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Abstract—The phase-attached radar-communications (PARC)
framework facilitates the co-design of these different functions
within a common frequency modulated (FM) waveform, thereby
enabling the operation of both without sacrificing transmission
resources (i.e. power, time, frequency) needed for the primary
radar function. Recently, the original pulsed PARC structure was
extended to an FM continuous wave (FMCW) arrangement that
maximizes data throughput. The resulting FMCW PARC wave-
forms were successfully demonstrated in an open-air environment
for a ground-based moving target indication (MTI) application
using a recent form of stretch processing that compensates for
deviations from the linear chirping reference signal.

However, the waveform-agile nature of PARC, which is neces-
sary in order to convey information, does incur a performance
cost that takes the form of range sidelobe modulation (RSM)
of the clutter. To address this RSM degradation, here we
introduce a range-dependent mismatched filtering approach for
FMCW PARC based on a reduced-complexity Least-Squares (LS)
formulation to determine the compensated transform in the final
processing stage. The proposed approach is compared to the
previous (range-dependent matched filter) compensated trans-
form using experimental measurements, where a 5 dB signal-
to-interference-plus-noise (SINR) improvement is demonstrated.

Index Terms—FMCW, stretch processing, dual-function
radar/communications, range sidelobe modulation

I. INTRODUCTION

The explosion of wireless communications, for both military
and commercial applications, along with enduring wideband
requirements for radar sensing has created an ever-worsening
congestion of RF spectrum [1]. This spectrum congestion has
spurred two separate but complementary branches of research,
namely dynamic spectral access (DSA) and co-design, to
improve the efficacy of spectral usage by a multitude of users
and functions. With DSA multiple users strive to coexist within
the same band with minimal interference to one another (e.g.
[2], [3]), whereas with co-design multiple RF functions are
performed concurrently by the same system (e.g. radar and
communications) to more efficiently use a particular frequency
band (e.g. [4]–[14]).

The recently proposed phase-attached radar-
communications (PARC) approach combines radar and
communication functions through the summation of their
separate continuous phase structures, with the resulting FM
waveform being amenable to high-power transmitters that
are common for radar applications [9], [15]. Specifically,
the PARC formulation involves the phase addition of a
baseline FM radar waveform with a communication signal
implemented via continuous phase modulation (CPM)

[16]. Consequently, both power and spectral efficiency are
maintained.

The pulsed PARC framework [9], [17] was recently ex-
tended to an FM continuous wave (FMCW) implementation
referred to as FMCW PARC [13]. The use of a recent
compensated form of stretch processing [18] then permits
the use of large transmit bandwidths to achieve fine radar
range resolution as well as relatively high communication data
rates. This variant of stretch processing involves replacing the
final fast Fourier transform (FFT) stage with a compensation
transform that can be viewed as a range-dependent matched
filter bank.

The unique communication data in each sweep of FMCW
PARC realizes a waveform-agile transmission mode in which
the emitted waveform changes from sweep to sweep. Conse-
quently, the clutter incurs a range sidelobe modulation (RSM)
effect [6], [9], [15] that hinders effective cancellation and takes
the form of smearing across Doppler. While the compensated
stretch processing does correct for the SNR loss that occurs
due to deviation of the emitted waveform from the reference
signal, it does not address this RSM degradation.

Here, a Least-Squares based compensation transform is
proposed that is essentially a range-dependent mismatched
filter (MMF) bank. The objective with this type of mismatched
filtering is to better homogenize the filter responses—despite
the sweep-to-sweep changing waveform structure—by forcing
a common desired response across all sweeps of the CPI
[19], [20]. The optimal solution to forcing a particular desired
solution is shown to be rather computationally costly, which
motivates development of the reduced-complexity approach
presented here.

II. FMCW PARC

In [13] the passband FMCW PARC waveform was defined
as

s(t;x) = cos
(
ψr(t) + ψc(t;x)

)
(1)

where ψr(t) is the (passband) radar phase component and
ψc(t;x) is the communication phase component, both of which
are continuous. The communication phase is obtained by mod-
ulating the M−ary symbol sequence x= [x0 x1 x2 · · · ] with
CPM, where xn ∈ {±1,±3, · · · ,±(M − 1)} and m= log2M
is the number of bits per symbol. The radar phase is the
integral of the radar instantaneous frequency fr(t) as

ψr(t) = 2π

t∫
0

fr(τ)dτ. (2)
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Fig. 1. Stretch processing using reference signal sref(t) and intermediate
frequency stage.

Here, fr(t) follows a down-chirped sawtooth wave. For the i th
sweep of duration Tsw the instantaneous frequency is therefore
defined as

fr(iTsw ≤ t < (i+ 1)Tsw) = f0 − γ(t− iTsw), (3)

where f0 is the starting (passband) frequency and γ = B/Tsw
is the chirp rate for swept bandwidth B.

The communication phase component during the i th sweep,
i.e. iTsw ≤ t < (i+ 1)Tsw, is [9], [13], [16]

ψc(t;x) = πh

t∫
0

(i+1)Nc−1∑
n=0

xn g(τ − nTc)dτ, (4)

where Tc is the symbol interval, Nc = Tsw
Tc

is the number
of communication symbols per sweep, h (a rational number)
is the CPM modulation index, and g(t) is the (unit area)
CPM shaping filter. The communication symbol rate is thus
Bc = 1

Tc
symbols/s, and the data rate is mBc bits/s. The CPM

parameters h, Tc, g(t) and M uniquely specify the spectrum of
the communication signal component and hence the receiver
bandwidth for a given range profile.

The modulation index h is a very important system pa-
rameter from a radar performance perspective as it controls
the degree of similarity across the sweep-to-sweep changing
radar/communication waveforms. It was shown experimentally
for FMCW PARC in [13] that greater similarity translates
to enhanced coherence across the clutter return samples of
different sweeps in the CPI, and consequently reduced RSM.

III. OPTIMIZING STRETCH PROCESSING COMPENSATION
FOR FMCW PARC

The analog portion of the stretch processing system model
(Fig. 1) consists of mixing the received signal with a reference
sref(t) down to intermediate frequency (IF) fIF, which is
subsequently bandpass filtered (BPF), further mixed down
to baseband, and then lowpass filtered (LPF). Given an IF
bandwidth BIF and chirp rate γ, the range swath that can be
observed after stretch processing is

∆r =
cBIF

2γ
= rfar − rnear, (5)

for c the speed of light, and with rnear and rfar the near
and far edges of the range swath, respectively. This range
swath likewise corresponds to the band of IF frequencies
[fIF − BIF

2 , fIF + BIF
2 ].

The reference signal sref(t) is designed to be a time and
frequency shifted version of cos(ψr(t)) that depends only on
the radar phase component. For alignment range ra (where
rnear ≤ ra ≤ rfar), the reference signal is thus

sref(t) = cos
(
2πfa · (t− 2ra

c ) + ψr(t− 2ra
c )
)
, (6)

where
fa = fIF − BIF

2 + ra−rnear
rfar−rnear

BIF (7)

is the IF frequency corresponding to range ra.
Because of the additional communication component in (1),

the response after mixing/filtering via Fig. 1 does not have a
tonal structure that could be fully compressed via FFT like
standard stretch processing. However, it was shown in [18]
that full SNR gain can be achieved through the use of a
compensated transform that accounts for deviations from the
reference signal.

The complex baseband received signal during the i th sweep
of a CPI can be expressed as

yi(t;xi) = ΦLPF

{
ΦBPF

{
sref(t)ỹi(t;xi)

}
exp(−j2πfIFt)

}
(8)

where xi = [x0, · · · , x(i+1)Nc−1] is the associated symbol
sequence, ΦBPF{•} and ΦLPF{•} represent the bandpass and
lowpass filtering operations from Fig. 1, respectively, and

ỹi(t;xi) = si(t;xi) ∗ zi(t) + ui(t) (9)

is the signal captured at the receive antenna. Here si(t;xi)
is the waveform transmitted during the i th sweep, zi(t)
represents the scattering from the environment, and ui(t) is
the noise process. The complex baseband received signal of
(8) is then sampled to obtain the vector

yi(xi) = [yi(τa;xi), · · · , yi(τa + (L− 1)Ts;xi)]
T , (10)

where τa = 2ra
c and L is the number of received samples

per sweep obtained by I/Q sampling the mixer output at fs
samples/s, which corresponds to sampling period Ts = 1/fs.
The sampling rate satisfies fs > BIF for sufficient fidelity, and
is chosen such that L = Tsw/Ts is an integer.

For a normalized point scatterer at range r during the i th
sweep, the signal response (in the absence of noise) prior to
sampling can be expressed as

pi(t, r;xi)=ΦLPF

{
ΦBPF

{
sref(t)s

(
t− 2r

c ;xi
)}

exp(−j2πfIFt)
}
. (11)

Sampling this point response therefore yields the vector

pi(r;xi) = [pi(τa, r;xi), · · · , pi(τa + (L− 1)Ts, r;xi)]
T. (12)

Thus, the range-dependent matched filter for range r is

wi(r;xi) =
pi(r;xi)

||pi(r;xi)||2
, (13)

which even for fixed r changes from sweep to sweep according
to the communication sequence xi. The set of range-dependent
matched filters in the i th sweep can be collected into the
compensation matrix [18]

Wi(xi) = [wi(rnear;xi) · · ·wi(rnear+(K−1)δr;xi)], (14)



where K is the number of samples in the range profile, and δr
is the range spacing, which is chosen smaller than the range
resolution (i.e. c

2B ), such that rfar = rnear + (K − 1)δr. It
follows that the range profile estimate in the i th sweep is
obtained by the matrix product

ẑi = WH
i (xi)yi(xi). (15)

It is important to note that the filter bank Wi(xi) changes
from sweep to sweep as the radar/communication waveform
changes.

A discretized representation of normalized scatterer re-
sponses over the ranges of interest can be formed by collecting
(12) for these discretized ranges into the matrix

Pi(xi) = [pi(rnear;xi) · · ·pi(rnear + (K − 1)δr;xi)]. (16)

Thus, application of the compensation transform of (14) yields
the K ×K matrix

Di(xi) = WH
i (xi)Pi(xi), (17)

which captures the mainlobe and sidelobe structure for each
of these range-dependent matched filters. The mainlobe peak
lies on the main diagonal of Di(xi) and remains constant from
sweep to sweep. Beyond the super/sub-diagonals close to the
main diagonal that represent the mainlobe roll-off, the values
of Di(xi) vary from sweep to sweep due to the changing
structure of the PARC FMCW waveform. This range sidelobe
modulation (RSM) effect, when imposed upon the clutter,
incurs a loss of coherence that limits the efficacy of clutter
cancellation.

To combat RSM within this FMCW context, we seek to
optimize the compensation matrix to limit the sweep-to-sweep
changes in the correlation response such that the desired output
approximates

WH
i (xi)Pi(xi) ≈ Ddsr, (18)

for some constant desired response Ddsr. Determination of this
mismatched filter (MMF) compensation transform can thus be
formulated as the optimization problem

WMMF,i = arg min
W
‖WHPi(xi)−Ddsr‖2F , (19)

where ‖ • ‖2F is the squared Frobenius norm. A good choice
for Ddsr is the collection of responses for a FMCW waveform
without the communication component, in which case

Ddsr = APLFM, (20)

where A is the unitary DFT matrix, i.e. AHA = I, and PLFM

is the matrix of responses from (16) when s(t) is simply a
down-chirped sawtooth LFM.

Unfortunately, direct computation of WMMF,i via (19)
requires inverting the L × L matrix Pi(xi)P

H
i (xi) for each

sweep, which can be very large (for the experimental results
here it is 25000×25000). Consequently, a reduced complexity
approach is in order.

Instead of directly computing the entire MMF compen-
sation transform, where each column is a range-dependent

mismatched filter, we take a two-step procedure that involves
first determining the particular MMF for the alignment range,
denoted as wMMF,i(ra). Then by using the (approximate) time
and frequency shifted structure of Pi(xi), all other range-
dependent mismatched filters are obtained by time-shifting
wMMF,i(ra) and multiplying by the discrete-time complex si-
nusoid corresponding to the relative range difference between
the range of interest r and alignment range ra.

Because wMMF,i(ra) is a discrete sequence, time-shifting
(and frequency-shifting) the filter will result in aliasing of
the time (and frequency) envelope(s). It is necessary to first
estimate a continuous-time version of wMMF,i(ra) (denoted
wMMF,i(t; ra)) before time and frequency shifting the filter,
where wMMF,i(`Ts; ra) = wMMF,i(ra) for ` = 0, 1, . . . , L − 1.
Once determined, the i th filter corresponding to range r =
rnear + kδr for k = 0, 1, . . . ,K − 1 is

wMMF,i(t; rnear + kδr) = wMMF,i (t− τk; ra) e
j2πγτk(t−τk), (21)

where
τk =

2(rnear + kδr − ra)

c
(22)

is the relative delay between the backscatter from range rnear +
kδr and the alignment range ra. Finally, wMMF,i(rnear + kδr)
is found by simply sampling (21) at wMMF,i(`Ts; rnear + kδr)
for ` = 0, 1, . . . , L− 1.

Determination of wMMF,i(ra) could be achieved by solving

wMMF,i(ra) = arg min
w
‖wHPi(xi)− ddsr(ra)‖22, (23)

where ddsr(ra) is the row of Ddsr associated with wMMF,i(ra)
in (18). However, this approach still requires inversion of
the large Pi(xi)P

H
i (xi) matrix. Instead, we compress Pi(xi)

using the DFT via

PHi (xi)w = PHi (xi)A
HAw

= (APi(xi))
H
Aw

= PHF,i(xi)wF

(24)

where PF,i(xi) = APi(xi) and wF = Aw are the Fourier
transforms of Pi(xi) and w, respectively. Because a FMCW
PARC waveform involves relatively small deviations from the
baseline FMCW chirping structure, the transformed matrix
PF,i(xi) has most of its energy within a band centered on the
main diagonal, the width of which depends on the bandwidth
of the communication signal component.

By exploiting this banded structure we can reduce the
dimensionality of the matrix inverse by selecting a submatrix
corresponding to alignment range ra within the full matrix
PF,i(xi). To illustrate, consider an example where the com-
munication bandwidth is 15% of the IF bandwidth BIF. Figure
2 shows the squared magnitude of PF,i(xi) (in dB) for this
case. Note that for alignment range ra, a majority of the
energy in contained within the white box. Thus, we can extract
the submatrix P̃F,i(xi; ra) which has dimension N ×M (for
N < L and M < K) to determine wMMF,i(ra) with only
a N × N matrix inversion (for the experimental results here
N = 500 is used).



Fig. 2. Example of partially compressed matrix |PF,i(xi)|2 (in dB) with
submatrix |P̃F,i(xi)|2 (in dB) outlined in white.

The submatrix P̃F,i(xi; ra) is related to PF,i(xi) as

P̃F,i(xi; ra) = UTPF,i(xi)V, (25)

where U is an L×N matrix and V is a K×M matrix. These
selection matrices are constructed such that they precisely
extract P̃F,i(xi; ra) (the white box in Fig. 2). Using this
submatrix, (19) can therefore be approximated as

w̃MMF,i(ra) = arg min
w
‖wHP̃i(xi; ra)− d̃dsr(ra)‖22, (26)

where d̃dsr(ra) = ddsr(ra)V is the 1×M reduced dimension
desired response and w̃MMF,i(ra) is the N × 1 reduced
dimension MMF (in the frequency domain). Once obtained,
w̃MMF,i(ra) can be converted into the time-domain via

wMMF,i(ra) = AHUw̃MMF,i(ra) (27)

to form an optimized compensation transform that is still
applied like (15).

IV. OPEN-AIR DATA COLLECTION AND RESULTS

Open-air measurements were collected using the FMCW
PARC waveforms illuminating a traffic intersection in
Lawrence, KS from the roof of Nichols Hall on the University
of Kansas campus. Figure 3 shows the field of view and
geometry for the experiment. Two S-band parabolic dish
antennas with half-power beamwidth 12.3◦ (beamwidth shown
in Fig. 3) were used to simultaneously transmit the FMCW
PARC waveforms and receive the backscattered data. The
transmitted waveforms and reference signals were generated
using a Tektronix AWG70002A arbitrary waveform generator,
and the backscattered echoes (after stretch mixing/filtering)
were captured using a Rohde and Schwarz FSW 26 real-time
spectrum analyzer.

The instantaneous frequency of the radar function
fr(t) for the transmitted FMCW PARC waveforms fol-
low a down-chirped sawtooth wave with starting and end-
ing frequencies of 3.85 GHz and 3.35 GHz, respectively
(B = 500 MHz bandwidth), for a Tsw = 500 µs sweep time
and γ = 1 MHz/µs chirp rate. The intermediate frequency
was set to fIF = 300 MHz with BIF = 40 MHz bandwidth
(range swath of ∆r = 6000 m). The near and far ranges
were set to rnear = 0 m and rfar = 6000 m, respectively. The

Fig. 3. Field of view for FMCW PARC experimental demonstration for 12.3◦

transmit and receive antenna beamwidth.

TABLE I
FMCW STRETCH PROCESSING PARAMETERS

Description Variable Value
FMCW type - sawtooth

FMCW slope - down-chirp
Start frequency f0 3.85 GHz

Tx bandwidth B 500 MHz
Sweep time Tsw 500 µs

Chirp rate γ 1 MHz/µs
Intermediate freq. fIF 300 MHz

IF bandwidth BIF 40 MHz
Range swath ∆r 6000 m

Near range rnear 0 m
Far range rfar 6000 m

Alignment range ra 1050 m
Rx sampling rate fs 50 MHz

CPI - 100 ms

alignment range was chosen as ra = 1050 m (fa = 287 MHz)
which coincides with the middle of the intersection. The
received data were sampled at 50 MHz after mixing/filtering.
A total of 200 sweeps were captured to form a CPI having a
total duration of 100 ms. The stretch processing parameters are
shown in Table I. To facilitate a fair comparison, all test cases
were transmitted back-to-back to illuminate approximately the
same scene.

Figure 4 shows the radar-only baseline case while Figures
5 and 6 show the range-Doppler responses for FMCW PARC
with a modulation index of h = 1/8 and 8 Mb/s data rate,
for a total of 8 × 105 symbols transmitted in the 100 ms
CPI. A raised-cosine shaping filter with duration 4Tc was used
for g(t) from (4). Figure 5 is generated using the (matched
filter) compensation transform developed in [18] while Fig. 6
is obtained when the new MMF compensation transform is
applied. In both cases the zero-Doppler clutter is suppressed
using a simple projection, and a Hamming window is applied
across the pulses to reduce Doppler sidelobes. While both
cases do exhibit some RSM residue relative to the baseline
case of Fig. 4, it is clear that the MMF approach (Fig. 6)
substantially reduces this residue compared to the MF case
(Fig. 5). Specifically, the average noise + residual clutter is
approximately 5 dB lower in Fig. 6 than it is in Fig. 5, thus
facilitating better target visibility. It is important to note that



Fig. 4. Range-Doppler response for traditional stretch processed FMCW.

Fig. 5. Range-Doppler response for FMCW PARC with parameter values
h = 1/8 and 8 Mb/s data rate obtained with the compensated transform
(range-dependent matched filtering).

any kind of mismatched filtering enhances noise compared
to matched filtering. This 5 dB improvement subsumes the
reduction in SNR due to noise enhancement.

V. CONCLUSIONS

A pulsed version of PARC has previously been shown to be
a feasible means with which to incorporate a data stream into a
high-power radar emission. It was more recently demonstrated
that an FMCW version can achieve even higher data rates due
to the ”always on” structure while simultaneously facilitating
a wideband radar capability through the use of a compensated
form of stretch processing on receive. Here this compensated
stretch processing approach is modified within a reduced-
complexity Least-Squares formulation to realize a sequence
of mismatched filter banks that additionally compensate for
the radar sidelobe modulation that is naturally incurred by
altering the baseline radar waveform when incorporating a
communication capability. It was shown using experimental
measurements that residual clutter suppression of 5 dB can be
obtained, thereby improving target visibility while maintaining
a data rate on the order of several Mbps.
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