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Abstract— Non-parametric iterative algorithms have been 

previously proposed to achieve high-resolution, sparse solutions 
to the bioelectromagnetic inverse problem applicable to multi-
channel MEG and EEG recordings. Using a minimum mean-
square error (MMSE) estimation framework we propose a new 
algorithm of this type denoted as Source Affine Image 
Reconstruction (SAFFIRE) aiming to reduce the vulnerability to 
initialization bias, augment robustness to noise, and decrease  
sensitivity to the choice of regularization. The proposed approach 
operates in a normalized leadfield space and employs an initial 
estimate based on matched filtering to combat the potential 
biasing effect of previously proposed initialization methods. 
SAFFIRE minimizes difficulties associated with the selection of 
the most appropriate regularization parameter by using two 
separate loading terms: a fixed noise-dependent term that can be 
directly estimated from the data and arises naturally from the 
MMSE formulation, and an adaptive term (adjusted according to 
the update of the source estimate) that accounts for uncertainties 
of the forward model in real experimental applications. We also 
show that a non-coherent integration scheme can be used within 
the SAFFIRE algorithm structure to further enhance the 
reconstruction accuracy and improve robustness to noise. 
 

Index Terms— MEG, inverse problem, MMSE 

I. INTRODUCTION 
HE non-invasive MEG recordings of extra-cranial 
magnetic fields provide the opportunity to study electrical 
neuronal activity with high temporal resolution. However, 

the estimation of neuronal sources from multi-channel data is 
complicated by the non-uniqueness of the electromagnetic 
inverse problem [1], the limited number of sensors, and the 
presence of noise in the measurements. Different approaches, 
which can be categorized by the specific constraints enforced 
on the sources, have been adopted to unambiguously select a 
solution.  Among these, distributed source models assume the 
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locations of a large number of dipoles to be fixed, while their 
amplitudes and orientations are estimated from the measured 
data. The large number of potential source locations yields a 
highly underdetermined inverse problem and requires 
additional (explicit or implicit) constraints to select a unique 
solution. The most popular approach is the minimum-norm 
estimate (MNE), which seeks a minimum 2A  norm current 
distribution that explains the measured data [2,3]. A drawback 
of MNE is a localization bias towards the outer brain surface 
[4,5]. To alleviate this effect, leadfield normalization 
strategies denoted as normalized-MNE (nMNE) [6,7] have 
been employed, though this approach was found to likewise 
elicit a localization bias throughout the source space [5,7,8]. 
Other methods rely on weighted-MNE strategies [9,10]. In 
particular, the standardized low-resolution electromagnetic 
tomography (sLORETA, [10]) has been shown to provide 
unbiased localization of single sources [5] under noise-free 
conditions. It must be stressed, however, that proximate 
sources that are simultaneously active may remain unresolved 
due to the low spatial resolution of MNE and weighted-MNE 
methods. 

A cure for low spatial resolution was proposed via the use 
of re-weighted (iterative) minimum-norm algorithms. 
Specifically, the Focal Underdetermined System Solver 
(FOCUSS) [11,12] uses a low-resolution initial estimate that 
is refined through an iterative weighted-norm minimization 
process, aiming to find a sparse solution. The re-weighted 
minimum norm algorithms can be seen as a class of estimators 
related to Interior Point methods [13] which combine some 
strengths (or circumvent some pitfalls) of dipole fitting and 
current density approaches. For example, they do not require a 
priori information about the number of sources and retrieve 
sparse (focal) solutions instead of the low resolution (blurred) 
solutions obtained by non-iterative MNE-based strategies. 

The performance of this class of iterative estimation 
algorithms (including the extension of FOCUSS to multiple 
measurement vectors, i.e. M-FOCUSS [14]) depends on the 
choice of initialization and regularization. Since a localized 
energy constraint does not necessarily define a unique 
solution, initialization may to a large degree influence the 
final compact solution to which the algorithm converges [12]. 
As such, these algorithms are vulnerable to localization bias of 
the MNE or nMNE when they are employed as initial 
estimates (as proposed in [11]) thus requiring additional 
compensation terms that must be estimated specifically for the 
sensor and head configuration geometry of each experimental 
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setup [11,15]. In addition, the choice of regularization is not 
trivial. Ideally, the Tikhonov regularization [16,17] or 
truncated SVD (TSVD, [18]) require solving an optimization 
problem for the regularization parameter or for the number of 
truncated singular values, respectively, at each iteration, 
which is computationally expensive. While these iterative 
schemes are very appealing, non-trivial implementation issues 
have thus far limited their use in actual MEG applications. 

In this study we evaluate a new iterative algorithm that aims 
to improve performance in reconstructing sparse solutions for 
the magnetic source imaging problem. The new approach is 
denoted as Source AFFine Image REconstruction (SAFFIRE) 
[19]. Derived as a recursive implementation of a Minimum 
Mean-Square Error (MMSE) solution [20], SAFFIRE uses the 
affine scaling transform in an iterative scheme that is similar 
in nature with the one previously proposed for FOCUSS. We 
use theoretical and empirical results to assess the effect of 
initialization, and show that a simple matched filter bank can 
better serve this purpose compared with the regularized MNE 
or nMNE initializations tested in previous studies. SAFFIRE 
is also shown to be less sensitive to the choice of 
regularization in the presence of noise as it naturally contains 
a regularization term by virtue of being derived from the 
MMSE framework. Furthermore, robustness to uncertainties 
in the forward problem formulation (inherently present in 
experimental applications) is shown to be achieved by a 
separate adaptive regularization term arising from the MMSE 
structure that is adjusted according to the update of the source 
estimate. 

II. SOURCE AFFINE IMAGE RECONSTRUCTION 

A. Minimum Mean Square Error Estimation  
As with many other functional brain imaging methods, 

SAFFIRE is predicated on the assumption that measurements 
of brain activity via an array of sensors around the head can 
be modeled as the superposition of independent contributions 
from M sources. Sources are modeled as current dipoles on an 
equidistant grid throughout the brain with each source 
characterized by three spatial components. For one time 
sample, measurements at the N sensors can be expressed as  

 

 y = L x + v                                     (1) 
 

where L  is the 3N M×  transformation matrix, x  is a 
3 1M ×  vector of dipole component strengths, and v  is a 

1N ×  vector of additive noise, considered henceforth to be 
zero-mean. The matrix L  contains the leadfield vectors of the 
φ , θ , and ρ  components of the M dipoles (based on a 
spherical coordinate system). For a spherically symmetric 
volume conductor, currents along the radial direction do not 
produce any magnetic field outside the volume conductor 
[21]. In this case (tested throughout this study), L  is 
expressed as a 2N M×  matrix that transforms the 2 1M ×  
vector x  (comprised of strengths along theφ  and θ  
components).  

Based on (1), the MMSE estimation problem is solved by 
minimizing the standard MMSE cost function [20]  

 

 
22ˆ{ } { }TJ E E= − = −x x x W y                  (2) 

 

where { }E i  denotes expectation, ( )Ti  is transposition, x̂  is 
the MMSE estimate of x , and W is the 2N M× MMSE filter 
bank. The cost function in (2) can be minimized by 
differentiating J with respect to the matrix W  and setting the 
result equal to zero, yielding 
 

 1( {  }) {  }T TE E−=W y y y x .                      (3) 
 

Substituting (1) into (3) and assuming no correlation between 
source signals and noise, the MMSE filter bank is  
 

1( { } { })  { }T T T TE E E−= +W L x x L v v L x x .         (4) 
 

The noise correlation matrix {  }TE=vR v v  can be 
estimated for most MEG applications from the data segments 
in which no evoked response signal is present. Conversely, the 
source correlation matrix { }TE=P x x  cannot be determined 
a priori.  Leveraging the direction-of-arrival (DOA) 
estimation method of [22,23] an iterative strategy is employed 
such that the MMSE filter bank of (4) is approximated as 

 

( ) ( )( ) ( )
1ˆ ˆ ˆ1  1Tk k k

−
= − + −vW L P L R L P            (5) 

 

where  
 

ˆ ˆ ˆ( 1) [ ( 1) ( 1)]Tk k k− = − −P x x I:                 (6) 
 

in which :  is the Hadamard product (element-by-element 
multiplication) and I  is the identity matrix. Given the MMSE 
filter bank estimate ( )ˆ kW  from (5), the dipole component 
strength estimates at the k-th recursion is  
 

ˆ ( ) ( ) Tk k=x W y .                           (7) 
 

Equations (5), (6), and (7) serve as the core of the SAFFIRE 
algorithm, upon which its specific attributes described in the 
following subsections are built. The recursive procedure is 
repeated until a stable source distribution is obtained or, to 
save on computation time, a hard stopping criteria (upper 
limit) on the number of iterations is reached [12].  

B. Affine Transform of Solution Space 
The norms of the columns of L  are relatively large for 

regions close to the sensors causing MNE initializations to 
produce estimates that are biased towards superficial sources 
[4,5]. To partly ameliorate this problem SAFFIRE operates in 
an affine-transformed space in which the norm variations are 
removed, such as used in nMNE approaches [7].   

The transform matrix D  is formulated as 
 

1 2([ ] )T=D L L I: ,                           (8) 
 

a diagonal matrix comprised of the 2A  norms of the columns 
of L .  The affine transform of the solution space is then 
achieved by re-expressing the forward model of (1) as 
 

 
1

a a

−= +
= +

y L D D x v
L x v

                             (9) 
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where 1
a

−=L L D  has unit column norms and a =x D x  

contains the dipole component strengths scaled by the column 
norms of L . 

Within the affine transformed space, the iterative procedure 
of (5), (6), and (7) are applied by replacing ( )ˆ 1k −x  with 

( )aˆ 1k −x  and replacing L  with aL .  After the terminal K-th 

iteration, the final estimate of the dipole component strengths 
can then be obtained via inverse affine transform 

 

( )1
aˆ ˆ K−=x D x .                            (10) 

C. Matched Filter Bank Initialization 
Previous iterative approaches such as FOCUSS used MNE 

or nMNE initializations of the dipole component strengths. 
However, due to severe ill-conditioning regularization is 
necessary. Furthermore, MNE/nMNE may yield biased initial 
estimates that differ greatly from the true solution.   

In contrast, SAFFIRE uses a far less ambitious initialization 
via an affine matched filter (MF) bank as 

 

a aˆ (0) T=x L y .                         (11) 
 

The MF has been previously employed in dipole scan 
searches over a pre-defined source space [24]. For zero-mean 
additive noise, the MF provides unbiased estimators for the 
(scaled) strength of a single dipolar source if the leadfield 
vectors along each component of the dipole are orthogonal. In 
practice, the (normalized) leadfield vectors for orthogonal 
directions at the same location are not necessarily orthogonal, 
but their correlation generally remains small. Second, due to 
high correlation between columns of the leadfield matrix that 
correspond to similar directions at nearby locations, the MF 
possesses a wide mainlobe and provides rather poor spatial 
resolution. This property will be shown to act favorably for 
the iterative algorithm, since it minimizes the risk of 
convergence into local minima at subsequent iterations.  

D. Energy Normalization 
 The low-resolution nature of MF spreads energy over most 

of the solution space due to the correlation between leadfield 
vectors. Subsequent application of the iterative procedure of 
(5), (6), and (7) then provides a recursive “soft” refinement of 
the spatial resolution, ideally until only the true source 
locations remain. However, in interim iterations the 
distribution of estimated source energy over many dipole 
components produces an intrinsic scale factor in (5) that may 
be 1� and can adversely impact the relationship between the 
source and noise power estimates and also induce finite 
precision effects.. 

To compensate for this scaling, SAFFIRE utilizes energy 
normalization at each iteration to ensure that the dipole 
component estimate, if inserted into the forward model 
(exclusive of noise), would yield a received signal estimate 
that possesses the same energy as the actual received signal.  
An estimate of the received signal given the current estimate 
of the dipole component strengths aˆ ( )kx  is computed as 

 

a aˆ ˆ( ) ( )k k=y L x                            (12) 
 

with the resulting energy estimate determined as 
 

ˆ ˆ ˆ( ) ( ) ( )Tk k kξ = y y .                         (13) 
 

Given the energy of the measured signal as 
 

meas
Tξ = y y ,                            (14) 

 

the energy-normalized dipole component strength estimate is  
 

a,norm meas a
ˆˆ ˆ( ) ( ) ( )k k kξ ξ=x x                (15) 

 

at the k-th iteration of SAFFIRE.   

E. Noise Correlation Estimation 
Unlike FOCUSS or other iterative methods such as 

SSLOFO [25] or SIMN [26], which require the determination 
of a proper regularization strategy to accommodate for ill-
conditioning effects and the presence of additive noise in the 
forward model, the MMSE formulation of SAFFIRE naturally 
contains a term that serves this function.  Since most MEG 
applications employ evoked field paradigms, the noise 
correlation matrix {  }TE=vR v v  can be estimated directly 
from the measured data as  

 

noise

1noise

1ˆ T
v

N

n n
nN =

= ∑R y y                     (16) 
 

over an interval of noiseN  time samples in which no evoked 
response is present, such as the pre-stimulus baseline segment.   

F. Non-Coherent Integration 
Assuming stationarity of the active sources over a given 

epoch of time samples, non-coherent integration (a rather 
natural generalization of the SAFFIRE algorithm that 
subsumes the case of a single time sample) can be used to 
provide greater robustness to noise. Let Y  be the received 
signal vectors over Q time samples denoted as  

 

 1 2[      ]Q=Y y y y"                     (17) 
 

such that Y  is N Q× .  When non-coherent integration is 
employed, the initialization of (11) becomes 
 

a aˆ (0) T=X L Y                              (18) 
 

with a,1 a, 2 a,a
ˆ ˆ ˆ ˆ(0) [ (0) (0) (0)]Q=X x x x"  the initial 

source distribution estimates for the Q time samples.  
Likewise, the measured energy from (14) is now defined as an 
average over the Q time samples as 
 

meas tr{ }Tξ = Y Y                           (19) 
 

where tr{ }• is the trace operation. 

At each iteration, the estimation of ˆ ( 1)k −P  generalizes to 

a,norm a,norm
1ˆ ˆ ˆ( 1) [ ( 1) ( 1)]Tk k k
Q

− = − −P X X I: .     (20) 
 

Subsequently, the application of the filter in (7) becomes 
 

a
ˆ ˆ( ) ( ) Tk k=X W Y .                        (21) 

 

Finally, the energy normalization procedure becomes 
 

a aˆ ˆ( ) ( )k k=Y L X                            (22) 
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ˆ ˆ ˆ( ) tr{ ( ) ( )}Tk k kξ = Y Y ,                       (23) 
 

and 
 

a,norm meas a
ˆˆ ˆ( ) ( ) ( )k k kξ ξ=X X .               (24) 

 

The terminal inverse affine transform is performed as 
 

1
aˆ ˆ ( )K−=X D X                               (25) 

 

The normalization 1 Q  in (20) ensures that the signal and 
noise terms in the MMSE filter retain the same relationship as 
in the measured data. Except for this normalization, the non-
coherent integration procedure is equivalent to the Frobenius 
norm approach of M-FOCUSS [14]. Optionally, an estimate 
of signal power over the stationary interval can be obtained as 
 

2

1

ˆ ˆ ˆ
Q

q q
q=

= ∑x x x:  .                           (26) 

 

G. Treatment of Forward Model Uncertainties 
While simulation studies typically assume perfect 

knowledge of the leadfield matrix in (1), such an assumption 
is not valid for real MEG applications. Forward problem 
uncertainties can arise due to approximation of the volume 
conductor, the limited accuracy of co-registration, and 
discretization of the source space. These factors necessitate a 
separate treatment of modeling errors for an iterative method 
to provide sensible solutions in real MEG experiments. 

To account for modeling errors, we generalize (1) as 
 

a a( )= +y L x z v:                              (27) 
 

where the 1N ×  vector z incorporates (unknown isotropic) 
modeling errors. The n-th element of z is generally modeled as 
 

nn lz Δ+= 1                                (28) 
where nlΔ  is a random amplitude deviation of arbitrary 
distribution that characterizes the effect of the modeling errors 
in the n-th sensor. Thus, (27) can be written as 
 

a a z= + +y L x v v ,                            (29) 
 

where a a 1( ) ( )z N×= −v L x z 1:  is a "model noise" vector 

induced by the presence of the modeling errors. Based on the 
assumption that the modeling errors are i.i.d. across the 
sensors and their distribution is zero-mean and symmetric we 
can define the variance of nz  as 2

zσ  (the same for all 

sensors). Substituting (29) into (3) and assuming that the 
source signals and additive noise are statistically independent, 
it can easily be shown that the MMSE filter from (4) becomes 
 

1
a a a a a a a( { } { } { }) { }T T T T T

z zE E E E−= + +W L x x L vv v v L x x . (30) 
 

The "model noise" covariance { }T
z z zE=R v v  in (30) is an 

additional loading term that accounts for uncertainties in the 
forward model. Substituting in the model noise yields 
 

1 a a a a 1

a a a a

{( ) ( )( ) ( ) }

{ ( )( ) }

T T
z N N

T T

E

E

× ×= − −

=

R z 1 L x L x z 1

Z L x L x Z

: :
� �

,   (31) 

 

where { }0 1, , , n N Ndiag z z z ×= −Z I� … . Using the assumptions 
of source signal and modeling error independence and 
uncorrelated modeling errors, (31) simplifies to 
 

2
a a( ) ( ( ) )T

z z N Nk kσ ×=R I L P L: .     (32) 
 

The filter bank update is thus 
 

1
a a a

ˆ ˆ ˆ ˆ( ) ( ( 1) ( 1) ) ( 1)T
zk k k k−= − + − + −vW L P L R R L P .  (33) 

 

Equation (33) indicates that, while vR  represents a fixed 
regularization term, the model noise covariance ( )z kR is a 
signal-dependent term that adapts according to the update of 
the source estimates. The impact of modeling errors can be 
adjusted via the zσ  parameter which, according to (27) and 
(28), can be regarded as an expected relative error in the 
sensor measurements due to the use of imperfect physical 
models. Based on this, and on empirical observations, values 
of zσ  in the range of 5% to 10% (i.e. 0.05 to 0.1 relative to 1 
in (28)) lead to good performance of the algorithm when 
applied to real data (exemplified in Section IV). 

III. SIMULATION RESULTS 
Using simulation experiments, we first compare MF 

initialization with MNE and nMNE solutions to determine the 
location, weighting bias, and initial resolution. We then assess 
the quality of the final SAFFIRE solution as a function of the 
manner of initialization. Finally, SAFFIRE is compared with 
the MNE, nMNE, and FOCUSS for the reconstruction of 
distant and proximal pairs of correlated sources.  

Fig. 1.  Assessment of initialization for (a) localization errors, (b) strength ratio, and (c) spatial resolution. 
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A. Effects of Different Initialization Schemes 
The first set of simulation experiments address properties of 

the different initializations. One dipolar source was 
independently considered at various positions within a regular, 
three-dimensional grid of support points (9014 locations 
spaced at an averaged distance of 5 mm). This grid provides a 
uniform coverage of the brain compartment segmented from 
T1-weighted MRI data from a participant in one of our MEG 
studies. The dipole orientations were set along each of the two 
tangential directions of a spherical volume conductor model 
fitted to the subject's head. The temporal dipole activation was 
simulated as a Gaussian curve with 150 ms width and peak 
strength of 30 nAm. The simulated magnetic field was 
computed at the sensor positions of the 151 channel CTF 
Omega system (VSM MedTech, Vancouver, Canada) using 
the Sarvas equations for non-radial magnetic measurements 
[27]. The leadfield matrix was computed for axial gradiometer 
sensors with 5 cm distance between lower and upper coils. 
White noise with RMS value of 10 fT was added to the 
simulated data, and a noise-only temporal window of 0.5 sec 
was appended to allow for the estimation of the noise 
correlation. The SNR at the peak dipole strength varied 
between approximately 3 (~5 dB) and 225 (~24 dB) when the 
dipole position was varied across all nodes of the source grid. 

The inverse solution was evaluated at the peak-latency 
using three initialization approaches: regularized MNE, 
regularized nMNE, and affine-transformed MF bank. The 
regularized MNE solution has been obtained via [8] as 

 

2 1( )T T
MNE λ −= +x L LL I y� � � �                    (34) 

 

where 1/ 2−= vy R y�  and 1/ 2−= vL R L�  are the spatially whitened 
data and leadfield matrices, respectively. The regularization 
parameter was set to 2 2 ( ) /Ttr Nλ δ= LL� �  with 2δ  the inverse 
of the power SNR of the whitened data. The nMNE was used 
with a component-wise normalization at every location.  

We evaluated the initializations using three metrics:  
localization error, which is defined as the Euclidian distance 
between the location of the simulated dipole and the spatial 
peak-strength of the solution; the ratio of the absolute strength 
at the position of the simulated dipole to the spatial peak of 
the solution (characterizing the weight bias at initialization); 
and the number of dipoles with reconstructed amplitudes 
exceeding more than 50% of the maximum amplitude as a 
measure of the spatial smoothness (half-maximum volume).  

As expected, the MNE retrieved increasingly biased 
solutions (Fig. 1a) accompanied by a decrease in spatial 
resolution (Fig. 1c) as source eccentricities become smaller. 
Incorrect localizations of deep sources are accompanied by 
heavily unbalanced weighting (Fig. 1b), which acts to increase 
the risk of convergence into local minima at subsequent 
iterations. Due to overcompensation, the improvement 
observed for nMNE is essentially limited to the localization of 
deep sources.  In contrast, the MF provides consistent results 
(Figs. 1a and 1b), manifesting only a slight degradation for 
some sources positioned at small eccentricities (due to the 
small SNR). The relatively good localization accuracy, 
however, is accompanied by the extremely low spatial 
resolution (Fig. 1c), which explains why such an approach is 
not generally employed in isolation for MEG/EEG imaging. 

B. Propagation of Initialization Effects 
SAFFIRE was evaluated with each of the three 

initializations to assess how initialization effects propagate 
through the iterations. The convergence criterion was based 
on the rotationally invariant Euclidian length of the current at 
each position [15]. To avoid the summed contribution of a 
large number of negligible magnitude currents, we considered 
a cost function based only on the union of locations with 
source power higher than 0.5% of the maxima at the previous 
and current iterations. The convergence criterion was achieved 
when the relative total power change at these locations was 
lower than 0.05%.  The algorithm was stopped when the 
convergence criterion was met or when a maximum number of 
25 iterations was reached.  

Fig. 2a illustrates the localization errors of SAFFIRE with 
different initializations. As a global characterization, perfect 
(zero error) localization was achieved in 23.6% (MNE), 
64.8% (nMNE), and 89.2% (MF) of conditions. Also, a 
minimal localization error of one source space point was 
achieved in 21.1% (MNE), 15.0% (nMNE), and 9.4% (MF) of 
conditions. Using MF initialization, the average number of 
iterations needed to achieve convergence was 15.7 (SD=3.8), 
with an observed trend of slightly fewer iterations for sources 
at larger eccentricities. In terms of smoothness of the final 
solution, the half-maximum volume was confined to a single 
source space point in 93.2% of conditions, with the rest of 
conditions being characterized by two (6.3%) and three 
(0.5%) grid points. The maximum number of iterations 25 was 

 
Fig. 2.  (a) SAFFIRE localization error for different initializations. (b) 
Dependence of SAFFIRE final localization error on the strength ratio after 
initialization with MNE and nMNE.  
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reached in 14.6% of conditions (with a high incidence of 
conditions with low SNR). Among these, perfect localization 
was still achieved in 81.6% of the time. A closer inspection of 
cases when the upper limit of iterations was reached indicated 
that positions of significant estimated strength are always 
stable during the last iterations, and the convergence criterion 
was not met only because of small amplitude variations. 

For MNE initialization, SAFFIRE performance qualitatively 
replicates MNE behavior, with increasingly higher errors for 
smaller eccentricities, though the mean localization errors are 
smaller than those immediately after initialization. Compared 
to MNE, the nMNE initialization proves to be a better choice 

over all eccentricities. This is surprising for high 
eccentricities, where nMNE provides initializations with 
increased mean localization errors (Fig. 1a) and moderately 
lower mean strength ratios (Fig. 1b). This result can be 
explained by the lower resolution of nMNE compared to 
MNE at large eccentricities (Fig. 1c) which is beneficial for 
the iterative algorithm by enabling more freedom to correct 
for the initial error. Note that a similar result does not occur 
for the lower resolution of MNE at small eccentricities.  The 
localization bias, which is associated with smaller strength 
ratios after MNE initialization, cannot be corrected during 
subsequent iterations. The strength ratios for nMNE are 
generally confined to a range of moderate values, remaining 
higher than 40% when the simulated source was varied across 
the source space. By comparison, the strength ratios for MNE 
take on much lower values thus imposing a heavier penalty on 
the real sources after initialization. Progressively lower 
strength ratios are associated with a steepest increase in 
localization errors after convergence (Fig. 2b). 

Several conclusions of practical importance can be drawn 
from these results. First, bias introduced by MNE and nMNE 
can sometimes be corrected during subsequent iterations. This 
observation confirms that the iterative algorithm does not 
simply reinforce the sources with the largest strength after 
initialization, which was also pointed out in [11,12]. Second, 
initialization errors can, however, propagate in some cases, 
thus leading to erroneous convergence to local minima. Third, 
a lower resolution initial estimate favors convergence to the 
correct solution despite possible bias at initialization, provided 
that the relative strength penalty imposed by the initial 
estimate on the true source is not excessively large.  

Based on these observations, the motivation for MF 
initialization is twofold: it provides low resolution estimates 
and it reduces the risk of a large strength penalty on the true 
source. Due to these properties, MF can alleviate the 
vulnerability of iterative algorithms to the effects of MNE or 
nMNE initializations. Since the MF is particularly suited for 
modeling the single dipole scenario, its superior performance 
in these preliminary tests is expected; how this performance 
extends to more complex scenarios is addressed in the next 
sections. 

 
Fig. 5.  Reconstruction using regularized MNE (a) and nMNE (b) for two 
distant sources. Results are shown for 50% clipping thresholds. 
 

 
Fig. 3. SAFFIRE with one time sample for distant correlated sources. Results 
are shown for 50% (a) and 20% (b) clipping thresholds. 
 

 
Fig. 4.  SAFFIRE with non-coherent integration of 4 time samples for distant 
correlated sources. Upper panel results are shown for 1% threshold. 
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C. Evaluation for Dipole Pairs 
We now exemplify SAFFIRE performance for the 

reconstruction of a distant/proximal pair of correlated sources. 
The first simulation experiment assumes two dipoles 
positioned within deep regions of the auditory cortex in each 
of the brain hemispheres with a source separation of 8.3 cm. 
Each dipole is oriented along the local declination direction 
and the temporal activations (derived from a Gaussian 
function peaking at 100 ms with a peak strength of 30 nAm) 
are fully correlated. Zero-mean random noise is added to the 
simulated MEG data with RMS noise level of 10 fT. 

Fig. 3 illustrates the source localization using SAFFIRE 
with 1 time sample at the peak of the dipoles activity and for 
two clipping thresholds: 50% and 20% of the maximum 

reconstructed strength, respectively. Simulated (s) and 
reconstructed ( ŝ ) sources are annotated to aid visualization (s* 
denotes additional reconstructed sources, visible only at the 
low clipping threshold). The simulated source positions are 
shown as white dots. The results demonstrate that the energy 
of the reconstructed sources is very focal and in the correct 
positions.  Only a small fraction of the sources’ power is 
retrieved at a nearby point for each of the simulated sources.  

Fig. 4. demonstrates the higher resolution and greater 
robustness to noise that SAFFIRE can achieve using the non-
coherent integration procedure (4 time samples). The 
reconstructed time-courses of activity for each of the two 
sources also indicate very good estimation accuracy. 

For comparison, Fig. 5 illustrates the results of regularized 
MNE (a) and nMNE (b) algorithms. Tikhonov regularization 
was used with the optimum regularization parameter estimated 
by the L-curve method [28]. The results indicate the 
characteristic bias of MNE towards superficial sources 
(shifted in the medio-lateral direction, closer to the sensors), 
as well as its over-smoothing effect. The nMNE results 
indicate that leadfield normalization is vulnerable to an over-
compensation bias for deep sources near the center of the 
volume conductor. 

The FOCUSS results are shown in Fig. 6 where the weight 
matrix in each iteration has been obtained from the compound 
product of all preceding solutions [11]. MNE initialization 
was used and a truncated SVD scheme was applied using the 
30 highest singular values.  This version of FOCUSS provides 
a sparse solution, thus improving the localization accuracy 
with respect to MNE. However, it cannot achieve the same 
localization accuracy as SAFFIRE.  It should be noted that 
when the nMNE initialization was used instead of MNE, the 
solution was shifted to very deep brain regions, indicating that 
at subsequent iterations the initialization bias (Fig. 5b) is not 
corrected.  The FOCUSS results are qualitatively similar to 
those obtained when MNE and nMNE, respectively, were 
used to initialize SAFFIRE. Thus, despite all other differences 
between the two algorithms, this observation indicates that 
initialization has a major impact on final solution accuracy. 

The second experiment exemplifies the ability of the 
different algorithms to localize two proximal sources. Two 
dipoles with positions within regions of the auditory cortex 
and essentially parallel orientations were simulated with a 
separation of 1.1 cm where the temporal courses of the dipoles 
activations are the same as before. The version of SAFFIRE 

 
Fig. 6.  FOCUSS results for two distant sources are shown at 50% (a) and 
20% (b) clipping thresholds. 
  

 
Fig. 7.  SAFFIRE with non-coherent integration of 4 time samples for 
proximal sources. Upper panel results are shown for 1% threshold. 
 

 
Fig. 8.  Reconstruction using regularized MNE (a) and nMNE (b) for two 
proximal sources. Results are shown for 50% clipping thresholds. 
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that employs non-coherent integration across 4 time samples 
retrieves a perfect estimate of the two sources, without any 
significant energy spread across adjacent locations (Fig. 7). In 
contrast, regularized MNE (with or without normalization) 
does not reliably indicate the existence of two separate 
sources (Fig. 8). This observation holds also for the version of 
the FOCUSS algorithm tested here (Fig. 9), which was able to 
localize only one dipolar source with acceptable accuracy.  

IV. APPLICATION TO REAL MEG DATA 

A. Data Acquisition and Processing 
The performance of SAFFIRE is exemplified on MEG data 

from a tactile somatosensory experiment. The experimental 
paradigm employs cutaneous stimuli delivered by modulating 
the pressure of a silicone Soothie™ pacifier receiver yielding a 
275 µm deflection with each stimulus. In one session the 
stimulus probe was positioned at the glabrous surface of the 
right hand, between the thumb, index, and middle finger 
(condition 1, hand stimulation), while in the second session 
the probe was placed at the midline between the vermilion 
surface of the upper and lower lips (condition 2, lips 
stimulation). For each stimulation site, the tactile stimuli (50 
ms duration) were delivered in 125 trials, with an inter-trial 
interval of 5s. 

Co-registration with the T1-weighted MRI, acquired after 
the MEG experiment, was done using localization coils/ 
registration landmarks placed at nasion, left, and right pre-
auricular points. The source space was a regular grid of points 
(4 mm average separation) throughout the brain. Leadfield 
matrices were computed for a spherical volume conductor 
fitted to the subject’s head.  

The MEG signals were acquired with a sampling rate of 600 
Hz and bandpass filtered between 1.5 and 50 Hz. Artifact-free 
epochs were averaged separately for each session and the DC 
was offset using the pre-stimulus period as a baseline. 
Additionally, the responses from the two stimulation 
conditions were summed to create a third ("test") dataset to 

replicate a more complex scenario in which sources evoked by 
the hand and lips stimulation would be simultaneously active. 
The ability of a reconstruction algorithm to estimate the brain 
sources on this "test" dataset is evaluated as a prerequisite for 
application on real data from simultaneous tactile stimulation 
at multiple sites, where mislocalization of the independent 
sources could be misinterpreted as physiological interactions. 

B. Results for Real MEG Data 
Figure 10 (left panels) illustrates the averaged SEF data for 

the hand (a) and lips (b) stimulation, as well as the combined 
response created for the "test" dataset (c), as explained above. 
The dominant response components occur at a latency of 59 
ms (hand) and 48 ms (lips), respectively. The shorter response 
latency for the orofacial stimulation is consistent with a 
shorter conduction delay for the trigeminal pathway. To allow 
for a direct comparison between source reconstruction in the 
hand and lips stimulation conditions with that from the "test" 
dataset, we consider the latency of 53 ms, i.e. between the 
peak responses in the two separate conditions. For hand 
stimulation, the magnetic field topography exhibits a dipolar 
pattern in sensors over the left hemisphere, i.e. contralateral to 
the stimulation site (Fig. 10a, middle panel). For lips 
stimulation, the magnetic field exhibits two dipolar patterns, 
each expanding across a sub-array of sensors covering one 
hemisphere and indicating the presence of bilateral neural 
generators (Fig. 10b, middle panel). 

SAFFIRE was applied with 5 time samples via non-
coherent integration (i.e. 2 samples before and after the 
selected latency), and a model error parameter 0.075zσ = . 
The noise correlation was estimated from pre-stimulus 
segments over 1.5− s to 0.2− s. Estimated RMS noise was 
12.0 fT (hand), 12.6 fT (lips), and 18.0 fT (combined). 

For hand stimulation, SAFFIRE retrieves a dominant source 
in the hand primary somatosensory cortex (S1), on the 
contralateral (left) postcentral gyrus (upper part of its anterior 
wall), which most likely indicates activity in proximal 
neuronal populations from hand areas 3b and 1 (Fig. 10a, right 
panel).  For lips stimulation, SAFFIRE retrieves bilateral 
activations within regions of the postcentral gyrus of the left 
and right hemispheres (Fig. 10b, right panel). Relative to the 
hand S1, the estimated left source evoked by lips stimulation 
was shifted laterally (3.6 mm), anteriorly (3.2 mm), and 
inferiorly (24 mm). These results agree with the somatotopic 
organization of the primary somatosensory cortex [29], with 
lips structures represented near the base of the postcentral 
gyrus with respect to the hand S1. For each of the stimulation 
conditions, MNE provides smoother solutions with spatial 
peaks located in regions proximal to the sources retrieved by 
SAFFIRE. MNE also retrieves spurious activity at the 
superficial midline. 

For the "test" dataset, SAFFIRE reconstructed each of the 
three sources with good accuracy, reflected in the maximum 
difference relative to the independent localizations of only one 
grid point (Fig. 10c). This performance was achieved despite 
three adverse factors: simultaneous activity of more sources, 
higher noise level in the compound data, and the fact that the 
leadfield matrix was computed for the sensor setup of one 

 
Fig. 9.  FOCUSS results for two proximal sources are shown at 50% (a) and 
20% (b) clipping thresholds.  
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stimulation condition, thus incorporating additional error due 
to different head positioning between the recordings (mean 
distance of 4.5 mm between corresponding localization coils 
in the two recordings). By comparison, MNE pinpoints the 
right hemisphere source but cannot separate the two sources in 
the post-central gyrus of the left hemisphere, retrieving only 
one spatial peak in that region.  

Note that the version of FOCUSS tested in this study failed 
to provide a meaningful solution for this more complex source 
configuration scenario, and so did the simplified version of 
SAFFIRE (i.e. as given in (5)) which does not address the 
presence of modeling errors. In practice, for current density 
methods like MNE, nMNE or sLORETA the modeling errors 
may not constitute a significant separate issue due to the 
inherent smoothness of the solution. However, this result 
demonstrates that iterative algorithms aiming to provide focal 
solutions are sensitive to forward problem approximations, 
and underlines the necessity to address the specific role of this 
factor in studies intended to assess their performance. 

V. DISCUSSION 
This study proposes a new iterative scheme for MEG source 

reconstruction, seeking to address the sensitivity of previously 
proposed methods to initialization and regularization strategy, 
as well as to uncertainties in forward problem formulation that 
can affect performance in real applications. SAFFIRE is 
derived as a recursive implementation of a MMSE estimator 
and uses a MF initialization. The MF provides low initial 

resolution which favors convergence into the correct sparse 
solution. While MNE, nMNE, and sLORETA (employed by 
SSLOFO [25]) require regularized solutions to solve the ill-
conditioned inverse problem, the MF approach eliminates this 
need and requires only an energy normalization procedure 
which must be an integral part of the iterative algorithm. 

SAFFIRE operates in an affine-transformed space where 
norm variations are removed. While for non-iterative methods 
(e.g. nMNE) such an equalization approach does not suffice to 
correct for localization bias throughout the source space 
[5,7,8], our results indicate that leadfield normalization 
appears to be an effective general solution for SAFFIRE. 

Being derived from a MMSE estimator, SAFFIRE naturally 
contains a noise term that serves as regularization of the 
solution, thus eliminating the need to solve a dual 
optimization problem at each iteration. The majority of MEG 
applications rely on evoked potential paradigms and allow for 
estimation of the noise correlation from a noise-only temporal 
window in the pre-stimulus segment. It should be stressed, 
however, that a regularization scheme evaluated with 
simulation studies which are free of leadfield estimation 
errors, does not necessarily remain optimal in real 
applications, which are inherently susceptible to forward 
problem uncertainties arising from approximations of the 
volume conductor and imperfect co-registration. To address 
this important issue, we showed that a separate, signal-
dependent regularization term (which adapts based on the 
update of the source estimate) can be derived within the 
MMSE framework. The impact of this regularization term is 

 
Fig. 10.  SAFFIRE performance on MEG data from tactile stimulation of (a) hand, (b) lips, and (c) compound "test" data after summation of the independent 
responses. SAFFIRE results are shown with yellow square symbols.  MNE results are shown with red dots.  
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readily adjusted via a model-error parameter, whose values in 
a relatively narrow range were observed to ensure good 
performance for real applications. 

Non-coherent integration can be used as part of SAFFIRE 
to increase the resolution of the final solution as well as 
robustness to additive noise. Non-coherent integration 
assumes stationarity of active brain sources over an interval of 
time. Such an assumption may not be realistic over long 
temporal windows. However, even 3-5 time samples (given a 
reasonable sampling rate of the data) can provide superior 
results (supported by the examples presented in this study) 
that recommend it as an integral part of the algorithm.   

Although far from being exhaustive, the evaluation results 
described in this study indicate that SAFFIRE could be a 
promising method for source estimation in MEG. Other 
studies [25,26] have also proposed alternative ways to 
improve the performance of this class of iterative algorithms. 
In particular, SSLOFO [25] proposed the use of sLORETA 
[10] as the initialization step. Since sLORETA also provides a 
spatially smooth initial solution, the overall effects of such an 
initialization could be similar in many scenarios to those 
observed in our study for MF initialization, although a 
definitive answer await conclusions of future studies. 
SSLOFO, like FOCUSS, is more sensitive than SAFFIRE to 
the choice of several parameters, and the effect of some of 
them on overall performance has yet to be fully characterized. 
Particularly, SSLOFO involves shrinking of the number of 
grid points at each iteration, requiring a definition of the shape 
and size of the regions of interest, which may need to be 
application specific [25]. The sensitivity to this choice and the 
regularization strategy may explain why for single sources in 
the presence of noise there is a slight deterioration in accuracy 
after convergence with respect to initial localization accuracy 
[25,26], or performance discrepancies reported in the original 
study [25] and a subsequent study that used it as a benchmark 
[26]. Thus, comparative evaluations between SAFFIRE and 
SSLOFO with source configurations replicating realistic 
scenarios, as well as evaluation of the accuracy and stability of 
the solutions at different SNRs and in the presence of forward 
problem uncertainties await future studies. 
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