, in
[9] the support of U1 and the value of k are set by balancing
the desired accuracy of the data generation and number of
points rejected. Fortunately, for b > 1 the pdf of (3) has a
finite maximum value that can be determined as the solution
to a root finding problem [9]. In contrast, for b ≤ 1 the
maximum value of the pdf is fR(r → 0)→∞. Therefore, k
must be selected carefully to effectively bound the pdf while
maintaining a reasonable rate of rejecting samples. Finally, (3)
also depends on the length of the desired random vector. As
such, for realistic dimensionality (e.g. L > 16) the Rejection
Method becomes very difficult to implement at low values
of the shape parameter [6]. As an example, in [9] random
variables distributed according the norm of a length L = 4
complex Weibull distribution with shape parameter b = 0.7
and scale parameter a = 1 were generated. It was found that
after generating 105 points, the probability of rejecting a point
was ≈ 99.92%.

To provide further context, consider the norm of length L =
64 Weibull distributed SIRVs whose scale parameter has been
normalized as defined in (5). In the style of Figure 1, the
graphical depiction of the chosen pdfs for b = 0.7 and b = 1.5
is given in Figures 2 and 3, respectively. For the bounding
Uniform distribution for both b = 0.7 and b = 1.5, U1 is
chosen to be distributed as U1 ∼ U(0, c), where c is found as

1− FR(c) < 10−4. (6)

Therefore, the support of the bounding distribution covers
99.99% of the desired distribution. For the choice of U1 ∼
U(0, c), the value of k is found by solving

kfU1
(u1) = f(k′)

k = cf(k′), (7)

where f(k′) is the maximum value of the pdf. For b = 1.5 the
maximum value of the pdf is found numerically. However, for
b = 0.7 the value of k′ must be chosen to balance between
the accuracy of the Rejection Method and computational
feasibility (i.e. the number of rejected points). Here we follow
the suggestion of [9] and find k′ as the solution to

FR(k′) < 10−4. (8)

As a consequence of this approximation, close examation
of Figure 2 shows that a small portion of the left tail of the
pdf fR(r) extends above the bounding distribution fU1(u1).

Therefore, due to the mismatch between the desired distri-
bution and the bounding distribution, it is expected that the
resultant random variables will not fully adhere to the envelope
of the desired Weibull distribution.

Fig. 2: Rejection Method for Estimating Norm, b = 0.7

Fig. 3: Rejection Method for Estimating Norm, b = 1.5

It was noted in [9] that the rejection rate increased as
the shape parameter decreased, to the point where it was
computationally infeasible to generate data by this method for
values of b < 0.7. In measured data, the Weibull distribution
has been fit with estimated shape parameters as low as b = 0.3
[24]. Clearly, a more efficient method is needed to generate
Weibull distributed data to better simulate measured clutter.

III. APPROXIMATING THE RANDOM VARIABLE V

In contrast to the norm of an SIRV, the modulating random
variable V by definition does not depend on the dimensionality



of the SIRV. Therefore, if V can be generated, then SIRV data
of the desired distribution and dimensionality can easily be
generated from Gaussian distributed data. However, the mod-
ulating random variable of the Weibull distribution, denoted
as VW , is not obtainable in a form that is easily manipulated.

The characteristic function of VW can be constructed via
the moment generating function. However, determining the pdf
of VW via the inverse Laplace transform of the characteristic
function is not tractable [17]. Alternately, the pdf of the square
root of VW may be found from the inverse Mellin Transform
and the calculus of residues [17]. Setting VW

.
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distribution of τ is found to be [17]:
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An equivalent pdf may be found by modifying the scale
parameter as
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Substituting (10) into (9), the pdf of τ becomes
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As τ > 0, perform the one-to-one transformation
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Hence, the pdf of τ can be transformed into an infinite
summation with a relatively simple form. In addition, the
transformation of (12) is unambiguously invertible.

However, it is important to note that the reciprocal of the
Gamma function displays oscillatory behavior tending towards
±∞ for increasingly negative arguments. This behavior is
illustrated in Figure 4. The argument to the Gamma function
in (14) is negative for

n >
2

b
− 1. (15)

Therefore, when evaluating truncated instantiations of (14)
care must be taken to remove any numerical instabilities that

cause the expression to deviate from being a valid probability
density function (i.e. negative probabilities, a total cumulative
distribution function > 1). Inspection of (15) suggests that
higher values of b will cause unstable behavior at lower values
of n.

Fig. 4: Reciprocal of the Gamma function for negative
arguments

Upon examination of (14), the exponential function appears
to be a possible bound. In other words, we wish to find an ε
such that

fX(x) ≤ fY (y; ε)
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Using the Taylor series expansion for e−y , (16) becomes

fX(x) ≤ fY (y; ε), y = x, ε > 0
∞∑
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As the exponential pdf is defined as

fY (y;λ) = λ exp(−λx), (18)

if the bound of (17) holds, the Rejection Method may be used
with k = ε = 1

λ , yielding

kfU1
(u1) = εfY (y; ε)

= exp
(
−y
ε

)
. (19)

A potential bound has been found whose shape parameter is
determined with respect to the shape parameter of the desired
Weibull distribution as

ε = Γ

(
1− b

2

)
, b < 1.6. (20)



In other words, the bound is obtained using the value of
the Gamma function in (14) evaluated at n = 0. A formal
investigation of this bound is ongoing.

The summation of (14) and the bound of (19)-(20) were
evaluated for b = 0.7 and b = 1.5, and the results shown in
Figures 5 and 6, respectively. Values of n = 49 for b = 0.7,
and n = 145 for b = 1.5 were used to evaluate the summation.
From examination of Figures 2 and 5, both the norm and
the transformed modulating random variable of the Weibull
distribution agree by producing their maximum value at 0 for b
= 0.7. From a similar examination of Figures 3 and 6, both the
norm and the transformed modulating random variable reach
their maximum probability value at a point greater than zero.

Fig. 5: Rejection Method for Estimating X , b = 0.7

Fig. 6: Rejection Method for Estimating X , b = 1.5

Armed with an approximation of the distribution of the
transformed modulating random variable and a viable bound,
the transformed modulating random variable can be generated

via the Rejection Method. Therefore, we denote the following
method of generating multivariate Weibull distributed data as
the Transform Method:

1) Generate the transformed random variable X distributed
according to (14) via the Rejection Method using bound-
ing random variables defined in (19)-(20).

2) Invert the transformations of (10) and (12) to generate
τ .

3) Generate a white, zero mean complex Gaussian random
vector with identity covariance matrix, denoted as z.

4) Generate the complex Weibull vector x as x =
√
τz.

IV. COMPARSION OF TECHNIQUES

As noted in Sections II-D and III, both the previously
developed Method of Norms (MoN) and the new Transform
Method (TxM) use approximations in order to implement the
Rejection Method. Specifically, the MoN uses a bounding
distribution with a finite support to bound a distribution with
an infinite support. Hence approximations are made using
equations (6) and (8) to balance the computational cost of the
MoN with the accuracy of the resulting distribution. In contrast
to the bounds used in the MoN, the empirically determined
bound used in the TxM fully bounds the distribution of
the transformed modulating random variable. However, the
numerical instability and the infinite nature of the sum form
of the pdf in (14) requires the use of a truncated sum and a
limited support to ensure the approximating expression is a
valid pdf.

To evaluate the accuracy of the competing methods, 107 val-
ues distributed according to the Weibull norm were generated
by each algorithm for the parameters used in Sections II-D and
III (i.e. L = 64, a normalized according to (5), b = 0.7, 1.5).
For the MoN, only the envelope values were generated. For the
TxM the envelope was determined from the generated complex
vector. The pdf was calculated via histogram with 5 × 104

bins. The cdf was then estimated via the cumulative sum of
the histogram. The true CDF was calculated by numerically
integrating (3), and the square of the difference between the
true CDF and the estimated CDF is plotted in Figures 7 and
8. Figures 7 and 8 show that the TxM produces more accurate
results than the MoN.

As a final point of comparison, Table I provides two points
of comparison for the techniques. First, the percentage of
generated points that are accepted by the Rejection Method is
shown for the two methods for both values of shape parameter.
Second, the total integrated error (i.e. cumulative sum of
Figures 7 and 8) is given for each case. Note that while
significant improvement in acceptance percentage is shown
for the low shape parameter case of b = 0.7, the MoN has a
better bound than the TxM for the high shape parameter case.
However, in both cases the TxM results in a more accurate
final distribution.

V. CONCLUSIONS

Methods of generating multivariate Weibull distributed ran-
dom data were presented. A new method based on a trans-



Fig. 7: CDF error for b = 0.7

Fig. 8: CDF error for b = 1.5

formation of the infinite sum formula for the modulating
random variable of the Weibull distribution was developed and
tested. The new method produces extreme reduction in the
number of samples required to generate data for low shape
parameter (i.e. heavy tailed) Weibull distributions, but suffers
a performance penalty for high shape parameter data relative
to traditional methods. However, for both high and low shape
parameter values, the transform method produces data that is

b Method Percentage Accepted Integrated Error
0.7 Meth. of Norms 0.26% 7.3e-4
0.7 Transform Meth. 72.2% 1.9e-4
1.5 Meth. of Norms 46.8% 1.7e-3
1.5 Transform Meth. 27.6% 3.4e-4

TABLE I: Comparison of Methods

more accurately distributed.
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