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Abstract 

 A new approach for spatial direction-of-arrival (DOA) estimation, denoted as Re-Iterative Super-

Resolution (RISR), is developed based upon a recursive implementation of the minimum mean-square 

error (MMSE) framework.  This recursive strategy alternates between updating an MMSE filter bank 

according to the previous receive spatial power distribution and then subsequently applying the new filter 

bank to the received data snapshots to obtain a new estimate of the receive spatial power distribution.  

Benefits of this approach include robustness to coherent sources such as can occur in multipath 

environments, operation with very low sample support to enable “tracking” of sources with rapidly 

changing DOA (e.g. bistatic pulse chasing), intrinsic determination of model order, and robustness to 

array modeling errors by exploiting approximate knowledge of array calibration tolerances.  From an 

implementation perspective RISR belongs to a class of recursive algorithms that includes Interior Point 

methods, the minimum-norm based FoCal Underdetermined System Solver (FOCUSS) algorithm, and the 

Iterative Re-weighted Least Squares (IRLS) algorithm.  However, the structure of RISR also enables the 

natural inclusion of spatial noise covariance information as well as a mechanism to account for array 

modeling errors which are known to induce degradation for existing super-resolution methods.  The 

inclusion of the latter is also found to facilitate an adaptive form of regularization that establishes a 

feasible (given model uncertainties) dynamic range for source estimates.  

 

Keywords 
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I.  INTRODUCTION 

High resolution direction–of–arrival (DOA) estimation is the process of determining the 

individual spatial arrival angles (relative to some reference) of the collection of signals 

concurrently incident upon an antenna array (see [1–4] and references therein).  Major 

applications in which DOA estimation is employed include radar, sonar, and wireless 

communications.  The general problem formulation involves a collection of antenna elements 

upon which the superposition of a set of received signals is incident.  At a given time instant, the 

sampled signal from each of the collection of antenna elements forms a spatial snapshot which is 

to be employed (possibly with other spatial snapshots) to determine the spatial DOA of each of 

the set of incident signals.  However, some of these incident signals may arrive with a spatial 

separation that is too small to enable individual identification by means of the nominal array 

resolution.  To identify sources spaced too closely for the nominal array resolution, numerous 

methods ([4] and references therein) have been developed in an effort to effectively deconstruct 

the superposition of incident signals into its individual components.   

Two of the most well-known methods for DOA estimation are MUSIC [5–6] and 

ESPRIT [7], both of which employ the eigen-decomposition of a sample covariance matrix 

(SCM) formed from a collection of spatial snapshots.  MUSIC exploits the orthogonality 

between a presumed “noise” subspace and a “signal” subspace.  If the number of sources is 

known or estimated a priori (and is less than the number of antenna elements) and if the sources 

are temporally uncorrelated, then the angle estimation accuracy of MUSIC has been shown to 

converge asymptotically to the Cramer-Rao bound as the number of independent snapshots 

increases [6].  For linear arrays, the performance of MUSIC may be enhanced by using forward-

backward averaging [8] and rooting techniques [9] (thus denoted as root-MUSIC).  EPSRIT [7] 



4 

is based on a rotational invariance property of linear arrays and also employs the eigen-

decomposition of a spatial SCM; thus performance is likewise enhanced by using forward-

backward averaging.  Similar performance has been observed for root-MUSIC and ESPRIT. 

When the number of available snapshots is relatively small, such as may occur due to 

non-stationarity when the DOA of some sources change rapidly with time (e.g. due to rapid 

variations of the propagation medium and/or antenna motion, or when performing bistatic radar 

“pulse chasing” [10]) some degradation is observed for these SCM-based methods (relative to 

the case when the sample support is high) because of reduced estimation accuracy of the spatial 

covariance matrix.  A more severe detriment to performance is the occurrence of spatially 

separated sources that possess temporal correlation [11–12], such as may result in multipath 

environments.  It is also well-known that these techniques tend to be rather sensitive to array 

modeling errors [13–16].   

The effects of temporal correlation may be remediated by spatial smoothing [11–12] 

whereby a smaller spatial covariance matrix is formed from overlapping sub-arrays.  Of course, 

by employing spatial smoothing to estimate the SCM, fewer sources can be estimated due to the 

reduction in dimensionality.  Also, even with spatial smoothing to ameliorate the temporal 

correlation effects, SCM-based techniques are still sensitive to array modeling errors which 

negatively impact both DOA estimation performance and model order selection performance. 

A common link among previous approaches such as MUSIC and ESPRIT is the 

requirement to estimate the unknown spatial covariance matrix via a sample covariance matrix, 

which is calculated using the collection of spatial snapshots incident upon the array, and 

subsequently exploit the eigenstructure of the SCM to identify the number and DOA of the 

individual sources.  In contrast, the method developed in this paper requires neither a sample 
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covariance matrix nor eigen-decomposition.  The Re-Iterative Super-Resolution (RISR) 

algorithm is based on a recursive structured implementation of Minimum Mean-Square Error 

(MMSE) estimation that automatically determines the number of sources (i.e. no prior 

knowledge of the number of sources is required), their respective DOAs, and their respective 

magnitudes.  Given spatial covariance information regarding the noise (which is simply the noise 

power if spatially white) and approximate knowledge of the array calibration tolerance (in terms 

of gain and phase), RISR operates by alternating between using the previous spatial power 

distribution to update the estimate of a structured MMSE filter bank and subsequently applying 

the filter bank to update the estimate of the spatial power distribution.  From an implementation 

perspective RISR is related to a class of “recursively re-scaled” algorithms that include Interior 

Point methods [17–18] and the Minimum-Norm/Least-Squares based FOCUSS [19] and IRLS 

[20] methods.  The novelty of RISR lies in a) the natural inclusion of the noise information 

within the estimator by virtue of the MMSE framework, b) a mechanism for non-coherent 

combining of multiple snapshots, and c) a structure to account for array modeling errors given 

approximate knowledge of the calibration tolerance.  It should be noted that the manner of 

MMSE estimation employed by RISR is unrelated to the standard “data covariance” approaches 

that are adaptively scaled versions of the Minimum Variance Distortionless Response (MVDR) 

beamformer (see [21] and [4, pp. 440-447]).  In addition, the RISR methodology is also directly 

applicable to high-resolution frequency estimation. 

The remainder of the paper is organized as follows. Section II formulates the received 

signal model that is employed in Section III to derive the basic RISR structure.  In Section IV 

this basic structure is generalized to accommodate multiple spatial snapshots and in Section V a 

modification to contend with array modeling errors is developed.  Section VI discusses the 
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implementation of RISR.  Finally, Section VII presents simulation results of the performance of 

RISR for various parameterizations and also compares performance with MUSIC, root-MUSIC 

and ESPRIT for various scenarios. 

 

II.  RECEIVED SIGNAL MODEL 

Like the MUSIC algorithm, the formulation of RISR is applicable to any known array 

manifold (the issue of manifold ambiguities [22–23] is not considered here).  Because it is so 

common, and to facilitate comparison with some well-known techniques (namely root-MUSIC 

and ESPRIT), we shall assume that the antenna is a linear array comprised of N equally-spaced 

identical elements that are ideally calibrated (array calibration errors will be addressed in a later 

section).  Consider K signals, originating from sources in the far-field and satisfying the 

narrowband assumption (i.e. the bandwidth – aperture time delay product is 1), that are 

concurrently incident upon the array (with K N ).  Following A/D conversion, at the th  time 

sample the superposition of these signals along with noise can be represented in vector notation 

as the 1N   vector 

1

( ) ( ) ( )
K

k

k

 y r v                                                         (1) 

where ( )v  is an 1N   vector of additive noise (of unknown distribution) and ( )kr  is the thk  

incident signal defined as 

( 1)
( ) ( ) 1 ( ) ( )k k

T
j j N

k k k kx e e x
     

 
r s                              (2) 

with ( )kx  the associated complex amplitude and ( )ks  the spatial steering vector (via the 

presumed known array manifold) corresponding to phase angle k .  Note that the phase angle   
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is functionally dependent on the spatial angle   relative to the array boresight and subsumes the 

physical wavelength  of the incident planewave and the array element spacing d.  With the 

assumptions of narrowband signals impinging on a uniform linear array in the far-field, we shall 

henceforth simply address DOA estimation in terms of phase angle  .   

Based on the received signal ( )y  we wish to determine the direction-of-arrival (DOA) 

in  -space for each of the K incident signals at the th  time sample.  This determination is 

accomplished by approximating the received signal model ( )y with a parameterized version as 

( ) ( ) ( ) ( ) y y Sx v .                                              (3) 

The N M  matrix S , generally with M N , is obtained from the array manifold and defined 

as 

   

     

( 1)

( 1) ( 1) ( 1)

0 ( 1)

1 1 1

1

1

j j M

j N j M N

M

e e

e e

 

 

 

 

 

 



  

   

 
 

  
 
 

S s s s

,                                (4) 

being comprised of steering vectors with equally-spaced phase angles specified over 2  at an 

angular increment of 
2

M


    (in effect, quantizing the phase angle   into M  discrete values).  

Note that larger values of M  produce finer angular quantization, which in turn enable greater 

super-resolution capability (to the degree possible given noise, source correlation effects, and 

array modeling errors).  The 1M   vector ( )x  from (3) therefore contains a complex amplitude 

value associated with each of the M steering vectors in S .  Given sufficiently fine quantization 

of  , a comparison of (1) and (3) indicates that the 1M   vector ( )x  would consist of all zeros 
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except for K  non-zero values corresponding to the K  sources.  Thus the problem of DOA 

estimation is reformulated as the estimation of the parameterized vector ( )x  from which the 

locations of the peaks (in  -space) are determined.  Also, note that by estimating ( )x , the 

source signal amplitudes are obtained as a direct result (unlike MUSIC or ESPRIT where the 

signal powers must be estimated afterwards).  In like manner, the number of peaks in ( )x  

provides an estimate of model order. 

A rather coarse estimate of ( )x  can be obtained by employing a matched filter bank 

strategy in which the steering vector matrix S  is applied as 

MF
ˆ ( ) ( )

( ) ( )

H

H H



 

x S y

S S x S v
                                           (5) 

where  
H

  is the complex-conjugate transpose, or Hermitian, operation.  The matched filter 

bank is also denoted as the conventional beamformer [3–4] as it is effectively an over-specified 

version of a Discrete Fourier Transform (DFT).  It is this matched filter bank estimate that shall 

be employed as initialization for the recursive RISR algorithm. 

 

III.  RE-ITERATIVE SUPER-RESOLUTION 

The RISR algorithm is based on the Minimum Mean-Square Error (MMSE) formulation 

and is motivated by the performance gains recently observed for an adaptive implementation of 

radar pulse compression originally denoted as Reiterative MMSE [24].  Using the received signal 

model defined in (3), RISR determines the N M  adaptive filter bank ( )W  that minimizes the 

MMSE cost function 
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 2

( ) ( ) ( )HJ E x W y .                                                   (6) 

Minimization of (6) yields the well-known MMSE filter structure 

    
1

( ) ( ) ( ) ( ) ( )H HE E


W y y y x .                                       (7) 

Approximating ( )y  with ( )y , we substitute equation (3) into (7).   Assuming the signal and 

noise components are statistically independent then results in 

      
1

( ) ( ) ( ) ( ) ( ) ( ) ( )H H H HE E E


 W S x x S v v S x x .                    (8) 

From (8), the noise covariance matrix is defined as  ( ) ( )HER v v  which simplifies to 

2
vR I , with 2

v  the noise power, if spatially white.  For the signal correlation term 

 ( ) ( )H HES x x S  we make the simplifying assumption that the individual components of ( )x  

are temporally uncorrelated.  This assumption is justified by the fact that the temporal 

correlation, if any, between individual components of ( )x  is generally unknown a priori.  In 

addition, noting that temporal correlation is a measure of statistical similarity over time, the 

RISR formulation essentially operates on each snapshot independently (or at best combines 

power estimates via non-coherent integration) and thus the temporal correlation of sources has 

no meaning as far as the algorithm is concerned.  Note that, while RISR is tolerant to source 

correlation, some performance degradation is still observed as the coherent source scenario can 

be likened to a severe reduction in sample support.  To enforce the assumption of no temporal 

correlation, we shall define the spatial power distribution matrix as  

 ( ) ( ) ( )H
M ME P x x I                                                 (9) 
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where  is the Hadamard product and M MI  is an M M  identity matrix (to enforce the 

assumption that the sources are temporally uncorrelated), with the diagonal elements of ( )P  

comprising the spatial power distribution.   

Substituting the noise covariance matrix and spatial power distribution matrix of (9) into 

(8) yields 

 
1

( ) ( ) ( )H


 W S P S R SP .                                            (10) 

Of course, prior knowledge of ( )P  is generally not available, hence the need to reiterate upon a 

previous estimate.  Denoting the initial estimate of ( )x  from (5) as 0 MF
ˆ ˆ( ) ( )x x , an initial 

estimate of the spatial power distribution is therefore 

0 0 0
ˆ ˆ ˆ( ) ( ) ( )H

M M
   P x x I .                                               (11) 

In general, the previous estimate 1
ˆ ( )iP  is used to determine the new MMSE filter bank 

estimate ˆ ( )iW  as  

 
1

1 1
ˆ ˆ ˆ( ) ( ) ( )H

i i i



  W S P S R SP                                           (12) 

which is subsequently employed to obtain a new MMSE estimate of ( )x  as 

ˆˆ ( ) ( ) ( )H
i ix W y .                                                       (13) 

In the same manner as (11), the thi  spatial power distribution estimate is computed as 

ˆ ˆ ˆ( ) ( ) ( )H
i i i M M

   P x x I .                                               (14) 
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Equations (12), (13), and (14) comprise the thi  recursive stage of the basic form of RISR.  The 

recursion may be halted when 
2

1
ˆ ˆ( ) ( )i i  x x  for   some pre-determined small value or 

after some pre-determined number of stages.  It has been observed anecdotally for linear arrays 

that RISR appears to always reach steady-state within 15 iterations regardless of the number of 

sources or the parameterization of the array and/or RISR.  After the final iteration, the diagonal 

elements of the diagonal matrix ( )iP  are the “RISR spectrum” and provide an estimate of the 

spatial magnitude distribution corresponding to the demarcation of  - space.   

 

IV. NON-COHERENT INTEGRATION 

As derived above, RISR can be applied to a single spatial snapshot.  However, RISR may 

also be generalized to accommodate non-coherent integration of multiple time samples 

(assuming stationarity of the spatial power distribution over the given time interval).  It will be 

shown that this generalization provides significant performance improvement for RISR.  Note 

that this non-coherent integration procedure is applicable to any array geometry. 

To employ non-coherent integration over L  time samples, an aggregate filter bank W  is 

formed which is to be applied to a collection of L  spatial receive snapshots 

 ( ) ( 1) ( 1)L   Y y y y  as  

ˆ HX W Y                                                           (15) 

where  ˆ ˆ ˆ ˆ( ) ( 1) ( 1)L   X x x x  is a M L  matrix comprised of the spatial complex 

amplitude estimates for the L  snapshots.  An aggregate spatial power distribution estimate is 

then determined as 
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1

0

1
ˆ ˆ( ) ( )

L
H

M M
L



 






 
   
  
P x x I .                                     (16) 

For the thi  recursion, the average power estimate 1iP  replaces the estimate 1
ˆ ( )iP  in (12) to 

estimate the aggregate MMSE filter bank iW .  The matched filter bank initialization is 

performed as previously discussed with S  from (4) being applied to the set of L  snapshots.  

Because it subsumes the single snapshot implementation (i.e. 1L  ), it shall henceforth be 

presumed that RISR employs non-coherent integration of L  time samples.   

 

V. ARRAY MODELING ERRORS 

We now consider the effects of modeling errors that will always be present in practice 

due to antenna element location uncertainty, realistic calibration tolerances, mutual coupling 

effects between elements, etc.  Quantization error due to finite precision sampling in amplitude 

and phase may likewise be grouped into this category.  As with non-coherent integration, the 

following formulation is likewise applicable to any array geometry.   

We shall attempt to make as few assumptions about the modeling errors as possible since, 

by definition, they are an unknown quantity.  Specifically, for the sake of mathematical 

tractability, the following assumptions are made: 

1) the distributions of amplitude and phase modeling errors are i.i.d. for each antenna 

element and are each zero-mean and symmetric (thus the modeling errors across 

elements are uncorrelated), and 

2)  the modeling errors, the source signals, and the additive noise are all statistically 

independent. 
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First, the array response accounting for possible modeling errors is defined as 

 ( ) ( ) ( )err y Sx z v                                             (17) 

where  is the Hadamard product and the 1N   vector z incorporates the (unknown) modeling 

errors.  Note that (17) presupposes that the modeling errors are independent of source DOA.  The 

thn  element of z  can be generically modeled as 

 , ,1 expn a n nz j                                                     (18) 

where ,a n  is the random amplitude deviation of arbitrary distribution and ,n  is the random 

phase deviation of arbitrary distribution.  We define the element error variance of nz  from (18) 

as 2
z  (the same for all antenna elements based on assumption 1).  To accommodate the 

modeling errors in the structure of RISR, we shall approximate them as an additional source of 

noise as 

  z( ) ( ) ( ) ( ) ( ) ( )err     y Sx z v Sx v v                           (19) 

where    z 1( ) ( ) N v Sx z 1  is the “noise” induced by modeling errors.  Note that 

according to assumption 1 and the generic model in (18), z ( )v  is likewise zero-mean. 

Using assumptions 1 and 2, it is straightforward to show that in the presence of modeling 

errors the RISR filter bank estimate in (12) becomes 

 
1

1 z 1
ˆ ˆ ˆ( ) ( ) ( )H

m m m



   W S P S R R SP                                   (20) 

where  z z z( ) ( )HER v v  is the “model noise” covariance matrix.  Substituting in the 

presumed model noise from above yields 
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        
    

z 1 1( ) ( )

( ) ( )

HH

N N

H H

E

E

   



R z 1 S x S x z 1

Z S x S x Z

                            (21) 

where  0 1 1, , , N N Ndiag z z z   Z I .  Then using assumption 1 (uncorrelated modeling 

errors) and assumption 2 (source signal and modeling error independence), it can be shown that 

(21) simplifies to 

 2
z ( ) H

z N N R I SP S .                                                (22) 

Given that the presumed model noise covariance is dependent on the source spatial power 

distribution via (22), and taking into account non-coherent integration of multiple snapshots, the 

filter bank update is thus 

  
1

2
1 1 1

H H
i i z N N i i



     W S P S I SP S R SP .                           (23) 

 

VI.  IMPLEMENTATION 

The application of equations (15), (16), and (23) in a recursive manner form the basis of 

the RISR algorithm.  As was discussed in Section V the impact of array modeling error, which 

will always be present in practice, can be accounted for via the 2
z  term in (23).  If the additive 

noise is spatially white, then the noise covariance term 2
vR I  and the model noise covariance 

term  2
z ( ) H

z N N R I SP S  can both be viewed as regularization (or diagonal loading) 

terms.  Specifically, the noise covariance term 2
vR I  is a (fixed) noise-dependent loading 

term and the model noise covariance term  2
z ( ) H

z N N R I SP S   is a signal-dependent 
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loading term that is thus adaptive in nature according to the update of the source estimates.  This 

latter term essentially serves to establish an “acceptable” dynamic range for the set of source 

estimates thereby eliminating spurious peaks that could otherwise arise due to array modeling 

errors or under-estimation of the noise power when high-power sources are present.  In fact, this 

effect may be exploited by enabling a reduction in the noise covariance term 2
vR I .  

Reduction of this term alone has been found to improve the sensitivity of RISR albeit with the 

undesired side-effect of small spurious peaks for the high SNR regime.   The presence of the 

model noise covariance term eliminates these spurious peaks thus facilitating enhanced 

sensitivity.  Hence, (23) can be slightly modified as 

  
1

2
1 1 1

H H
i i z N N i i 



     W S P S I SP S R SP .                          (24) 

where the term R , for 0 1  , provides a scaled noise covariance term that is compensated 

for at high SNR values by the model noise covariance term (i.e. the adaptive regularization).  For 

this reason (and given the fact that the case of zero array modeling error is purely theoretical), 

some nominal value of 2
z  is necessitated.  It has been found for small/moderate size linear 

arrays ( 20N  ) that, in the theoretically idealistic case of no array modeling errors, values of 2
z  

less than –30 dB tend to induce false peaks.  Likewise, it has been found that the value of   

should not be too small or else the intrinsic benefit of regularization via the noise covariance 

term, which is particularly important in low SNR scenarios, is sacrificed. 

Given the final modification from (24), the complete operation of RISR is outlined in 

Table 1.  It is found that for each iteration, the computational cost of RISR is ( )O MNL  for 

2L N  and 2( )O MN  otherwise, where M  is generally some multiple of N .  Thus RISR is 

more computationally expensive than the SCM-based methods such as MUSIC which require 
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2( )O LN  to compute the sample covariance matrix and 3( )O N  to compute the eigen-

decomposition.   

 

Table 1.  Operation of RISR 

Initialization:  Given L  receive snapshots  ( ) ( 1) ( 1)L   Y y y y , compute initial 

complex amplitude distribution as 0
ˆ HX S Y .  Compute the initial average spatial power 

distribution estimate as 
1

0 0 0

0

1
ˆ ˆ( ) ( )

L
H

M M
L



 






 
   
  
P x x I .  Determine the noise-only 

covariance matrix R  (or just the noise power if presumed to be spatially white) and select the 

noise loading factor  .  Based on expected model error tolerances determine the model error 

variance 2
z . 

 

 

For 1, 2,i   until recursion halted 

 

1)  Determine the aggregate MMSE filter bank as 

   
1

2
1 1 1

H H
i i z N N i i 



     W S P S I SP S R SP . 

 

2)  Estimate the spatial complex amplitude estimates for the L  snapshots as ˆ H
i iX W Y . 

 

3) Compute 
1

0

1
ˆ ˆ( ) ( )

L
H

i i i M M
L


 






 
   
  
P x x I  to update the estimate of the spatial power 

 

     distribution. 

 

 

Once recursion is halted, obtain spatial magnitude distribution (i.e. the RISR spectrum) as 

 idiagx P .  Determine number of sources, source locations (in  -space), and source 

magnitude estimates via the peaks in x . 
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VII.  SIMULATION RESULTS 

Using the implementation of (12), the performance of RISR was previously compared 

with MUSIC for cases involving equal-power sources [25].  Here we shall compare RISR (based 

on the implementation in Table 1) to MUSIC, root-MUSIC (denoted here as RMUSIC), and 

ESPRIT.  For scenarios involving temporally correlated sources, spatially-smoothed (SS) 

implementations are employed (denoted as SS-MUSIC, SS-RMUSIC, and SS-ESPRIT).  When 

estimating the spatial sample covariance matrix (SCM) for MUSIC, RMUSIC, and ESPRIT (as 

well as for the spatially smoothed implementations) forward-backward averaging is used.  Note 

that it has been observed that no benefit is obtained for RISR when the “backward” snapshots are 

included as RISR does not require a spatial SCM.   

Before comparing with other methods, we first consider the effects of various 

parameterizations on RISR in the hypothetical “error-free” scenario by varying the number of 

snapshots L , the amount of source separation angle, the number of antenna elements N  (for the 

linear array structure), the amount of angular “over-sampling” (by varying the ratio /M N ), and 

the factor   that scales the noise covariance term.  An example of the convergence behavior of 

RISR is also presented.  For all cases, stated values of SNR are the incident signal-to-noise ratio 

for a single antenna element. 

Unless otherwise stated, we shall employ a linear array of 10N   elements with half-

wavelength spacing.  Assuming ideal half-wavelength element spacing, the 10N   element 

linear array provides a nominal resolution (in terms of electrical angle) of 

 
nom

2 36M     .  To examine super-resolution capability we consider the separation of 

two closely-spaced sources, both alone ( 2K  ) and in the presence of other sources ( 3K  ).  

Defining array boresight as 0   , two closely spaced sources are placed in the vicinity of 0  
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with some fixed separation (dictated by the particular scenario).   Note that the two sources near 

0    can be used to convey performance in general due to the rotational invariance of  -

space [4].  After the matched filter bank initialization, 15 recursions of RISR are performed.  All 

Monte Carlo simulations employ 500 runs for each individual value (of SNR or percent 

modeling error). 

The sources will be modeled as being constant-modulus random-phase signals 

experiencing i.i.d. random fading (independently assigned for each Monte Carlo run).  The 

fading magnitude is Rayleigh distributed with a given source power level and the phase is 

uniformly distributed over 2 .  The fading is constant over the interval of L  snapshots.  When 

coherent sources are considered, the K  source directions all possess the same constant-modulus 

random-phase signal and experience independent fading.  The additive noise is complex white 

Gaussian (note that RISR makes no assumption regarding the noise distribution other than it 

being zero-mean and the power is estimated with sufficient accuracy). 

For the results presented here the SCM-based MUSIC, RMUSIC, and ESPRIT methods 

are applied with clairvoyant knowledge of the number of sources K .   Thus RMUSIC and 

ESPRIT each provide K  source estimates.  The MUSIC source estimates are the K  peaks that 

appear in the MUSIC pseudo-spectrum.  For RISR the number of sources is unknown and must 

be determined by locating suitable peaks in the RISR spectrum x .  For the results shown here a 

peak is decided if an element in the RISR spectrum is greater than the immediately surrounding 

elements and, because RISR provides an estimate of the spatial power distribution, a peak must 

also be greater than the normalized beamformer output noise power 2 /v N .  The number of 

peaks detected by RISR constitutes the model order estimate.  To assess model order estimation 

performance of RISR, it is compared with the Minimum Description Length metric [26] which 
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has been shown to be the most appropriate for the low sample support regime [27].  It will be 

shown that RISR model order estimate performance tends to track closely with separation 

probability performance. 

Denoting the two closely-spaced sources as 1  and 2 , where 1 2  , the two sources 

are deemed separated when exactly two sources are estimated to exist within an interval bounded 

between   1nom
0.5      and   2nom

0.5     .  For scenarios with more than two sources 

(i.e. 3K  ), the phase angles of the additional sources are randomly distributed (with a uniform 

distribution for each Monte Carlo run) over 2  except for the  
nom

   interval centered on 

0    so as to avoid association problems with the two closely-spaced sources.  The separation 

probability is determined as the ratio of the number of times the two closely-spaced sources are 

successfully separated to the number of Monte Carlo runs (here this is 500).  If the two sources 

are deemed separated, the estimated RMS error (or simply RMS error) for the two sources is 

then computed as 

2

1

1
ˆRMS error

K

k k

k
K

 


 
  

  
                                          (25) 

where k  and ˆ
k  are the phase angles for the true DOA and estimated DOA, respectively, for 

the two closely-spaced sources.  It should be noted when comparing RMS error that one must 

also consider the corresponding probability of separation so as to avoid misleading comparisons 

(e.g. too few detections of separated peaks for a given Monte Carlo run may yield an inaccurate 

estimate of RMS error due to insufficient data).  To alleviate this potential confusion, RMS error 

results are only shown for Monte Carlo results achieving a separation probability 20% .   
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A.  RISR PARAMETERIZATION ASSESSMENT 

The performance of RISR is assessed as a function of 1) sample support size L , 2) the 

degree of separation of two closely-spaced sources, 3) the number of array elements N , 4) the 

angular over-sampling factor M N , and 5) the noise covariance scaling factor  .  For 

parameterization assessment the two sources are temporally uncorrelated and no array modeling 

errors are present.  For this idealistic scenario a nominal value of element error variance 

parameter for the RISR algorithm will be set to 2 33 10 25z
    dB. 

Before considering the impact of parameterization let us first examine the convergence of 

RISR.  For two sources near 90     with an SNR of 10 dB, 12L   snapshots, an over-

sampling factor of 16M N  , a noise covariance scaling of 1  , and a separation of 

 
nom

1/ 4   (i.e. 9  for 10N   antenna elements), Fig. 1 depicts the estimated spatial power 

distribution for the initial matched filter bank (the conventional beamformer) and for the 

application of RISR after 2, 4, 6, 8, and 10 iterations.  It is observed that the spatial sidelobes 

have been essentially eliminated after 2 iterations and after 6 iterations the two sources are just 

beginning to resolve themselves.  After 8 iterations the two sources are clearly resolved and after 

10 iterations essentially the only non-zero values are those corresponding to the source estimate 

locations in  -space.  Note that the source estimates have converged to the true source powers 

of unity (0 dB).  For more complicated scenarios such as high source dynamic range (the ratio of 

the largest source power to the smallest source power) or when numerous sources are present it 

may take more iterations to converge.  However, it has been observed anecdotally for linear 

arrays that this is almost always accomplished within 15 iterations regardless of the 

parameterization. 
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Figure 1.  Convergence of RISR for 16M N  , 10N  , 12L  , sources separated by 1/4 

nominal resolution, and SNR = 10 dB 

 

For the sample support comparison, values of 1, 2, 4, 8,L   and 16 snapshots are 

examined.  Figures 2 and 3 illustrate the performance of RISR for two sources with an over-

sampling factor of 16M N  , a separation of  
nom

1/ 2   (i.e. 18  for 10N   antenna 

elements), and 1/8   (the appropriate selection of   will be addressed in subsequent 

discussion).   

Figure 2 illustrates the probability of separation (top panel) and RMS error (bottom 

panel) of RISR as a function of SNR for the different numbers of snapshots.  It is observed that 

as the number of snapshots increases, RISR requires a lower SNR in order to achieve the same 

separation probability (most notably at higher probability of separation).  The improvement is 
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most dramatic when increasing from 1L   to 2L   with the improvement becoming more 

gradual thereafter.  Improvement is likewise observed for RMS error which decreases by roughly 

half when increasing the number of snapshots from 1L   to 2L  .  The improvement in 

separation probability and RMS error becomes less pronounced as L  increases further. 

It is worth noting that the separation probability approaches, yet never quite reaches, a 

probability of 1.  This effect is due to the fact that the sources experience (sometimes significant) 

fading yet RISR operates effectively only over a finite dynamic range due in part to the non-zero 

value of 2
z .  It is also observed that, above 20 dB SNR, the RMS error for 4L  , 8 and 16 does 

not continue to decrease.  This effect occurs because the “sampling” of  -space dictated by the 

N M  steering vector matrix S  establishes an angular quantization lower bound that is directly 

related to an “over-sampled resolution limit” of 2 / M .   

Figure 3 depicts the ability of RISR to determine the model order which is simply the 

number of peaks found in x .  Figure 3 presents the mean order estimate (top panel) and the 

probability of correctly estimating the order (bottom panel) as a function of SNR.  It is observed 

that increasing L  has a distinct impact on the accuracy of the model order estimate.  This 

improvement is the most pronounced for small L  while little difference is observed when L  is 

increased from 8 to 16.  It is also noted that small L  tends to result in an over-estimation of 

model order as opposed to under-estimation. 
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Figure 2.  RISR: source separation performance vs. SNR for 2 sources (separation of 1/2 the 

nominal resolution) for various sample support, / 16M N  , 1/8  , and 10N   

 

 
Figure 3.  RISR: model order selection vs. SNR for 2 sources (separation of 1/2 the nominal 

resolution) for various sample support, / 16M N  , 1/8  , and 10N   
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We now consider the effect of the amount of source separation on RISR performance.  

Three different scenarios are addressed, each with a different separation between the two 

sources.  Specifically, with 10N   yielding a nominal resolution of  
nom

36   , the three 

scenarios each contain two sources with separations of a)  
nom

1/ 2 18   ,                             

b)  
nom

1/ 4 9   , and c)  
nom

1/8 4.5   .   

Figure 4 illustrates the performance of RISR for these three scenarios when 15L   

snapshots are present, noise covariance scaling factor 1/8  , and a spatial over-sampling of 

/ 16M N  .  It is observed that the probability of separation (top panel) degrades slightly from 

the case of  
nom

1/ 2   to  
nom

1/ 4  , with the degradation more pronounced when the source 

separation further decreases to  
nom

1/8  .  Model order estimation performance (probability 

of correct order) is not shown as the results are essentially identical to that observed in the top 

panel of Fig. 4.  In the bottom panel of Fig. 4 the RMS error is depicted.  For low SNR values it 

is observed that smaller source separation yields lower RMS error.  Referring to the convergence 

of RISR illustrated by Fig. 1 in which the single peak splits into two nearby peaks as the 

algorithm progresses, one may readily infer that angle estimate errors tend more towards under-

estimating the amount of separation of nearby sources as opposed to over-estimation.  As a 

result, smaller separation angles tend to yield lower RMS error. 
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Figure 4.  RISR: source separation performance vs. SNR as a function of the angular separation 

between 2 sources for 15L  , / 16M N  , 1/8  , and 10N   

 

 

We now examine the performance of RISR as a function of the number of antenna 

elements N .  Specifically, we consider 5, 10, 20,N  and 40 such that the nominal resolution 

 
nom

  of each is 72 , 36 , 18 , and 9 , respectively.  We consider 2 sources with separation 

of  
nom

1/ 2   or 36 , 18 , 9 , and 4.5 , respectively, for each N .  For 15L   snapshots, 

angular over-sampling of 16M N  , and noise covariance scaling 1/8  , Fig. 5 illustrates 

the  probability of separation (top panel) and RMS error (bottom panel) for the four different 

array sizes.  Note that the model order estimation performance is again omitted because the 

curves were nearly identical to those for separation probability.  It is evident from Fig. 5 that, as 

one would expect, the separation probability as a function of SNR shifts 3 dB to the left for each 

doubling of the array size.  The RMS error is likewise halved for each doubling of the array size.  
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It is also observed that as N  increases a slight dip becomes more pronounced.  This effect is 

related to the particular choice of   which will be discussed subsequently. 

 

 
Figure 5.  RISR: source separation performance vs. SNR for 2 sources at 1/2 nominal resolution 

as a function of the number of array elements N  for 15L  , / 16M N  , and 1/8   

 

 

We consider the impact of the degree of over-sampling in  -space (i.e. the value of 

M N ) on the performance of RISR.  For an 10N   element linear array, 15L   snapshots, 

noise covariance scaling 1/8  , and two sources with separation  
nom

1/ 2 18    (i.e. 

super-resolution factor of two), we consider values for M N  of 4, 8, 16, and 32.  Thus the 

number of columns in the steering vector matrix S  is 40, 80, 160, and 320, respectively.  Note 

that there is no restriction on M N  being a multiple of 2; it is done here simply for 

convenience.  Figure 6 illustrates the performance of RISR for these four scenarios.  Model order 
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estimation performance is again omitted because the curves are nearly identical to those for 

separation probability in Fig. 6.  It is observed that as M N  increases higher SNR is needed to 

achieve a moderate separation probability (0.5 for example).  However, for higher separation 

probability (above 0.9) a lower SNR is required for larger values of M N . 

In the bottom panel of Fig. 6 it is observed that the RMS error decreases as M N  

decreases.  Note also that as M N  increases an RMS error floor occurs at successively higher 

SNR values.  This error floor is due to the finite quantization of  -space discussed previously. 

 

 
Figure 6.  RISR: source separation performance vs. SNR for 2 sources at 1/2 nominal resolution 

as a function of the angular over-sampling /M N  for 15L  , 10N  , and 1/8   

 

 

Finally, we consider the impact of the parameter   used to scale the noise covariance 

term.  Specifically, values of  1, 1/2, 1/4, 1/8, and 1/16 are examined for / 16M N  , 
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15L   snapshots, and 10N   antenna elements.  Figures 7 and 8 depict the source separation 

and model order estimation performance, respectively.  It is observed in Fig. 7 that for 10N   

antenna elements a value of 1/8   appears to be the smallest acceptable value as the 

separation probability curve (top panel) for 1/16   exhibits distinctively non-monotonically 

increasing behavior.  It may be inferred that when   is too small the regularization provided by 

the noise covariance term becomes insufficient, especially at low values of SNR.  It is also noted 

that reducing   by a factor of 2 (to within a limit as just observed) enables improved sensitivity 

by roughly a factor of 3 dB.  A small decrease in RMS error is likewise found for smaller values 

of  , though the improvement is relatively minor.   

In Fig. 8, model order estimation performance is illustrated as a function of  .  Most 

notable is the fact that the 1/16   implementation of RISR yields a significant over-estimation 

of model order between 0 and 20 dB SNR that coincides with the dip in performance observed 

for separation probability.  Given that the separation probability metric requires that exactly two 

sources be detected within the allotted interval around 0    (via peaks in the RISR spectrum 

x ) for the two true sources to be deemed separated, it may deduced from the curves of 

1/16   that the low value of the scaled noise covariance term in this case is inducing spurious 

peaks to occur in the vicinity of the two closely-spaced sources.  Hence, some lower bound on 

  is needed to prevent this effect from occurring. 
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Figure 7.  RISR: source separation performance vs. SNR for 2 sources (separation of 1/2 the 

nominal resolution) for various values of   with 15L  , / 16M N  , and 10N   

 

 
Figure 8.  RISR: model order selection vs. SNR for 2 sources (separation of 1/2 the nominal 

resolution) for various values of   with 15L  , / 16M N  , and 10N   
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B.  PERFORMANCE COMPARISON 

We now compare RISR with the MUSIC, root-MUSIC (denoted RMUSIC here), and 

ESPRIT algorithms for various operating conditions.  Super-resolution techniques employing the 

sample covariance matrix (SCM) generally perform well when the number of snapshots is high 

relative to the number of antenna elements (typically 10L N  [4, pp. 947]).  In contrast, RISR 

was shown to provide good performance for low sample support (see Figs. 2 and 3).  In 

particular, as was shown in Fig. 3, RISR is capable of resolving K  sources even when the 

number of snapshots L K .  

Here we shall consider the low sample support regime.  For an array length of 10N   

elements we compare performance when 15L   snapshots are available.  We first assess the 

impact of modeling errors for 2 uncorrelated sources as a function of the degree of random 

gain/phase modeling error.  We then consider the case of 4 sources present (with two closely-

spaced in the vicinity of 0   ) with 1% gain/phase array modeling errors.  The estimation of 

the 4 sources is first examined when they are uncorrelated and then when they are coherent (such 

as would occur in a multipath scenario).  For the case involving coherent sources, the spatially-

smoothed versions of MUSIC, RMUSIC, and ESPRIT employ a subarray size of 8ssN   

thereby yielding 1 3ssN N    subarrays.  The 4-source scenarios (uncorrelated and coherent) 

are then re-examined when 5% array modeling errors are present.   

For the source separation analysis of MUSIC, RMUSIC, and ESPRIT we assume that 

each algorithm possesses clairvoyant knowledge of the number of sources K .  For these results 

RISR is implemented with noise covariance scaling 1/8   and / 16M N  , and the array 

modeling error tolerance is known.  Random amplitude and phase errors are assigned to each 



31 

antenna element independently for each Monte Carlo run.  Per the generic model error defined in 

(18), for the Monte Carlo simulations here the thn  element is randomly generated as 

1 (0,1) exp (0,1)
100 100

nz j
 


   

    
   

N N                                    (25) 

with (0,1)N  a Gaussian-distributed scalar with zero mean and unit variance and 100  the 

percent error in terms of the standard deviation.  For simplicity, the same percent error is 

assumed for both gain and phase.  Given  , the error variance 2
z  is computed for RISR by 

estimating the variance of 1mz   from (25) for 1000 independent realizations.   

Figures 9 and 10 illustrate the source separation and model order estimation performance, 

respectively, for two sources with 20 dB SNR separated by  
nom

1/ 2 18    with 15L   

snapshots.  In Fig. 9 the separation probability is depicted as a function of model error 

percentage.  For low model error MUSIC, RMUSIC, and ESPRIT are found to be superior to 

RISR.  However, as error increases it is observed that RISR experiences much more graceful 

degradation.  Applying the MDL metric for model order estimation to the sample covariance 

matrix (SCM) and the spatially-smoothed SCM (denoted as MDL-SS) as a function of the model 

error percentage produces the curves in Fig. 10.  It is observed that the model order estimate for 

RISR is much more robust to errors than MDL or MDL-SS, both of which tend to over-estimate 

the model order as the model error increases. 
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Figure 9.  Source separation performance vs. percent gain/phase array errors for 2 uncorrelated 

sources (separated by 1/2 the nominal resolution) with 20 dB SNR and 15L   time samples 

 

 
Figure 10.  Model order selection vs. percent gain/phase array errors for 2 uncorrelated sources 

(separated by 1/2 the nominal resolution) with 20 dB SNR and 15L   time samples 
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For the case of 4 uncorrelated sources, two of which have  
nom

1/ 2 18    separation, 

Figs. 11 and 12 depict the source separation and model order estimation performance, 

respectively, for 1% random gain/phase errors ( 2 27z    dB for RISR).   

In Fig. 11 it is observed that, in terms of probability of separation (top panel), RMUSIC, 

ESPRIT, and RISR provide similar performance.  MUSIC, on the other hand, requires roughly 8 

to 10 dB higher SNR to achieve the same level of performance as the other three algorithms.  

However, for RMS error (bottom panel) RISR is found to provide the least accuracy of the four 

techniques.  With regard to model order estimation performance, it is observed in Fig. 12 that 

MDL and MDL-SS converge to the true model order of 4 from below while RISR slightly over-

estimates the model order (on average) at lower SNR and converges from above.  However, as 

SNR increases above 15 dB the MDL and MDL-SS model order estimates are found to diverge 

as a result of the 1% random gain/phase errors array errors while RISR maintains the same 

estimate of 4 sources. 
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Figure 11.  Source separation performance vs. SNR for 4 uncorrelated sources (2 with separation 

1/2 the nominal resolution), 15L   time samples, and 1% array modeling errors 

 

 
Figure 12.  Model order selection vs. SNR for 4 uncorrelated sources (2 with separation 1/2 the 

nominal resolution), 15L   time samples, and 1% array modeling errors 
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For the same scenario with 4 sources and 1% gain/phase errors, Figs. 13 and 14 depict the 

source separation and model order estimation performance when the 4 sources are coherent.  In 

other words the same temporal signal arrives from different spatial angles albeit with different 

fading (gain and phase) characteristics.  The fading is constant over the interval of  L  snapshots.  

Here the SCM-based techniques employ spatial smoothing. 

In Fig. 13 we see that the performance comparison for separation probability is similar to 

what was observed in Fig. 11, although RISR now shows greater separation probability 

improvement at low SNR and levels off at approximately 75% (compared with ~90%  for SS-

RMUSIC and SS-ESPRIT and ~70% for SS-MUSIC).  The RMS error has increased for all four 

algorithms relative to the uncorrelated case in Fig. 11, though the comparative relation between 

algorithms remains essentially the same with RISR yielding the highest error.  In Fig. 14 it is 

observed that the MDL estimate (applied to the original SCM) is limited to 2 sources due to the 

rank deficiency of the SCM that results from source coherency.  On the other hand the MDL-SS 

and RISR model order estimates remain quite similar to the uncorrelated case in Fig. 12 (top 

panel) with the primary difference being the lower probability of correct order (bottom panel).   
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Figure 13.  Source separation performance vs. SNR for 4 coherent sources (2 with separation 1/2 

the nominal resolution), 15L   time samples, and 1% array modeling errors 

 

 
Figure 14.  Model order selection vs. SNR for 4 coherent sources (2 with separation 1/2 the 

nominal resolution), 15L   time samples, and 1% array modeling errors 
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Finally, we consider the performance of uncorrelated and coherent sources when the 

array model errors increase to 5% ( 2 16z    dB for RISR).  Figures 15 and 16 contain the 

source separation and model order estimate performance for four uncorrelated sources.  In Fig. 

15 the separation probability (top panel) for all four methods is found to degrade a bit more 

relative to Fig. 11 as a result of the increase in model error.  Again RISR performs close to 

RMUSIC and ESPRIT with all three being noticeably better than the MUSIC algorithm.  Also, 

while RISR still provides the highest RMS error (bottom panel) of the four methods, the 

performance gap is now smaller.  With regard to model error as shown in Fig. 16, the MDL and 

MDL-SS estimates are now significantly degraded, especially at high SNR, while the model 

order estimate of RISR is degraded a relatively small amount in comparison with the lower error 

result depicted in Fig. 12. 

 

 

 
Figure 15.  Source separation performance vs. SNR for 4 uncorrelated sources (2 with separation 

1/2 the nominal resolution), 15L   time samples, and 5% array modeling errors 
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Figure 16.  Model order selection vs. SNR for 4 uncorrelated sources (2 with separation 1/2 the 

nominal resolution), 15L   time samples, and 5% array modeling errors 

 

For four coherent sources with an array modeling error of 5%, Figs. 17 and 18 illustrate 

the source separation and model order estimate performance, respectively.  In Fig. 17 it is found 

that RISR is now superior to the other three algorithms in terms of source separation 

performance (top panel).  Also, the RMS error (bottom panel) is roughly commensurate for the 

four methods.  Compared to the coherent source performance with lower modeling error from 

Fig. 14, it is observed in Fig. 18 that further degradation now occurs, though RISR is still 

markedly superior to either of the MDL estimates. 
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Figure 17.  Source separation performance vs. SNR for 4 coherent sources (2 with separation 1/2 

the nominal resolution), 15L   time samples, and 5% array modeling errors 

 

 
Figure 18.  Model order selection vs. SNR for 4 coherent sources (2 with separation 1/2 the 

nominal resolution), 15L   time samples, and 5% array modeling errors 
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CONCLUSIONS 

A new method for direction-of-arrival (DOA) estimation is presented denoted as Re-

Iterative Super-Resolution (RISR) that, like MUSIC, is applicable to arbitrary array structures as 

long as the array manifold is known.  However, unlike methods such as MUSIC and ESPRIT 

which are based on the eigen-decomposition of a spatial covariance matrix (SCM), RISR is 

based on a minimum mean-square error (MMSE) formulation that is applied recursively and 

does not employ the SCM.  RISR naturally estimates the number of sources, their locations (in 

-space), and their power incident on the array, regardless of the temporal correlation of the 

sources.  Additionally, RISR incorporates a non-coherent integration mechanism that enables 

significant gain in both probability of separation and angular RMS error.  It is found that the 

additional performance gain afforded by non-coherent integration decreases as the number of 

samples increases and appears to approach an asymptotic bound after a relatively low number of 

samples.  Finally, a structure for model error compensation has been developed and incorporated 

into RISR to account for unknown gain and phase errors that are present on all array elements in 

practice.  This error compensation additionally provides an adaptive regularization term that 

facilitates greater sensitivity by making RISR robust to a reduction of the noise covariance term 

(which would otherwise produce line splitting and spurious peaks at high SNR). 

For the linear array structure, simulation comparison demonstrates that for sample 

support on the order of the number of antenna elements, RISR yields separation probability 

commensurate with root-MUSIC and ESPRIT (which are not applicable to arbitrary array 

structures), though RISR possesses higher angle estimation error.  As array modeling errors 

increase it is found that RISR degrades gracefully in terms of separation probability and remains 

quite robust for model order estimation.   
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