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ABSTRACT 

 

Spectrally-shaped random FM (RFM) waveforms have 

recently been shown to greatly expand radar design freedom, 

provide good spectral containment, and are amenable to 

physical implementation in high-power transmitters. A key 

design factor involves ways of enforcing a Gaussian spectral 

density via optimization, which leads to a Gaussian 

autocorrelation that theoretically has no range sidelobes. 

However, the gradual roll-off for this spectrum means that, 

for fixed transmitter bandwidth, the passband component 

must be narrower than for classical linear FM (LFM), thereby 

trading achievable range resolution. Here we examine the 

impact of using the family of super-Gaussian spectra to serve 

as alternative design templates. Using the temporal template 

error (TTE) RFM design scheme to generate physical 

waveforms in this context, radar performance trade-offs are 

examined to assess practical viability. 

 

Index Terms—radar waveform agility, noise radar 

 

1. INTRODUCTION 

 

The class of noise radar waveforms, in which the transmitted 

signal is literally random noise, has been around for quite 

some time and received considerable attention (e.g. [1-4]). 

Just as old, but less widely known, is the sub-class of 

frequency modulated (FM) noise, or random FM (RFM), [5-

8]. Where the broad class is limited to short-range 

applications since true noise exhibits significant amplitude 

modulation (AM), the latter sub-class realizes waveforms that 

are constant amplitude and continuous, thereby enabling use 

in high-power transmitters and long-range applications. 

Early work on RFM was driven by white noise, realizing 

spectral densities whose associated autocorrelations tend to 

have high range sidelobes (see [9]). It has recently been 

shown [10,11] that imposing structure to RFM can provide a 

Gaussian spectral density in the expectation (over the set of 

unique waveforms), yielding a per-waveform peak sidelobe 

level (PSL) of ~10 log10 (B3dBT) after expectation, for 3-dB 

bandwidth B3dB and pulse width T. Better sidelobe 

performance can be achieved by optimizing each waveform 

to match the desired spectrum density (e.g. [12-17]). 

Another factor for all nonrepeating waveforms that is 

distinct from classical radar operation arises when 

performing slow-time (Doppler or cross-range) processing 

after pulse compression. For L pulses in the coherent 

processing interval (CPI), RFM waveforms incur an 

additional 10 log10 (L) factor of range sidelobe suppression 

due to incoherent averaging, while the autocorrelation 

mainlobes still combine coherently for SNR gain. There is a 

range sidelobe modulation (RSM) of the clutter that also 

arises during slow-time processing, though a variety of 

methods have been developed to address it [12,18]. 

Here our focus is on maximizing usage of fixed spectral 

content, such as imposed by the transmitter or a regulatory 

mask [19]. The LFM waveform represents the practical 

extreme in spectral containment, since it approximates the 

theoretical (yet physically unachievable) rectangular shape, 

though it’s repeated use over the CPI results in a PSL of about 

13 dB. In contrast, RFM waveform sets comprising 10,000 

unique waveforms have been experimentally demonstrated in 

hardware (loopback and open-air) to achieve PSL values 

better than 70 dB, though the spectral footprint can be triple 

that of LFM to provide the same 3-dB bandwidth. 

To explore a middle ground between these extremes, we 

examine the use of super-Gaussian distributions [20] as 

spectral density templates, thus enabling tuning of the degree 

of sidelobe roll-off. We evaluate the resulting performance 

trade-off and then incorporate this tunable structure into a 

particular RFM waveform optimization approach that has 

yielded good results in experimental measurements. The use 

of FM-appropriate optimal mismatched filtering (MMF) is 

also shown to partially compensate for this trade-off.  

 

2. SUPER-GAUSSIAN SPECTRAL TEMPLATES 

 

The super-Gaussian function is well known in optics [20] as 

a way to control the shape of a light beam.  It is defined as  
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where   and n are real and positive, A is an arbitrary real 

constant, and the function is centered at 𝛾. Setting 𝑛 = 2 

realizes the standard Gaussian distribution, of which (1) is a 

particular generalization. Fig. 1 illustrates peak-normalized 

versions of (1) for different values of n and for 𝛾 = 0, with 

the value of   in each case set such that the four functions 

cross at a point 35 dB below the peak, which corresponds to 

a normalized frequency of ±0.4. For [2, 4, 16, 100]n = , the  
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Fig. 1. Super-Gaussian spectral density templates for different n in 

(1), where fs is the sample rate 

 
Fig. 2. Autocorrelations for the spectral density templates in Fig. 1 

 

corresponding values of   are approximately 2 ,[2 10 −=   
3 8 41]3 2, 050 10 1,1 − − −   . 

As n increases in Fig. 1, the passband becomes flatter and 

the spectral roll-off steeper. For a radar transmitter with some 

maximum operational bandwidth, this trend means the 3-dB 

waveform bandwidth can be greater, thus achieving finer 

range resolution. Moreover, high-power transmitters impart 

both linear and nonlinear effects upon a waveform, with the 

latter mainly due to the high-power amplifier (HPA) being 

operated in saturation. The constant-amplitude and phase-

continuous structure of FM is well-suited to this application, 

since the instantaneous frequency is only a single value, thus 

preventing intermodulation effects in the HPA. However, 

excessive roll-off also produces a filtering effect by the linear 

part of the transmitter, thereby inducing a deviation from FM 

and, somewhat counterintuitively, a spectral regrowth effect 

due to HPA intermodulation that can violate regulatory 

masks. It is for this reason that polyphase codes are not 

directly implemented at high power (see [21]). 

A useful metric in this context is spectral efficiency of 

the waveform design template. Noting that design is 

performed on a discretized version of the FM waveform, the 

total design bandwidth is defined by sampling rate fs. The 

portion allocated to waveform design thus defines spectral 

efficiency as 

eff 3dB sB f = .                                (2) 

For the n = 2, 4, 16, and 100 templates in Fig. 1, the spectral 

efficiencies are approximately 0.23, 0.43, 0.69, and 0.80, 

respectively. These values are also the inverse of “over-

sampling” factor K when performing optimization of 

discretized FM waveforms [12-17]. 

It is useful to also consider the waveform autocorrelation 

(i.e. matched filter response) associated with each spectral 

density via inverse Fourier transform. Fig. 2 illustrates these 

for the same cases as Fig. 1. The differences in B3dB, and thus 

spectral efficiency, is clearly evident in Fig. 2 via the change 

in mainlobe width. However, since bandwidth can always 

scale, the more significant distinction arises from the change 

in sidelobe structure, with increasing n also corresponding to 

higher sidelobes. In fact, as n →  the autocorrelation (and 

PSL) essentially becomes the same as for LFM. 

An important note here pertains to incoherent sidelobe 

averaging during slow-time processing. Because they 

correspond to a desired spectral template, RFM waveforms 

designed using cases like n = 4, 16, or 100 (or anything not 

strictly Gaussian) retain template-dependent range sidelobes 

that persist (i.e. do not average out). These persistent 

sidelobes require further consideration on receive. 

 

2. RFM WAVEFORM DESIGN: TTE 

 

To understand the practical implications of super-Gaussian 

spectral templates for RFM waveform design, we shall use 

the temporal template error (TTE) design approach recently 

developed in [15], which was demonstrated experimentally 

in loopback and with open-air measurements. The following 

serves as a brief review of TTE design. 

Let ( )S f  be the frequency representation of FM 

waveform ( ),s t with the former defined as 

 exp( ( ))( ) ( )S jf B f f= ,  (3) 

where ( )B f  is a positive, real-valued spectral template and 

( )f  is an arbitrary phase function. Therefore 

 ( ) 1 ( exp) (( ) )s f jB ft −= ,  (4) 

for inverse Fourier transform 1{ }.− •  Since ( )s t  is a pulsed 

FM radar waveform it needs to possess finite time support 

and be constant amplitude. However, spectral shaping of an 

arbitrary phase function via (4) achieves neither requirement. 

The TTE cost function [15] measures how far ( )s t  in (4) 

is from meeting these pulsed and constant amplitude 

requirements by posing the squared-error metric  
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where ( )u t  is the pulse energy envelope (or temporal 

template) that is real and positive on interval [0, ]T  and zero 

otherwise. The integral in (5) only extends over this interval 

even though some small amount of ( )s t  will inevitably exist 



outside [0, ]T  after optimization. However, it is not necessary 

to extend the integral over ( , )− +  as long as ( )u t  and ( )s t  

are such that  
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Equation (6) defines ( )u t such that its total energy is confined 

to the interval [0, ]T  AND is equivalent to the total energy of 
2( )s t . Given these conditions on ( )u t , (5) can be equal to 

zero if and only if all the energy of 2( )s t is likewise 

concentrated in the interval [0,T], thus rendering integration 

from ( , )−   in (5) unnecessary. Since ( )s t  is defined in the 

frequency domain via (4), there is not a direct way to set the 

right-hand side of (6), though its frequency energy can be set 

through ( )B f  and Parseval’s theorem [22], such that 
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The goal of TTE optimization is thus to find phase 

function ( )f  whereby (5) is minimized given some random 

initialization. See [15] regarding proper discretization of (3)-

(5) to ensure physically realizable waveforms. The design 

process is summarized in Table I, where   is the length 

(2M − 1) discretized version of ( )f , s  and u  are length-M 

discretized versions of ( )s t  and ( )u t , respectively, and 

3dB eff 3dB/( ) ( )B T B T KM  ==  ensures spectral roll-off is 

sufficiently captured to provide a high-fidelity representation 

of desired FM structure. Consequently, we can write (5) as 
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for  the Hadamard product, *( )•  denoting complex 

conjugation, and the length (2M − 1) discretization of (3) is  

 f exp( )j=s b  , (11) 

where b  is the discretization of ( )B f . It is shown in [15] 

that the gradient of (8) with respect to   is 

  ( ) * *
f( 4) HJ  = =  −

 
g s A s s u s  ,  (12) 

where { } •  extracts the imaginary part of the argument and 
HA  applies the (2 1) (2 1)M M−  −  discrete Fourier 

transform (DFT). Also note that (12) corrects conjugation and 

scale errors in [15]. 

The particular implementation in Table I is called heavy 

ball gradient descent, where simple backtracking sets the step 

size µ, and parameters 𝑔min, 𝛽, up , down , and 𝑐 are 

specific to the particular gradient method [23,24]. Steps 3-13 

comprise the gradient descent portion, while steps 14-16 

account for the fact that optimization does not provide a phase 

function that perfectly matches the temporal template (i.e. (5) 

does not become identically zero). Consequently, (4) is 

applied to map the final optimized phase function into a 

discretized waveform (step 14), it is truncated to M samples 

(step 15), and then projected onto the constant-amplitude 

temporal template (step 16). This projection inevitably results 

in some small deviation from the desired spectrum, but 

optimization ensures it is negligible [15]. 

 

TABLE I: TTE OPTIMIZATION OF RFM WAVEFORMS 

1:  Initialize: 𝑀, 𝛟0, 𝐮, 𝐛, 𝐪0 = 𝟎𝑁×1 , 𝑔min,  𝛽, 𝜇, 𝜌up,

𝜌down, 𝑐, and set 𝑖 = 1 

2: Repeat 

3:       Evaluate: 𝐽(𝛟𝑖−1) and ∇𝛟𝐽(𝛟𝑖−1) via (8) and (12) 

4:        𝐪𝑖 = −∇𝛟𝐽(𝛟𝑖−1) + 𝛽𝐪𝑖−1 

5:        If (∇𝛟𝐽(𝛟𝑖−1))
𝑇

𝐪𝑖 ≥ 𝟎 

6:              𝐪𝑖 = −∇𝛟𝐽(𝛟𝑖−1) 

7:       End (If) 

8: 
      While 𝐽(𝛟𝑖−1 + 𝜇𝐪𝑖) > 𝐽𝑝(𝛟𝑖−1) +

                                                            𝑐𝜇 (∇𝛟𝐽(𝛟𝑖−1))
𝑇

𝐪𝑖 

9:              𝜇 = 𝜌down  𝜇 

10:       End (While) 

11:        𝛟𝑖 = 𝛟𝑖−1 + 𝜇𝐪𝑖 ,    𝜇 = 𝜌up 𝜇 

12:        𝑖 = 𝑖 + 1 

13: Until 𝑖 = 𝐼 or ‖∇𝛟𝐽(𝛟𝑖)‖ < 𝑔min 

14: 𝒔̃ = 𝐀(𝐛 ⊙exp(j 𝛟)) 

15: 𝐬̂ = [𝒔̃𝟏  𝒔̃𝟐 ⋯   𝒔̃𝑀]𝑇 

16: 𝐬 = 𝐮 ⊙ exp(𝑗∠𝐬̂)  

 

4. TTE DESIGN WITH SUPER-GAUSSIAN SPECTRA 

 

To assess how well RFM waveforms can conform to super-

Gaussian spectra, L = 1000 independent TTE waveforms 

were optimized for each case in Fig. 1. Discretized waveform 

length was set to M = 1024 samples, providing a waveform 

dimensionality trade-space via eff 3dB .B TM =  Each phase 

function   was initialized with (2 1)M −  independent draws 

from a uniform distribution on [ , ] − + . The gradient-

descent parameters were 𝑔min = 10−8, 𝜇0 = 10−4, 𝛽 = .98, 

up 1.01, = up 0.9, =  and 𝑐 = 10−2.  Regardless of spectral 

template, each waveform optimization took about 3000 to 

4000 iterations to reach the stopping criteria in step 13. 

Fig. 3 shows that the average power spectra (over each 

1000-waveform set) matches its template quite well. Here it 

is seen that the −35 dB cross-over point was chosen because 

that is the regime where template deviation tends to occur 

(based on previous observations), due to the spectrum aspect 

associated with the rectangular pulse envelope (i.e. a sinc 

function). Fig. 4 shows coherent slow-time autocorrelation 

combinations for each unique waveform set. Sidelobes well 

outside each mainlobe region are truly random, and thus 

combine incoherently to reach PSL values that are all at about 

−60 dB; close to a 30 dB improvement over the root-mean-

square (RMS) autocorrelation for each case (dashed traces). 



The difference between these spectral templates arises in 

and around each autocorrelation mainlobe (as expected from 

Fig. 2). Per the Fig. 4 inset, the n = 16 and 100 cases realize 

the narrowest mainlobe (at least for the top 10 dB or so), and 

exhibit a more gradual sidelobe roll-off thereafter (sometimes 

called shoulder lobes in this context). The n = 4 case has a 

similar result, though far less pronounced. Indeed, the value 

of 3dBB T  is determined to be 240, 443, 703, and 800 for n = 

2, 4, 16, and 100, respectively. Thus, the n = 100 case realizes 

a physical FM waveform having 3dBB that is more than triple 

that of the n = 2 case for the same T. 

 
Fig. 3. Mean power spectrum for each unique set of 1000 TTE-

optimized waveforms compared to its intended spectral template 

 
Fig. 4. Coherently combined (in slow-time) autocorrelations for 

each unique set of 1000 TTE-optimized waveforms, along with 

RMS autocorrelation responses (dashed traces) 

 

5. SUPER-GAUSSIAN SIDELOBE MITIGATION 

 

From a radar detection/false-alarm standpoint, shoulder lobes 

near the mainlobe (like Fig. 4) are not that detrimental. That 

said, there are methods to compensate, thereby further 

improving sensing performance. For instance, sidelobes for 

standard LFM are easily suppressed using amplitude 

windowing of the waveform’s matched filter [25], which 

amounts to receive-only spectral shaping, though this simple 

MMF approach does sacrifice range resolution and incurs 

mismatch loss. Alternatively, a least-squares optimal MMF 

[26-28] has recently been developed for FM waveforms 

[12,29] and can be used to address these persistent sidelobes. 
Per [12], an optimal MMF for the th  unique RFM 

waveform s  can be determined via 
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is an ( 1)M M M+ −   banded Toeplitz matrix,  I is a M M

scaled identity matrix to prevent ill-conditioning, and d is a 

length ( 1)M M+ −  vector containing the desired filter 

response. The MMF has length M M  to provide more 

degrees of freedom for sidelobe suppression at the expense of 

greater sidelobe extent in range. Here d was chosen to be the 

autocorrelation corresponding to a Gaussian spectrum with 

the same 3-dB bandwidth as the respective waveform’s 

spectrum, such that the MMF retains the same range 

resolution while ideally removing the shoulder sidelobes. An 

MMF was separately determined for each RFM waveform in 

each of the four sets. The resulting filter responses in Fig. 5 

demonstrate roughly 10 dB further sidelobe suppression for 

both RMS and coherent combining further away from the 

mainlobe (compared to Fig. 4). More modest improvement is 

observed for shoulder lobe suppression, with the n = 100 case 

realizing about 7 dB suppression for the closest sidelobe.  

 
Fig. 5. Coherently combined (in slow-time) MMF responses for 

each unique set of 1000 TTE-optimized waveforms, along with 

RMS responses (dashed traces) 

 

6. CONCLUSIONS 

 

The key advantage of the Gaussian spectral template is that it 

has no persistent sidelobes. The super-Gaussian cases trade 

some degree of persistent shoulder lobes for better spectral 

efficiency (sharper roll-off), which translates into finer range 

resolution. These shoulder lobes can be partially suppressed 

via optimized mismatched filtering.  
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