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Abstract—The design and physical generation of diverse 

radar emissions often requires optimization of unique 

waveforms on an individual basis. Consequently, a significant 

processing overhead is incurred that could make real-time 

implementation impractical. To address this limitation, families 

of pulsed FM noise waveforms are defined here according to a 

parameterized process denoted as Stochastic Waveform 

Generation (StoWGe). Through the use of expectation metrics 

and an expected frequency template error (EFTE) cost function 

a particular waveform family is specified via a desired spectral 

shape so that each physical FM waveform can be easily 

produced by drawing samples from a random process. 

Performance is assessed via simulation and experimentally in 

loopback and open-air testing.  

Keywords—FM noise waveforms, waveform optimization, 

waveform diversity 

I. INTRODUCTION  

Waveform diversity remains a topic of significant interest 
for a variety of radar modalities [1]. A prominent topic within 
this area for quite some time has been that of noise radar [2-
5] due to its low probability of intercept (LPI) characteristics, 
though the inherent requirement of amplitude modulation 
(AM) tends to limit utility to short-range applications and 
precludes the use of high-power amplifiers (HPAs). More 
recently, the notion of FM noise radar has begun to emerge 
which, while not really LPI, is amenable to high-power, and 
thus long-range, applications. 

The theoretical attributes of FM noise radar were first 
examined by Axelsson [6] and recently furthered by Pralon, 

et al [7,8]. Various approaches for the implementation and 
optimization of FM noise waveforms have also been 
experimentally demonstrated [9-12], leading to a host a new 
capabilities including different forms of radar-embedded 

communications [13,14], nonlinear harmonic radar [15], 
simultaneous dual-polarized emissions [16], practical 
implementation of complementary FM waveforms [17], and 
practical spectral notching on transmit [18]. 

In general, these optimization approaches have operated 
on individual waveforms. Consequently, achieving true 
waveform agility in which each pulse is modulated by a 
unique, non-repeated waveform can incur a hefty 
computational burden within the transmitter, to the point 
where it may simply be more reasonable to optimize and store 
a set of waveforms ahead of time. Of course, growing 
demands on spectral congestion and the associated need for 
environmentally responsive waveforms [19] may likewise 
limit a storage-based approach. 

To address the computational bottleneck of real-time 
waveform design and generation we consider a perspective in 
which the waveform phase function is defined according to 
an explicitly parameterized stochastic process. By 
subsequently expressing the (otherwise deterministic) 
waveform metrics of autocorrelation and spectral density in 
stochastic terms, a parameterizing structure can be optimized 

such that independent instantiations of a random process 
produce an entire family of random FM waveforms that can 
be directly implemented in a high-power transmitter. 

II. EVALUATING STOCHASTIC WAVEFORMS 

First consider a discrete pulsed waveform representation 
defined according to a discrete-time random process as 
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where the member functions of [ ]s m  are individual, pulsed 

waveforms and [ ]m  is itself a random process. For now, we 

make no assumptions about [ ]m  other than that it is real 

valued (spectral containment is addressed later). The form of 
(1) can be written more succinctly as the length M vector 

 )exp( js  .  (2) 

It is likewise convenient to define the vector 
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T
s s 0   (3) 

for 2 1W M   so that the discrete Fourier transform (DFT) 

of (3) can be written as 

 f s As ,  (4) 

where A is the WW DFT matrix. 
Based on this representation the expected power spectral 

density (PSD) over a given family of waveforms is 

 
2

f[| | ]E s ,  (5) 

where E[∙] is element-wise expectation and |∙|2 is element-

wise magnitude-squared. Thus we would anticipate that the 

sample-mean PSD for a finite set of waveforms belonging to 

the same family to approach (5) as the number of waveforms 

grows large. For example, in some applications one could 

reasonably expect a coherent processing interval (CPI) to be 

comprised of hundreds to thousands of pulsed waveforms. 
In addition to the aggregate characteristics represented by 

(5) it is important to understand how random waveforms 
perform on an individual basis. Consequently 
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measures the expected deviation from (5) in a mean-square 

sense. That is, if (5) has a desirable form, it would be 

advantageous to minimize (6) such that the individual 

waveform PSDs resemble the expected PSD as closely as 

possible. Of course, there could alternatively be situations in 

which greater per-waveform diversity is desired. 

The expected integrated autocorrelation can be expressed 

via the inverse DFT (IDFT) of (5) as 

 2
f[| | ]H E sA , (7) 

which represents the aggregate autocorrelation one would 

obtain after coherently integrating over an infinite number of 
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match-filtered waveforms. The per-waveform expected 

autocorrelation can likewise be determined by computing the 

root mean-square (RMS) response as 

 2
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Now expand the expected PSD from (5) as 
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for  the Hadamard product and (∙)* denoting complex 

conjugation. Representing the matrix multiplications in 
summation form and by linearity of the expectation operator, 
(9) can then be rewritten in the per-sample form 
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where aij is the ijth element of matrix A. The fourth-order 
component of (6) can likewise be written in the per-sample 
form 
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The important terms in (10) and (11) are  
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that represent the second-order and fourth-order moments for 
particular samples of ,s respectively. These terms can be 

collected into the structures W WC  and W W W W  K , where 

C  is a correlation matrix and K  is a fourth-order moment 

hyper-cube. Note that C  and K  also include the moments 

of the zero-valued elements of ,s  so the non-zero portions 

are simply M MC  and M M M M  K .  

III. STOCHASTIC FM WAVEFORM MODEL 

Returning to the simple discrete-time waveform 
representation of (2), we now explicitly specify the phase 
such that it conforms to 

  Bx  .  (14) 

Here B is an MN matrix of basis functions similar to the 

forms in [11,17,20] that are generalizations of polyphase-
coded FM (PCFM) [21], x is a length-M  vector of real-
valued, statistically independent Gaussian random variables 

distributed on (0,1),  and  is a length-M  vector of 

constants corresponding to the expected value of  (needed 
to produce an asymmetric spectrum). In contrast to previous 
parameterized FM waveform optimization approaches 

[11,17,20-22] in which x contains the set of parameters to 

optimize, here it is the matrix B and vector  that comprise 
the structure being designed. 

By taking advantage of the properties of Gaussian 
distributions, similar to the steps taken in [6], and based on 
the fact that each term in x is statistically independent, the 

distribution of the mth element in  is 
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in which mb  is the mth row of matrix B and the product 
T

m mb b  is a scalar. Noting that (12) can be rewritten as  

 
1 2 1 2

*[ ] [exp( ))( ]mm m mE s s E j     (16) 
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for 1 2 3 4, , ,m m m m M . 

Recognizing that the right-hand side of (16) takes the form 
of the characteristic function, and exploiting the fact that the 
characteristic function of a Gaussian random variable is also 
Gaussian, (12) ultimately becomes 
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Since the right-hand side of (18) also has this same general 
form, (13) therefore becomes 
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Using (20) and (21), it is thus possible to compute (5)-(8) in 

closed form once B and  are determined. 

IV. EXPECTED FREQUENCY TEMPLATE ERROR 

Consider the design of a family of random waveforms 
such that the expected PSD in (5) matches a desired template. 
Optimizing individual FM waveforms according to a 
frequency template error (FTE) metric was previously 

investigated in [11,22]. Here a stochastic version, denoted as 
expected FTE (EFTE), is defined as 

 f

2

2

2[| | ]J E  s u ,  (22) 

where u is the 1W   desired spectral template and 
2
2|| ||  is 

the squared 2-norm.  

Minimizing (22) as a function of B and  enables the 

expected PSD to be a good approximation of the desired 

spectrum u for random instantiations of x. Theoretically, a 

Gaussian power spectrum corresponds to a Gaussian 

autocorrelation, which is sidelobe-free by definition. Since a 

Gaussian spectrum has the added benefit of providing good 

spectral containment, it is an obvious choice for u. That said, 

this approach is applicable to arbitrary PSD shapes and could 

possibly be particularly useful to generate random waveforms 

containing spectral notches [18]. 

A. Gradient-Based Optimization of B and  

Due to the non-convexity of (22), minimization 
necessitates the use of approximate methods. As shown in 
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[11,17,20,23,24], gradient-descent methods are effective at 
minimizing this kind of cost function. Specifically, for qk the 
current set of parameters and pk the current descent direction, 
the update is performed via 

 
1k k k k
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where k  is the current step-size. Here the descent direction 

is determined according to 
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in which   depends on the particular form of gradient-

descent employed and gk is the current gradient. 

Denoting ,nb  as the term in the th  row and nth column 

of B and r  as the rth element of , the derivative of (22) 

with respect to each of these values is 
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The partial derivatives with respect to sf in (25) and (26) are 
taken element-wise, which for the wth element of sf is 
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respectively. The term ,mc  is the element in the th row and 

mth column of matrix C, and the operations { } and { }

extract the real and imaginary parts of the argument.  
By iteratively calculating these values within the gradient-

descent framework above, (22) can be minimized to obtain B 

and  with which to generate the associated family of random 
FM waveforms. Further, (20) and (21) can be computed to 
subsequently obtain (5)-(8). 

V. ANALYSIS OF STOCHASTIC WAVEFORM GENERATION  

Consider the optimization of an MN matrix B and a 

length M vector  to achieve a family of random StoWGe 

waveforms in which the expected PSD is Gaussian. The value 

of N, which also corresponds to the waveform time-

bandwidth product BT, is set to 150 (for B the 3-dB 

bandwidth). The value of M is set to 900, which corresponds 

to an over-sampling factor of 6 relative to the 3-dB 

bandwidth. This relatively high value for over-sampling was 

chosen to illustrate the spectral roll-off region, which is quite 

important to consider for physical waveforms. 

The initial form of B used here for gradient-descent 

optimization was inspired by the simple basis functions that 

arise for the first-order PCFM implementation [21]. Thus the 

columns of B initially consist of time-shifted ramp functions, 

where the ramp portion comprises six samples that are 

preceded by zeros and followed by ones. The vector  was 

initialized with zeros and the desired template u is a 

discretized Gaussian shape, likewise with appropriate over-

sampling. The optimization process was allowed to run for 

10,000 iterations. 

A. StoWGe Basis Function Characteristics 

A consequence of initializing  with all zeroes and u 

having a symmetric spectrum is that  remains unchanged 

after optimization and all the correlation parameters are real-

valued. For this family of StoWGe waveforms the matrix B 

is therefore solely responsible for generating each particular 

random waveform given a random instantiation of x.  

Figure 1 illustrates four of the 150 different, length-900 

basis functions in B. Aside from a delay shift, the orange and 

yellow basis functions in the center are effectively identical. 

In contrast, the blue and purple basis functions near the 

respective ends of the pulse are somewhat different due to 

their proximity to the pulse edges. It has been observed (for 

this desired PSD) that the basis functions comprising roughly 

the first and last 15% of the pulse change according to the 

respective pulse edge, while the remaining basis functions 

throughout the middle of the pulse are identical aside from 

the delay shift. Note that the basis functions all have a smooth 

response, which is a result of the good spectral containment 

of the Gaussian PSD and the inclusion of sufficient spectral 

roll-off. Further, aside from those near the edge, each basis 

function still starts at zero and ends at one just like the PCFM 

initialization. 

 
Fig. 1. Representative StoWGe basis functions from matrix B when 

optimizing for a Gaussian PSD 

 

The rapid rise/fall of the pulse edges, which corresponds 

to broader frequency content than the waveform modulation 

in this case, impacts the optimization of B and , and 

consequently the correlation matrix C. This effect can be 

partly visualized by plotting the magnitudes of the values of 

C as shown in Fig. 2 for the upper-left corner of the matrix, 

which pertains to the region at/near the leading edge of the 

pulse. After sample index 6, notable for also being the over-

sampling factor, a Toeplitz form can be observed. In contrast, 

sample indices 1-5 display changing characteristics that may 

be an emergent phenomena that is attempting to compensate, 

to the degree actually possible, for the extended spectral 

content of the rapid rising edge so that the desired spectral 

containment can be achieved. The same effect occurs at the 

falling edge of the pulse. 
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Finally, Fig. 3 illustrates the instantaneous frequency as a 

function of time for a few random FM waveforms belonging 

to this StoWGe family. In general, the instantaneous 

frequency of the different waveforms stays within the 3-dB 

bandwidth of B/2, as indicated by the dashed black lines, 

and when it does exceed the 3-dB bandwidth, it does so only 

briefly. Of particular note is the more rapid oscillation of 

instantaneous frequency at the beginning and end of each 

pulse that can be observed in the inset of Fig. 3. This behavior 

is directly attributable to the different basis functions near the 

pulse edges as discussed above. 
 

 
Fig. 2. Top-left 20  20 section of correlation matrix C 

 

 
Fig. 3. Instantaneous frequency over the pulsewidth for a few example 
StoWGe waveforms 

B. StoWGe Waveform Performance 

To evaluate the practical performance of these stochastic 

waveforms the optimized B and  obtained above were used 

to generate 3000 random waveforms using (14) via 

independent instantiations of x. Coherent integration of the 

resulting 3000 autocorrelation responses provides a sample 

mean to compare with the analytical coherent response of (7). 

Likewise, RMS combining of the 3000 autocorrelation 

responses serves as a comparison for the analytical RMS 

response of (8). For the given B and , the moments in C and 

K can be calculated and thus so can (10) and (11), which 

facilitates direct computation of (7) and (8).  

Figure 4 shows that the sample RMS result (dark blue 

trace) computed over the 3000 waveforms is in near-perfect 

agreement with the analytical RMS (dashed orange trace) 

computed from (8). Moreover, these results show a per-

waveform peak sidelobe level (PSL) of just better than 21 

dB, which agrees with the anticipated 10log10(BT) = 21.8 

dB when BT = 150. 

The coherent traces, on the other hand, exhibit a notable 

difference. The sample coherent result (light blue trace in Fig. 

4) obtained from coherently integrating the 3000 unique 

autocorrelations (the same procedure as slow-time Doppler 

processing) reveals a PSL of 52 dB, which itself agrees 

fairly well with the additional 10log10(3000) = 34.8 dB 

reduction relative to the 21.8 dB RMS result (totaling 56.6 

dB) that one would anticipate from the incoherent combining 

of random sidelobes. In contrast, the analytical coherent 

result (red trace) computed using (7) depicts only the 

mainlobe because the sidelobe level resides at MATLAB’s 

numerical precision limit of 300 dB. While such a value is 

meaningless in a real system, the result clearly implies that, 

if one could hypothetically combine the autocorrelations 

from an infinite number of waveforms from this family in a 

coherent manner, the sidelobes would become nonexistent. 

This result likewise agrees with the lack of autocorrelation 

sidelobes one would expect for a Gaussian PSD. Further, it 

can be deduced from this analytical result that increasing the 

number of unique StoWGe waveforms in the CPI will 

continue to decrease the resulting sidelobes after pulse 

compression and Doppler processing, such as has been 

observed when random waveforms were optimized 

individually [9-18]. 

Fig. 4. Comparison of sample-mean and analytical versions of the RMS and 
coherent autocorrelation responses of StoWGe waveforms (Gaussian PSD) 

 

Figure 5 then illustrates how the sample-mean PSD (blue 

trace) computed over 3000 StoWGe waveforms relates to the 

analytical expected PSD (orange trace) from (5) and the 

desired Gaussian spectral template u. The sample-mean and 

analytical versions clearly match quite well, though both 

deviate from the template at about 35 dB and encounter a 

floor at 40 dB. This spectral floor was also previously 

observed in [11] and corresponds to the spectral containment 

that can feasibly be achieved due to the (theoretically 

instantaneous) rise/fall-time of the pulse. As demonstrated in 

[25], it may become necessary to modify the transmitter 

architecture for high-power systems in order to “slow down” 

this sharp rise/fall-time in practice if further improvement in 

spectral containment is required. 
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Fig. 5. Comparison of the sample-mean and analytical PSDs with the desired 

Gaussian template  

VI. EXPERIMENTAL RESULTS 

To verify the analytic results above and to assess the 

physical robustness of StoWGe waveforms within a radar 

transmitter, the waveforms from the previous section were 

implemented on hardware in both a loopback configuration 

and in open-air tests.  

A. Loopback Assessment 

For hardware implementation, the 200 MSample/sec 

sample rate baseband waveforms were up-sampled to 10 

GSamples/sec and digitally unconverted to a center 

frequency of 3.55 GHz. The waveforms from the previous 

section were then implemented on a Tektronix AWG70002A 

arbitrary waveform generator (AWG) and passed through a 

class A amplifier followed by an attenuator and a low noise 

amplifier (LNA) to emulate some of the transmitter effects. 

The signals were then captured on a Rhode & Schwarz FSW 

real-time spectrum analyzer (RSA) that is serving as the 

receiver. 

 Figure 6 shows the RMS power spectrum of the 3000 

waveforms implemented in loopback along with the expected 

PSD spectrum computed via (5) and the desired spectral 

template. Figure 7 likewise depicts the RMS autocorrelation 

and the coherently integrated (summed) autocorrelation of 

the same experimentally implemented waveforms against 

their analytically calculated counterparts computed via (8) 

and (7), respectively. 

In Fig. 6 the effect of the RSA anti-aliasing filter is 

apparent from the steep spectral roll-off beyond about |𝑓| ≤
2.4  in normalized frequency. Otherwise, the experimental 

RMS power spectrum closely matches the analytically 

calculated expected spectrum (just like Fig. 5). Likewise in 

Fig. 7, the experimental RMS autocorrelation is virtually 

identical to its simulated (Fig. 4) and analytically calculated 

counterparts.  

B. Open-Air Measurements 

Finally, the set of StoWGe waveforms was transmitted in 

an open-air scenario using the same generation and recording 

equipment as employed for loopback capture. Using separate 

transmit and receive antennas in a pseudo-monostatic 

configuration on the roof of Nichols Hall on the University of 

Kansas campus, the responses from moving target traversing 

the intersection of 23rd and Iowa Streets in Lawrence, KS 

were obtained. 

 
Fig. 6. Comparison of the experimental and analytical PSDs with the desired 

Gaussian template  

 
Fig. 7. Comparison of the experimental and analytical versions of the RMS 

and coherent autocorrelation responses 

 

Figure 8 shows the measured range profile in which 

several discrete scatterers are visible, including the direct 

path (between transmit and receive antennas), a tree line at 

~150 m, some structures on the KU campus at ~600 m, and 

illuminated intersection of interest. The nominal level of the 

coherently integrated sidelobes can be observed in the 

convolutional tail of the direct path to the left of 0 m to be 

about 55 dB, which agrees with the coherent trace in Fig. 7.  

 
Fig. 8. Open-air measured range profile using 3000 StoWGe waveforms after 

matched filtering and slow-time coherent integration 
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To assess the utility of StoWGe waveforms for moving 

target indication (MTI), a range-Doppler plot was formed 

(Fig. 9) in the vicinity of the intersection at ~1100 m. Due to 

the stationary platform a simple projection-based clutter 

notch was used along with a Hamming window to suppress 

Doppler sidelobes. Various moving vehicles are easily 

visible. Thus the StoWGe formulation represents an easy way 

in which to produce useful and physically realizable random 

FM waveforms.  

 
Fig. 9. Open-air measured range-Doppler response produced using StoWGe 
waveforms 

VII. CONCLUSIONS 

A stochastic formulation to generate families of random 

FM waveforms has been derived according to a desired PSD. 

By optimizing a parameterized structure comprised of basis 

functions and expected phase values (the latter to address 

asymmetric spectra), unique waveforms from a given 

Stochastic Waveform Generation (StoWGe) family can be 

readily obtained from independent sets of Gaussian random 

variables (the terms in x). The performance of these random 

waveforms was evaluated analytically and also 

experimentally in both loopback and open-air testing. 
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