
 

Abstract—This paper seeks to expand the fundamental 

understanding of random pulse repetition interval (PRI) 

staggering radar by formulating a physically meaningful 

“Doppler manifold” signal model that incorporates slow-

time coding and is examined in the context of monostatic, 

multiple-time-around (MTA) scattering, and multiple-input 

multiple-output (MIMO) configurations. In so doing, it is 

found that an intrinsic “range decoherence” effect arises for 

the MTA and MIMO cases, thereby expanding the means 

through which separability can be achieved, albeit with 

rather different degrees of “decoherence amplification”. 

Moreover, a closed-form solution for the average Doppler 

response due to random staggering is derived, yielding 

guidance on the degree necessary to suppress Doppler 

ambiguities. 

Index Terms—Doppler processing, PRI staggering, slow-

time MIMO, waveform diversity, signal modeling 
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I. INTRODUCTION 

While experimentally demonstrating a practical method for 

adaptive clutter cancellation and Doppler processing [1] within 

the context of random PRI staggering [2-7], we came to two 

realizations that led to the present paper. The first stemmed 

from a passage in Principles of Modern Radar [8] regarding 

PRI staggering in general (though in the reference alternatively 

called “pulse-to-pulse PRF staggering”), which states on page 

635: 

“One disadvantage is that the slow-time data sequence 

in a given range bin is now nonuniformly sampled in 

slow time, making it more difficult to apply Doppler 

filtering to the data and greatly complicating analysis. 

Another is that range-ambiguous mainlobe clutter, if 

any, can cause large pulse-to-pulse amplitude changes 

as the PRF varies, since the range of the second-time-

around clutter that folds into each range cell will 

change as the PRF changes. Consequently, pulse-to-

pulse PRF stagger is generally used only in low PRF 

modes in which no range ambiguities are expected.” 

Or simply put, PRI staggering greatly increases signal model 

complexity, making analysis and processing more difficult. 

Curiosity aroused, we wished to have a deeper understanding 

of the mechanisms behind these phenomena, with the hope of 

establishing a physically meaningful signal model so that 

future work could potentially address these effects via 

emerging waveform-diverse capabilities [9] or even exploit 

them for greater design freedom. As a quick aside for the sake 

of clarity, note that we are specifically considering pulse-to-

pulse staggering within a given coherent processing interval 

(CPI), as opposed to dwell-to-dwell (or CPI-to-CPI) staggering 

for which the Chinese Remainder Theorem or Coincidence 

Algorithm are commonly employed [8,10-12]. 

The second realization was that slow-time MIMO coding 

[13-16] (itself a generalization of Doppler-division multiple-

access (DDMA) [17,18]) has a connection to PRI staggering. 

This linkage may possibly be known to some, but we were 

unable to find where it has previously been discussed in the 

literature. Indeed, from a phase perspective we show that the 

combination of slow-time coding (STC) and PRI staggering 

ultimately leads to the general notion of a “Doppler manifold”, 

conceptually the same as the more well-known antenna array 

manifold [19], albeit with phase now dependent on Doppler 

frequency. This arrangement represents a “complexification” 

of the receive processing model that we shall refer to as 

Processing of Diversified Doppler, or PDiD for short, which 

permits deeper understanding of random PRI staggering and is 

extensible to MTA and/or MIMO operating modes. 
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The following rather extensive section examines the PDiD 

framework for random staggering in three stages. First the 

Doppler manifold notion is developed for a single emitter (i.e. 

no MTA or MIMO) to establish the fundamental model 

structure. This structure is then separately extended into MTA 

and MIMO scenarios, with a focus on the phenomenological 

characteristics of each, ultimately leading to general 

representations that encompass the range “misalignment” (our 

term) referred to above in [8]. This representation permits 

sequential realignment according to desired MTA/MIMO 

components. While not examined here, the MTA and MIMO 

models are also readily compatible to realize a joint framework 

having even greater complexity. Due to the extensive nature of 

this analysis, Appendix A provides a handy reference for the 

many variables. 

Given these respective models, the parameterization trade-

space is then investigated to discern the implications of the 

degree of random staggering. In so doing, analytical Doppler 

performance first derived in [2] and subsequently upper/lower 

bounded in [6] is here generalized to obtain a closed-form 

solution to average Doppler response for random staggering1 

based on the number of pulses in the CPI and limits on a 

symmetric uniform distribution. Evaluation of this average 

response suggests nominal values for these limits (an 

“upward” design pressure) to achieve acceptable suppression 

of Doppler ambiguities. Conversely, a “downward” design 

pressure on staggering is observed when MTA or MIMO is 

incorporated. With that said, it is also shown that far less 

staggering is required if separability via “range decoherence” 

is the goal (a concept developed in Sects. II.B and II.C for 

MTA and MIMO, respectively). It is likewise shown in Sect. 

III.B.2 that a “decoherence amplification” effect arises 

(especially for MIMO) and must also be considered.  

Finally, a salient aspect of this paper involves addressing 

the distinction between that which can be precisely modeled 

and that which cannot. The latter is generally referred to as 

model discrepancy/inadequacy or structural uncertainty (e.g. 

[20,21]) and exists within the larger realm of uncertainty 

quantification in applied mathematics [22]. Due to the very 

high dynamic range over which radar operates, such effects 

become particularly important when seeking to develop 

advanced waveform-diverse modes and associated receive 

processing because these imperfections lead to multiplicative 

errors (i.e. not just additive) that can greatly hinder sensitivity. 

Examples include discretization effects (i.e. straddling), 

transmitter distortion, and imperfect calibration, all of which 

can be managed through proper system design, but not 

eliminated. Accounting for these physically meaningful effects 

in signal modeling has facilitated the translation of multiple 

advanced signal processing methods from theory into 

experimental demonstration (e.g. [1,23-28]), and are addressed 

where appropriate here as well. 

 

1 It was claimed in [2] that a closed-form solution in this context is impossible 

but is realized here by reformulating the analytical problem to be symmetric. 

II. DIVERSIFIED DOPPLER RADAR SIGNAL MODEL 

We first describe a fundamental diversified Doppler signal 

model for monostatic operation that subsumes both PRI 

staggering and slow-time coding (STC). Based on this model, 

general processes of in-phase/quadrature (I/Q) sampling, pulse 

compression, and frequency discretization for Doppler 

processing are incorporated, while remaining mindful of 

physical phenomenology and straddling effects. This model is 

subsequently extended to incorporate MTA scattering and 

slow-time MIMO, examining the implications of each within 

the diversified Doppler context. 

A. Monostatic Diversified Doppler at Low PRF 

Consider a single pulse-Doppler radar transmitting M 

pulses in a dwell, where the mth PRI Tm for m = 1, 2, …, M is 

allowed to vary (or “stagger”) on a pulse-to-pulse basis and the 

shortest PRI, denoted Tmin = min{Tm}, is long enough that 

multiple-time-around (MTA) scattering – also known as 

“range folded” scattering – can be ignored (for now). Each 

pulse is modulated by the same waveform s(t), which has fixed 

pulse duration τ and occupies 3-dB bandwidth B centered at 

carrier frequency fc after up-conversion (we assume fractional 

bandwidth (B / fc) remains in the narrowband regime [9,29]). 

The mth pulse is also modulated by constant phase 

m  −    via STC [13-18]. The scattering produced by 

this transmit arrangement and subsequently captured at the 

radar receiver (subsuming any beamforming) can for the mth 

pulse be expressed as  
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for PRI interval [0, ]mt T . Here x(t; fD) represents the 

illuminated range profile of arbitrary scattering having 

Doppler frequency fD = 2v/λ in Hz (for radial velocity v and 

wavelength λ),  

 D2
D( ; ) ( ) for [0, ]

j f ts t f s t e t =            (2)                                       

is the fast-time Doppler-shifted version of the transmitted 

waveform (ignoring relativistic effects), the operation   

denotes convolution, and n(m,t) is thermal noise. The latter is 

generally represented as white Gaussian with zero-mean and 

variance (noise power) 2
n .  The rect[ , ]mT  term in (1) has a 

unity value between the end of the pulse (at τ) and the end of 

the mth PRI (when the next pulse would begin transmission) 

and zero otherwise, thereby representing the observation 

interval as delimited by the transmit-receive (T-R) switch used 

in most pulsed radars.  The value Tacc(m) in the exponent of (1) 

is the accumulated slow-time at the beginning of the mth PRI, 

which is 
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for m = 1, 2, …, M, with initial condition T0 = 0 and thus Tacc(1) 

= 0 for the first pulse. 

For diverse PRIs, it is useful to express the average PRI 

avg

1

1 M

m

m

T T
M =

=                               (4) 

so that the mth PRI for m = 1, 2, …, M (i.e. not for m = 0) can 

be defined as 

avgm mT T T= +  .                           (5)                                                             

Thus T0 =  T0 = 0 and all other Tm are independently drawn 

from some fixed interval [−, +]. Based on (4) and (5), clearly 

1( ) 0M
m mT=  =  and the temporal extent of the CPI remains 

fixed regardless of the staggering sequence for a given Tavg. Per 

(5), it is also useful to express each PRI for m = 1, 2, …, M in 

terms of the normalized value 

avg

1m
m m

T

T
 = = +  ,                        (6) 

where avg/m mT T =   (and 0 0 0 =  = ). Therefore 

,m  −    +  for avg/T =  being the normalized stagger 

limit in percentage form (discussed further in Sect. III).  

The accumulated time in (3), for 2m  , can then also be 

written as the normalized value 
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where acc(1) = acc(1) =  0 = 0 for the first pulse and acc(m) 

represents the normalized deviation from a uniform PRI 

accumulated over the (m − 1) previous PRIs. Thus the constant 

CPI length also means 1 acc( ) [ ( ) ] 0M
m m MM  =  =  +  =  

via (6) and (7); i.e. staggering deviation is conserved for fixed 

CPI extent. 

Using (4), normalized Doppler (nD) frequency can 

likewise be expressed as 

nD D avgf f T=                                (8) 

so that part of the exponential in (1) can now be rewritten as 

( ) acc
D acc D avg nD acc
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in which the acc( )m  term serves as a linear “Doppler-to-phase 

slope” in the exponential. 

We can thus pose (1) via normalized values from (9) as 
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  (10)                  

to facilitate construction of the M ×1 normalized Doppler 

steering vector 
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with  denoting Hadamard product. Using the 

decomposition acc acc( ) ( 1) ( )m m m = − +   from (7), the 

component vectors in (11) can be expressed as the usual 

Vandermonde form 
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having linear phase progression due to uniform PRI, and a 

phase deviation vector 
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   (13)                  

where acc acc acc[0 (2) ( )]TM =  Δε  captures the phase 

slope deflections caused by staggering and 1 2[ ]T
M  =θ  

collects the slow-time phase coding. 

Now consider a high-level perspective on what the above 

structure means. In the same way that an array manifold [19] 

is parameterized by the physical attributes/locations of the 

elements in a phased array while being functionally dependent 

on spatial angle, we can view (11) as a “Doppler manifold” 

parameterized by the set of Tm and m values and functionally 

dependent on Doppler frequency. Consequently, we can think 

of deviations relative to the uniform PRI model of (12) as 

applying different “affine Doppler transformations” based on 

the combination of i) STC via m that redefines steering vector 

structure for zero-Doppler, where clutter generally resides, and 

ii) Doppler-to-phase slope deflections via acc( ),m  which 

can extend unambiguous Doppler and/or introduce 

decoherence of MTA/MIMO components (described in Sect. 

III.B). In other words, this two-fold manner of diversification 

expands the ways in which different responses can be 

separated in the Doppler domain. 

When no staggering occurs, Tm = Tavg , each εm = 1, and 

εacc(m) = 0 for all m, so (13) becomes 

 1 2
nD acc( ; 0, ) M

T
j j j

f e e e
   = =  d Δε θ    (14)                                  

and (11) reverts to the slow-time coded, uniform PRI steering 

vector 
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This form, which simplifies to (12) when 1 0,M = = =

changes the zero-Doppler response within the Doppler 

manifold, yet retains the unambiguous Doppler extent of (12). 

Specifically, without PRI staggering any value of |fnD| > 0.5 is 

aliased back into the [−0.5, +0.5] unambiguous normalized 

Doppler interval, the limits of which correspond to the 

unnormalized interval [−PRF/2, +PRF/2], for PRF = 1/Tavg in 

the uniform case. 

It is well known (see [8] Chap. 17) that PRI staggering 

extends the [−0.5, +0.5] unambiguous normalized Doppler 

space, which can be expressed as fnD  ±0.5β for 

  avg 1 2LCM , , , MT f f f =  ,            (16)                                              

with LCM{•} denoting the least common multiple of the 

arguments and fm = 1/Tm . For uniform PRI, the value of (16) is 

β = Tavg (1/Tavg) = 1, while PRI staggering yields β > 1. Of 

course, the trade-off for expanding unambiguous Doppler in 

this manner, unlike the attendant reduction in unambiguous 

range otherwise obtained for uniform PRI, is a tendency 

toward a flattened Doppler sidelobe pedestal (later illustrated 

in Figs. 10-14). One can view this trade-off as a “conservation 

of ambiguity” [9] in which a flatter sidelobe floor inversely 

proportional to M is realized in exchange for avoiding a 

repeated mainlobe. Moreover, while (16) suggests an “all or 

nothing” outcome for Doppler ambiguities, we shall see that 

the reduction of ambiguity peaks is really more a gradual effect 

until a nominal degree of staggering is achieved (e.g. consider 

the LCM produced by small, yet irrational, stagger deviations). 

Pulse compression can be performed on the received signal 

model of (10) to obtain 
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where h(t) is a matched/mismatched filter for waveform s(t) 

[9,30], with D D( ; ) ( ) ( ; )r t f h t s t f=   the subsequent filter 

response (including any fast-time Doppler mismatch). 

Consequently, D D D( ; ) ( ; ) ( ; )x t f r t f x t f=   is a version of the 

illuminated scattering that is shaped by pulse compression, 

realizing coherent integration gain according to the 

waveform’s time-bandwidth product (τB) when fD is 

sufficiently small and otherwise accounting for mismatch loss 

according to the waveform’s Doppler tolerance.  

The use of   in (17) is due to pulse eclipsing effects [31] 

at the edges of the observation interval arising from the 

rect[ , ]mT  term in (1) and (10) caused by T-R switching. Pulse 

eclipsing yields a partial matched/mismatched filter response 

via D D( ) ( ; ) ( ; )h t s t f x t f  , where D( ; )s t f  is a truncated 

version of the waveform in (2) depending on proximity to the 

edges of the observation interval. Thus, the degree of pulse 

compression gain and associated sidelobe structure change 

near the edges of the observation interval. While this 

nonstationary (yet deterministic) range effect is generally not 

a major concern as long as the radar duty cycle is modest, it 

adds another complicating factor to MTA/MIMO scattering, 

particulary in the context of PRI staggering. 

Since radar pulses have finite time support, it is technically 

not possible to perform Nyquist sampling since bandlimiting 

is not achieved, though a well-designed RF system can realize 

good enough spectral containment that the effect is negligible 

if sufficient over-sampling relative to 3-dB bandwidth is 

employed (i.e. capture spectral roll-off). A somewhat related 

effect is range straddling [32,33], which introduces error 

because physical scattering is a continuum, meaning there is 

an inherent limit to the fidelity of any discretized receive 

model. Of course, fidelity is still improved through greater 

over-sampling, albeit to the degree permitted by throughput 

limits on signal dimensionality and computational cost. 

Bearing this fidelity versus dimensionality trade-space in 

mind, receive I/Q sampling can be performed in which the 

discretized responses from M pulses at the th  range sample 

can collectively be written as 

 D
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( ) ( ) ,

f

x f f= +
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               (18) 

where the second line involves discretization in Doppler as 

well (thereby incurring further straddling error). Here ( )n  is 

the M ×1 vector of sampled noise after pulse compression, 

while the columns of M × N matrix V contain versions of the 

normalized Doppler steering vector of (11) according to a 

discretization of fnD at some specified granularity and over a 

Doppler interval for which illuminated radial velocities are 

physically meaningful. Finally, the N ×1 vector ( )x  contains 

scattering values (after I/Q sampling and pulse compression) 

for the th  range cell that are discretized across Doppler in the 

same manner as the steering vectors in V.  

For uniform PRI, the Doppler mainlobe peak and first null 

are separated by a normalized Doppler of 1/M, such that N = M 

steering vectors offset by 1/M span the unambiguous interval 

[−0.5, +0.5]. However, like I/Q sampling in time, this 

discretized Doppler representation means that some degree of 

Doppler straddling ([8] Chap. 14) is unavoidable since fD, and 

thus fnD, also lies on a continuum. Consequently, over-

sampling the Doppler spectrum by factor K likewise achieves 

a higher fidelity representation (to reduce Doppler straddling 

at the cost of higher dimensionality), thus realizing N = KM 

and normalized Doppler discretized with a granularity of 

1/N = 1/MK. 

For the same factor K, it follows from (16) that a given 

arrangement of PRI staggering corresponds to the extension 



N = βKM, for β  1 and • the ceiling operation, thereby 

representing the extended unambiguous normalized Doppler 

space at the same granularity. Since (16) could conceivably be 

far higher than is physically meaningful (e.g. via irrational 

staggers), a judicious choice is to replace β with some 

reasonable value βmov that sufficiently captures the radial 

velocities of realistic movers. Thus, the number of columns in 

V becomes N = βmov KM, where β  βmov  1. 

In general, standard Doppler processing (DP) can be 

applied to (18) by performing 

DP DP
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where (•)H denotes the complex-conjugate transpose (or 

Hermitian) operation, the M × N matrix DP ,=W V  and 

DP
ˆ ( )x  is the resulting estimated response across the 

unambiguous Doppler interval of interest, again noting that 

discretized Doppler necessarily introduces some degree of 

straddling error (second line of (19)). An additional signal gain 

of M is obtained relative to noise due to coherent matching of 

like columns in V, with an associated Doppler mainlobe roll-

off due to high correlation between nearby columns in V 

arising from over-sampling (by K) to reduce Doppler 

straddling effects. Thus, a given row or column of the resulting 

N × N Hermitian matrix (VH V) exemplifies the Doppler 

mainlobe and sidelobes for steering vector v(fnD) from (11) for 

the particular staggering arrangement (including the uniform 

case). It was recently experimentally shown in [1] that (19) can 

be readily extended to incorporate clutter cancellation. 

The Doppler response at some normalized frequency fnD,1 

resulting from scattering at fnD,2 is clearly identical to the 

Doppler response one would obtain at difference (fnD,2 −  fnD,1) 

resulting from scattering at fnD = 0. This shift invariance means 

we can generalize the assessment of a given staggering 

sequence by defining the zero-referenced Doppler response 
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in which the STC terms in 1 2
nD( 0) [ ]Mj j j Tf e e e  

= =v  via 

(11) are cancelled and the last line illustrates decomposition 

into uniform and deflection components according to (7). In 

other words, staggering produces a perturbation of the usual 

sum of phase terms, which is explored further in Sect. III. For 

uniform PRIs, the magnitude of (20) becomes a Dirichlet 

kernel (periodic sinc function).  

An integrated Doppler sidelobe level (IDSL) metric can be 

quantified using (20) as 
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where the interval [0, 1/M] in the denominator captures the 

zero-Doppler mainlobe peak out to the first Doppler null (per 

uniform PRI case), the remaining [1/M, 0.5] interval in the 

numerator captures a fixed portion of the Doppler sidelobes, 

and we have invoked symmetry for ±fnD. The fixed-interval 

perspective in (21) provides a direct way to compare the 

sidelobe impact of different staggering arrangements within 

the fundamental unambiguous Doppler interval established by 

a uniform CPI of M pulses.  

Since PRI staggering extends the unambiguous Doppler 

interval through diversification of Doppler manifold phase 

slopes, it is also useful to specify an extended Doppler sidelobe 

level (EDSL) metric over the entire unambiguous normalized 

Doppler interval, which is specific to a particular staggering 

arrangement. This metric can take the form 
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where the sidelobe interval in the numerator of (21) has now 

been extended from 0.5 to 0.5β via (16) and the denominator 

is the same as (21) except for the inclusion of normalization by 

β ( 1) to account for interval extension. As noted before (19), 

it may be more meaningful to set β → βmov in (22) so that only 

radial velocities of realistic movers are included. 

For example, Fig. 1 shows the Doppler response of (20) for 

M = 50 pulses using both uniform PRIs and randomly 

staggered PRIs with 35% = , with the latter depicting the 

maximum and mean values versus Doppler evaluated over 

1000 independent stagger trials. The vertical dashed lines 

indicate different values for , and are also included on the 

uniform PRI plot as reference. Specifically, consider the EDSL 

plot vs.  depicted in Fig. 2, where we have also applied (22) 

to the uniform Doppler response, which obviously repeats. The 

reason for doing so is because Fig. 2 reveals that, for all 

practical purposes, integrated Doppler ambiguity is essentially 

conserved as one extends to higher values of  because the 

maximum, minimum, and mean traces for staggering (over the 

1000 trials) closely follow the EDSL evaluation of the uniform 

response where repetitions of the mainlobe occur.  Of course, 

the benefit of staggering arises from the sidelobe flattening 

observed in Fig. 1, which facilitates improved discrimination 

of movers at higher Doppler. 



 
Fig. 1. Normalized Doppler response for M = 50 pulses with (top) uniform 

PRIs and (bottom) random staggers uniformly distributed within 35%, 

showing the maximum and mean over 1000 independent trials 

 
Fig. 2. Evaluation of EDSL metric from (22) vs.  for M = 50 pulses, 

comparing uniform PRI with the mean, maximum, and minimum EDSL 

values across 1000 independent trials for random staggers within 35% 

B. PDiD Implications for MTA Scattering 

Since it is known that STC can be used to discriminate 

between multiple-time-around (MTA) – or “range folded” – 

scattering [34-37], now consider an extension to the PDiD 

model that accounts for multiple range ambiguities. Denoting 

G as the number of observable range intervals (with G = 1 

simplifying to the previous case), then (G – 1) “fill pulses” ([8] 

Chap. 17) are needed so that each PRI contains scattering from 

all G intervals. For convenience denote the Gth pulse as the 

beginning of the CPI, so that indices m = 1, …, (G – 1) 

correspond to preceding fill pulses, followed by CPI pulse 

indices m = G, …, (M + G – 1). Likewise index the G range 

ambiguities as g = 1, …, G, with g = 1 denoting the first (i.e. 

closest) range interval and g = G the farthest. For reference, 

Fig. 3 illustrates the G = 3 pulse arrangement for uniform PRI, 

where red blocks indicate fill pulses, blue blocks are the M 

pulses in the CPI, and gray regions are observation intervals. 

 
Fig. 3. Pulse arrangement for uniform PRI and G = 3 range ambiguities, 

with fill pulses in red, the M pulses of the CPI in blue, and gray regions 

the observation (or listen) intervals. 

For pulse indices m = G, …, (M + G – 1) in the CPI, and 

noting PRI staggering introduces shuffling of MTA scattering, 

the received model of (10) can be generalized as 
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   (23) 

where the first line is identical to (10), corresponding to the 

first range interval (g = 1), and the summation in the second 

line captures the remaining (G – 1) MTA intervals. Because 

fast-time t (and therefore range) is referenced to the first 

interval for the mth PRI, each subsequent MTA interval 

involves an accumulated time offset to account for it being 

referenced to a previous PRI. The exponential phase 

component for each MTA interval is likewise referenced to a 

prior accumulated time (normalized) and STC value for a 

previous PRI. 

Using the exponential phase terms in (23), we can similarly 

generalize (11)-(13) to define an M ×1 normalized Doppler 

steering vector for each of the g = 1, …, G range intervals as 
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 (24)         

using G G g= −  to simplify notation, with normalized offsets

acc acc accacc, [ ( 1) ( 2) ( )]TG G G G M  =  +  +  +Δε  and coding 

1 2[ ] .T
G G G G M  + + +=θ  For g G=  (so 0G = ), we again 

have acc acc( 1) (1) 0.G  + =  =  As g increases, the elements 

in the corresponding steering vector of (24) shift downward, 

with new terms associated with fill pulses (and their particular 

phase dependence on staggering/STC) inserted at the top. 

Consequently, because each element possesses a distinct STC 

phase and Doppler-to-phase slope, the diversified Doppler 

manifold characterized by each range interval’s steering vector 

is likewise distinct. 

Performing pulse compression on (23) then leads to 
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for D( ; )x t f  once again a version of scattering shaped by the 

illuminated waveform and subsequent pulse compression 

filtering, while 
1

, D D1
( ; ) ( ; )

g

m g m gg
x t f x t T f

−

−=
= +  for g > 1 is 

pulse compressed MTA scattering that is delay-shifted 

differently in each PRI due to staggering. On the last line of 

(25) we have denoted 1( , )m t  as the term corresponding to the 

first interval (subsuming the complete staggering/STC phase 

component), which is identical to that in (17). We have 

likewise denoted the gth MTA interval response (for each 

1g  ) as ,1( , )g m t  since it is organized relative to the 1st 

range interval. Further, the pulse compressed noise has been 

relabeled as 1( , )n m t  for consistency with further development 

below. As discussed in Sect. II.A, pulse eclipsing imposed by 

T-R switching via the rect[ , ]mT  term in (23) necessitates the 

use of   in both lines of (25) and also introduces a blind-range 

dependence on the particular stagger sequence for each MTA 

interval.  

By itself, the 1( , )m t  term in (25) would realize the 

vectorized form in (18) after performing I/Q sampling and 

Doppler discretization because coherent scattering for the first 

interval is already range-aligned across the CPI. In contrast, 

the inherent staggering offsets relative to the 1st range interval 

causes the ,1( , )g m t  components in (25) to not be range-

aligned across the CPI, resulting in decoherence that hinders 

cancellation of MTA clutter (as noted in [8]). 

In principle, however, the responses for the g  2 intervals 

could be “re-cohered” by performing per-PRI range 

realignment on (25) in a manner that compensates for 

accumulated stagger offsets. Specifically, recalling 

avgm mT T T= +   from (5), and henceforth denoting the overall 

response in (25) as 1( , ) ( , )z m t z m t→  for consistency, the mth 

PRI from (25) could alternatively be range realigned according 

to the g = 2 MTA interval via 
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 (26)     

with 2 ( , )m t  now the range-aligned response according to the 

2nd interval and 2 ( , )n m t  the corresponding pulse compressed 

noise after range realignment. Here ,2 ( , )g m t  in the last line 

is comprised of pulse compressed scattering 

,1 D 1 D( ; ) ( ; )m mx t f x t T f−= −   from range interval g = 1 plus 

1

, D 1 D1
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g

m g m m gg
x t f x t T T f

−

− −=
= −  +  for g = 3, …, G, the 

collection of which has been organized relative to the 2nd range 

interval and is therefore decohered. We can generalize (26) for 

range alignment to the thg  MTA interval as 
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where ( , )g m t , like in (26), is coherently aligned to scattering 

avg D( ( 1) ; )x t g T f+ −  and the other (G – 1) intervals denoted as 

, ( , )g g m t  for g g  are not range-aligned. 

Using (25)-(27), we can now leverage (18) to write an 

associated I/Q sampled and Doppler discretized version that is 

range-aligned according to the thg  interval as 
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    (28)                 

where the Doppler-discretized ( )g gV x  term is the same as in 

(18), albeit for the thg  interval and subsuming the avg( 1)g T−  

delay offset, with ( )gn  the collection of M noise samples 

after range realigmnent for the thg  interval. The term 

1[ ( ) ]g g NX V 1  in (28) involves collecting the misaligned 

scattering for the g g  range interval and each discretized 



Doppler across the M PRIs into M × N matrix ( )gX , 

Hadamard multiplying with the corresponding M × N 

discretized Doppler matrix gV  (diversified according to the 

particular staggering/STC), and then multiplying the result by 

the all-one vector 1N1  to sum these incoherent components 

across Doppler. A noteworthy observation from (28) is that 

misaligned scattering from the g g  range intervals would be 

perceived as uncorrelated noise in slow-time, yet still retain the 

spatial dependence of transmit/receive beamforming. 

There are some caveats to this range realignment process. 

Clearly, any realignment by a subsample shift would be 

performed in the frequency domain. There is also the implicit 

assumption that the complete range interval for 
1

1
( , )

g

m gg
z m t T

−

−=
−   in (27) exists across all M PRIs, which 

is not true for portions near the edges due to T/R switching. 

Moreover, fast-time nonstationarity of matched/mismatched 

filter responses near PRI edges due to pulse eclipsing (per Sect. 

II.A) imposes slow-time nonstationarity when range 

realignment is performed, thereby inhibiting fidelity in these 

regions. Taken together, these effects further restrict the 

meaningful extent of MTA range observation intervals due to 

expanded blind ranges, suggesting the need for more detailed 

modeling in these regions to enable development of receive 

processing akin to pulse blanking compensation (e.g. [38]) 

performed on a range-dependent basis for each MTA interval. 

Indeed, [39] discusses various methods of slow-time 

interpolation to contend with this effect specific to synthetic 

aperture radar (SAR). 

Bearing these limitations in mind, we can encapsulate the 

above discussion by defining the operator { }g •  that performs 

range realignment across the M PRIs of (27) such that the 

specific signal structure in (28) is obtained via 

( ) { ( )}g g g= z z                           (29)                                                         

for g g , where g  denotes prior alignment according to 

some other arbitrary range interval. Consequently, (29) 

facilitates sequentially changing between different alignments, 

where one could employ appropriate receive processing at 

each step (e.g. cancelling clutter within the given range 

interval). Indeed, from a moving target indication (MTI) 

standpoint it stands to reason that one could step through each 

of the G intervals performing clutter cancellation, and then 

subsequently repeat the realignment sequence to estimate 

movers in each range interval (within the meaningful range 

extent determined by edge effects). 

Per (28), we also observe that only one Doppler manifold 

can be coherent across the CPI for each particular range 

alignment. It follows that a seemingly straightforward 

assessment of separability of MTA intervals based on different 

values of g, which one might conceivably perform via the inner 

product of steering vectors from (24) as a function of Doppler 

(i.e. nD nD( ) ( )H
g gf fv v  for g g ), is actually not physically 

meaningful in the staggering context because it does not 

account for decoherence from range misalignment (see Sect. 

III.B.2). 

While a relational assessment between Doppler manifolds 

is not physically meaningful, the evaluation in (20)-(22) can 

still be applied within each range interval. Specifically, again 

denoting G G g= − , generalize (20) using (24) and (7) as 
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which could be assessed using (21) or (22). Since each range 

interval has distinct staggering/STC, with ensuing 

misalignment decoherence, it is not yet clear if an analytical 

generalization of (21) or (22) exists that can properly aggregate 

the set of MTA incoherent responses together with the 

integrated sidelobes from the range-aligned interval, thereby 

producing an “MTA total” version of IDSL or EDSL. With 

that said, Sect. IV uses canonical examples to illustrate how 

the degree of staggering drives the amount of relative 

decoherence, which manifests as smearing. 

C. PDiD Implications for MIMO Radar 

Given that STC is well-known to bolster separability for 

MIMO radar [13-18], it stands to reason that staggering may 

provide additional freedom via Doppler diversification. 

Consequently, consider P emitters, each generating a CPI of M 

pulses, where (for simplicity) the first pulse is synchronized 

across the p = 1, …, P emitters while the remaining M – 1 

pulses in each sequence possess independent staggering. We 

shall likewise maintain the same CPI extent across all emitters 

for ease of comparison and to later (in Sect. III) infer aspects 

of staggering limits. Of course, further generalization is 

possible by relaxing this condition. For the pth emitter, ( )ps t  

is the distinct transmitted waveform repeated over the CPI and 

,p m  is the STC phase on the mth pulse, with 

acc, acc, avg( ) ( )/p pm T m T =  the phase-slope deflection and 

acc, ( )pT m  the associated time accumulated prior to the mth 

PRI. Note that MTA responses are not considered here, though 

the two formulations are compatible. 

The PRI stagger sequences are unique across the P emitters, 

thus necessitating receive alignment across the M  PRIs for 

each emitter. We can generalize the mth PRI interval in (10) 

relative to the thp  emitter in this MIMO context as 
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Here D acc, D( ; ) ( ( ); )p p px t f x t T m f= +   for delay offset 

acc, acc, avg acc, avg( ) ( ) ( 1) ( )p p pT m T m m T m T = − − =   is the 

range-aligned scattering by direct extension of (6) and (7), 

while D acc, , D( ; ) ( ( ); )p p p px t f x t T m f= +  for delay offset

acc, , acc, acc, acc, acc,( ) ( ) ( ) ( ) ( )p p p p p pT m T m T m T m T m = − = −  is the 

misaligned scattering for each emitter p p , with ( , )pn m t  

the thp  aligned noise. Note that t = 0 for ( , )py m t  is based on 

the beginning of the mth PRI for a hypothetical uniform case 

that serves as common reference for all emitters. 

The term ( )m t  in (31) generalizes the rect[ , ]mT  term in 

(1), (10), and (23) to account for collective T-R switching 

across all P emitters, isolating the portion of the mth PRI for 

which no pulse transmission is occuring and thus no direct-

path leakage saturates any receivers, assuming negligible 

propagation delay between platforms (but may require 

consideration for some configurations). For now, assume the 

maximum stagger amount is much less than the pulsewidth 

(i.e. ).   Recalling as well that each stagger value ,p mT  is 

drawn from the symmetric uniform distribution [−, +] 

centered on avgT  (i.e. positive/negative deviation is equally 

likely), then it stands to reason that the observation interval 

within the mth PRI occurs after the latest transmitting pulse 

(across the P emitters) and before the earliest transmitting 

pulse within the (m+1)th PRI across the P emitters. 

Consequently, we can define 
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in which floor operation •    applied to the average of time-

offset rect[ ]•  functions is unity only when all P observation 

windows coincide, and zero otherwise. The impact of this 

arrangement is discussed in Sect. III.  

If the    assumption does not hold, then the PRI 

intervals for different emitters become intermingled. This 

situation would require a given receiver to possess sufficient 

isolation between the other transmitters (to prevent complete 

loss of the range observation interval) and/or compensation 

methods to address eclipsing such as discussed for MTA. 

Similar to (24), we can likewise generalize (11)-(13) to 

define an M ×1 normalized Doppler steering vector for each 

emitter as 
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which has distinct STC sequence p and phase-slope deflection 

sequence acc, pΔε . Performing pulse compression on (31), 

which means applying thp  matched/mismatched filter ( )ph t  

and recalling eclipsing effects near observation window edges, 

then yields 
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Here the D( ; )px t f  term is the range-aligned scattering 

D( ; )px t f  shaped by response D D( ; ) ( ) ( ; )p p pr t f h t s t f=   from 

the thp  waveform and matched/mismatched filter that realizes 

a coherent integration gain of  B just like (17) when fD is 

sufficiently small, and otherwise accounting for Doppler 

mismatch loss. In contrast, the term , D( ; )p p t f  is the 

scattering , D( ; )p px t f  induced by the pth emitter (for p p ) 

and range misaligned relative to the thp  staggering sequence, 

which is subsequently shaped by cross-correlation 

, D D( ; ) ( ) ( ; )p p p pc t f h t s t f=  between the pth waveform and 

thp  pulse compression filter. If the same waveform is 

employed across all P emitters, then the simplification 

, D D( ; ) ( ; )p p pc t f r t f=  occurs. Regardless, due to range 

misalignment, all p p  terms are incoherent across the CPI. 

Like the MTA framework (Sect. II.B), the final line in (34) 

therefore consists of coherent scattering for the thp  emitter in 

( , )p m t  after subsuming the staggering/STC phase 

component, the similar collection of incoherent responses 



, ( , )p p m t  for the other (P − 1) emitters, and pulse 

compressed noise ( , )pn m t  for the given range alignment. 

Using (34) we again leverage (18) to write an I/Q sampled 

and Doppler discretized version that is range-aligned for the 

thp  emitter as 

D

D

D nD

, D nD

1

, 1

1

( ) ( ; ) ( )

[ ( ; ) ( )] ( )

( ) ( ) ( ) .

p p p

f

P

p p p p

p f
p p

P

p p p p p N p

p
p p

x f f

f f
=




=


=

+ +

  + + 



 



z v

α v n

V x Α V 1 n

   (35) 

Here pV  is the M × N discretized Doppler matrix for the 

staggering/STC sequences of the thp  emitter, with 

corresponding N × 1 vector ( )px  collecting the values 

D( ; )px f  across discretized Doppler. The M × 1 vector 

, D( ; )p p fα  collects discretized versions of the 

incoherent/cross-correlated values , D( ; )p p t f  over the M 

PRIs, with further collection across the N discretized Doppler 

values yielding M × N incoherent scattering matrix , ( )p pΑ . 

The remaining combination with discretized Doppler matrix 

pV  and subsequent summation via multiplication by the 1N1  

vector follow the same manner as (28). Also like the MTA 

model, misaligned scattering due to the p p  emitters in (35) 

would similarly be perceived as uncorrelated noise in slow-

time, though the spatial dependence of each component would 

rely on the location/orientiation of the corresponding 

transmit/receive antennas and scattering. 

An important distinction between the MTA model in (28) 

and MIMO model in (35) is that the latter may involve distinct 

waveforms across the P emitters, yielding a combination of 

range-focused responses via D( ; )pr t f  that achieve coherent 

integration gain and unfocused responses via , D( ; )p pc t f  that 

do not experience pulse compression gain. In other words, the 

clutter generated by the other (P − 1) emitters is lessened by 

 B relative to what it would be if range-focused. Of course, 

that does not mean MIMO clutter components are negligible 

since common spectral support dictates their achievable cross-

correlation separability be on the order of 1/( B) [9], and 

because clutter is pervasive and often relatively high power. 

Similar to the MTA arrangement, we could conceivably 

perform range realignment from the stagger sequence of 

emitter p  to that of emitter p p  in the same manner as (29). 

And since , D( ; )p pc t f  is consistent across the CPI, the fact that 

no pulse compression focusing has been achieved does not 

prevent clutter cancellation from being performed (e.g. [40]). 

Consequently, a sequential process of range realignment and 

clutter cancellation for each of the p responses could in 

principle be performed in the same way as Sect. II.B for 

distinct range ambiguities, still being mindful of range interval 

edge effects. 

Finally, we can again generalize (20), albeit now using 

(33), to obtain 
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    (36)                                       

which could be assessed using (21) or (22). It should be noted 

that, like the MTA case, relational assessment between 

Doppler manifolds for different emitters (e.g. 

nD nD( ) ( )H
p pf fv v for p p ) is not physically meaningful 

when staggering is involved because doing so does not account 

for decoherence. Sect. IV uses canonical examples to illustrate 

the relationship between staggering and the resulting MIMO 

decoherence, which like MTA manifests as smearing. 

III. PARAMETERIZATION CONSIDERATIONS FOR PDID 

Beyond the ability to make different range ambiguities and 

MIMO emitters more or less separable on receive, the choice 

of STC is essentially arbitrary from a feasibility perspective. 

Staggering, on the other hand, introduces “bookend” effects in 

which performance trade-offs can arise if the degree of 

staggering is either too great or too small. Within this PDiD 

framework we consider some of these limits. 

A. Practical Upper Limits on Staggering 

Per (5), random values of Tm for m > 0 are independently 

drawn from the interval [−, +]. Therefore, the shortest 

possible staggered PRI of min avgT T = −  establishes the 

smallest observable range swath of min swath min( )/2R c T = −  

meters, for speed of light c and pulsewidth τ. The longest 

possible staggered PRI of max avgT T = +  contains the largest 

range swath of max swath max min( )/2 2 /2R c T R c = − = +  

meters, though the excess portion is extraneous because 

receive data is not available across all PRIs. Thus, at the far 

end of the range interval a portion amounting to  

loss avg min( )/2 /2R c T T c= − =                     (37) 

is essentially lost relative to a uniform PRI, though missing 

pulse or interpolation receive processing methods [38,39] 

could conceivably be employed at these ranges. 

Put another way, staggering realizes a reduction of

min avg avg[1 ( )/( )] /( ) /(1 )T T T     − − − = − = −  percent in 

observable range swath relative to the average observable 

swath of avg swath avg( )/2R c T = −  associated with uniform PRI, 

where avg/T =  is the normalized stagger limit and 

avg/T =  is the duty cycle for uniform PRI. Alternatively, we 



could say that staggering within   reduces the meaningful 

PRI interval (i.e. now inclusive of pulsewidth) by  

min avg

avg avg

% range loss = [1 / ]

[1 ( )/ ]  percent,

T T

T T 

−

= − − =
     (38) 

providing a convenient direct relationship. 

A.1. Staggering Upper Limits for MTA 

Based on the MTA generalization in Sect. II.B, we can 

further extend this consideration of observable range swath. 

Figures 4 and 5 illustrate examples of two extreme cases of 

staggering, with all other possibilities lying between these 

extremes for a fixed   limit. Specifically, for G = 3 range 

ambiguity intervals, M = 7 pulses in the CPI, and 9 overall 

pulses (so G − 1 = 2 fill pulses), one example has the 

maximum stagger avgT +  repeated until the minimum 

stagger avgT −  must then be repeated so the sum of staggers 

remains zero (i.e. to maintain constant CPI extent). The other 

example involves the opposite (i.e. repeated minimum 

followed by necessary repeated maximum). 

 
Fig. 4. Max-then-min staggering arrangement for G = 3 range 

ambiguities, with fill pulses in red, CPI pulses in blue, gray regions the 

observation intervals for hypothetical uniform PRIs, yellow diagonals 

help visualize propagation, and the dashed black boxes outlining the 

actual observation intervals due to staggering, with green regions 

depicting the resulting range loss intervals due to T-R switching. Note that 

simple extension of the CPI could capture the lost range intervals at the 

very end since another pulse is not transmitted. 

 
Fig. 5. Min-then-max staggering arrangement for G = 3 range 

ambiguities, with fill pulses in red, CPI pulses in blue, gray regions the 

observation intervals for hypothetical uniform PRIs, yellow diagonals 

help visualize propagation, and the dashed black boxes outlining the 

actual observation intervals due to staggering, with green regions 

depicting the resulting range loss intervals due to T-R switching. 

Here red blocks denote fill pulses, blue blocks indicate 

pulses in the CPI, gray boxes indicate what would be the extent 

of a uniform PRI relative to each pulse, and the yellow 

diagonals help visualize the propagation of each pulse in time. 

The dashed black boxes outline the resulting observation 

interval for each PRI, noting that the T-R switching operation 

only corresponds to the g = 1 interval (i.e. pulses depicted for 

g = 2 and 3 are provided to show relative time offsets). The fill 

pulses here employ a uniform PRI so staggering is only 

performed during the CPI to facilitate direct comparisons 

(though this need not be the case in practice). The ensuing 

green regions show the portion(s) of each PRI that is/are lost 

due to T-R switching. While it is conceivable that 

simultaneous transmit and receive (STAR) operation (e.g. 

[41,42]) could alleviate this effect, doing so involves other 

technical hurdles, so it is instructive to consider the impact 

when STAR is not available. 

We can make some general inferences from these extreme 

MTA examples. The first is that range interval g = 1 realizes 

observable range swath loss loss, 1 avg min( )/2 /2,gR c T T c= = − =  

which is precisely the same as (37) and is likewise the same 

for both examples. For the g = 2 and 3 range intervals in both 

figures we see the impact of the “turn over” point in the middle 

where the maximum/minimum stagger changes to the 

opposite. Specifically, g = 2 in both cases experiences a 2 loss 

at the far end of this range interval and a  loss at the near end. 

Likewise, g = 3 experiences a 3 loss at the far end and a 2 

loss at the near end. 

We can generalize these observations, while also 

converting into range, by stating the worst-case loss of 

far-loss, ( / 2)gR c g=                            (39) 

at the far end of the gth range swath, and the worst-case loss of 

near-loss, ( / 2)( 1)gR c g = −                        (40) 

at the near end of the gth range swath. Thus the total worst-

case loss for the gth range swath is 

total-loss, ( / 2)(2 1)gR c g = − .                    (41) 

In other words, staggering produces an increase in the footprint 

of blind ranges due to T-R switching, when imposing the 

condition that all PRIs must be available for slow-time 

processing. Note that oscillating between maximum and 

minimum staggers does not impact these bounds and there is 

no dependence on the number of pulses as long as 2M g . 

Consequently, these range swath losses to the observation 

intervals may be acceptable if  is sufficiently modest. For 

instance, converting the collective worst-case time offsets to 

normalized values via division by avgT  realizes the losses in 

percentage form, where the far, near, and total bounds then 

become g  , ( 1)g − , and (2 1)g −  percent, respectively, 

for avg/T = . And again, missing pulse or interpolation 

methods [38,39] could conceivably be used to compensate. 

A.2. Staggering Upper Limits for MIMO 

To assess upper staggering limits for MIMO we employ the 

same extreme examples considered for MTA. Figure 6 shows 

stagger arrangements for P = 3 different emitters, two of which 

follow the max-to-min (here red pulses) or min-to-max (here 

green pulses) sequences from Figs. 4 and 5, respectively, albeit 

now for a single range ambiguity (g = 1). The other emitter in 

Fig. 6 (blue pulses) has a uniform PRI, which for the 

assessment of range interval loss also establishes a common 

reference for illustration purposes. The receive interval for 

each of these pulse sequences is likewise color-coded as red, 

green, and blue, though with transparent boxes. Consequently, 

when all three receive intervals coincide the color is gray, and 

further identified with the dashed black box, to denote the 

observation intervals in which there is no direct-path leakage 

      

            
    

    

    

 

    

          

   

            
    

    

    
      

 

    

          

   



between platforms (i.e. the coincident observation interval 

determined by (32)). 

 
Fig. 6. MIMO emitters involving uniform (blue), max-then-min (red), and 

min-then-max (green) staggering arrangements, with black dashed boxes 

indicating the available observation intervals free of any direct path 

transmitter leakage, and thereby highlighting the associated range 

interval losses. 

For this M = 9 pulse example the two staggered cases each 

possess four PRIs of extent avgT +  and four PRIs of extent 

avgT − , albeit in opposite order, with the final PRI of extent 

avgT  to preserve the same CPI extent. For M even, the final 

uniform PRI could be omitted while the difference extremes 

would remain the same. We therefore find that the interval 

losses progress as , 3, 5, 7 until reaching the center of the 

CPI. Given these extremes, the range extent of the observation 

interval available across the entire CPI is therefore 

 MIMO-obs avgmax 0, ( ) (2 /2 1) /2,R T M c =  − − −       (42) 

which is the smallest remaining over the sequence of interval 

losses due to T-R switching and could clearly become 

nonexistent. The floor operation in (42) ensures applicability 

for both even and odd M. Normalizing the bracketed portion 

of (42) by avgT  again provides a percentage perspective as 

 observation % max 0, (1 ) (2 /2 1) ,M  = − − −   
  (43) 

where the maximum of (1 )−  percent occurs if all emitters 

have a uniform PRI.  

For instance, for 2 =  percent and duty cycle 10 =  

percent these extreme stagger sequences would reduce the 

observation interval from 90 percent (identical uniform PRIs) 

to 0 percent if M exceeds 45 pulses. However, if 20 =  

percent with the same duty cycle, the observation interval 

reaches 0 percent when M exceeds only 5 pulses. While 

random staggering would clearly lie somewhere between 

uniform staggering and the combination of these extreme 

cases, this prospective loss in observation range implies that 

there is clearly a practical upper limit on ,  not withstanding 

the prospect of STAR [41,42] and/or realizing adequate 

receive isolation. 

B. Practical Lower Limits on Staggering 

While loss of observable range swath can certainly produce 

a downward design pressure on the value of , there is also an 

upward design pressure stemming from i) the desired 

suppression of Doppler ambiguities and/or ii) achieving 

scattering discrimination via decoherence for different MTA 

intervals or MIMO responses. In that regard, using (7) we can 

write the complete slow-time phase of the mth element of the 

steering vector in (11) as 

 nD nD acc nD( ) 2 ( 1) 2 ( )m mf m f m f    = − +  + ,         (44) 

where the first term is the standard Vandermonde form via 

(12), the second term is the Doppler-dependent phase 

deviation from staggering, and the third term is the STC phase 

constant. Because both are linearly dependent on normalized 

Doppler we can formalize a uniform-referenced “Doppler-to-

phase slope” based on the first term as 

nD

nD

2 ( 1)
th slope ( 1)

2

m f
m m

f





−
= = −                  (45) 

and a “slope deflection” based on the second term as 

 acc nD
acc

nD

2 ( )
th slope deflection ( )

2

m f
m m

f

 





= =  .     (46) 

We again find that extreme cases occur when maximum or 

minimum staggers are repeated until the opposite is required 

to preserve constant CPI extent. Specifically, noting phase 

slopes are based on time accumulation from previous PRIs, 

these extreme cases realize m  =   so (46) yields 

 acc( ) ( 1)m m  =  −                             (47) 

via (7) for pulse indices 2, ,m m= , with /2 1m M= +   . 

The remaining 1, ,m m M= +  indices necessarily have 

m  =  (opposite sign) to maintain CPI extent, thereby 

resulting in  

 
acc( ) ( 1) ( )m m m m   =  − − ,                (48) 

with acc( ) 0M =  if M is odd and acc( )M  =   if M is 

even (and the final PRI providing  ). Because 

( 1) ( )m m m−  − , with equality only met when m M=  and 

M is odd, the largest possible deflection is ( 1)m − , which 

can occur at m m=  and only in these extreme cases. In short, 

the inter-dependence of staggering values (due to fixed total 

extent) combined with phase slope deflection dependence on 

stagger accumulation suggests a nominal amount of staggering 

is necessary before prospective benefits are achieved. 

For example, let the uniform PRI result for M = 50 pulses 

in Fig. 7 serve as a baseline, where we observe a “fan plot” 

comprised of the first seven phase slopes (unwrapped) along 

with their phase-wrapped versions, in addition to the 

associated Doppler response. When the phases align, such as 

clearly occurs at integer normalized frequencies, a coherent 

replica of the Doppler mainlobe is produced. 

In contrast, Fig. 8 shows a similar sequence of plots for M 

= 50 pulses with a random instantiation of staggers distributed 

on 30 percent. Some offsets can now be discerned in the 

unwrapped fan plot, which is easier to see for wrapped phase 

because alignment does not occur, yielding a flattened Doppler 

response without significant ambiguities. While 30 percent is 

a significant amount of staggering, if we produce another 

instantiation using 10 percent, the benefit to Doppler 

ambiguity suppression is clearly far less significant. Fig. 9 

illustrates this case in which near-alignment occurs at fnD = 1, 

                             

       

       

       

  

  

  

  

  

                

    

          

  

    

        

                       



with more gradual flattening thereafter at higher Doppler (an 

effect that is considered in more detail shortly). 

 
Fig. 7. Uniform PRIs and M = 50 pulses yield (top) a “fan plot” of first 7 

phase slopes, (middle) wrapped phase for same, and (bottom) resulting 

Doppler response. As expected for uniform PRIs, we see the repeated 

Doppler ambiguity (a black ‘x’ indicates where phases perfectly align). 

 
Fig. 8. Instantiation of random staggers uniformly distributed on  30 

percent and M = 50 pulses yield (top) a “fan plot” of first 7 phase slopes, 

(middle) wrapped phase for same, and (bottom) resulting Doppler 

response. Over this Doppler span the wrapped phase slopes do not 

coalesce to produce significant ambiguities, leading to a flattening of the 

Doppler response. 

 

 
Fig. 9. Instantiation of random staggers uniformly distributed on  10 

percent and M = 50 pulses yield (top) a “fan plot” of first 7 phase slopes, 

(middle) wrapped phase for same, and (bottom) resulting Doppler 

response. With lower slope deflection due to less staggering, higher 

Doppler is needed before flattening becomes noticeable. At fnD = 1 the 

wrapped slopes are close to being phase-aligned. 

 

B.1. Staggering Lower Limits for Doppler Ambiguity 

Given the observations above regarding nominal random 

staggering to suppress Doppler ambiguities, it is instructive to 

consider average behavior. Per (20), (30), or (36), Appendix B 

derives the expected zero-referenced Doppler response for M 

pulses according to   limits on uniformly distributed 

random staggering. The result of 
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(49) 

from (58) is a function of normalized Doppler fnD and is 

invariant to slow-time coding. Figures 10-14 illustrate a few 

different staggering regimes, with   set to 5, 10, 20, 30, and 

40 percent, respectively, for M = 50 pulses. In addition, 200 

independent trials of random staggering were simulated for 

each parameterization to confirm (49) via averaging. Note that, 

aside from a contraction/dilation of Doppler mainlobe/sidelobe 

widths, these results are qualitatively invariant for different 

values of M. 



 
Fig. 10. Zero-referenced Doppler response from (20) for random 

staggering within  5 percent 

 
Fig. 11. Zero-referenced Doppler response from (20) for random 

staggering within  10 percent  

 

 
Fig. 12. Zero-referenced Doppler response from (20) for random 

staggering within  20 percent   

 
Fig. 13. Zero-referenced Doppler response from (20) for random 

staggering within  30 percent   

 



 
Fig. 14. Zero-referenced Doppler response from (20) for random 

staggering within  40 percent   

 

We can draw some general conclusions from Figs. 10-14. 

Increasing the allowed amount of staggering (via  ) clearly 

realizes an expected Doppler response that is progressively 

flatter. Moreover, this flattening approaches ~1/M (converted 

to dB and normalized to the zero-Doppler peak). This result 

stands to reason when one considers the expected inner 

product between two M-length vectors comprised of 

independent, random phase values, since that is the very effect 

being achieved by diversifying Doppler. For M = 50 this value 

is −17 dB. 

Depending on what one deems acceptable for the more 

prominent expected sidelobe near fnD = 1, a reasonable lower 

limit on   may be 30-40 percent since any lower values retain 

a sharper peak at this Doppler. Beyond fnD = 1 the average 

Doppler sidelobes grow flatter as Doppler increases, 

suggesting that lower   could be used if a higher response 

near fnD = 1 can be neglected for a given application so that 

higher Doppler can be perceived without ambiguity. The 

reason for this effect is readily understood when examining the 

phase slope behavior (unwrapped and wrapped) in Figs. 7-9, 

in which small slope deflections yield more meaningful phase 

differences at higher Doppler. 

These more or less nominal values of   clearly produce a 

bounding effect in the MTA and MIMO contexts because 

avoiding excessive limitations on the available range 

observation window (per Sects. III.A.1 and III.A.2) 

contraindicates the use of large staggers. Put another way, 

staggering for the purpose of expanding the Doppler space 

may not be practical for MTA or MIMO. However, staggering 

for the purpose of separability (via decoherence) is considered 

next. 

 

B.2. Staggering Lower Limits for Decoherence 

To consider the impact of staggering on decoherence for 

the MTA and MIMO cases it is useful to posit a stationary 

impulsive scatterer (IS) at some delay TIS and determine how 

it is affected by relative stagger offsets. Waveform s(t) would 

reflect from this impulsive scatterer and then be match filtered 

on receive, so that the pulse compressed response is simply 

IS IS( ) ( ) ( )x t x T r t T= − , in which IS( )r t T−  is the delay-shifted 

waveform autocorrelation and IS( )x T  in this context subsumes 

the complex scattering and pulse compression gain. 

For uniform PRIs or in the original low-PRF monostatic 

staggering case (with Doppler processing accounting for 

staggering via (11)), the range-domain response 

IS IS( ) ( ) ( )x t x T r t T= −  remains perfectly aligned (i.e. coherent) 

across the M pulses. However, in the MTA/MIMO cases in 

which different range alignments are possible according to 

(27) and (34), decoherence-inducing misalignment is dictated 

by the different points of receive sampling on IS( )r t T−  that 

occur across the CPI, and therefore is dependent on waveform 

bandwidth and (to a lesser extent) structure. 

Specifically, with range resolution inversely proportional 

to bandwidth B, a range misalignment by less than 1/B across 

the CPI implies sampling of different points on the pulse 

compression mainlobe, while greater misalignment realizes 

sampling of the sidelobes. To illustrate this effect, Fig. 15 

depicts a collection of magnitude (middle panel) and phase 

(lower panel) responses after matched filtering for a variety of 

different waveforms possessing consistent passband 

bandwidth (top panel) and associated range resolution. The 

key take-away here is that phase is essentially constant across 

the mainlobe, with minor deviation at the edges depending on 

the particular waveform. Outside the mainlobe, however, 

significant phase deviation occurs (likewise in a waveform-

dependent manner).  

 
Fig. 15. Spectral density (top), autocorrelation magnitude (middle) and 

autocorrelation phase (bottom) for τB = 50 waveforms comprising LFM, 

nonlinear FM (NLFM) [43], instantiations of pseudo-random optimized 

(PRO) FM based on Gaussian (exponent = 2) [44] and super-Gaussian 

(exponent = 10) spectral templates [45], and a random polyphase code. 



In other words, if misalignment is less than 1/B, phase 

coherency is essentially preserved (though amplitude variation 

over the mainlobe will play some role as well). When 

misalignment exceeds 1/B the more significant 

magnitude/phase variability over the autocorrelation produces 

a decoherence effect across slow-time. This observation does 

suggest a degree of implicit robustness when performing range 

realignment. Though as we shall see next, this per-PRI view of 

range alignment does not tell the whole story. 

To put this degree of staggering in a meaningful 

perspective, normalize the nominal 1/B time shift by 1/Tavg = 

PRF so that PRF/ 100B    percent. Then note that, for 

most radar systems, typical PRF values are on the order of at 

most 10s of kilohertz (often lower) and typical radar 

bandwidths are at least a few megahertz (often higher). Using 

edge values of PRF = 104 Hz and B = 106 Hz therefore implies 

1   percent is sufficient to realize misalignment-inducing 

decoherence from staggering. 

Now put this nominal staggering in the context of 

normalized accumulated stagger offset 

acc acc accacc, [ ( 1) ( 2) ( )]T
G G G G M  =  +  +  +Δε  for G G g= −  

defined in (24) for MTA. If we alternatively denote this vector 

as acc,G g−Δε  for the gth interval, then the degree of 

decoherence relative to some other thg  interval is obtained by 

examining the values in the vector resulting from 

( )acc, acc, vs.  decoherence spread G g G gg g − −−= Δε Δε ,  (50) 

where each term is the relative range offset for a given PRI due 

to staggering. Since the maximum per-PRI staggering amount 

is   percent, we find that 

 MTA max decoherence spread g g =  −         (51) 

(in percent range) between different ambiguity intervals. In 

other words, there is a “decoherence amplification” when 

intervals are non-adjacent, thereby suggesting an even smaller 

nominal staggering value for those cases. Canonical examples 

of this phenomenon are provided in Sect. IV. 

 Similarly examining acc, pΔε  from (33) for MIMO, the 

analogous result  

( )acc, acc, vs.  decoherence spread p pp p −= Δε Δε      (52) 

is obtained, again with each term in this vector the relative 

range offset for a given PRI due to staggering. Now, however, 

the staggering sequences can be completely independent, and 

therefore their accumulated offsets can become quite different. 

Indeed, if we assign the previous max-then-min and min-then-

max extreme cases to two MIMO emitters, then according to 

(47) the respective center offset values are 

acc( ) /2m M  =      and their difference via (52) is 

2 /2M     , or simply 

 MIMO max decoherence spread M=            (53) 

(in percent range) ignoring the even/odd distinction in number 

of pulses. Clearly MIMO can experience far greater 

decoherence amplification than MTA, suggesting that the 

nominal amount of staggering to realize decoherence is 

considerably lower.  

For instance, Fig. 16 illustrates a Monte Carlo result based 

on 105 independent trials of random staggering instantiations 

for a M = 100 pulse CPI and staggering bound of 0.1 =  

percent (though the response generalizes to arbitrary   due to 

normalization). All CPIs are forced to have the same extent by 

introducing additional random perturbations in an iterative 

manner until the requisite fixed extent is attained (it has been 

verified that the statistical properties are preserved by this 

approach). For the heatmap perspective in Fig. 16 the mth 

column in the image is a histogram of accumulated staggering 

values at the mth PRI, where the left/right endpoints are zero 

due to fixed CPI extent and the offset accumulation has been 

normalized by ( /2) .M   The white diamond outline 

corresponds to the bounding extremes, which are likewise 

normalized. Determining the standard deviation for the center 

histograms, which are all well-fit by a Gaussian distribution, 

reveals that 99 percent of accumulated staggering (i.e. 3 

standard deviations) lie within 21 percent of the bounds that 

exist at ( /2) .M   In other words, it is highly unlikely that 

even a significant fraction of the extreme bounds will be 

realized for completely random staggering (and a pseudo-

random approach could guarantee practical limits). Further 

canonical examples are provided in Sect. IV. 

 
Fig. 16. Monte Carlo histogram of accumulated staggering of each PRI 

for 105 independent trials of random staggering with M = 100 pulses, fixed 

CPI length, and 0.1 =  percent (response generalizes to arbitrary   due 

to normalization) 

 

There are a couple additional considerations arising from 

the above observation of MIMO staggering sensitivity caused 

by decoherence amplification. The first is that range 

realignment from one emitter to another may need to be more 

precise than was previously inferred from Fig. 15 based on per-

PRI phase coherence across the pulse compression mainlobe. 



The other consideration is that eclipsing effects are more 

prevalent for MIMO (per Fig. 6), introducing a nonstationarity 

that realignment alone cannot address, again suggesting a more 

pseudo-random approach whereby MIMO stagger sequences 

are designed based on diversification while tempering 

eclipsing. 

IV. CANONICAL DECOHERENCE EXAMPLES  

Given the inherent complexity of the PDiD arrangement, 

especially within the context of MTA or MIMO, we shall limit 

attention here to canonical examples that help explain the 

phenomenological behavior, leaving more realistic 

representations of scattering environments (and open-air 

measurements thereof) for the sequel, though some is 

illustrated in [1]. Consequently, the following examples show 

the responses from a few simple point scatterers in the absence 

of clutter or noise, with the understanding that the ensuing 

effects directly extend to real scenarios, which can be viewed 

as the superposition of an infinite collection of point scatterers. 

In each case, receive processing is performed using complete 

knowledge of the transmit parameters. 

A. Decoherence Examples for MTA 

To illustrate decoherence in the MTA context, consider 

M = 100 pulses modulated with an LFM waveform having 

τB = 50, and three distinct point scatterers that reside in G = 3 

different range ambiguity intervals for the given PRF, with 

specific parameters in Table I. Scatterers are each scaled to 

produce a unity amplitude at the matched point following pulse 

compression and Doppler processing (when coherent). 

Oversampling is performed in range by a factor of 4 (relative 

to 3-dB bandwidth) and in Doppler by K = 10. 

Table I. Apparent and actual range/Doppler locations of canonical MTA 

point scatterers 

 Scatterer Scatterer Scatterer 

actual range 

ambiguity (g) 
1 2 3 

apparent 

range index 
1600 400 900 

actual range 

index 
1600 2400 4900 

normalized 

Doppler 
+/4 −/2 +/3 

 

It is instructive to first compare behavior between the use 

of STC alone and full PDiD operation. The inclusion or not of 

STC with non-negligible staggering produces a more modest 

difference in behavior, which is illustrated further below. Fig. 

17 depicts these three range-ambiguous intervals for uniform 

PRI with and without STC. The non-STC case (bottom panel) 

clearly shows coherent focusing of all three scatterers, which 

represents standard radar operation in which range ambiguities 

fold over in an indistinguishable manner. The use of STC to 

discriminate MTA [34-37] (top panel) introduces a 

decoherence in slow-time, which translates into a smearing 

across Doppler when not focused to the given range ambiguity 

of interest. Here we are matching to the 1st interval so the 

scatterer at range index 1600 (both apparent and true) is slow-

time focused, while the folded scatterers from the 2nd and 3rd 

intervals (at apparent range indices 400 and 900) are not. 

 
Fig. 17. Canonical example of 3 scatterers in different range ambiguities 

for uniform PRIs, (top) with STC and (bottom) without STC, when 

matching to the 1st range ambiguity 

 

A full PDiD configuration (i.e. with STC) is then employed 

using 5 =  percent for these same three canonical scatters. 

Fig. 18 illustrates the result of coherent matching according to 

the 2nd and 3rd range ambiguities, which entails using the 

appropriate STC for each after performing the necessary range 

alignment. In both of these cases we now observe smearing in 

both Doppler and range, noting that if STC were not included, 

little qualitative difference is observed. Moreover, for the top 

panel the two smeared results reside one range ambiguity away 

from the g = 2 case for which focused alignment and STC is 

being performed, and thus the degree of smearing is 

commensurate for each. In contrast, the bottom panel shows 

focusing according to the g = 3 range ambiguity, resulting in a 

doubling in the amount of range smearing of the scatterer from 

the 1st ambiguity, which agrees with the decoherence 

amplification from (51). 



 
Fig. 18. Canonical example of 3 scatterers in different range ambiguities 

for randomly staggered PRIs with STC after range alignment to the (top) 

2nd and (bottom) 3rd range ambiguities 

 

Finally, a Monte Carlo simulation was performed using 

2000 independent trials of a random stagger sequence for each 

value of  between 0 and 10 percent. Here a solitary point 

scatterer is present in the 2nd range ambiguity and we examine 

the response when focusing according to the 1st ambiguity (i.e. 

the degree of range/Doppler smearing), with and without STC. 

To do so, the standard notions of peak sidelobe level (PSL) and 

integrated sidelobe level (ISL) are modified to encompass both 

delay and Doppler. The former then determines the largest 

peak over the range-folded delay/Doppler span and normalizes 

by the mainlobe peak when coherent/aligned to the 2nd 

ambiguity. The latter computes the ratio of integrated energy 

over the range-folded delay/Doppler sidelobe region to the 

range-folded delay/Doppler mainlobe region (which loses 

coherency as  increases). 

Fig. 19 reveals that, as   increases, the mean PSL trends 

downward and the mean ISL trends upward, indicating 

expanding spread across range/Doppler that is also flattening. 

Specifically, at 0 =  percent, the impact of spreading due to 

STC is evident, while the distinction gets smaller as staggering 

increases. Moreover, for the full PDiD cases (blue traces) the 

mean PSL reduces by roughly 15 dB and the mean ISL grows 

by about 28 dB (the latter resulting from division by a 

progressively shrinking mainlobe response). These trends 

suggest the prospect of enhanced separability over STC alone, 

though further examination in the context of realistic scattering 

is needed to truly quantify the capability.  

 
Fig. 19. Monte Carlo average of modified PSL (top) and ISL (bottom) for 

a solitary range-folded point scatterer as a function of stagger percentage 

to illustrate the degree of range/Doppler smearing 

 

B. Decoherence Examples for MIMO 

To exemplify decoherence in the MIMO context we 

consider P = 2 emitters transmitting M = 100 pulses 

modulated with the same LFM waveform having τB = 50, 

limiting attention to a single range ambiguity (so G = 1). There 

are now two distinct point scatterers, one associated with each 

transmit beam, but otherwise ignoring beamforming effects. 

Scatterers are still scaled to produce a unity amplitude at the 

matched point following pulse compression and Doppler 

processing (when coherent), with specific location details in 

Table II. Oversampling is again a factor of 4 in range (relative 

to 3-dB bandwidth) and K = 10 in Doppler. 

Table II. Range/Doppler locations (when focused) of canonical MIMO 

point scatterers 

 Scatterer Scatterer 

emitter (p) 1 2 

actual range 

index 
1000 500 

normalized 

Doppler 
−/4 +/2 

 

As in the MTA scenarios, we begin with an STC-only 

assessment (so uniform PRIs) to establish a baseline. Fig. 20 

depicts the superimposed responses after pulse compression 

and Doppler processing according to the 1st emitter, with and 

without STC. The non-STC case (bottom panel) again shows 

coherent focusing of both scatterers since no means of 



separability is being employed. As with MTA, the use of STC 

to enable MIMO separability [13-18] (top panel) realizes a 

decoherence in slow-time that translates into smearing across 

Doppler. 

Fig. 21 then depicts the full PDiD configuration (i.e. with 

STC) using 0.5 =  percent, which is notably an order of 

magnitude smaller than in the MTA example due to the higher 

degree of decoherence amplification, per (53) versus (51). 

Despite this lower staggering we observe a range/Doppler 

spread that is qualitatively similar to MTA from Fig. 18 (it was 

found that 0.7 = percent for MIMO would yield almost 

identical spread to the MTA case). Consequently, even small 

staggering can provide meaningful decoherence separability in 

the MIMO context. 

 
Fig. 20. Canonical example of 2 scatterers separately illuminated by 

different MIMO emitters for uniform PRIs, (top) with STC and (bottom) 

without STC 

 

 
Fig. 21. Canonical example of 2 scatterers separately illuminated by 

different MIMO emitters for randomly staggered PRIs and with STC 

after range alignment to the (top) 1st and (bottom) 2nd emitter 

 

Finally, we perform another Monte Carlo simulation using 

2000 independent trials of a random stagger sequence for 

values of   between 0 and 1 percent. Here a solitary point 

scatterer is illuminated by emitter 2 only and we examine the 

degree of range/Doppler smearing when attempting to receive 

process according to the stagger sequence (with and without 

STC) corresponding to emitter 1. The same delay/Doppler 

modification of PSL and ISL are employed as in the MTA 

assessment. 

As in the MTA case, Fig. 22 shows that increasing 

causes the mean PSL to trend downward and the mean ISL to 

trend upward, indicating a clear expansion and flattening of the 

decoherence spread across range/Doppler. In fact, the 0 =  

case here produces exactly the same results as in the MTA plot, 

which makes sense when considering that those evaluations 

simply involve a randomization (or not) of M phase values in 

the form of STC. However, we now see that the degree of 

decoherence, as measured by PSL and ISL, is far more 

sensitive to increasing ,  with nearly the same change in their 

values (now roughly −12 dB and +22 dB, respectively, for full 

PDiD) over only 1 percent as previously occurred over 10 

percent for MTA. The benefit of using both staggering and 

STC is also more pronounced for MIMO. Overall, these trends 

suggest enhanced separability over STC alone, with the 

necessity of further examination using realistic scattering.  



 
Fig. 22. Monte Carlo average of modified PSL (top) and ISL (bottom) for 

a MIMO-defocused solitary point scatterer as a function of stagger 

percentage to illustrate the degree of range/Doppler smearing 

V. CONCLUSIONS 

Based on detailed modeling of PRI staggering, and 

accounting for physically meaningful phenomenology, one 

can conclude that significant “complexification” arises. 

Indeed, doing so introduces a variety of factors involving 

reduction in the range observation interval, decoherence 

effects and requisite range realignment, and eclipsing 

considerations. However, there is also the prospect of 

increased separability and greater design degrees-of-freedom 

that bear consideration as the radar operating environment 

itself becomes more congested and complex. We have shown 

that the expansion of unambiguous Doppler due to random 

staggering can be predicted on average, and also introduced 

the notion of a Doppler manifold that encompasses the phase 

responses collectively induced by staggering and slow-time 

coding.  

The implications to MTA scattering and MIMO 

configurations have likewise been explored, identifying 

meaningful operating regimes and associated trade-offs that 

subsequently arise. While further work is needed to 

experimentally verify these models, our original thesis of 

expanding waveform-diverse capabilities through PRI 

staggering appears to suggest that the PDiD framework does 

indeed hold promise in that regard, with differing degrees of 

separability-enabling decoherence amplification associated 

with the MTA and MIMO modes. 

 

 

VI. APPENDIX A 

Table III. Definitions of indices, variables, and operators 

m  Pulse index 

 Range cell index 

g , g , g , G  Range ambiguity indices (bar denotes 

alignment index) 

p , p , p  MIMO emitter index (bar denotes 

alignment index) 

t Fast-time (seconds) 

M  Number of pulses in a CPI 

K Doppler oversampling factor 

N  Number of quantized Doppler 

frequency points 

G Number of observable range ambiguity 

intervals 

P Number of MIMO emitters 
  Pulse duration (seconds) 
  Duty cycle 

v Radial velocity of a scatterer 

(meters/second) 

 Wavelength (meters) 

B 3-dB waveform bandwidth (hertz) 

fc Carrier frequency (hertz) 

fD Doppler frequency (hertz) 

fnD Normalized Doppler frequency 

2
n  Noise power (dBm) 

Tm mth PRI (seconds) 

Tmin , Tmax Shortest / longest PRI (seconds) 

Tacc(m) Accumulated slow-time at start of mth 

PRI (seconds) 

acc, ( )pT m  Accumulated slow-time at start of mth 

PRI for thp  MIMO emitter (seconds) 

Tavg Average PRI, same as uniform PRI 

(seconds) 

ΔTm mth PRI deviation from uniform 

(seconds) 

acc, ( )pT m  Accumulated slow-time deviation at 

start of mth PRI for thp MIMO emitter 

(seconds) 

acc, , ( )p pT m  Difference in alignment at start of mth 

PRI between thp  and thp  MIMO 

emitters (seconds) 

TIS Time delay of canonical impulse 

scatterer 

m  mth PRI normalized by Tavg 

m  mth normalized PRI deviation from 

uniform 

acc( )m  Normalized accumulated slow-time at 

start of mth PRI 



acc( )m  Normalized accumulated PRI deviation 

at start of mth PRI; also Doppler-to-

phase slope deviation 

accε  Vector that collects acc( )m  terms 

acc,G
ε  Vector that collects 

acc( )G m +  

terms for MTA scattering 

acc, ( )p m  Normalized accumulated PRI deviation 

at start of mth PRI for pth MIMO 

emitter 

acc, pε  Vector that collects 
acc, ( )p m  terms 

for pth MIMO emitter 

m , 
G m


+

 Slow-time coding phase at index m, or 

G m+  for MTA (radians) 

,p m  Slow-time coding phase at index m for 

pth MIMO emitter (radians) 

θ , 
G
θ , pθ  Vector that collects slow-time coding, 

and MTA and MIMO versions thereof 

  Symmetric (positive/negative) bound 

on PRI deviation (seconds) 

  Bound on PRI deviation normalized by 

Tavg (percentage) 

fm Inverse of mth PRI Tm (hertz) 

 Factor by which Doppler space is 

expanded by PRI staggering 

mov Doppler space expansion that captures 

meaningful mover velocities 

Rmin swath Smallest observable range swath due to 

staggering 

Rmax swath Largest range swath due to staggering 

lossR  Amount of range interval lost due to 

staggering, relative to uniform PRI 

( , )y m t  Received scattering from mth pulse 

( , )py m t  Received scattering from mth pulse 

aligned to thp MIMO emitter 

( )s t  Transmit waveform 

D( ; )s t f  Fast-time Doppler-shifted version of 

( )s t  

D( ; )s t f  Truncated transmit waveform due to 

eclipsing 

( )ps t  Transmit waveform for pth emitter 

D( ; )x t f  Doppler-dependent range scattering 

profile 

D( ; )x t f  Doppler-dependent range scattering 

profile shaped by pulse compression 

( )x  Slow-time vector of scattering from 

th  range cell after sampling and pulse 

compression 

DP
ˆ ( )x  Estimated Doppler response for th  

range cell 

, D( ; )m gx t f  Pulse compressed MTA scattering with 

range misalignment across PRIs 

( )gX  M N  matrix of misaligned scattering 

for gth MTA interval 

D( ; )px t f  Pulse compressed MIMO scattering 

with range misalignment across PRIs 

D( ; )px t f  Range aligned scattering for thp  

MIMO emitter 

D( ; )px f  Range aligned scattering after sampling 

shaped by pulse compression for thp  

MIMO emitter 

( )px  Slow-time vector of range aligned 

scattering after sampling shaped by 

pulse compression for thp  MIMO 

emitter 

, D( ; )p p fα  Sampled scattering induced by pth 

MIMO emitter and range misaligned 

relative to thp  emitter’s staggering 

sequence 

, ( )p pΑ  M N  matrix of misaligned scattering 

for thp  MIMO emitter 

IS( )x T  Complex scattering for canonical 

impulse scatterer 

n(m,t) Thermal noise for mth pulse 

( )n  Vector of sampled noise after pulse 

compression at th  range cell 

( , )gn m t  Pulse compressed noise based on thg  

MTA alignment 

( )gn  Slow-time vector of sampled and pulse 

compressed noise based on thg  MTA 

alignment 

( , )pn m t  Noise for thp  MIMO emitter 

alignment 

( , )pn m t  Pulse compressed noise for thp  

MIMO emitter alignment 

( )pn  Slow-time vector of sampled and pulse 

compressed noise based on thp  

MIMO emitter alignment 

( , )z m t  Pulse compressed received signal 

( )z  Slow-time vector of sampled and pulse 

compressed received signal at th  

range cell 

( , )gz m t  Pulse compressed received signal based 

on thg  MTA alignment 

( )gz  Slow-time vector of sampled and pulse 

compressed received signal based on 

thg  MTA alignment 

( , )pz m t  Pulse compressed received signal based 

on thp  MIMO emitter alignment 

( )pz  Slow-time vector of sampled and pulse 

compressed received signal based on 

thp  MIMO emitter alignment 



( , )g m t  Pulse compressed scattering based on 

thg  MTA alignment subsuming 

complete slow-time phase 

, ( , )g g m t  Pulse compressed scattering for thg  

MTA interval, subsuming complete 

slow-time phase, misaligned to thg  

interval 

( , )p m t  Pulse compressed scattering based on 

thp  MIMO emitter alignment 

subsuming complete slow-time phase 

, ( , )p p m t  Pulse compressed scattering for pth 

MIMO emitter, subsuming complete 

slow-time phase, misaligned to thp  

emitter 

( )h t  Pulse compression filter for waveform 

( )s t  

( )ph t  Pulse compression filter for thp  

MIMO emitter 

D( ; )r t f  Doppler-dependent pulse compression 

filter response 

D( ; )pr t f  Doppler-dependent pulse compression 

filter response for thp  MIMO emitter 

, D( ; )p pc t f  Cross-correlation between pth 

waveform and thp  pulse compression 

filter 

IS( )r t T−  Pulse compression response for 

canonical impulse scatterer 

nD( )fv  PDiD slow-time steering vector based 

on normalized Doppler 

nD( )fv  Standard Vandermonde slow-time 

steering vector 

nD acc( ; , )fd Δε θ  Phase deviation slow-time steering 

vector dependent on PRI staggering 

and slow-time coding 

V M N  Doppler-discretized PDiD 

steering vector matrix 

DPW  M N  Doppler Processing filter bank 

nD( )u f  Zero-referenced Doppler response 

rect[ , ]mT  Observation interval selection function 

to account for radar transmit-receive 

(T-R) switch 

( )m t  Generalization of observation interval 

selection accounting for all P MIMO 

emitters  

{ ( )}g g z  Operator denoting range realignment 

from g  to g  MTA interval (applies in 

MIMO context from p  to p ) 

 Hadamard product 

nD( )m f  Complete slow-time phase of mth 

element of steering vector 

 
 

 

VII. APPENDIX B 

Given the zero-referenced Doppler response in (20) and 

using (7), consider 
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that directly generalizes for (30) or (36) as well. Combining 

terms from the summations in the last line, we can rewrite (54) 

as 

nD acc acc

nD acc accnD

1
nD

nD

2

2 [( ) ( ) ( )]
nD 2

1 1

2 [ ( ) ( )]2 ( )

2
1 1

1
22 ( )

2
1 1

1 1
(

1

1
1

)

m
qq m

M M
j f m m m m

m m

M M
j f m mj f m m

m m

M m
j fj f m m

m m

E u f E e
M M

e E e
M

e E e
M

  

  

 
−

=

− − + −

= =

−  −− −

= =

−
− − −

= =

   
   
    

 
 

  
+  

 

+

=

=

=

 

 

 

1
nD

nD
22 ( )

1

m
qq m

M
j fj f m m

m m

e E e
 

−

=
+ − −

= +

 
 

 


(55) 

where the middle line invokes linearity and the bottom line 

separates the second summation into components in which 

m m= , m m , and m m . The new summations in the 

bottom line exponents of (55) come from the definition 
1

acc 1
( )

m

qq
m 

−

=
 =   in (7), with like terms cancelling. 

Because the exponent summations in (55) are comprised of 

independent random stagger offsets, where q  is uniformly 

distributed on [ , ] − + , we can evaluate the remaining 

expectations to obtain 
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for m m  and  
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for m m . Substituting (56) and (57) back into (55) then 

yields 
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by Euler’s identity and collecting repeated terms, with the final 

result of (58) shown in (49). 

With Figs. 10-14 clearly demonstrating that the expectation 

result in (49) matches well to the same mean computed over 

independent random instantiations of staggering, this result 

can serve as a useful analytical tool to evaluate performance 

for different parameterizations. Indeed, we could substitute the 

final line of (58) for |u( f )|2 in the integrated and extended 

Doppler sidelobe level (IDSL and EDSL) metrics of (21) and 

(22) to understand behavior without need of Monte Carlo 

trials. 
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