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Abstract—Multi-function RF systems address the growing
need to provide greater functionality with fewer hardware
and spectral resources. In this vein, a two-stage iterative
optimization approach denoted as far-field radiated emission
design (FFRED) is developed that is used here to design a set of
physical multi-function waveforms that realize far-field radar and
communication signals simultaneously from a common antenna
array and with the same spectral support. Particular attention
is paid to the efficiency of power radiated into the radar and
communication spatial directions, peak-to-average-power ratio
(PAPR), and the bit error rate (BER) for the communication
mode. Experimental demonstration of this joint emission scheme
is presented in the companion paper

Index Terms—multi-function RF, spectrum sharing, MIMO
radar, communications

I. INTRODUCTION

The increasing competition for precious spectral resources

[1]–[3] is serving as a selection pressure to drive innovation.

While no “silver bullet” solution to spectral crowding has been

discovered, a wide variety of technologies are being developed

under the umbrella of spectrum sharing. Spectrum sharing

research can be roughly separated into two categories: 1)

where the different modalities (e.g. radar and communications)

coexist as separate systems that in some way respond/adapt to

one another [4]–[11] and 2) where the different modalities

represent facets of the same multi-function RF system [12]–

[17]. The former is an interference mitigation problem that

could employ dynamic spectral sensing and access, possibly

combined with adaptive cancellation. In contrast, the latter

represents a co-design paradigm in which the available degrees

of freedom are employed to realize more than one objective,

often through some form of waveform diversity [18], [19].

This work addresses the co-design problem by formulating

the means to emit radar and communication signals simul-

taneously from the same antenna array aperture with the

same spectral support. In so doing, these modes share time,

spectrum, and transmit hardware, thereby relieving pressures

on the resource management timeline [20], spectral allocation

[2], and system requirements [12]. Specifically, this approach

relies on a space-division multiple-access (SDMA) type of

framework in which the radar and communication signals are

concurrently generated in the far-field based on the free-space

combination of waveforms emitted from a common antenna

array (see Fig. 1). This arrangement is a form of MIMO

beampattern design [21]–[25] with the particular requirement

that the individual waveforms be physically realizable by a

high-power transmitter; i.e. be constant amplitude and well-

contained spectrally (see [11], [26], [27]). Moreover, beyond

the task of realizing a desired spatial power allocation, the

problem of generating dual radar and communication beams

necessitates design of the resulting far-field emissions that

possess physical attributes of useful radar waveforms [19], [28]

and communication signals [29].

...

Fig. 1. Simultaneous emission of radar and communication signals from a
common antenna array

Here we present a two-stage optimization procedure denoted

as far-field radiated emission design (FFRED) that enables

generation of arbitrary physical signals as a function of spatial

angle and time via a MIMO transmit implementation. It is

observed that a side-effect of this design procedure is that

the time-domain signals in the spatial sidelobe directions (i.e.

where no emission is intended) are naturally uncorrelated with

the desired radar and communication signals. Further, in the

companion paper [30] this design framework is demonstrated

experimentally using an Air Force Research Lab (AFRL) radar

testbed.

II. FAR-FIELD RADIATED EMISSION DESIGN (FFRED)

The FFRED approach generates a set of FM waveforms

that, when simultaneously emitted from an antenna array in

a MIMO arrangement, combine in the far-field to realize



a desired radar waveform in one spatial direction and

an information-bearing communication signal in another

direction. Here it is assumed that the primary function of

the antenna is to enable a pulsed radar emission while a

secondary (and lower power) communication function emits

a separate signal concurrently during the radar pulsewidth and

with the same bandwidth. While the communication beam

does represent a loss in transmit power for the radar (which

will translate to reduced receive SNR and thus degraded radar

sensitivity), this manner of joint design does allow for the

communication signal data rate to scale with the available

bandwidth.

A. Signal Model

Consider an M element ideal uniform-linear array (ULA)

with inter-element spacing d. Invoking the narrowband

assumption, the far-field radar and communication signals

must respectively satisfy the constraints

M−1
∑

m=0

sm(t) exp

(

jm
2π

λ
d sin θr

)

= gr(t) (1)

and
M−1
∑

m=0

sm(t) exp

(

jm
2π

λ
d sin θc

)

= gc(t) (2)

where λ is the free space wavelength of the center frequency

fc, the waveform emitted by the mth element is sm(t),
and gr(t) and gc(t) are the desired far-field radar and

communication signals to be emitted in spatial directions θr
and θc, respectively. Discretizing sm(t), gr(t), and gc(t) into

length-N vectors, accounting for adequate “over-sampling”

with respect to 3 dB bandwidth [11], [26], [27] to maintain

sufficient fidelity for physical realization, (1) and (2) can be

rewritten as

vH(θr) S = gT
r (3)

and

vH(θc) S = gT
c . (4)

Here S = [s0 s1 · · · sM−1]
T is an M ×N matrix comprised

of the M discretized waveforms, gr and gc are N × 1 vectors

of the desired radar and communications signals, and v(θ) is

the spatial steering vector for direction θ defined as

v(θ)=

[

1 exp

(

−j
2π

λ
d sin θ

)

· · · exp

(

−j(M−1)
2π

λ
d sin θ

)]T

. (5)

The constraints of (3) and (4) can be combined as

CHS = G, (6)

where

C =
[

v (θr) v (θc)
]

(7)

contains the spatial steering vectors and

G =
[

gr gc

]T
(8)

contains the discretized far-field signals.

B. Optimality

The optimal waveform matrix S (in a minimum norm sense)

can be found by solving the minimum-norm optimization

problem

minimize
S

‖S‖
2

F

subject to CHS = G
(9)

where ‖•‖
2

F is the squared-Frobenius normalization. The

optimization problem in (9) is convex and has the closed-form

solution [31]

S⋆ = C
(

CHC
)−1

G. (10)

This waveform matrix is optimal in the sense that all of

the energy in the resulting waveforms is used to achieve

the constraint (6). However, the solution S⋆ in (10) usually

has an unacceptable peak-to-average power ratio (PAPR) that

precludes the use of high power amplifiers (HPAs) employed

in most radar systems that operate in saturation. From this

perspective it is instructive to reconsider what is actually

optimal within the context of a physical system.

Arguably a better metric for optimality is power efficiency,

which enables maximization of “energy on target” for the

radar function. Under this condition an optimization method

is presented that facilitates constant amplitude FM waveforms

that are amenable to the HPA. The modified optimization

problem is

minimize
S

‖S‖
2

F

subject to CHS = G

|sm(n)| = |sp(q)| for n, q = 0, . . . , N − 1

m, p = 0, . . . ,M − 1

(11)

where sm(n) is the nth time sample of the mth waveform.

C. Utilization of Null Space and Power Efficiency

To solve (11), the null space of steering vector matrix C

must be used to form a spatial orthogonal complement matrix

S⊥ such that the summation

S̃ = S⋆ + S⊥ (12)

contains M discretized waveforms that are constant amplitude.

Because the null space of C is used to constuct S⊥, we have

CHS⊥ = 02×1 (13)

and thus there is no interference produced in the desired radar

and communications directions. Further, since S⋆ and S⊥ are

orthogonal, the average power in S̃ is the summation

γ2 = ρ⋆ + ρ⊥ (14)

where ρ⋆ and ρ⊥ are the average power in S⋆ and S⊥,

respectively, defined as

ρ⋆ =
1

MN
‖S⋆‖

2
F (15)

and

ρ⊥ =
1

MN
‖S⊥‖

2
F . (16)



Since ρ⋆ is a fixed amount, the amplitude γ directly affects

the amount of power emitted into the null space of C. Denote

the percentage of power emitted into the orthogonal space as

%ρ⊥ =
ρ⊥
γ2

× 100%. (17)

This power does not contribute to the emissions in the

directions θr and θc and thus is essentially wasted power.

Therefore, there is a trade-off in the efficiency lost by placing

power in the orthogonal space relative to the efficiency gained

by using constant amplitude waveforms (and the associated

use of high-efficiency HPAs in saturation).

III. REALIZATION OF EMISSION CONSTRAINTS USING

ERROR REDUCTION ALGORITHM

The inclusion of the constant amplitude constraint in (11)

makes the minimization problem non-convex and thus it must

be solved in an iterative manner. A useful approach to address

optimization involving two distinct constraints is to alternate

between projecting onto a set that satisfies one constraint and

projecting onto a set that satisfies the other constraint. If the

sets are convex, this approach is known as Projection onto

Convex Sets (POCS) [32], [33]. However, the projection onto

the set containing all constant amplitude waveform matrices

is not convex. In that case, the Error Reduction Algorithm

(ERA) [34]–[37] can be used, which can be thought of as

POCS with one or more non-convex projections [34], [35].

While convergence to an intersection (or minimum distance

point) between the sets cannot be proven for ERA as it can for

POCS, the error in ERA can be shown to be a non-increasing

sequence [34]–[37].

A. FFRED Optimization

Given some constant amplitude initialization S̃0, the

alternating projections procedure alternates between two stages

until convergence. The first stage projects onto some set A
that satisfies a constraint using projection operator PA(•).
The second stage projects onto some set B that satisfies

another constraint using projector operator PB(•). For the

scenario described in this paper, set A satisfies the constraint

CHS = G from (6) and set B satisfies the constant amplitude

constraint. The procedure is summarized in Algorithm 1.

ALGORITHM 1: Alternating Projections

Initialize: S̃0, i = 0
repeat

Si = PA

(

S̃i

)

S̃i+1 = PB (Si)
i = i+ 1

until sufficiently converged

The projections are defined as the minimum change to the

input (S̃i or Si) such that the corresponding constraint is

satisfied. Using this definition, the projections can be defined

as optimization problems. For the first stage, the projection

PA(S̃i) is defined as

minimize
Si

∥

∥

∥
S̃i − Si

∥

∥

∥

2

F

subject to CHSi = G

. (18)

The solution to (18) is

Si = P⊥S̃i + S⋆ (19)

where P⊥ is the projection matrix

P⊥ = IM −C
(

CHC
)−1

CH (20)

with IM the M × M identity matrix. Likewise, the second

stage projection PB(Si) can be represented as

minimize
S̃i+1

∥

∥

∥
S̃i+1 − Si

∥

∥

∥

2

F

subject to |s̃m,i+1(n)| = γ for n = 0, . . . , N − 1

m = 0, . . . ,M − 1

(21)

for some real amplitude γ. The solution to (21) is

S̃i+1 = γ exp {j 6 (Si)} (22)

where 6 (•) extracts the phase of the argument. The value of

amplitude γ can be determined from (14) and (17) by setting

a desired percent orthogonal power %ρ⊥ as

γ =

(

ρ⋆
1−%ρ⊥

)1/2

(23)

Note that the desired percent orthogonal power %ρ⊥ is only

achieved if the algorithm converges onto a solution that

satisfies both constraints. For certain constraints C and G and

initialization S0 there exists a minimum percent orthogonal

power necessary to achieve a constant amplitude solution, and

thus care must be taken when choosing γ. If γ is selected based

on a desired percent orthogonal power below this minimum

percentage, a solution that satisfies both constraints cannot be

found because the sets onto which projections are performed

do not intersect. For the simulations that follow, various

desired percent orthogonal powers %ρ⊥ are used to establish

the amplitude γ.

The waveform matrix after the second stage can be

represented as a summation of matrices similar to (12) as

S̃i = S⊥,i + S⋆ + Sint,i (24)

where S⊥,i = P⊥S̃i. The term Sint,i is a “self-interference”

matrix that arises after the projection in (21) due to deviation

from the constraint CHS = G. Ideally, Sint,i would contain

zero power and therefore (24) would reduce to the form

in (12). Thus reduction of this self-interference power is

necessary to find a solution that satisfies both constraints.

The two-stage iterative optimization process is shown in

Fig. 2 where Stage 1 and Stage 2 are the projections defined

in (18) and (21), respectively. The algorithm iterates until some

convergence criteria is met. The error reduction property for

this problem comes in the form of

. . . ≤
∥

∥

∥
S̃i+1 − Si+1

∥

∥

∥

2

F
≤

∥

∥

∥
S̃i+1 − Si

∥

∥

∥

2

F
≤

∥

∥

∥
S̃i − Si

∥

∥

∥

2

F
≤ . . . (25)



Fig. 2. Flowchart of emission optimization algorithm

where the square-Euclidean distance between the successive

waveform matrices is a non-increasing sequence.

B. Peak-to-average power ratio vs. self-interference

The output of Stage 1 (Si) satisfies the constraint

CHS = G but does not necessarily satisfy the constant

modulus constraint. Monitoring the convergence of the peak-

to-average power ratio (PAPR) at the output of Stage 1 is

therefore a good measure of the quality of the waveform matrix

at iteration i. The PAPR ratio of the waveform matrix at the

output of Stage 1 at the ith iteration is

PAPRi =
max
m,n

|sm,i(n)|
2

1

MN ‖Si‖
2

F

. (26)

Likewise, the output of Stage 2 (S̃i) satisfies the constant

modulus constraint but does not necessarily satisfy the

constraint CHS = G due to the presence of the self-

interference matrix Sint,i. Thus the self-interference power

after Stage 2 at iteration i is defined as

ρint,i =
1

MN
‖Sint,i‖

2

F . (27)

Using this quantity, a signal to self-interference power ratio at

iteration i can be defined as

SIRi =
ρ⋆

ρint,i
. (28)

As the interference power ρint,i approaches 0, the signal

to self-interference power ratio approaches infinity, so it

is advantageous to monitor the inverse ratio [SIRi]
−1

.

Monitoring the reduction of this self-interference power at

the output of Stage 2 gives insight into how the algorithm

converges. If the self-interference power after Stage 2 is zero

(infinite SIRi), then both constraints are met and a solution

is obtained. Since the output of Stage 2 is always a constant

modulus result, the final converged solution may contain some

self-interference depending on the value of γ.

IV. SIMULTANEOUS RADAR-COMMS SIMULATION

RESULTS

Consider an M = 16 element ULA with element spacing

d = λ/2. We wish simultaneously to emit a radar beam

towards boresight (θr = 0◦) and a communications beam

towards θc = 45◦ with 10 dB less power than the radar

beam. The radar waveform is an up-chirped linear frequency-

modulated (LFM) waveform with time-bandwidth product

BT = 64, for 3 dB bandwidth B and pulsewidth T .

The communication modulation is chosen to have a

Quadrature Phase-Shift Keying (QPSK) structure (2 bits

per symbol). The symbols are convolved with a Square-

Root Raised-Cosine (SRRC) shaping filter to constrain

the bandwidth of the communication signal. This shaping

filter spans 10 symbols. For BT = 64, the pulsewidth can

accommodate 54 symbols (due to the length of the shaping

filter), thus enabling 108 bits to be transmitted per pulse.

A total of 1000 Monte Carlo trials were performed to

generate different bit sequences for the optimization. Note

that due to sufficient “over-sampling” of the desired radar

and communications signals gr(t) and gc(t), the optimized

waveform matrix retains sufficient spectral containment such

that the final version can be readily converted into a set of FM

waveforms [26].

The algorithm was run for desired percent orthogonal

powers of 10%, 20%, 30%, 40% and 50%, where the

amplitude γ for each case was calculated using (23). Recall

that for each initialization there exists a minimum percent

orthogonal power that is necessary to satisfy the emission

constraints, and thus the final solution may have a non-

zero Sint,i. For each trial, the waveform matrix initializations

S̃0 were obtained by random generating Polyphase-Coded

Frequency Modulated (PCFM) waveforms [26].

Fig. 3. Average beampatterns of optimized emission (blue), minimum-
norm emission (red), orthogonal emission (yellow), and interference emission
(purple) for (a) 10% (b) 20% (c) 30% (d) 40% and (e) 50% desired orthogonal
powers.



Fig. 3 shows the final average beampatterns at the output of

Stage 2 (S̃i) after 2000 iterations of the algorithm for the five

orthogonal power settings averaged over 1000 Monte Carlo

trials. The beampatterns of components S⋆ (red), S⊥ (yellow),

and Sint (purple) of the final waveform matrix S̃ (blue) are

shown. The scaling of the beampattern is such that 0 dB is

the peak power that can be emitted from the array. Note how

the orthogonal beampattern has nulls in the directions of the

radar and communication beams. Also note how the sidelobe

floor raises with increasing orthogonal power, which is also

accompanied by an attendant reduction in the peak values of

the radar and communication beams. In Figs. 3(a) and 3(b)

the appearance of self-interference (purple) signifies that the

specified orthogonal powers of 10% and 20% are not large

enough to find a solution that satisfies both constraints.

Fig. 4. Peak-to-average power ratio versus iteration i after Stage 1 (1000
Monte Carlo trials).

Fig. 5. Inverse signal to self-interference power ratio versus iteration i after
Stage 2 (1000 Monte Carlo trials).

Fig. 4 shows the PAPR from (26) after Stage 1 (Si) at each

iteration. While the 40% and 50% cases clearly converge to

meet the constant amplitude constraint, the cases of 10%, 20%,

and 30% do not (though the latter is close). Fig. 5 illustrates

the inverse signal to self-interference power via (28) versus

iteration i at the output of Stage 2. As expected, the 10%,

20%, and 30% cases converge onto an emission with non-

zero self-interference, though the level of interference is quite

small and may be acceptable in some cases.

The lack of convergence in the cases of

%ρ⊥ = {10%, 20%, 30%} show that the amount of power

allowed in the orthogonal space is insufficient to obtain a

solution that satisfies the constraints of both stages. Note

that this outcome is dependent on the particular set of

parameters and constraints (θr, θc, relative power of 10 dB,

communications modulation and shaping filter, etc.) and is

not indicative of the behavior for all optimization scenarios.

Fig. 6 shows the bit error rate (BER) versus sin θ for

the five orthogonal power scenarios and the minimum-norm

solution. Maximum-likelihood was used to demodulate the

communication signal and the QPSK constellation was phase

rotated to achieve the minimum BER for each angle. No

noise was added and therefore the BER curves are based

solely on the spatial diversity of the emission. The S⋆

curve demonstrates the interference between the radar and

communications functions for the minimum-norm solution,

where it is observed that the data can only be demodulated in

the nulls of the radar transmission. Also, the width of the BER

curve in the direction of communication (sin θc = 0.7071)
depends on the amount of orthogonal power. Clearly, the

FFRED approach eliminates interference from the strong,

collocated radar waveform in the desired direction for the

communication function.

Fig. 6. Bit-error rate versus sin θ for QPSK-modulated communications signal
emitted toward sin θc = 0.7071.

V. CONCLUSION

A new two-stage, iterative algorithm denoted as far-field

radiated emission design (FFRED) was developed to realize

arbitrary emissions using a MIMO transmit structure. The

new approach supplements the minimum-norm constrained

solution with a spatially orthogonal component in order

to improve power efficiency of the resulting set of multi-

function waveforms. The convergence, sidelobe structure, and

communication demodulation of the theoretical emissions have

been examined. Finally, it was shown that the designed



communication emissions do not suffer from interference

from the radar emissions in the mainbeam direction of the

communication signal. Experimental validation of the FFRED

algorithm is provided in the companion paper [30].
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