
Nonlinear Conjugate Gradient Optimization of

Polyphase-Coded FM Radar Waveforms

Patrick M. McCormick and Shannon D. Blunt

Radar Systems Lab

University of Kansas

Lawrence, KS

Abstract—Polyphase-coded FM (PCFM) radar waveforms are
continuous, constant amplitude, and are represented using a
discrete set of parameters. This form lends itself well to
descent optimization methods, with the nonlinear conjugate
gradient (NLCG) method considered here. Further, a generalized
integrated sidelobe (GISL) metric based on the q-norm of the
autocorrelation sidelobes is introduced that includes the standard
ISL and peak sidelobe level (PSL) metrics as specific cases (q = 2

and q = ∞, respectively).
The notion of waveform design degrees of freedom is addressed

within the context of both sampled bandwidth and 3 dB
resolution bandwidth. When the sampled bandwidth is larger
than the resolution bandwidth, additional degrees of freedom
corresponding to the spectral roll-off region become available for
use in waveform optimization. Utilizing this extra dimensionality
we show that the possible optimized autocorrelation is largely
independent of the waveform time-bandwidth product, which is
itself defined using resolution bandwidth.

Index Terms—waveform design, nonlinear conjugate gradient,
optimization, frequency-modulated waveforms

I. INTRODUCTION

Frequency modulated (FM) radar waveforms have been

in use for more than 50 years [1] and come in many

different forms [2]–[13] (see [14], [15] for further details).

Such waveforms are particularly attractive because they are

inherently constant amplitude (though additional tapering

may be applied) and are well-contained spectrally, thus

making them amenable to implementation in high-power radar

transmitters. Recently, a new form of FM waveform denoted

as polyphase-coded FM (PCFM) has emerged that, along with

the attractive properties above, also possesses a parameterized

code-based structure that makes it suitable for the application

of various optimization techniques. For example, in [16] a

greedy search based on changing performance metrics (to

avoid local minima) was shown to realize rather low range

sidelobes relative to the waveform time-bandwidth product.

Gradient descent optimization has previously been exam-

ined (e.g. [17]–[22] to address various attributes of radar code

design. Such methods have likewise been applied to design the

ambiguity function adaptively for target matched illumination

[23]. To the authors’ knowledge this paper represents the

first time gradient descent has been employed to design FM

radar waveforms. Here, a nonlinear conjugate gradient method

(NLCG) is implemented to descend iteratively on a PCFM-

based performance surface that is a q-norm function of the

waveform autocorrelation. Using this approach it is shown that

FM waveforms can be realized that meet the lower bound on

peak sidelobe level (PSL) performance dictated by the use of

a digital matched filter on receive.

Generally speaking, the determination of a radar waveform’s

“goodness” is primarily determined via some measure of

the properties of the waveforms autocorrelation (matched

filter response) [15]. Specifically, we generally wish to

minimize the sidelobes for a given mainlobe width. For B
the 3 dB resolution bandwidth (associated with the matched

filter resolution) and T the pulsewidth, the time-bandwidth

product BT is generally viewed as a determining factor

in how low these sidelobes can be driven. For example,

for hyperbolic FM (HFM) waveforms the bound on PSL is

−20 log10(BT )− 3 dB [5]. Likewise, length-N Barker codes,

along with their polyphase counterpart, possess the property

that the PSL does not exceed 1/N [14], where N also closely

approximates BT .

Here we challenge this notion for FM waveforms by

showing that it is actually the receiver sampled bandwidth

that determines the sidelobe limit. For phase codes sampled

once per chip interval, the resolution bandwidth and sampled

bandwidth are the same. However, for FM waveforms the

sampled bandwidth could be markedly higher than the

resolution bandwidth. The ratio of the two is the degree

of “over-sampling” with respect to the 3 dB resolution

bandwidth and provides additional degrees-of-freedom for

waveform design (as long as an appropriate spectral roll-off is

also maintained). While such over-sampling incurs a higher

computational cost for pulse compression, it is known to

remediate some of the degradation that may occur from range

straddling effects [24]. Further, by designing the waveform

with knowledge of the degree of over-sampling, and thus

the discrete length of the digital pulse compression filter, the

minimum PSL for that given filter length can be achieved.

II. PCFM WAVEFORM DEFINITION

The Polyphase-Coded FM (PCFM) waveform implemen-

tation arises from Continuous Phase Modulation (CPM)

used in communications and produces continuous, constant-

amplitude waveforms that are power efficient and spec-

trally well-contained [9]. This framework realizes FM

waveforms using a discrete sequence of N parameters

x =
[

α1 α2 . . . αN

]T
that represent piecewise instan-

taneous frequencies.



Fig. 1. Implementation of PCFM waveforms

The PCFM implementation (Fig. 1) forms a length N
impulse train with time separation Tp, where the nth impulse

is weighted by αn. The weighted impulse train is then filtered

by the shaping filter w(t) which is typically a rectangular

filter with time support on [0, Tp] that integrates to unity. The

signal is then integrated to form the continuous phase signal

φ(t) defined over [0, T ] for pulsewidth T = NTp. Thus, the

continuous FM waveform s(t;x) is

s(t;x) = exp

{

j

(

t
∫

0

w(ζ) ∗
N
∑

n=1

αnδ(ζ−(n−1)Tp)dζ

)}

(1)

for 0 < t < T and s(t;x) = 0 for t /∈ (0, T ). For w(t) a

rectangular filter, the phase transitions are piecewise linear.

Higher-order PCFM implementations have also recently been

demonstrated [11].

III. SAMPLING, BANDWIDTH, AND PSL LOWER BOUND

The peak-normalized autocorrelation of the continuous

waveform in (1) represents the matched filter response to a

point scatterer and is expressed as

r̄ (τ ;x) =
1

T

T
∫

0

s∗ (t;x) s (t+ τ ;x) dt (2)

for −T ≤ τ ≤ T . However, when pulse compression is

performed digitally, the matched filter is a sampled version of

(1), where the sampling rate fs = 1/Ts produces s(mTs) for

m = 1, . . . ,M where M = T/Ts is the number of samples in

the discretized waveform. Therefore, (2) becomes

r[ℓ] =
1

M

M
∑

m=1

s∗ (mTs) s ((m+ ℓ)Ts) , (3)

with s(mTs) = 0 for m ≤ 0 and m > M , and the dependence

on x is implicit. Because the discretized match filter is constant

amplitude, a lower bound on the autocorrelation PSL for

digital pulse compression can be defined as

PSLsampled bound = 20 log10

(

1

M

)

= −20 log10 (M) (4)

which corresponds to the amplitude of r[ℓ] at ℓ = ±(M − 1).
It is known that a pulsed waveform such as in (1),

having finite time support on [0, T ], corresponds to a

theoretically infinite bandwidth. As such, it is not theoretically

possible to achieve Nyquist sampling. However, because FM

waveforms such as PCFM possess good spectral containment

(i.e. acceptable roll-off), the amount of aliasing can be

made small by over-sampling with respect to the 3 dB

resolution bandwidth. Denote B = Bres as the 3 dB resolution

bandwidth associated with the time-bandwidth product, BT ,

and Bsamp = fs = KBres as the sampled bandwidth for

over-sampling factor K ≥ 1. Fig. 2 illustrates the sampled

bandwidth versus the resolution bandwidth for a Gaussian

power spectrum with over-sampling K = 3.

Fig. 2. Comparison of resolution bandwidth and sampled bandwidth for
Gaussian power spectrum with over-sampling K = 3.

It is generally thought that the time-bandwidth product BT
corresponds to the available design degrees of freedom for

a waveform. However, such as was demonstrated using the

notion of “over-coding” in [10], the spectral roll-off region

can be used as a source of additional degrees of freedom

without changing the resolution bandwidth or significantly

altering the spectral containment. In that situation, the number

of code values N can be made to exceed BT significantly.

From a temporal perspective, this arrangement translates into

finer control over the continuous transition of phase within

the waveform. Use of a digital pulse compression filter means

that (4) represents the lowest achievable PSL, and thus the

waveform should be designed according to the M degrees of

freedom available.

IV. WAVEFORM OPTIMIZATION VIA NONLINEAR

CONJUGATE GRADIENT DESCENT

The conjugate gradient method is an iterative scheme used

to descend to a stationary point of some objective function

that converges faster than steepest descent without requiring

calculation of the Hessian [25]. The nonlinear conjugate

gradient (NLCG) permits optimization of large-scale nonlinear

problems as it does not require the storage of matrices. Here,

the modified Hestenes-Stiefel NLCG method using a line

search satisfying the strong Wolfe conditions [25] for step-

size determination is implemented to optimize the vector x

that parameterizes the PCFM waveform.

A. Definition of Optimization Metric

The goodness of a given waveform is generally determined

via some measure of its autocorrelation [15], with the most



well-known being PSL and ISL. Here a generalized ISL

(GISL) metric is defined as a q-norm function of (2) as

J̄q(x) =











2
T
∫

∆τ

|r̄(τ)|
q
dτ

∆τ
∫

−∆τ

|r̄(τ)|
q
dτ











1/q

(5)

where ∆τ is the peak-to-null width of the autocorrelation

mainlobe and 2 ≤ q ≤ ∞. The exponent q dictates the

particular sidelobe metric used, with q = 2 corresponding to

ISL and q → ∞ to PSL. The peak-to-null mainlobe width ∆τ
is related to the 3 dB bandwidth as ∆τ ≈ 1/B. Using this

relationship, the time-bandwidth product can be approximated

using the pulse compression ratio T/∆τ ≈ BT .

The discretized version of (5) uses the discrete-time

autocorrelation from (3) and is likewise

Jq(x) =











2
M−1
∑

ℓ=Λ

|r[ℓ] |
q

Λ−1
∑

ℓ=−Λ+1

|r[ℓ] |
q











1/q

, (6)

where Λ = ⌈fs∆τ⌉ = ⌈K⌉, for ⌈•⌉ the ceiling operation.

Employing the relationships for pulsewidth and sampling rate

realizes T/∆τ = M/(fs∆τ) ≈ M/Λ, which is used to set

BT in the results that follow.

Note that the outer exponent (•)1/q in (5) and (6) is the

reason why the general metric becomes PSL when q → ∞.

However, from a numerical standpoint very large values of q
can be problematic. When more modest values are employed

(e.g. 7 ≤ q ≤ 10 has been found to work well) the (•)1/q

operation can be omitted since is does not affect the minimums

in the cost function, though it is kept here for completeness.

Similar metrics have also recently been used for optimization

of phase codes [20], [21].

B. Gradient Calculation

The gradient with respect to the real-valued parameter

vector x is composed of the partial derivatives

∇ =

[

∂

∂α1

∂

∂α2

· · ·
∂

∂αN

]T

. (7)

Application of the nth partial derivative from (7) to the cost

function in (6) yields

∂Jq(x)

∂αn
=











2
M−1
∑

ℓ=Λ

|r[ℓ] |
q

Λ−1
∑

ℓ=−Λ+1

|r[ℓ] |
q











1/q









M−1
∑

ℓ=Λ

|r[ℓ]|
q
ℜ

{

bn[ℓ]+b∗n[−ℓ]

r[ℓ]

}

M−1
∑

ℓ=Λ

|r[ℓ]|
q

−

Λ−1
∑

ℓ=−Λ+1

|r[ℓ]|
q
ℜ

{

bn[ℓ]+b∗n[−ℓ]

r[ℓ]

}

Λ−1
∑

ℓ=−Λ+1

|r[ℓ]|
q











(8)

where ℜ{•} extracts the real value and

bn[ℓ] =
−j

M

M
∑

m=1

[

∫ mTs

0

w (ζ−(n−1)Tp) dζ

]

s∗ (mTs) s ((m+ℓ)Ts). (9)

The N partial derivatives in (8) are collected into the N × 1
gradient vector ∇Jq(x) that is used in the NLCG formulation.

Note that as q → ∞, the partial derivative in (8) reduces to

the PSL form

∂J∞(x)

∂αn
= |r[ℓmax] | ℜ

{

bn[ℓmax] + b∗n[−ℓmax]

r[ℓmax]

}

(10)

where ℓmax ∈ {Λ, . . . ,M − 1} is the index of the maximum

sidelobe in r[ℓ]. While (10) is satisfying from a completeness

perspective, the gradient is discontinuous and undefined at

point when two sidelobes have equal magnitude. Thus the

PSL metric cannot be used in the gradient-based formulation,

though it can be approximated with q = “large” (numerical

issues notwithstanding).

C. Nonlinear Conjugate Gradient Descent

The nonlinear variant of the conjugate gradient is a

generalization of the linear conjugate gradient method that

is known to converge faster than steepest descent while only

requiring the memory storage of a few vectors. The general

form of the update of vector xk at iteration k is

xk+1 = xk + µkpk (11)

for direction pk and step-size µk. The direction pk for NLCG

is given as

pk =

{

g0 when k = 0
gk + βkpk−1 otherwise

(12)

where gk = −∇Jq(xk) and βk is a scalar chosen such

that a conjugacy condition holds [26] (assuming exact line

search). There are various adaptations to NLCG that have been

proposed involving adaptation of the parameter βk. Here we

choose the modified Hestenes-Stiefel method of

βk = βHS+
k = max{βHS

k , 0} (13)

where

βHS
k =

g
T
k (gk − gk−1)

(gk − gk−1)
T
pk−1

(14)

which has a built in reset stage which reverts back to using gk

when βHS
k < 0. This method has been proven to be robust and

ensure local convergence for general nonlinear cost functions

that are continuously differentiable if step sizes µk satisfy

the strong Wolfe conditions [25], [26]. Specifically, the strong

Wolfe conditions are the sufficient decrease condition

Jq (xk + µkpk) ≤ Jq (xk) + c1µk∇Jq(xk)
T
pk (15)

and the curvature condition
∣

∣

∣∇Jq(xk + µkpk)
T
pk

∣

∣

∣ ≤ c2

∣

∣

∣∇Jq(xk)
T
pk

∣

∣

∣ (16)

for 0 < c1 < c2 < 1. Here the values c1 = 10−3 and c2 = 0.1
are used.



Fig. 3. Optimized PCFM autocorrelation responses of BT = N = 128 and
K = 4 over-sampling for different q.

V. SIMULATION RESULTS

To understand how the exponent parameter q in (6)

affects the optimization, a PCFM waveform of time-bandwidth

product BT = 128 with over-sampling K = 4 is optimized

for each of the integer exponent values q = {2, 4, 7}. The

length of the discretized waveform is M = 4BT = 512. The

number of αn parameters is also set to N = BT = 128. The

NLCG method was initialized with the PCFM implementation

of a linear-frequency modulated (LFM) waveform of the same

time-bandwidth, BT .

Fig. 3 shows the converged PCFM waveform autocorrela-

tions for q = {2, 4, 7}. The q = 2 (ISL) case does not prioritize

minimizing the energy close to the mainlobe and falls into a

local minimum with relatively high PSL. Both the q = 4 and

q = 7 cases improve on this characteristic. It was observed

(though not included here) that autocorrelation responses for

q > 7 change only marginally from the q = 7 case. For this

particular initialization and set of parameters the q = 7 case

produced the best autocorrelation response and thus is used

for the remainder of the paper.

Fig. 4 shows the autocorrelation of two optimized

PCFM waveforms with BT = 128 over-sampled by K = 4
(M = 512). To demonstrate how the optimization performance

improves with increased degrees of freedom, the PCFM

parameter vector x is optimized for lengths N = BT = 128
and N = 2BT = 256, where the latter represents over-coding

by 2 [10]. The N = 256 case has converged to a sidelobe level

that is approximately 4 dB lower than the N = 128 case. The

doubling of the degrees of freedom has also allowed the PSL

of the N = 256 case, which is −52 dB (near mainlobe), to

get within 2.19 dB of the theoretical PSL limit of −54.19 dB

(from (4)). Fig. 5 shows the spectra of these two cases along

with the LFM initialization of the entire sampled bandwidth.

Note that by approximating BT ≈ M/Λ we have successfully

set the bandwidth B at the half-power point of the spectrum.

Now consider the case of a fixed code dimensionality of

N = 256 for use with a discretized matched filter length

of M = 512 while the time bandwidth product is varied

Fig. 4. Optimized PCFM autocorrelation responses using BT = 128 and
M = 4BT for different N .

Fig. 5. Optimized PCFM power spectra using BT = 128 and M = 4BT

for different N .

over BT = {32, 64, 128, 256}. These cases correspond to

respective over-coding factors of {8, 4, 2, 1} [10]. Likewise,

the associated over-sampling factors are K = {16, 8, 4, 2}. It

is assumed that these waveforms have the same pulsewidth T ,

such that a fixed M corresponds to a fixed sampled bandwidth

Bsamp. Thus the different BT values correspond to a change

in the waveform resolution bandwidth Bres. This comparison

therefore demonstrates how much of an affect BT has on the

autocorrelation of an optimized waveform.

For each case, the optimization is initialized with an LFM

waveform of the same BT , Fig. 6 shows the resulting power

spectra after the algorithm has converged. It is interesting

to note that, despite there being no explicit spectral shaping

performed, each frequency response resembles a Gaussian

shape which is known to correspond to low range sidelobes

[4], [12], [13], [16]. Since each case has the same Bsamp,

the observed spectral content for each is dependent of the

associated BT .

Fig. 7 shows the autocorrelations after convergence for

the different BT cases. Notice that as BT decreases (and

thus the amount of over-coding increases), the sidelobe level

also decreases. The associated increase in mainlobe width

and sidelobe reduction is similar to the response obtained by



Fig. 6. Optimized PCFM power spectra for N = 256 and M = 512 for
different BT .

Fig. 7. Optimized PCFM autocorrelation responses for N = 256 and
M = 512 for different BT .

frequency tapering, albeit without the associated SNR loss.

Fig. 8 provides a close-up of the outer autocorrelation values,

along with the sampled PSL bound from (4) for these cases

(−54.19 dB). The BT = 128 and BT = 256 cases realize

PSL values of −52 dB (near mainlobe) and −52.74 dB,

respectively (2.19 dB and 1.45 dB above the bound). The PSL

values for the BT = 64 and BT = 32 cases actually equals

the bound at the autocorrelation edge and have much lower

sidelobes at every other delay within the sidelobe region.

These examples demonstrate that it is the sampled

bandwidth Bsamp of the matched filter that determines the

lower bound on PSL. Put another way, the combination of

over-coding the waveform (N > BT ) and over-sampling the

matched filter can facilitate substantial reductions in sidelobe

levels through finer control of the spectral roll-off.

Finally, Fig. 9 shows the instantaneous time-frequency

relationships for these four waveforms with different time-

bandwidths. Generally speaking, each realizes the familiar

“sideways-S” curve that is associated with low autocorrelation

sidelobes [2]–[4]. The additional small perturbations observed

in Fig. 9 are not random but arise from the optimization

process (similar behavior has been observed for other FM

waveform optimization approaches [9]–[11]).

Fig. 8. Close-up optimized PCFM autocorrelation responses of N = 256

and M = 512 for different BT .

Fig. 9. Instantaneous frequency vs. time for N = 256 and M = 512 for
different BT .

VI. CONCLUSION

The PCFM implementation is parameterized by a discrete

code that characterizes the resulting continuous, constant

amplitude waveform. Nonlinear conjugate gradient descent in

combination with over-coding and a generalized ISL metric

has been used to optimize these parameters, where it has been

found that the autocorrelation of the optimized FM waveform

is largely independent of the time-bandwidth product. Instead,

the sampled bandwidth of the receiver matched filter dictates

the achievable PSL. Further, how close one can get to

this PSL bound appears to be related to the degree

of waveform over-coding. Finally, this physically-realizable

waveform optimization scheme is readily extensible to myriad

multi-dimensional waveform-diverse radar modalities such as

MIMO, pulse agility, dual-polarized, etc. [15], [27], [28].
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