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I.  INTRODUCTION 

The term Waveform Diversity (WD) [1-3] was coined by Dr. Michael C. Wicks of the Air 

Force Research Laboratory (AFRL) Sensors Directorate in 2002 [4]. He raised the notion of 

jointly pursuing a long-term roadmap for research, development, and manufacturing in the broad 

area of WD with representatives from the U.S. Army (Dr. Robert W. McMillan) and the U.S. 

Navy (Dr. Eric L. Mokole). Because this group felt that technology was sufficiently mature for 

extending and implementing the waveform research of the preceding 60 years across all pertinent 

scientific and engineering disciplines, they began a concerted effort to foster programs in this 

area. The main goals of the ensuing research have been to address a) the ever-increasing 

competition for radar spectrum and encroachment into what have historically been radar bands 

[5] and b) to leverage the rapid advances that are being made in digital signal generation (e.g. see 

[6-8]) and adaptive signal processing. The purpose of this tutorial is to provide the reader with the 

context in which WD has arisen, a sense of the tremendous breadth of the subject, and a sufficient 

starting point from which to explore WD further. 

A good point of reference for a survey of waveform diversity (WD) is to state the IEEE 

Standard 686-2008 definition [9], which reads as follows. 

“Waveform Diversity: Optimization (possibly in a dynamically adaptive manner) of the 

radar waveform to maximize performance according to particular scenarios and tasks. 

May also jointly exploit other domains, including the antenna radiation pattern (both on 

transmit and receive), time domain, frequency domain, coding domain and polarization 

domain.”  

The pending update to this definition adds the following: 

“Also used to denote adaptive receive processing that is applicable to such waveforms. 

See also: waveform; pulse compression; ambiguity function.” 
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This rather broad definition provides the general sense that WD can involve the modulation 

and/or exploitation of any aspect of the radar signal structure, both on transmit and receive. 

Further, the design, processing, and evaluation of the waveform clearly play a key role. 

Fundamentally, a waveform comprises the modulation of an emitted signal such that, via 

appropriate filtering of the subsequent echoes at the receiver, desired aspects of the illuminated 

environment can be accurately measured [10]. Most often the radar itself generates this 

waveform, though there has been considerable work on passive radar that exploits the waveforms 

emitted by other spectrum users (e.g. FM radio) [11-14]. Generally speaking, research in WD can 

be categorized according to the areas delineated in Table I-1, though it is not uncommon for two 

or more categories to be considered jointly.  

 

Table I-1:  General WD research categories 

Waveform design/optimization 

Interference rejection/avoidance 

Multi-dimensional waveforms and processing 

Bio-mimetic/bio-inspired operation 

Multi-function operation 

RF spectrum utilization 

 

Diverse waveforms have been present in nature well before the information and 

technological explosions in the latter part of the 20
th
 century. For example, echo-locating 

mammals (bats, dolphins, whales) have been exploiting WD for over 50 million years [15,16]. 

Recent technology has permitted replication and characterization of naturally occurring 

waveforms from such creatures [17], and this newly acquired understanding is being used to 

improve methods in man-made sensing systems like radar and sonar, which have been in 

existence for roughly a century. For example, bats emit dynamically adaptive acoustic waveforms 

that enable autonomous orientation, detection, localization, classification, discrimination, pursuit, 

and capture of prey. Researchers have shown that bats use a set of different waveforms (constant 

frequency, linear frequency modulation, hyperbolic frequency modulation, multiple harmonics, 

and possibly other nonlinear frequency modulation) to meet biological imperatives [18-20]. These 



4 

investigations suggest that a combination of flight profile, WD, and multi-algorithmic processing 

are crucially important factors in a bat’s success. Likewise, it has been found that dolphins vary 

the nature of sequential waveforms to enable discrimination in bubble-rich environments [21-23] 

and can generally perform sensing tasks far better than one might expect given their “mediocre 

equipment” [24]. In addition, researchers are trying to characterize how humpback whales use 

very loud acoustic emissions to trap prey within cylindrical walls of bubbles (bubble nets) of their 

creation [25,26]. 

What is currently called WD can be thought to have originated conceptually in 1933, when 

Edwin Armstrong invented frequency-modulated (FM) radio to improve audio signals conveyed 

via radio by controlling the noise static generated by electrical equipment and the earth's 

atmosphere. This invention led to the development of theoretical and experimental techniques for 

FM radar applications [27]. Prior to the 1990s, WD activities occurred as parts of other 

investigations such as the high-power microwave efforts of the 1950s and 1960s, waveform 

design for clutter rejection, electromagnetic compatibility, and spread spectrum techniques for 

communication and radar systems. 

For traditional high-power radar, Klauder, et al [28] published a seminal paper on linear-

frequency-modulation (LFM) radar, which was followed by investigations on optimum transmit 

waveforms (e.g. Barker, polyphase, and complementary codes) to tailor range sidelobes without 

suffering mismatch loss or mainlobe broadening [29-42]. In the 1970s and 1980s, new theoretical 

waveform designs were developed to improve the detection performance of radar [43]. 

Specifically, sub-complementary sequences and a new class of polyphase codes were found to 

improve pulse compression [44,45], and studies using Costas codes as detection waveforms 

yielded nearly ideal properties of the range-Doppler ambiguity function [46]. 

Since these seminal contributions, research in WD has truly experienced what Dr. Joe 

Guerci, in his 2014 IEEE Radar Conference keynote address, articulated as a “Cambrian 

explosion” [47]. Given that, a disclaimer is in order: this survey is intended to provide context 
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(something of a “phylum/genus/species” cataloguing if you will) for how the myriad forms of 

WD may be applicable to radar. Of course, despite our best efforts it is quite possible that we 

have missed or insufficiently detailed some salient features. Hopefully, however, this tutorial 

serves as an adequate starting point for further, deeper investigations into WD.  

The next section serves an introduction to the fundamentals of radar waveforms and 

filtering, along with discussion of pertinent practical considerations. Section III then provides an 

overview of the different areas of research in radar waveform diversity, including waveform 

optimization and environmentally adaptive waveforms, MIMO and distributed aperture radar, 

waveform agility, and polarization diversity. 

II.  RADAR PULSE COMPRESSION 

Before delving into the various topics with WD, it is first instructive to consider the 

essentials of radar pulse compression, which plays a pivotal role in WD. The concept of pulse 

compression was developed independently in Germany, Britain, and the US during World War II 

to address the problem of how to attain high range resolution, such as provided by a short pulse, 

while ensuring sufficient “energy on target” to provide detectable signal-to-noise ratio (SNR) in 

the receiver despite the peak power limitation on transmit [28]. The pulse compression solution 

entails the modulation of a much longer pulse that, after application of appropriate receive 

filtering to the reflected version of the waveform (for now assume a point scatterer), yields a 

response (Fig. II-1) having a mainlobe with resolution commensurate with what the short pulse 

would have provided, along with the addition of range sidelobes. Specifically, the range 

resolution (mainlobe width) is inversely proportional to the waveform bandwidth. 
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Fig. II-1. Pulse compression response to a stationary point scatterer at delay = 0 

 

Much of the work in this area [10] involves the design of the waveform (the modulation 

scheme) and the subsequent receive filtering to suppress the range sidelobes, while minimizing 

degradation to the mainlobe in term of range resolution (widening of the mainlobe) and SNR loss 

at the mainlobe peak. Sufficient radial motion also induces a Doppler shift that must likewise be 

considered. 

To illustrate why it is desirable to minimize the sidelobes, consider the result when two point 

targets have a range separation that is less than the pulsewidth T and whose received powers are 

considerably different. Figure II-2 depicts the matched filter response to an LFM waveform used 

to illuminate these two point targets. Given that standard radar detection methods [48] rely on 

how much a prospective target stands out relative to the immediate surroundings, it is likely that 

the smaller target would not be detectable due to the sidelobes induced by the pulse compression 

response to the larger target.   
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Fig. II-2. Pulse compression response to two nearby targets with disparate receive powers 

 

This section explains the general principles of radar pulse compression, the classes of 

waveforms that are used, how receive filtering is performed, and describes the metrics that are 

employed to evaluate the goodness of a waveform/filter pair. Practical considerations for pulse 

compression are also explained. These general principles establish the operational sensing 

framework from which the larger study of waveform diversity has emerged. 

 

A) Pulsed vs CW 

It is quite common for a waveform to be modulated repeatedly onto multiple segments of the 

transmitted signal so that the echoes from these segments can be combined on receive (usually 

coherently) for enhanced gain and as a means to enable discrimination in the Doppler domain. If 

the transmitted segments are interleaved with the receive intervals, this scheme is referred to as a 

pulsed mode, where the pulsewidth T is less than the pulse repetition interval (PRI) denoted TPRI 

and PRI/T T  is called the duty cycle. Due to the wide variety of radar applications and 

implementations, the duty cycle could be as low as 0.1% or as high as 25% or more [5]. For a 

pulsed mode, PRI1/ T  is the pulse repetition frequency (PRF).  
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In contrast to pulsed operation, a continuous wave (CW) radar is one in which the emission 

of waveform-modulated segments does not alternate with the receive operation, but instead 

performs transmission and reception simultaneously. Frequency modulated CW (FMCW) is the 

most common form of CW in use, where the frequency is swept as a function of time. FMCW is 

primarily used by high frequency (HF) over-the-horizon (OTH) radars [49], as well as for short-

range applications such as automotive radar [50] and is being explored as a means of on-board 

sense-and-avoid for small unmanned air systems (UAS) that require low size, weight, and power 

(SWaP) [51].  

The CW mode can be thought of as a special case of pulsed operation in which the duty 

cycle is 100%. As such, the different types of waveforms are generally applicable to either mode. 

Pulsed operation is far more prevalent than CW in modern radar systems. Therefore, in the 

following we shall use terminology appropriate to pulsed operation, with the understanding that 

the same is generally applicable to each repeated interval of a CW mode. 

 

B) Waveform Classes 

There exist myriad varieties of waveforms, though they can generally be sorted into just a 

few categories. These categories are frequency modulated (FM) waveforms, phase codes, 

frequency codes, and random noise waveforms. While arguably not a separate class of waveform, 

one may also consider various forms of modulation across a set of pulses (to be coherently 

combined on receive) as a waveform attribute as well (further discussed in Sect. II-E). Of these 

categories, the most commonly used in operational radar systems are FM waveforms and the 

subset of phase codes denoted as binary codes. 

Of the frequency modulated (FM) waveforms, the most prevalent is linear FM (LFM) [10, 

Chap. 4] because it is easy to implement in hardware, has attractive Doppler properties (see Sect. 

II-D), and for wideband operation is amenable to computationally efficient stretch processing 
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[52] on receive. The complex baseband representation of an arbitrary FM waveform of 

pulsewidth T (normalized to unit energy) is 

 FM

1
( ) exp ( )s t j t

T
 ,                                                (II-B1) 

where ( )t  is the instantaneous phase, and its scaled derivative  

1 ( )
( )

2

d t
f t

dt




                                                        (II-B2) 

is the instantaneous frequency.  

The LFM waveform LFM ( )s t , commonly referred to as a chirp, thus has the phase function 

2
LFM ( ) /t Bt T     for   0 t T  ,                                      (II-B3) 

where B closely approximates the 3 dB power bandwidth for practical waveforms, and the   

indicates either an up-chirp (increasing frequency) or down-chirp (decreasing frequency) [10, 

Chap. 4]. The product BT is referred to as the time-bandwidth product, which is also the coherent 

processing gain (or compression ratio) of the waveform when applying the matched filter (see 

Sect. II-C).  Upon substituting (II-B3) into (II-B2), the instantaneous frequency for LFM is found 

to be LFM ( ) /f t Bt T  , which is clearly a linear function of frequency. Taking another 

derivative yields the rate at which the frequency changes with time, otherwise known as the chirp 

rate, and is the constant /B T  for LFM. In other words, LFM linearly sweeps over the 

bandwidth B during the pulsewidth T. 

The primary limitation of LFM is the high range sidelobes it produces (depicted in Fig. II-1), 

the largest of which is generally only about 13 dB below the mainlobe.  One way in which these 

sidelobes can be reduced is by applying an amplitude taper as 

Tapered-LFM LFM( ) ( ) ( )s t a t s t ,                                             (II-B4) 

where 0 ( ) 1a t   for 0 t T   is commonly one of the window functions otherwise used for 

digital filter design or antenna beampattern design (e.g. Taylor, Hamming, etc.) [10, Chap. 4]. 
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The trade-off for sidelobe reduction in this manner is a broadening of the mainlobe (degraded 

range resolution) and SNR loss relative to the absence of tapering. The mainlobe is broadened 

because the amplitude weighting of an LFM serves to produce a “rounded off” spectral content, 

as opposed to the relatively flat LFM spectrum, which in turn reduces the 3 dB bandwidth. Since 

the LFM waveform defined in (II-B1) and (II-B3) has unit energy, the loss due to amplitude 

tapering on transmit can be determined as  

2
transmit taper 10

0

SNR Loss 10log ( )

T

a t dt
 

   
  
 ,                                 (II-B5) 

noting that ( )a t  is a real function and bounded between 0 and 1. 

For example, Fig. II-B1 shows the pulse compression response for a square-root Hamming-

weighted LFM, where the largest sidelobe has been reduced to just below 40 dB, with an SNR 

loss of 2.7 dB and a resolution degradation (increase) by a factor of 1.5 (measured 3 dB below the 

peak of the mainlobe). Such amplitude control also tends to limit operation to lower-power radar 

applications since a high-power transmitter generally operates in saturation, thus necessitating the 

emission of a constant amplitude waveform [53, Chap. 10]. An alternative that alleviates the 

transmitter limitation is to taper only at the receive filter, which in this case becomes a form of 

mismatched filter (see Sect. II-H), though resolution degradation and SNR loss still occur to some 

degree. 
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Fig. II-3. Pulse compression response for LFM (black) and square-root-Hamming weighted 

LFM (red) 

 

Besides LFM, many varieties of nonlinear FM (NLFM) have also been developed [53-58]. 

The general premise behind the development of NLFM waveforms is that the inherent spectral 

shaping performed by amplitude tapering in (II-B4) can also be achieved via determination of a 

time-varying chirp rate function, which avoids the need for amplitude control via tapering (see 

Fig. II-B2). Put another way, the instantaneous frequency is a nonlinear function of time (hence 

the name) or, comparing with (II-B3), the instantaneous phase is no longer a quadratic function of 

time. As such, NLFM can reap the sidelobe reduction benefit of tapered LFM without the 

associated transmitter limitations and SNR loss discussed above, though NLFM does still incur 

resolution degradation from the spectral shaping (see Figs. II-B3 and II-B4).   

 



12 

    
Fig. II-B2. Time-frequency relationship for an LFM waveform (left) and a generic NLFM 

waveform (right) 

 

    
Fig. II-B3. Power spectral densities (PSDs) of LFM and NLFM waveforms with the same 

99% power bandwidth (but different 3 dB power bandwidths) 
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Fig. II-B4. Pulse compression responses for LFM and NLFM waveforms 

 

Amplitude tapered LFM waveforms and NLFM waveforms are generally designed such that 

their overall time-frequency response achieves a desired power spectral density (PSD), due to the 

Fourier relationship between PSD and the waveform autocorrelation (see Sect. II-C). For NLFM 

design the stationary phase principle was proposed [55], which says the spectral density at a 

given frequency is inversely related to the rate of frequency change (chirp rate) at that frequency. 

Thus one can determine the phase function in (II-B1) that provides a PSD whose corresponding 

autocorrelation has low sidelobes (known to occur when the spectrum tapers towards the band 

edges [59]). For example, the Fourier transform of a Gaussian shape is another Gaussian. As 

such, if the PSD is designed to be Gaussian, the associated autocorrelation would, in theory, 

exhibit a mainlobe that rolls-off with no sidelobes at all. Also, just like with the tapered LFM in 

(II-B4), the NLFM can be amplitude tapered as well, which is referred to as hybrid FM [60-62]. 

Another class of waveforms that has received significant attention is that of phase-

modulated codes (or simply phase codes), in which the pulsewidth T is temporally subdivided 

into a set of constant-amplitude sub-pulses (or chips) of duration C /T T N , with each chip 

being modulated by a fixed phase value θ drawn from a discrete set referred to as the phase 
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constellation. Phase codes are generally classified as binary (or biphase) codes, where the phase 

constellation is composed of only θ = 0 and θ = 180, or as polyphase codes in which the set of 

phase values may only be limited by numerical precision (or (# of bits)360 / 2 ). Figure II-B5 

illustrates the structure for a phase-coded (PC) waveform, which can be expressed 

mathematically as 

C
PC

C1

( 1)1
( ) exp( ) rect

N

n

n

t n T
s t j

TT




  
  

 
   for  0 t T  ,                  (II-B6) 

where the n
th
 of N chips is modulated by the phase θn that is drawn from a constellation of P 

possible values. Like the LFM waveform, the energy of the PC waveform is normalized to unity. 

 
Figure II-B5:  Phase-coded waveform structure 

 

Myriad different phase codes have been developed because the determination of “good 

codes” can be achieved through various optimization approaches that permit searching over the 

set of NP  possible codes. Well-known examples of binary codes include Barker codes, minimum 

peak sidelobe (MPS) codes, and maximal length sequences [63-66]. Likewise, well-known 

polyphase codes include Frank codes, P codes, and polyphase Barker codes [38,45,67,68]. See 

[10, Chap. 6] and [53, Chap. 20] for further details. 

Clearly the number of possible codes becomes tremendously large as the number of chips 

N  increases (which approximates the time-bandwidth product, based on 3 dB power bandwidth). 

Because the construction of a phase-coded waveform inherently involves an abrupt phase 

transition every CT  seconds (yielding poor spectral containment due to the resulting sin(x)/x 
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spectral roll-off), it is also important to consider how to implement codes in a manner that is 

physically amenable to the radar transmitter (discussed in Sect. III-A). 

In contrast to phase coding, a frequency-coded (FC) waveform structure can be defined as 

FC

1

1 1
( ) exp( ) exp 2

2

N

n

n

N t
s t j j n

TNT
 



  
   

  
   for  0 t T  ,             (II-B7) 

which amounts to a phase weighting (via the first exponential term of each summand) of a set of 

complex sinusoids with frequency separation 1/f T   (thus the sinusoids are orthogonal). This 

FC waveform possesses the same 3 dB bandwidth (and therefore the same BT N ) as the PC 

waveform structure from (II-B6) and is likewise normalized to unity energy. The combination of 

these complex sinusoids (also referred to as the multiple carrier frequencies), introduces a time-

varying amplitude that inhibits high-power operation through the use of a saturated power 

amplifier, with the peak-to-average power ratio (PAPR) [69] providing a measure of how much 

the power must be backed off from the peak power to avoid distortion due to amplitude clipping. 

Thus PAPR also directly implies the loss in SNR one could expect for a frequency-coded 

waveform relative to a constant-amplitude waveform. This formulation is actually a single 

symbol interval of orthogonal frequency division multiplexing (OFDM), which is widely used in 

cellular communications [69]. Further, because this form is already non-constant amplitude, one 

may relax the restriction of using a constant-amplitude code (the first exponential term in (II-B7)) 

by replacing it with a constellation that employs both amplitude and phase (e.g. quadrature 

amplitude modulation (QAM)) to provide greater design freedom. 

A more general scheme that incorporates both phase coding and frequency coding is the 

multicarrier phase-coded (MCPC) structure [70], which can also be viewed as multiple OFDM 

symbol intervals. For the same time-bandwidth product N  as for the PC and FC structures in (II-

B6) and (II-B7), respectively, in this case MCN  sub-codes having PCN  chips each are modulated 
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onto MCN  carriers, such that the total dimensionality remains as MC PCN N N . The PCN  chips in 

each sub-code have a duration of MC PC/T T N . The MCPC structure is thus [10, Chap. 11] 

PC MC
MC MC

MCPC ,

MC MCMC 1 1

1 ( 1)1
( ) exp( ) exp 2 rect

2

N N

n m

n m

N t n Tt
s t j j m

T TN T
 

 

      
     

    
 ,  

       (II-B8) 

where the frequency difference between each pair of adjacent carriers is now MC1/f T   to 

maintain orthogonality of the carriers. Since (II-B8) is a phase-coded generalization of (II-B7), 

the MCPC structure can likewise be viewed as multiple symbol intervals of an OFDM signal. In 

addition to the PAPR issue and potential for a more general amplitude/phase coding as discussed 

for the FC scheme, the MCPC structure also has the same issue with spectral containment as 

mentioned for the PC scheme from the abrupt changes in the code values across all M carriers 

every MCT  seconds. 

The last general waveform class that is based on pulse-compression processing is noise 

radar [71-75], in which the waveform is made to appear as noise, for which a bandpass 

representation can be expressed as [72] 

 noise 0( ) ( )cos ( )s t a t t t                                               (II-B9) 

for the Rayleigh distributed amplitude ( )a t  and a uniformly distributed phase ( )t . The random, 

and otherwise unstructured, nature of this emission scheme makes it inherently low probability of 

intercept (LPI) [76]. Noise radar is generally implemented as a form of non-repeating CW and 

generally is used as an ultrawideband (UWB) waveform to facilitate high range resolution. This 

emission scheme can also be filtered such that the resulting spectral shape yields a PSD having an 

associated autocorrelation with low range sidelobes [75]. Due to significant amplitude modulation 

(AM), combined with the fact that the amplitude is predominantly near zero (PAPR could exceed 

10 dB), noise radar tends to be limited to lower-power, short-range applications. 
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Finally, it is worth mentioning the distinctly different class of UWB waveforms, which have 

very short temporal durations and very broad instantaneous bandwidths. A primary objective of 

radar is to achieve a large enough SNR to detect targets of interest, with sufficiently high range 

resolution to separate the different targets. To achieve very high range resolution, the notion of 

impulse radar has been pursued, subsequently leading to new UWB waveforms of much shorter 

duration than standard radar signals. The major demonstrated benefit that UWB radar provides is 

ultra-high resolution, which can be used for object characterization and identification. In 

particular, such waveforms and their associated radar systems were initially developed for 

forestry applications [77,78], for characterizing sea scatter [79], and for detecting underground 

utilities, land mines, and unexploded ordnance (ground penetrating radar) [80-86]. More recent 

systems have been designed for through-structure detection in urban areas [87], for imaging in 

search and rescue operations, and for obstacle avoidance in automobiles and micro air vehicles 

[88]. As the technology for UWB radar has developed and improved over the last fifty years, the 

sophistication and performance of these radars have increased. Nonetheless, several crucial issues 

remain that are problematic to UWB radar: spectral availability, hardware limitations in the 

transmission chain, electromagnetic interference and compatibility, difficulties with waveform 

control/shaping, and the unreliability of high-power sources for sustained use above 2 GHz. 

Consequently, UWB radar will probably be limited to short-range, low-power, directive, niche 

applications. To overcome these deficiencies, recent systems have taken advantage of increased 

memory, throughput, and computational speed to build stepped-frequency UWB radars for 

sensing through walls [89]. Since a significant body of literature exists on UWB and this venue 

has insufficient space to cover it adequately, this interesting field will not be discussed further. 

The authors suggest that interested readers avail themselves of the voluminous literature on UWB 

waveforms and systems. 

To summarize the discussion of different waveform classes, Table II-1 lists the different 

waveforms and provides a brief synopsis of their attributes. 



18 

Table II-1:  Waveform classes and attributes 

Waveform class attributes 

Linear FM (LFM) easy to generate/process wideband, high peak sidelobes 

Nonlinear FM (NLFM) trade LFM resolution for lower sidelobes 

Phase codes easy to optimize, binary or polyphase sub-classes 

Frequency codes modulate onto different sub-carriers, high AM effects 

Noise radar non-repeating form of CW, high AM effects, LPI 

Ultrawideband very short pulse, very wide band, ultra-high resolution 

 

C) Matched Filtering 

Denote ( )s t  as the complex baseband representation of an arbitrary waveform with temporal 

extent T (pulsewidth for a pulsed waveform). For this waveform there exists a matched filter 

MF ( )h t  such that the SNR after filtering is maximized. This filter, originally derived by North 

[90], has the form *
MF( ) ( )h t C s T t  , where *( )  denotes complex conjugation and C is an 

arbitrary constant. For the purpose of comparison among different waveform classes and with the 

mismatched filters in Sect. II-H, it is convenient to define C such that 2 1/2
MF

0
( | ( ) | ) 1

T

h t dt  , thus 

yielding a normalized matched filter that produces a unity noise-power gain regardless of the 

waveform. 

The matched filter response to the waveform (without appreciable Doppler shift during the 

pulsewidth and for the waveform energy assumed to be unity) is the convolution 

MF

0

( ) ( ) ( ) ( )

T

t

h t s t s t s t dt



   ,                                          (II-C1) 

which is also the autocorrelation of the waveform. If the energies of both ( )s t  and MF ( )h t  are 

normalized to unity, (II-C1) likewise produces a unity magnitude at 0   (peak of the mainlobe).  

As mentioned in Section II-B, the sidelobes of the autocorrelation can be minimized through 

proper design of the waveform PSD. 
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For ( )x t  the scattering response in an illuminated environment, which consists of an 

unknown number of targets and ubiquitous clutter, the received signal at the radar can be 

expressed as 

( ) ( ) ( ) ( )y t s t x t v t   ,                                                 (II- C2) 

where ( )v t  is additive noise and the influence of Doppler during the pulsewidth is neglected. The 

matched filter response for this received signal is therefore 

MF MF
ˆ ( ) ( ) ( )x t h t y t  ,                                                  (II- C3) 

in which the MF
ˆ ( )x t  term is the matched filter (MF) estimate of the true scattering ( )x t . Note that 

it has become increasingly more common to perform this filtering operation in the digital domain, 

which is discussed in Sect. II-G. 

For most radar systems, the matched filter response of (II-C3) is collected over a set of 

pulses for subsequent filtering over this set of responses via Doppler processing (possibly 

including clutter cancellation) or by synthetic aperture radar (SAR) processing (possibly 

including additional image focusing). The time interval for this set of pulses is referred to as the 

coherent processing interval (CPI). These “next stage” processes after pulse compression rely on 

the slow time Doppler shift that occurs between successive pulses, as opposed to the fast time 

Doppler shift during a pulsewidth. 

 

D) Delay-Doppler Ambiguity Function 

Thus far we have only considered the response to scattering that exhibits no Doppler shift 

during the pulsewidth. When there is radial motion between the radar platform and a given 

scatterer, a Doppler frequency shift is induced and may not be negligible. With regard to pulse 

compression, this Doppler shift imparts a time-varying phase change to the reflected waveform, 

thereby changing the response of the matched filter. Specifically, the matched filter response of 
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(II-C1) for a pulsed waveform of pulsewidth T can be generalized to arbitrary delay   and 

Doppler frequency Df  as 

D2
D

0

( , ) ( ) ( )

T
j f t

t

f e s t s t dt  



  ,                                       (II-D1) 

which is known as the delay-Doppler ambiguity function as formulated by Woodward [91]. Note 

that one plots (II-D1) as 10 D20log (| ( , ) |)f   versus   and Df . 

For example, Fig. II-D1 depicts the ambiguity function for the well-known LFM waveform. 

Observe that the mainlobe is actually part of a delay-Doppler ridge that exhibits a gradual roll-off 

from the peak at ( 0  , D 0f  ). The existence of this ridge is why LFM is also referred to as a 

Doppler tolerant waveform, since an appreciable Doppler shift induces little SNR loss relative to 

the peak. The sidelobes of the autocorrelation of the LFM waveform in Fig. II-1 are part of a 

larger Doppler-dependent pattern known as Fresnel lobes (the lobing pattern surrounding the 

large delay-Doppler ridge). 

 
Fig. II-D1. Delay-Doppler ambiguity function for an LFM waveform (brightness in dB) 

 

An important property of the ambiguity function is that the maximum value occurs at 

( 0  , D 0f  ) [10, Chap.3]. It can likewise be shown [10, Chap.3] that  
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2

D D( , ) 1

f

f d df



  
 

 

                                              (II-D2) 

for arbitrary waveform structure, assuming the waveform energy is normalized to unity. In other 

words, there exists a conservation of ambiguity such that, if a waveform has lowered sidelobes in 

one location (say on the D 0f   axis), then a commensurate increase must occur elsewhere in 

delay-Doppler space.  Finally, the 3 dB resolution in range (the distance between the peak and 

first null) for useful waveforms is approximately the reciprocal of the 3 dB bandwidth B of the 

waveform, while the Doppler resolution (peak to first null) is 1/ T  for pulsewidth T. 

 

E) Coherent Processing of Multiple Pulses 

For a single pulse, the Doppler resolution is 1/ T . However, for a coherent processing 

interval (CPI) of M identical pulses with constant pulse repetition interval (PRI) PRIT , the 

Doppler resolution is greatly improved to PRI1/ ( )MT . Further, the ambiguity function for a single 

waveform-modulated pulse via (II-D1), for a CPI of identical pulses [10, Chap. 7], is now scaled 

as  

D PRI
CPI D D

D PRI

sin( )
( , ) ( , )

sin( )

M f T
f f

M f T


   


   for   T  .                        (II-E1) 

Recalling from Section II-A that an FMCW waveform can be viewed as a set of pulses for which 

the duty cycle is 100% ( PRIT T ), it is thereby evident that (II-E1) is likewise applicable to the 

processing of M segments of FMCW. 

The coherent processing of multiple pulses also provides a mechanism for the inclusion of 

additional degrees of freedom for design of the overall delay-Doppler response. For example, 

greater control of the Doppler sidelobes can be achieved via interpulse (and also intrapulse) 

weighting over the CPI (see [10, Chap. 7]). Likewise, changing the PRI during the CPI (known as 

PRI/PRF staggering or jittering) can address the problem of blind speeds for moving target 
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indication (MTI) radar [92,93] (also see [10, Chap. 8]). One can even employ completely 

different waveforms over the set of pulses in a CPI, which is generically referred to as pulse 

agility or waveform agility and is discussed in greater detail in Section III-C. 

 

F) Waveform Metrics 

The determination of “goodness” of a waveform is generally dependent upon the evaluation 

of attributes of the delay-Doppler ambiguity function from Section II-D, along with consideration 

of practical characteristics such as time-bandwidth product (waveform dimensionality), spectral 

containment, and amenability to the transmitter (see Sect. II-H). Here we focus on the attributes 

that relate to the ambiguity function defined in (II-D1) for a single pulse. 

Perhaps the most common metric for waveform range sidelobes is the peak sidelobe level 

(PSL), or peak sidelobe ratio (PSR) [53, Chap. 20], here denoted PSL  and typically defined 

using the delay-Doppler ambiguity function of (II-D1) as 

D
PSL D 0

( ,0)
( , ) max

(0,0)f
f



 
 


  
 

  for    main ,T  .                      (II-F1) 

Only the zero-Doppler cut ( D 0f  ) is considered, which amounts to neglecting the effect of 

radial motion during the pulsewidth. Accounting for symmetry of ( ,0)   about 0  , the 

interval  main0,  corresponds to the time (range) mainlobe, such that the interval  main , T  

contains sidelobes. The PSL metric indicates the largest degree of interference that one point 

scatterer can cause to another at a different delay offset (for both having zero Doppler).  

For the class of waveforms known as linear period modulation (LPM) [94], which is also 

referred to as hyperbolic FM (HFM) and is employed in sonar and by some species of bats, the 

value [61] 

 LPM bound 10PSL 20log ( ) 3 dBBT                                        (II-F2) 
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serves as a lower bound on PSL for the waveform time-bandwidth product BT as defined in 

Section II-B. Although this PSL bound only holds for LPM (HFM) waveforms, it is nonetheless a 

useful benchmark with which to compare the performance of untapered FM waveforms (i.e. a 

fixed “measuring stick” for optimization purposes). 

Another important metric is the integrated sidelobe level (ISL) [53, Chap. 20], which for the 

zero-Doppler cut ( D 0f  ) of the ambiguity function can be defined as 

m

mD
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ISL D 0
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


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  


  
 





.                                      (II-F3) 

The ISL metric is particularly useful for establishing the susceptibility to distributed scattering 

such as clutter. Conceptual depictions of PSL and ISL are shown in Fig. II-F1. Consideration of a 

Doppler interval could be included in the PSL and ISL metrics by generalizing the mainlobe and 

sidelobe regions to correspond to the interior and exterior, respectively, of a delay-Doppler 

ellipse. 

 

 
Fig. II-F1. Conceptual definition of PSL and ISL measured on the zero-Doppler ambiguity 

function response of a waveform 
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Finally, given the Fourier relationship between a waveform’s autocorrelation (zero-Doppler 

cut of the ambiguity function) and PSD, it is useful to define a PSD-based metric as well. In this 

case, it is necessary first to establish a desired PSD 
2

( )W f  that corresponds to some desired 

autocorrelation response (with a sufficiently narrow mainlobe and sufficiently low sidelobes). A 

good example is a Gaussian PSD that is scaled to have the same energy as a constant-amplitude 

pulse of duration T (Fig. II-F2). A metric in this context would then permit measuring “how 

close” (in some sense) the actual frequency response of the waveform is to this desired PSD. 

 

 
Fig. II-F2. Gaussian PSD in dB 

 

For instance, the frequency template error (FTE) metric [95] is defined as 

  
H

L

FTE

H L

1
( ), ( ) ( ) ( )

qf
p p

f

S f W f S f W f df
f f

 
   

 
 ,                 (II-F4) 

where fL and fH demarcate the edges of the frequency interval of interest (which should include 

enough of the spectral roll-off region to provide sufficient fidelity). The positive real values p and 

q define the degree of emphasis placed on different frequencies.  For p = 1 and q = 2, the FTE 

metric defines a form of frequency-domain mean-square error (MSE). Alternatively, p > 1 overly 



25 

emphasizes frequencies with higher in-band power, and p < 1 overly emphasizes frequencies with 

lower out-of-band power. Note that only the spectral envelope (magnitude) is used in (II-F4) so 

that the phase response remains free for design.  

 

G) Practical Considerations 

There are several practical aspects one must consider when designing/selecting a pulse 

compression waveform. From an operational perspective, the bandwidth and pulsewidth (and thus 

the time-bandwidth product) are selected to be suitable to the application (MTI, SAR, etc.) and, 

combined with the selection of PRF, to achieve acceptable maximum ambiguous range and 

Doppler values. For a pulsed mode, in which the receiver and transmitter operation are 

interleaved, the notion of pulse eclipsing also arises. 

Pulse eclipsing [96,97] (Fig. II-G1) occurs when the receiver turns on or off during the 

reception of a waveform-induced echo. Reflected echoes experience reduced SNR since a portion 

of the reflected pulse is not captured at the receiver. For frequency-swept waveforms such as 

LFM and many useful forms of NLFM, pulse eclipsing also translates into degraded range 

resolution because part of the received bandwidth is lost.  

 

 
Fig. II-G1. Echoes (a) and (c) are eclipsed because they arrive at the receiver when the 

radar is transmitting. More echoes will be eclipsed if the duty cycle T/TPRI is increased.  
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For example, Fig. II-G2 illustrates a comparison between the matched filter response of a 

complete LFM echo and the matched filter response for an LFM echo that is eclipsed by 50%. 

Compared to the former, the latter suffers a 6 dB SNR loss and a factor-of-2 degradation in range 

resolution.  Thus, while a longer pulse provides greater energy on target, and therefore higher 

received SNR in the absence of eclipsing, one must decide if the subsequent increase in the 

occurrence of eclipsing is worth the trade. 

 

   
Fig. II-G2. Matched filter response to (left) a complete LFM echo and                            

(right) a 50% eclipsed LFM echo 

 

Another attribute that must be considered is the impact of the radar transmitter upon the 

waveform one wishes to emit. The purpose of the transmitter is to generate and amplify the 

waveform to a degree that the reflected echoes of much lower power can be adequately captured 

by the receiver relative to the noise and interference. The most common ways to generate a 

waveform are: 

(i) a frequency swept local oscillator (LO) which is often used to produce an LFM chirp, 

(ii) a surface acoustic wave (SAW) device which can be used to generate either LFM or 

NLFM waveforms, and 

(iii) a digital arbitrary waveform generator (AWG) which is becoming increasingly popular 

due to its tremendous flexibility. 
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Following waveform generation, the transmitter high-power amplifier (HPA) then serves to 

produce the necessary emitted power, typical values for which could be ~100 W up to several 

MW depending on the application [5]. While vacuum tube HPAs such as klystrons, traveling 

wave tubes (TWTs), and crossed field amplifiers (CFAs) are still in widespread use due to their 

high power efficiency, achievable transmit power, and reliability [98], solid-state HPAs continue 

to make advances and have begun to be used in radars that employ active electronically scanned 

array (AESA) antennas [99]. Of course, advances in tube technology [100,101] likewise continue. 

The overall transmit chain introduces two forms of distortion on the intended waveform, 

linear and nonlinear. Linear distortion is a direct result of the spectral shaping that arises from the 

finite bandwidths of the individual transmitter components, and its impact is that the waveform 

may experience amplitude ripple and phase distortion (dispersion). Nonlinear distortion is 

primarily caused by the typical HPA operation in saturation (particularly for tube-based HPAs), 

thereby creating the formation of intermodulation products (harmonics) from the pairwise 

multiplication of different frequency components in the waveform [102]. These intermodulation 

products introduce leakage into the surrounding spectrum, an effect generally known as spectral 

regrowth (see Fig. II-G3), which should be avoided as spectral congestion continues to increase 

[5].  

 
Fig. II-G3. Spectral regrowth can create interference for adjacent spectral users 

 

The presence of transmitter distortion is arguably the main reason why the use of certain 

forms of coded waveforms (namely polyphase codes) has thus far been limited. Specifically, the 

abrupt transitions between adjacent chips in a code correspond to out-of-band spectral content 
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that cannot pass the bandlimited transmitter. Further, this linear distortion introduces AM that is 

subsequently further distorted if the HPA is operated in saturation.  

For example, Fig. II-G4 shows the spectral content of a N = 64 chip P4 code [103], which 

represents a complex baseband sampled version of an LFM waveform, and the spectral content of 

an LFM waveform with the same BT for comparison. Using the form described in (II-B5) for the 

coded waveform, both the P4 and LFM have been implemented on an AWG and driven into an S-

band radar testbed that includes a mixer, pre-amplifier, bandpass filter, and a class AB solid-state 

Gallium Arsenide (GaN) HPA. The resulting “emissions” were captured by a receiver in a 

loopback configuration (i.e. not emitted into free space) where each is down-converted to 

baseband, analog lowpass filtered, and then sampled at rate of 150 samples / chip interval (same 

rate as the version of each waveform that was loaded onto the AWG).  

 

    
Fig. II-G4. Spectral content of (left) P4 code before/after transmitter distortion and     

(right) LFM waveform before/after transmitter distortion 

 

For each waveform, Fig. II-G4 compares the spectrum of the original “AWG waveform” 

and the resulting captured “loopback emission”, thereby representing a before/after perspective 

on the impact of transmitter distortion. The inherent spectral shaping of the transmitter clearly 

exhibits significant distortion for the coded waveform, but far less so for LFM. This result is to be 

expected because, unlike the coded waveform, LFM contains no abrupt phase changes. Note that 
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for these examples spectral regrowth is for the most part not observed due to the use of a Class 

AB solid-state HPA, as compared to what one could expect from a tube-based HPA that can 

produce much greater output power (and distortion). 

Examination of the pulse shape of each waveform after transmitter distortion (Fig. II-G5) 

also reveals that the abrupt chip transitions in the code translate into amplitude nulls 

commensurate with the amount of phase change. Since a P4 code exhibits larger phase changes 

near the beginning/end of the code, deeper nulls are present near the ends of the transmitter-

distorted pulse shape. In contrast, the loopback-measured LFM shows only a small amount of 

amplitude ripple that is expected from any real system. As an aside, note that both pulse shapes in 

Fig. II-G5 exhibit rapid pulse rise/fall times, which are additional contributors to broader radar 

spectral content. 

    
Fig. II-G5. Pulse shape after transmitter distortion for (left) P4 code and                       

(right) LFM waveform 

 

 

To help explain why these amplitude nulls occur, Fig. II-G6 illustrates the unit circle on 

which the phase constellation of the code is defined (here with just 8 equally spaced phase 

values). Where an FM waveform moves around this circle continuously according to the 

instantaneous frequency (i.e. instantaneous rate of phase change), a phase-coded waveform makes 

abrupt jumps from one phase value to another (here from θn to θn+1). While we would wish these 

phase transitions to move around the unit circle, the high spectral content required to do so is 
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suppressed by the inherent bandlimiting of the transmitter, so that the transition instead moves 

through the interior of the unit circle, thus producing an amplitude null. 

 

 
Fig. II-G6. Desired and actual phase transitions for a phase code due to transmitter effects 

 

Distortion of the waveform is problematic because the considerable time and effort put into 

designing a code that is optimal in some sense (e.g. minimal PSL) may have been wasted if the 

distorted version of the coded waveform deviates from this optimality condition (which is rather 

likely). An additional problem that arises from the amplitude nulls observed above is that the 

saturated HPA is still generating power even though a low amplitude value is occurring at the 

output. As such this generated power is effectively reflected back into the system as a time-

varying spike in voltage standing wave ratio (VSWR) that serves to produce intermittent 

increases in the operating temperature of the system. At best, such temperature increases translate 

into higher phase noise; while at worst these temperature fluctuations could potentially damage 

the system.  

It should be noted that the limitations discussed above do not imply that phase codes are 

necessarily a poor option for waveform modulation. For lower power systems where AM effects 

can be well controlled or for operating modes/environments where distortion and spectral 

regrowth effects are acceptable (particularly if an accurate replica of the actual emitted waveform 

can be captured after the HPA for use in matched filtering), the design freedom provided by 

phase codes may still be an attractive option. Further, as discussed in Sect. III-A, there are 



31 

existing methods to convert binary codes into waveforms that are amenable to an HPA (thereby 

making use of binary codes quite common even for high-power systems), and recent work has 

shown that a well-known scheme from communications can likewise convert arbitrary polyphase 

codes into new kinds of HPA-ready NLFM waveforms. 

There are practical aspects to be considered for the frequency-coded waveforms from (II-

B7) and (II-B8) as well since they involve the weighted combination of multiple carriers, which 

subsequently induces significant AM effects [104]. While such waveforms are attractive from a 

design freedom perspective, the AM effects require significant power back-off to avoid distortion 

(discussed in Sect. II-B), thereby leading to a substantial SNR loss as determined by (II-B5) for 

the AM envelope ( )a t . To demonstrate why the power back-off is so important, Fig. II-G7 

illustrates the autocorrelation of an N = 64 optimized FC waveform from [105] using (II-B7) 

along with the autocorrelation of the same waveform after undergoing distortion by a saturated 

power amplifier. In terms of PSL as defined in (II-F1), the distorted waveform experiences a PSL 

degradation of 14.7 dB relative to the ideal case. The amplitude envelopes for these before/after 

distortion cases are also shown in Fig. II-G8. Because linear amplification is a necessity to avoid 

this distortion, such waveforms are thus restricted for use in lower-power radar applications. 

 
Fig. II-G7. Autocorrelation of an optimized frequency-coded (FC) waveform before and 

after distortion by a saturated power amplifier 
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Fig. II-G8. Amplitude envelope of an optimized frequency-coded (FC) waveform before and 

after distortion by a saturated power amplifier 

 

A final practical consideration for all waveforms occurs when performing pulse compression 

(receiver matched filtering) digitally. In this case, after anti-aliasing filtering and A/D conversion, 

the continuous baseband received signal from (II-C2) can be expressed in discrete notation as 

( ) ( ) ( )Ty n n v n x s ,                                                   (II- G1) 

where the length-N vector  1 2 1

T

Ns s s s  is the discretized version of the waveform for 

N BT , the vector  ( ) ( ) ( 1) ( 1)
T

n x n x n x n N   x  is the collection of N contiguous 

samples of the unknown illuminated scattering, ( )v n  is a sample of additive noise, ( )T  is the 

transpose operation, and the influence of Doppler shift during the pulsewidth is neglected. 

Collecting N  contiguous samples of ( )y n  from (II-G1) to form the vector ( )ny , the matched 

filter response from (II-C3) thus becomes 

MF MF
ˆ ( ) ( ) ( )H Hx n n C n h y s y ,                                          (II- G2) 
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in which ( )H  is the complex-conjugate transpose (Hermitian) operation and the scalar C is again 

selected to provide unity noise power gain ( MF|| || 1h ).  

The implication of discretizing the waveform into N samples (for N BT  with B the 3 dB 

bandwidth) is that the receiver sampling rate is likewise defined according to the waveform 3 dB 

bandwidth. While the 3 dB bandwidth is intrinsically related to the range resolution of the 

matched filter, which is itself generally measured by the autocorrelation 3 dB mainlobe width, the 

actual spectral content of the waveform and subsequent echo are considerably greater. If one 

performs (complex) receiver sampling at a rate corresponding to the 3 dB bandwidth, which is 

likewise approximately the chip rate for phase codes, then there is a possibility that the relative 

delay of a reflected echo may be offset by an amount that introduces a mismatch loss when 

applying the matched filter. In other words, for sampling period ST  the received reflected echoes 

may arrive with a delay offset of as much as S0.5T  relative to the sampled structured of the 

matched filter. Generally referred to as range straddling or scalloping, this effect occurs because 

the received signal and the associated matched filter (obtained from the waveform) are under-

sampled according to Nyquist. Thus there exists a continuum of possible delay-shifted versions of 

the waveform, some of which differing enough from MF Ch s  that an appreciable loss occurs 

(as much as a couple dB) [106]. Further, for a transmitter-distorted phase code, the presence of 

abrupt phase changes (even after transmitter bandlimiting) means there are certain delay-shifted 

versions coinciding with these transitions that may be considerably different from the nominal 

versions that are well-matched to the code (since phase is constant during a chip for a phase 

code).  

On one hand, there is a rather simple way to minimize the mismatch loss due to range 

straddling: use a higher receiver sampling rate. In doing so, (II-G1) does not change aside from 

the discretized version of the waveform  1 2 1

T

NKs s s s  and the over-sampled collection of 
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scatterers  ( ) ( ) ( 1) ( 1)
T

n x n x n x n NK   x , which are both now length NK. Likewise, NK 

samples of the over-sampled received signal ( )y n  are now collected to form ( )ny  for subsequent 

application of the (now) length-NK matched filter MFh , which is still normalized such that 

MF|| || 1h . 

The trade-off for operating at a higher rate is an increase in the computational cost to 

perform pulse compression, which already tends to be a bottleneck due to the need to process a 

large amount of data rapidly (usually in real-time). This computational burden may be alleviated 

somewhat by performing pulse compression filtering in the frequency domain [107, Chap. 7], 

which is already commonly done. Continued improvements in computing speed are also helping 

to ease this bottleneck.  

 

H) Mismatched Filtering 

As discussed in Sect. II-B, an amplitude-tapered version of LFM can significantly reduce 

range sidelobes at the cost of degraded range resolution and SNR loss. Further, the need for 

amplitude control prevents the transmitter from operating in saturation, thereby inducing 

additional SNR loss relative to what could be achieved if the HPA were operated in saturation. 

Besides NLFM, another alternative is to transmit an untapered LFM with a receive filter that is 

different from the matched filter, that is, a mismatched filter (MMF).  

The simplest MMF involves tapering of the matched filter as 

MMF MF( ) ( ) ( )h t a t h t .                                            (II-H1) 

For example, where the response shown in Fig. II-B1 involves a square-root Hamming-weighted 

LFM and associated matched filter (which thus also contains a square-root Hamming taper), Fig. 

II-H1 depicts the response of a Hamming-weighted MMF via (II-H1) to an untapered LFM 

waveform. Where the former distributes the weighting equally over the waveform and filter via 

the square-root, the latter employs the entire weighting only at the receive filter. The MMF yields 
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the same resolution degradation factor of 1.5 relative to the use of untapered LFM with a matched 

filter. The largest sidelobe is now about 36 dB while the SNR loss is about 1.4 dB. 

 
Fig. II-H1. LFM pulse compression response for the matched filter (black) and Hamming-

weighted mismatched filter (red) 

 

While the tapered LFM with matched filtering and untapered LFM with mismatched 

filtering exhibit SNR losses of 2.7 dB and 1.4 dB, respectively, these losses are for different 

reasons. The amplitude-tapered LFM clearly exhibits SNR loss due to the deviation from a 

constant-amplitude waveform (see (II-B5)), yet the subsequent (normalized) matched filter still 

maximizes the received SNR (with unity noise power gain). In contrast, untapered LFM 

maximizes the transmit power while the subsequent receive MMF accepts a mismatch loss as a 

trade-off for lower sidelobes. By likewise normalizing the MMF to produce unity noise power 

gain via scaling such that 2 1/2
MMF

0
( | ( ) | ) 1

T

h t dt   (or MMF|| || 1h  from a digital perspective), 

one can surmise that the mismatch loss, as the name suggests, is a result of the filter not being 

exactly matched to the waveform so that the received echo signals do not experience the 

maximum coherent processing gain provided by the waveform time-bandwidth product.  

Generally speaking, the loss in SNR due to mismatched filtering is 
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MMF
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SNR Loss 10log
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  ,                               (II- H1) 

where MMFSNR  and MFSNR  are defined at the mainlobe peaks of the respective filter responses 

and, if the filters are normalized to produce unity noise power gain as discussed above and in 

Section II-C, the noise power terms cancel out such that the ratio is between achievable signal 

powers after filtering. For the amplitude-weighted MMF, assuming the weighting is a real 

function, the mismatch loss can be expressed as 
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Likewise, the discretized representation of (II-H2) is 
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for N BT  and the receive over-sampling factor K relative to 3 dB bandwidth. While (II-H2) 

and (II-H3) provide a way to compute the mismatch loss for the specific form of MMF based on 

amplitude tapering of the matched filter, (II-H1) is the more general formulation that is useful for 

all manner of mismatched filtering. 

Another prominent MMF instantiation arises from least squares estimation [108]. For 

arbitrary receive over-sampling K and filter-length increase-factor b (typically on the order of 2 to 

4), the length bNK least squares (LS) MMF formulation is posed as 

LS-MMF mAh e ,                                                      (II- H4) 

where me  is the length ( 1) 1b NK   elementary vector with a 1 in the mth element and zero 

elsewhere and 
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A                                     (II- H5) 

is a (( 1) 1)b NK bNK    Toeplitz matrix. If 1K   (not over-sampled), the optimal MMF in the 

LS sense is thus 

 
1

LS-MMF
H H

m


 h A A I A e ,                                          (II- H6) 

where the diagonal loading term I , for real and positive   and identity matrix I , has been 

added to the LS solution to provide further control over MMF performance. Once determined, the 

filter is subsequently scaled such that LS-MMF|| || 1h . 

If 0   the true LS MMF is obtained, though the resulting mismatch loss determined via 

(II-H1), which is waveform dependent, may be unacceptable. In contrast, if   is made large, the 

LS MMF in (II-H6) effectively becomes a scaled version of the matched filter with surrounding 

zeros. While the matched filter may not provide acceptable sidelobe performance, it yields no 

mismatch loss, straddling effects notwithstanding.  Thus the I  term enables determination of an 

acceptable trade-off between sidelobe reduction and mismatch loss.  

If the received signal is over-sampled ( 1K  ) to combat mismatch loss from range 

straddling, the LS MMF in (II-H6) produces a super-resolution condition that, while yielding a 

narrower mainlobe for the pulse compression filter response, also suffers from considerable 

mismatch loss (several dB) and increased sidelobes [109]. This effect can be remediated by 

replacing A  with A , for which some number of rows above and below the mth row are replaced 

with zeros to provide a “beam-spoiling” effect. The precise number of zeroed rows to achieve the 

nominal resolution (same as the matched filter) depends on the waveform and the value of K 

[110]. 



38 

Besides mismatch loss, an additional effect arises when range straddling occurs for the LS 

MMF. Because this filtering scheme is constructed from the waveform via (II-H5) and (II-H6) to 

suppress sidelobe to the greatest degree possible (for a given acceptable mismatch loss and 

resolution), the LS MMF is particularly sensitive to model mismatch effects such as occurs in a 

range straddling condition. When the sampled version of the received waveform differs from the 

version used to construct the LS MMF, the degree of sidelobe suppression is hindered. Thus there 

is a need to continue exploring MMF robustness measures such as the filter averaging approach 

considered in [110]. 

In addition to the LS MMF above, which is based on minimization of the L2 norm, many 

different MMF formulations have also been developed. These approaches include the use of 

different Lp norms with convex optimization [111-114], iterative reweighting of least squares 

[115,116], inverse filtering [117], the two-sample sliding window adder [118,119], linear 

programming [120], minimax optimization [121,122], and even alternative signal representations 

such as the Laurent decomposition of the waveform [123]. 

Adaptive forms of MMF have also been developed, in which the pulse compression 

response from the initial matched/mismatched filtering is used as prior knowledge to enable 

further sidelobe suppression. The earliest of these approaches [124], which eventually became 

commonly known as the CLEAN algorithm [125,126], sequentially subtracts the estimated 

sidelobe responses generated by large scatterers. A more recent approach, Adaptive Pulse 

Compression (APC) [127], performs adaptive nulling in the range domain by using the current 

estimate of the measured pulse compression response to generate an updated adaptive filter 

specific to each particular range cell. Subsequent variants of APC address fast-time Doppler [128-

130], pulse eclipsing [97,131], post matched filter processing [132,133], the application to FM 

waveforms [110], and multistatic [134,135] and dual-polarized [136] operation. More 

computationally efficient versions have likewise been developed [137,138]. 
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I) Bandwidth Considerations 

One means for characterizing a signal, device, or system in a meaningful way is to use some 

measure of the bandwidth B of the spectral density of its transfer function to define a 

categorization scheme. Consequently, defining a signal, device, or system unambiguously is a 

two-step process: (1) clearly specify the notion of bandwidth, and (2) categorize the signal, 

device, or system in terms of its bandwidth. This process begs the questions of what is bandwidth 

and what is an appropriate categorization scheme? The answers to these questions are neither 

obvious nor unambiguous [139,140], as numerous definitions of bandwidth exist in the literature 

and various standards [9,141,142], and these definitions are influenced by differing needs and 

viewpoints of communities of interest (radar, communication, directed energy, electromagnetic 

interaction, high-power EM, etc.). Even though many of these communities are related, no 

codified definition across them exists. So when using the term bandwidth, the user should clearly 

define what is meant and how the bounding frequencies are selected. In addition, because well-

known standard definitions for narrowband signals and hardware either do not apply or are not 

easily extendable to ultrawideband (UWB) signals and hardware, it is imperative that the meaning 

of bandwidth be clearly stated and well formulated. In fact, issues with understanding and 

classifying UWB short-pulse and signals and devices for radar and communication applications 

led to the categorization schemes by the US Office of the Secretary of Defense / Defense 

Advanced Research Projects Agency (OSD/DARPA) Panel [143], the International 

Electrotechnical Commission (IEC) [144], and the US Federal Communications Commission 

(FCC) [145]. 

Generally speaking, there are three common ways in which to measure bandwidth (RMS, 

power-level, and energy-level), albeit with many different variations thereof. For the time-domain 

signal s(t) with finite energy and it’s frequency-domain representation ( )S f determined by the 

Fourier transform pair 
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2( ) ( ) j f ts t S f e df




                                                     (II- I1) 

2( ) ( ) j f tS f s t e dt






  ,                                                  (II- I2) 

these bandwidth measures are as follows. 

In radar signal theory, the RMS bandwidth BRMS is often used. The most recent IEEE 

Standard 686-2008 [9] now defines BRMS according to [146, Chap. 2] as the 2
nd

 moment of the 

square magnitude of ( )S f  about a designated frequency. Specifically,  
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,                                     (II- I3) 

where the denominator is half of the signal energy and the mean frequency fmp over positive 

frequencies is given by 
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



.                                                    (II- I4) 

Relative to fmp, the high end of the band is (fmp  0.5BRMS), while the low end of the band is set as 

max{0, (fmp  0.5BRMS)} because (fmp  0.5BRMS) could be negative. For well-behaved spectra, fmp 

is usually very near to the frequency associated with the maximum value of the energy density, 

which is usually the carrier frequency for radiated narrowband signals. 

The X dB power-level bandwidth BXdB is [139] 

dB high lowXB f f  ,                                                     (II- I5) 

where the lowest lowf  and highest highf  frequencies are solutions of 

10 10 max20log ( ) 20log ( )S f S f X  ,                                      (II- I6) 
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for positive X, where fmax is the frequency at which the power spectral density 2| ( ) |S f  achieves 

its maximum value. For example, B3dB corresponds to values of f at which 2| ( ) |S f  is half its 

maximum value. Power-level bandwidths are used in a wide variety of applications. Filter design 

and control theory traditionally use B3dB, the FCC employs B10dB to define UWB signals, and the 

spectrum-management community uses B20dB and B40dB.  

Finally, for each value X in (0,1], let AX be the collection of nonnegative pairs { lowf , highf } 

of real numbers that satisfy  

 

high

low

2 2

0

( ) | ( ) |

f

f

S f df X S f df



  .                                            (II- I7) 

The X fractional energy bandwidth is thus [139,140] 

 EB high low low highinf ( ) :{ , } inX XB f f f f A  .                          (II- I8) 

Although AX may contain more than a single pair of frequencies, BXEB is unique. For example, if 

the spectral magnitude is a rectangular function, the X fractional bandwidth is a single value, even 

though AX contains an infinite number of distinct pairs. The fractional energy bandwidth provides 

good information on how the signal energy is distributed in the frequency domain. This quality 

makes BXEB a useful measure for characterizing signals in terms of their spectral occupancy 

(spectrum management) and their electromagnetic interference on other sources (directed-energy 

systems and electromagnetic hardening).  

Where the above measures provide different definitions of bandwidth, it is likewise useful to 

classify the nature of a signal/system as narrowband, wideband, or ultrawideband according to its 

fractional bandwidth, which is defined as 

pass,high pass,low

F

pass,high pass,low

( )
100%

( ) / 2

f f
B

f f


 


,                                      (II- I9) 
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where pass,highf  and pass,lowf  denote the upper and lower edges of the passband, respectively. As 

such, a signal/component/system is categorized in terms of its fractional bandwidth as [140,147]: 

 narrowband if 0%  BF  1%, 

 wideband if 1%  BF  25%, 

 ultrawideband if 25%  BF  200%. 

Note that the 1% demarcation between narrowband and wideband is not used in the IEEE 

Radar Standard [9] and should be taken as one possible summary of the literature. Some 

references suggest that a 10-20% fractional bandwidth could be considered as being effectively 

narrowband. For example, Engler [148] states that “a typical narrowband signal will have 10% 

bandwidth or less” and Urkowitz, et al [149] denotes a signal as narrowband if BF < 20% because 

in such case the “range and range rate (have) no dependence upon the bandwidth of the 

transmitted signal”. Likewise, according to Richards [150] “Few radars achieve 10% bandwidth. 

Thus most radar waveforms can be considered narrowband, bandpass functions.”  

One could also consider the point at which group delay dispersion become noticeable or 

when VSWR exceeds a specified value. Clearly, there are various different definitions of 

bandwidth and means of categorizing bandwidth. The take away here is that one must be careful 

to specify which definition is being used and to remember that the notion of spectral content is 

more complicated than the statement of a single number. 

 

III.  WAVEFORM DIVERSITY 

Due to the combination of increasing RF spectrum pressure, an increasingly complex 

interference environment, and the continued desired for improved radar sensitivity/discrimination 

capability, research in waveform diversity (WD) has flourished. For this very reason, it is really 

not feasible to survey all the myriad developments. Instead, we shall take a general view of the 

different types of WD, with a focus on the practical problems and attributes. Specifically, while 
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one could argue that WD research is largely arising from a signal processing / waveform design 

perspective, the RF system and electromagnetics effects play crucially important roles in what is 

physically achievable. These effects become particularly important when considering the impact 

of coupling between the various dimensions of fast-time (range), slow-time (Doppler), space, 

polarization, and coding (modulation). When operating frequency is included, this set has been 

referred to as the transmission hypercube or transmission hyperspace [151]. 

 

A) Practical Waveform Optimization 

The properties of a waveform that are the most conducive to its emission from a radar are 1) 

constant amplitude and 2) sufficient spectral containment. The former helps to avoid some of the 

nonlinear distortion that would otherwise be imparted to AM waveforms by the high power 

amplifier (HPA) and facilitates maximization of power-added efficiency (PAE) and subsequent 

“energy on target” for detection sensitivity. The latter property helps to minimize the spectral 

shaping imposed by the transmitter that can produce additional AM effects leading into the HPA, 

subsequently compounding distortion and potentially creating additional problems (see Section 

II-G). 

As discussed in Section II-B, FM waveforms are attractive because they are constant 

amplitude and inherently well-contained spectrally, thus making them amenable to a physical 

radar transmitter, particularly the distortion induced by the HPA. However, binary codes have 

also been widely used, due in large part to the existence of implementation schemes through 

which the code structure can be converted into a transmitter-appropriate physical waveform. The 

two most common implementation schemes are derivative phase shift keying (DPSK) [152] and 

biphase-to-quadriphase (BTQ) transformation [153], the latter being a form of minimum shift 

keying (MSK). For example, specifying BC ( )s t  as the binary coded version of (III-B6) with θ  

0 or 180, the resulting DPSK-implemented waveform can be expressed as [152] 
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DPSK BC C C BC C( ) ( / 2) cos( / ) ( ) sin( / )s t s t T t T js t t T    ,                    (III-A1) 

thereby ensuring that the phase is continuous by avoiding the abrupt chip transitions (see DPSK 

implementation of a length-5 Barker code in Fig. III-A1). Likewise, the BTQ transformation 

[153] causes any transition from 0 to 180, or vice-versa, first to transition to ±90, thus forcing 

the phase to traverse the unit circle instead of going through its center (such as we observed in 

Figs. II-G5 and II-G6). While widely used, the main limitation for binary-coded waveforms is a 

lack of design freedom due to the P  2 phase constellation. 

 
Fig. III-A1. Phase trajectory of a binary code (ideal) and its DPSK implementation 

 

Just as DPSK or MSK can be used to implement binary codes, it has recently been shown 

that arbitrary polyphase codes can likewise be implemented using a modified form [103,154] of 

continuous phase modulation (CPM) [155] that is otherwise commonly employed in aeronautical 

telemetry [156], deep space communications [157], and the Bluetooth
TM

 wireless standard [158]. 

The resulting waveform is actually a form of FM and thus is denoted as polyphase-coded FM 

(PCFM). For this formulation, a train of N impulses is formed that have time separation pT  and 

thus a total time support of pT NT . The nth impulse is weighted by n     , which is the 

phase change occurring over a pT  interval, and thus can be viewed as a discretized representation 

of the instantaneous frequency in (II-B2)). From a design standpoint, it is possible either to 

determine the n  values directly or to obtain them from a standard length 1N   polyphase code 

via 
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where 

1n n n          for     1, ,n N ,                       (III-A3) 

sgn( )  is the sign operation, and n  is the phase value of the thn  chip in the length 1N   

polyphase code.  

Given the phase-change code x = [ 1 2 N   ]
T
 and arbitrary starting phase 0 , the 

resulting PCFM waveform is generated as [103] 

 PCFM 0

10

( ; ) exp ( ) ( 1)

t N

n p

n

s t j g n T d     


    
       
      

x ,               (III-A4) 

where the shaping filter ( )g t  must integrate to unity over the real line and have time support on 

[0, ]pT  and   denotes convolution. For example, a rectangular filter meets these requirements 

and, upon inclusion in (III-A4), serves as a linear interpolation of phase that can be viewed as a 

first-order hold representation of the phase function. By comparison, the standard phase-code 

structure of (II-B6) can be viewed as a zero-order hold representation, since the phase is constant 

between the abrupt transitions. Figure III-A2 depicts an optimized PCFM waveform from [95] 

that has a time-bandwidth product of 64. Compared to the LPM bound from (II-F2), for which the 

PSL value can be computed to be 39.1 dB, this optimized FM waveform realizes an improved 

PSL of 40.2 dB. 
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Fig. III-A2. Autocorrelation of an optimized PCFM waveform with BT = 64 

 

Noting that the phase component of the first-order representation of (III-A4) can be written 

as 

 1st 1 1 0

10

( ; ) ( 1)

t N

n p

n

t g n T d    


 
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  
x ,                         (III-A5) 

where the notation 1( )g t  and x1 = [ 1 2 N   ]
T
 are used to explicitly denote this shaping 

filter and phase-change code as corresponding to first-order, higher-order phase functions can 

also be defined [159]. For example, a second-order coded representation can be defined as 
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and likewise a third-order coded representation as 
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and so on for higher orders, where x2 = [ 1 2 Nb b b ]
T
 and x3 = [ 1 2 Nc c c ]

T
 are therefore 

frequency-change (chirp rate) and chirp-rate-change (“chirp acceleration”) codes, respectively, 

with associated shaping filters 2 ( )g t  and 3( )g t . Also, 0  is the starting phase, and 0  and 0  
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are the starting frequency and chirp rate, respectively. These coding structures in (III-A5), (III-

A6), and/or (III-A7) may even be combined [159] to permit multi-order coding for even greater 

freedom in FM waveform design. This increased freedom means more ways in which to represent 

the continuum of possible phase trajectories, thus enabling the potential to obtain waveforms 

whose pulse compression response yields even lower sidelobes for the zero (or at least small) 

Doppler regime of the ambiguity function. For example, again using a time-bandwidth product of 

64, Fig. III-A3 depicts the autocorrelations of waveforms obtained via joint optimization of the 

first- and second-order components as well as the first-, second-, and third-order components. 

These waveforms realize PSL values of 48.4 dB and 48.7 dB, respectively.  

 
Fig. III-A3. Autocorrelation of optimized higher-order PCFM waveforms for BT = 64 

 

Besides higher-order phase functions, the polyphase-coded FM implementation of (III-A4) 

can also be expanded to accommodate what has been referred to as over-coding [160].  In the 

over-coded formulation, 1) the phase-change intervals of pT  are subdivided into smaller intervals, 

and 2) the amount of phase change over the interval of pT , which in (III-A2) was limited to 

| |n   due to extraction from traditional polyphase coding, is now allowed to exceed this limit 
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as long as the aggregate spectral containment is maintained. Thus even more different continuous 

phase functions may be realized, thereby enabling waveforms such as the one demonstrated in 

Fig. III-A4, in which a PSL value of 52.0 dB is attained, again for a time-bandwidth product of 

64. 

 

 
Fig. III-A4. Autocorrelation of an optimized over-coded PCFM waveform for BT = 64 

 

One may also consider how structures such as these higher-order and over-coding 

formulations could be combined, potentially to yield even greater sidelobe reduction. Further, 

because the continuum of possible continuous phase functions supports a theoretically infinite 

number of possibilities, there are certainly other coding implementation structures that could be 

developed. Other examples include the recent design of FM waveforms based on the use of 

Bézier curves [161], polynomial function design [58] (which inspired the higher-order form 

above), the Zak transform [57], and various forms of piecewise NLFM [62]. Also, recent work on 

hybrid FM (amplitude-tapered NLFM) discussed in Section II-B has experimentally demonstrated 

a PSL better than 83 dB (108 dB in simulation) with only a quarter dB of SNR loss [162]. 
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Clearly there is significant room for improvement in operational systems with regard to sidelobe-

limited sensitivity. 

These various forms of FM waveforms, along with DPSK/MSK implemented binary codes, 

provide different ways to parameterize a continuous, constant-amplitude waveform that is 

amenable to a high-power radar transmitter. However, one should not infer that such waveforms 

experience no distortion at all. If the goal is to achieve very low sidelobes that are many 10s of 

dB below the mainlobe peak, then even a small degree of distortion can become the limiting 

factor on performance. Consequently, it becomes necessary to consider the impact of the 

transmitter on the generation of the emitted waveform. In so doing, we introduce a stratified 

nomenclature in which the code (if one exists) comprises a discrete set of parameters that, via 

some subsequent implementation scheme (such as those discussed above), then realizes the 

waveform that is subsequently injected into the transmitter for amplification, thereby ultimately 

producing the physical emission that is launched into the environment. 

With the HPA generally representing the most significant source of transmitter distortion 

due to its inherent nonlinearity, many different linearizing transmit architectures have been 

developed, including the Kahn technique, envelope tracking, various outphasing methods, the 

Doherty technique, etc. (see [163] for a review of such methods). Likewise, predistortion 

techniques (see [164] for an overview) rely upon a variety of models such as a look-up-table 

(LUT), Volterra model, polynomial model, Wiener model, Hammerstein model, and variations 

thereof to parameterize and subsequently estimate the nonlinear nature of the HPA so as to undo 

such effects upon the waveform. Collectively, all these approaches seek to avoid the top scenario 

in Fig. III-A5 in favor of the bottom scenario in which the actual radar emission is a close 

approximation to the intended waveform. 

 



50 

 
Fig. III-A5. Transmitter generation of (top) distorted version of intended waveform and 

(bottom) near approximation to intended waveform via linearization 

 

An alternative perspective was recently proposed in [95]. By denoting C2W( ; ) { }s t Tx x  as 

some arbitrary code-to-waveform implementation operation followed by the operation 

Tx( ; ) [ ( ; )]u t T s tx x  that represents the distortion imposed by the transmitter, a holistic waveform 

design formulation can be posed as shown in Fig. III-A6, in which [ ( ; )]u t x  corresponds to the 

application of some metric such as those described in Sect. II-F. As opposed to the linearization 

approaches above that seek to compensate for transmitter distortion, this “transmitter-in-the-loop” 

paradigm instead seeks to optimize the final emission inclusive of the transmitter distortion 

effects. These distortion effects could leverage known mathematical models for the transmitter 

via a Model-in-the-Loop (MiLo) framework or by directly using the actual radar system via a 

Hardware-in-the-Loop (HiLo) framework. The trade-off between these is much faster 

convergence for the former and greater accuracy for the latter. Some form of hybridization of 

MiLo and HiLo would likewise yield the best speed vs accuracy trade-off in practice. 



51 

 
Fig. III-A6. “Transmitter-in-the-loop” optimization of radar emissions 

 

An interesting feature of the transmitter-in-the-loop design paradigm is that the linearization 

methods discussed previously can still be incorporated into the transmitter architecture as a means 

of facilitating greater design freedom. This notion of joint transmitter/waveform optimization, 

which was inspired by observations of sensing performance by dolphins despite their “mediocre 

equipment” [24], has been suggested [165] as a promising direction to explore in order to address 

the expected continued erosion of radar spectrum [5] combined with increased “network 

densification” of interferers expected from future wireless systems [166]. Leveraging previous 

“spectrally clean” emission schemes [152], such joint design approaches have already begun to 

emerge [167,168]. Specifically, [168] proposes the Smith Tube concept as an extension to the 

well-known Smith Chart used in RF systems engineering, whereby the vertical component 

(making it a tube) can be some other optimizable parameter such as waveform bandwidth. 

Moreover, Fellows et al. envision further extension to a veritable Smith Hyper-Tube comprised of 

multiple optimizable waveform parameters while maintaining transmitter power-added 

efficiency.  

Finally, given the high-dimensional solution space for waveform design, further complicated 

if one considers the emission induced by transmitter distortion like that in Fig. III-A6, one can 

surmise that numerous local minima exist. Though it is not necessary to determine the global 

minimum as long as a predetermined performance specification is met (multiple “good enough” 

solutions could actually be beneficial from an operational flexibility perspective), the 
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determination of the sufficiently good waveform(s) may still be a challenge. Thus, while  myriad 

different search strategies exist that one could take [169], some general observations about 

waveform design are useful to consider: 1) per (II-D2) the delay-Doppler ambiguity function 

integrates to a constant, thereby establishing a conservation of ambiguity; 2) as depicted in Fig. 

II-D1 for LFM, the ambiguity function for a chirp-like waveform exhibits a delay-Doppler ridge 

so that, by using the previous observation, a significant portion of the total ambiguity is already 

“absorbed”; and 3) metrics such as PSL (II-F1) and ISL (II-F3), and even PSD-based metrics 

such as FTE (II-F4), are complementary measures of the same delay-Doppler ambiguity function. 

Based on these observations, the recently emerged performance diversity paradigm [95] uses an 

LFM signal as an initialization to start with a well-consolidated ambiguity ridge and then 

alternates between different metrics during a greedy search to help avoid local minima, since each 

complementary metric still exhibits a different performance surface. One could even consider 

various combinations of these metrics to provide even more different performance surfaces upon 

which to search. The reader is referred to [95,103] as a starting point for further reading on the 

optimization of physical waveforms. 

 

B) Environment-Specific Waveforms 

On the one hand, the RF environment in which radar operates continues to become more 

congested, which competes with the radar community’s sustained need for ever-better detection, 

discrimination, and tracking. Thus, where Sect. IV-A discussed the optimization of physically 

realizable waveforms in a general context, this section considers the impact of the radar 

environment on waveform design. 

In Section II-F it was discussed how the power spectral density (PSD), due to its Fourier 

relationship with the autocorrelation, is useful for waveform design. For example, one could 

determine a desired autocorrelation, determine the associated PSD, and then optimize a waveform 

to match that PSD (e.g. the FTE metric defined in (II-F4)). It is known for NLFM waveform 



53 

design that to achieve low range sidelobes the signal spectrum should decrease towards the band 

edges [59]. However, growing spectral congestion driven by the demands for commercial cellular 

[5] has motivated research into how radar and communications could share spectrum [170-173]. 

For example, one could insert notches into the radar spectrum to avoid other in-band/near-band 

spectrum users, both as a means to facilitate more efficient use of the spectrum via sharing [174] 

and to remediate the associated degradation to radar performance [175]. Doing so in a manner 

that involves listening to the spectral environment [176] and modifying one’s emissions 

accordingly [177] is considered a form of cognitive sensing [178,179]. It is important to note that 

because they collectively operate in the congested HF, VHF, and UHF bands, the modalities of 

over-the-horizon (OTH) radar [148], foliage penetration (FOPEN) radar [180], ground 

penetrating radar (GPR) [181], and urban sensing [89] have been already been contending with 

this problem for quite some time. A survey of the challenges of radar spectrum engineering can 

be found in [5,165]. 

An early approach to avoid other in-band spectrum users incorporates notches into swept-

frequency waveforms [182]. The same could be achieved for a stepped-frequency waveform, for 

which the center frequency of the mth pulse in the CPI is incremented by m f  (described in 

Sect. III-E), either by skipping the pulses for which the associated frequencies are to be avoided 

[180, Chap. 5] or using an additional within-pulse phase coding to “thin the spectrum” [183]. 

Many subsequent phase-code and NLFM “sparse frequency” waveform design approaches have 

been developed [184-193].  

An important practical aspect involved with designing waveforms that possess spectral 

notches is whether the waveform remains constant amplitude for injection into an HPA, or at least 

to what degree the AM effects are minimized if linear amplification is feasible for the sensing 

application. Further, because ambiguity is conserved, the presence of in-band spectral notches 

tends to translate into a broadening of the out-of-band spectrum if constant amplitude is 

preserved. As spectral congestion continues to grow, one must also be cognizant of the increase 
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in range sidelobes that is incurred as the penalty for spectral notching [194], as well as the 

prospect of “power struggles” [195] as cognitive systems attempt to outmaneuver one another.  

Another form of environment-specific waveform arises when one considers how to design a 

waveform to emphasize known (or at least hypothesized) attributes of a desired target. In [196], 

Bell applied information theory to formulate waveform designs that rely on presumed knowledge 

of a target’s impulse response either to maximize probability of detection or to maximize the 

amount of information gleaned from the target response. Such signals are referred to as matched 

illumination as coined by Gjessing [197,198]. Since then, considerable work has appeared (e.g. 

[199-210]) exploring the ways in which the radar could perform the alternating processing of 1) 

observing the environment with a given waveform and then 2) reformulating a new waveform to 

capture/enhance some additional salient feature of the environment. For example, successive 

refinement of the waveform may permit better discrimination between different classes of targets 

or between targets and the ambient clutter. Because it relies on this “query and revise” strategy, 

the concept of time reversal has also been investigated for this problem (e.g. [211-213]), albeit 

with a cautionary note on the electromagnetics provided in [214]. Regardless of the specific 

approach, this notion of adaptive waveform design can be viewed as a form of cognitive sensing 

[178,179]. Of course, such waveforms must still adhere to the physical requirements imposed by 

the radar transmitter, antenna included, as discussed in Sections II-G and III-A. See [178,179] as 

a starting point for further reading on cognitive sensing and adaptive waveform design. 

The waveforms used for nonlinear harmonic radar [215-220] generally require particular 

consideration of their spectral containment to enable adequate discrimination between nonlinear 

and (typically far stronger) linear scattering. For example, because electronics typically contain 

diodes and transistors that can produce such a nonlinear response, this form of radar is considered 

a means to detect, and perhaps even to discriminate, electronics in the illuminated environment. 

In principle, if one can generate a pure sinusoid at frequency f0, then a nonlinear response would 

occur at 2f0 and higher integer multiples. The difficulty is that this harmonic response tends to be 
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orders-of-magnitude smaller than the linear response [221], and could be masked by harmonics 

generated by the transmitter if the emission does not possess sufficient spectral purity [218]. This 

form of radar has yielded some rather interesting applications, such as a nonlinear junction 

detector to enable counter-surveillance by sweeping for listening devices [220] and the tracking 

of insects using RF tags comprised of Schottky diodes [216].  

The related concept of stimulated emissions relies on the fact that RF receivers, such as 

those in cell phones, produce an identifiable signal when illuminated by an appropriate 

stimulation signal [222]. In fact, one can even induce an intermodulation effect within the 

nonlinear device by using multiple signals to produce a desired emitted waveform [217,223]. For 

example, higher-order intermodulation products are produced when a nonlinear device is 

simultaneously interrogated with tones having frequencies of f1 and f2. These and higher-order 

mixing products facilitate the “fingerprinting” of different commercial RF devices [217]. From an 

operational sensing standpoint, the detection/identification of unknown electronic devices could 

therefore follow the sequential interrogation paradigm discussed above for adaptive waveform 

design, albeit with the inclusion of the nonlinear response [224]. A survey of recent work in this 

area can be found in [217]. 

Finally, the clutter response generated by the radar may provide the spectral environment in 

which other signals could reside. This notion of radar-embedded communication involves the 

generation of either inter-pulse [225-228] or intra-pulse [229-232] signals that are designed to be 

embedded within ambient radar scattering by RF transponders/tags as a means to self-identify 

friendly targets (“blue force tracking”), to enable environmental monitoring, or to provide a 

covert communication link. Generally speaking, the inter-pulse form [225-228] encodes 

information into the radar backscatter via modulation on a pulse-to-pulse basis so that the 

communication signal resides in the slow-time (Doppler) domain. This form is well tested, with 

Sandia’s Athena tag being a notable example [233]. The data rate, however, is on the order of 
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bits-per-CPI, which is quite low for any useful communication mode aside from self-

identification.  

In contrast, the intra-pulse form [229-232] involves the determination of a set of #bits2K   

communication symbols { 1 2( ), ( ), , ( )Kc t c t c t } that have minimal mutual cross-correlation, yet 

have commensurate correlation with the ambient scattering produced by the radar waveform 

( )s t . The former requirement maximizes the separability of the symbols on receive, while the 

latter mitigates receiver bias that could be generated by the radar clutter. This form of radar-

embedded communication, while still at the theoretical stage, enables a data rate of bits-per-pulse, 

thus scaling with PRF such that data rates commensurate with speech may be possible. Starting 

points for further reading on inter-pulse and intra-pulse radar-embedded communication are [226] 

and [229], respectively. 

 

C) Colocated MIMO Radar 

The category of waveform diversity denoted as multiple-input multiple-output (MIMO) has 

arguably received more attention than all the rest combined based on the sheer volume of 

publications. Inspired by the capacity and performance gains enabled by spatial diversity for 

MIMO communications [234,235], the early notions of MIMO radar [236-238] sought to 

generalize the prior concept of ubiquitous radar [239], in which the transmitter illuminates a wide 

spatial beam combined with multiple narrow receive beams, to facilitate spatial diversity on 

transmit. The terminology was also separately used to refer to joint operation of multiple, widely 

separated transmitters and receivers [240]. Many of these ideas built on even earlier work such as 

multiple simultaneous transmit beams for phased arrays [241], that was realized on the AMRFC 

test bed [242], and spatio-temporal coding for radar array processing [243], which were 

themselves predated by the French RIAS system [244-246]. The latter was in fact experimentally 
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performing “transmit beamforming on receive” well before the term MIMO was even used in the 

radar context.  

A collection of much of the early theoretical work on MIMO radar was compiled in [247]. 

Today, MIMO radar is generally referred to as belonging to one of two types: colocated MIMO in 

which phase coherence can be assumed; and distributed (or statistical) MIMO in which phase 

coherence typically cannot be assumed, though there are exceptions [248,249]. The latter can be 

treated under the umbrella of the more traditional nomenclature of multistatic radar and thus will 

be discussed in Section III-D, while we shall focus here on the notion of colocated MIMO. 

Generally speaking, colocated MIMO involves the generation of different waveforms from 

different antenna elements (or sub-arrays of elements [250-252]). For example, given a linear 

array of L elements indexed by 1, 2, , L , the set of distinct waveforms  ( )s t  can be 

defined according to the waveform structures from Section II-B. Likewise for a planar array, the 

MIMO waveforms could be indexed according to the horizontal and vertical antenna elements, 

thereby providing a spatially diverse emission structure in both azimuth and elevation angles.  

For the ubiquitous MIMO emission of a wide transmit beam, these waveforms should be 

designed to possess a low cross correlation – the term “orthogonal” has been widely used, but it is 

really a misnomer for radar if the waveforms have overlapping spectral support, per Parseval’s 

theorem, since no assumption of synchronicity of radar echoes can be made. This ubiquitous 

mode could be a means to enable multi-function operation [238,239] if the trade-off between the 

loss in transmit spatial gain and the increased dwell time is feasible for the given operating 

parameters [253,254]. Note that there are other means to achieve a multi-functional capability. 

For example, the Advanced Multifunction RF concept (AMRFC) [242] assigns different 

functions to different array sub-apertures. Further, enhanced spatial resolution and reduced spatial 

sidelobes have been demonstrated for MIMO relative to a non-MIMO mode [255]. Of course, 

sensing modes such as synthetic aperture radar (SAR), in which the transmit beam is intentionally 
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broad so as to capture the long synthetic aperture, could be inherently well-suited for the wide 

beamwidth provided by such a MIMO emission [256].  

The notion of partially correlated waveforms has also been proposed [251], in which the set 

of MIMO waveforms lie somewhere between the extremes of fully coherent (identical aside from 

a subsumed phase shift for beam steering) and completely independent waveforms that facilitate 

ubiquitous operation. As such, greater design freedom is available to shape the spatio-temporal 

structure of the radar emission, thereby providing greater control over the trade between 

mainbeam gain and spatial diversity. 

MIMO radar has also been a source of controversy as some radar systems engineers question 

the validity of some of the theoretical claims of MIMO [253,254,257], going so far as to suggest 

that it could be “snake oil” [253]. However, there are some clear practical applications of MIMO 

radar. A case in point is over-the-horizon (OTH) radar [258] in which the transmitted and 

received signals are reflected off various layers of Earth’s ionosphere in transit each way. 

Experimental results in [259] have shown that the “transmit beamforming on receive” spatial 

diversity of MIMO radar, which Frazer et al. refer to as “non-causal transmit beamforming”, 

provides greater separability of OTH radar echoes due to the inherent range/angle coupling that 

exists for the skywave propagation channel. 

Another way of looking at the MIMO emission structure is via the far-field fast-time signal 

as a function of spatial angle, which is intuitively attractive because it is this signal that is 

physically incident upon a scatterer. Consider a uniform linear array with inter-element spacing d 

and wavelength , in which the th  antenna element emits the narrowband pulsed waveform 

( )s t  for 0 t T  . The far-field emission (baseband representation) at time t for transmit spatial 

angle T90 90      can thus be expressed as 

  T( 1)
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1
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where T T2 sin( ) /d     is the transmit electrical angle for T 0    at array boresight. 

Integrating (III-C1) over the pulsewidth and dividing by T therefore yields the aggregate 

beampattern 

     T T T

0

1
, ,

T

B g t g t dt
T

                                         (III-C2) 

as a function of transmit spatial angle T . For the simplified case in which look( ) ( )
j

s t s t e


   

and the electrical angle look  corresponds to an arbitrary spatial “look” direction, (III-C2) is just 

the standard array factor beampattern [260]. 

Where the delay-Doppler ambiguity function developed by Woodward (II-D1) describes the 

matched filter response to different Doppler-shifted versions of a waveform, it is likewise useful 

to define a delay-angle ambiguity function for MIMO operation. For receive spatial angle R  and 

the similarly specified receive electrical angle R , the unity-gain normalized matched filter can 

be defined as 
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Thus, the combination of receive beamforming by the L antenna elements in the direction R  and 

associated pulse-compression matched filtering as a function of receive angle realizes the delay-

angle ambiguity function 
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that describes the response that a given set of emitted waveforms would produce when reflected 

by a point scatterer in the environment as a function of angle and relative delay. Using (II-D1), 
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the delay-angle ambiguity function of (III-C4) readily generalizes to a delay-Doppler-angle 

ambiguity function given by 
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and likewise incorporates the impact of a coherent pulse train in the same manner as (II-E1). 

Different forms of the MIMO ambiguity function can be found in [247,261-263], along with more 

detailed discussion of the associated properties. 

The true discrimination capability of the much-increased dimensionality provided by MIMO 

may also necessitate adaptive receive processing that leverages this high dimensionality, which 

comes with an additional trade-off that could involve a significant increase in computation cost. 

However, just as space-time adaptive processing (STAP) [264] enables an interference 

suppression capability that could not be achieved using adaptive beamforming or Doppler 

processing alone, MIMO-oriented adaptive processing may likewise enable such new capabilities. 

For example, it was recently demonstrated experimentally [265,266] that a MIMO formulation 

could be used to generate a joint space-frequency null on transmit to avoid interfering with other 

nearby spectrum users. 

It is important to note that MIMO waveforms possess the same physical requirements and 

undergo the same transmitter effects as non-MIMO waveforms per Section II-G, therefore 

necessitating consideration of practical waveform design as discussed in Section III-A. Further, 

because the physical MIMO emission inherently depends on the interaction between the set of L 

waveforms and the distributed antenna elements in the array, the electromagnetic effects of the 

array must likewise be considered. For example, mutual coupling among antenna elements, which 

involves neighboring antenna elements receiving and reradiating the waveform from a given 
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element, produces a distortion of the far-field delay-angle emission structure relative to the ideal 

case of no mutual coupling (see Fig. III-C1) [267,268]. 

   
Fig. III-C1.  Delay-angle ambiguity function for 16 waveforms generated via DPSK 

implementation of length-50 random binary codes where (left) no mutual coupling is 

present and (right) 10 dB nearest neighbor mutual coupling is present but not accounted 

for on receive. The result is degraded resolution and 1.1 dB mismatch loss. 

 

Another practical impact of MIMO arises when attempting to emit wideband signals over a 

wide beamwidth, such as desired for SAR [269]. For narrowband operation, the wavelength  of 

the center frequency is an adequate approximation over the entire bandwidth. Thus inter-element 

spacing of d (   2) is the maximum value that avoids grating lobes (though if the MIMO array 

takes advantage of the “virtual array” concept to more widely separate the elements for enhanced 

spatial resolution, phase discontinuity effects must still be considered [270]). In contrast, when 

the bandwidth becomes sufficiently large that a single wavelength is not a good approximation, 

one could set min / 2d  , for the shortest wavelength min  corresponding to the highest in-band 

frequency to avoid grating lobes for all corresponding frequencies in the passband [271].  

However, this choice has the undesired effect of yielding inter-element spacing for the longer 

wavelengths (lower frequencies) such that / 0.5d  , which can result in “emission” of power 

into the imaginary space (or invisible space) [258] that exists beyond the endfire spatial 

directions at T 90    . In fact, this power is not actually emitted as it becomes energy that is 

stored in the reactive near-field of the array and can lead to large amounts of power being 
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reflected back into the transmitter, potentially damaging the radar [253].  The implication for 

MIMO is that waveform design must account for the relative instantaneous phase difference 

between waveforms on adjacent antenna elements so as to avoid exceeding the boundaries of real 

space [272]. 

 
Fig. III-C2.  Wideband frequency content vs. electrical angle for MIMO emission. Element 

spacing is half-wavelength for the center frequency fcent (so d=0.5cent) and bandwidth is 

30% relative to the center frequency. The red triangles identify the invisible space. 

Alternatively, setting d=0.5min would raise the location of the red triangles in the figure, so 

that more of the emission would be into the invisible space. 

 

A notable subset of MIMO is the frequency diverse array (FDA) [273-277], in which all 

antenna elements emit the same waveform, aside from a small frequency shift that is incremented 

across the array. In other words, the carrier frequency for the waveform generated by the th  

antenna element is C ( 1)f f   , where Cf  is a nominal carrier frequency and f  is the small 

frequency increment. As a result, the beamforming look direction varies in fast time and sweeps 

across space at a rate depending on the value of f . Because it maintains a coherent mainbeam 

(the location of which changes with time), the FDA can be expected to experience less 

degradation than arbitrary MIMO as a result of mutual coupling effects. The very relevant 

concept of circulating codes [278,279] provides an alternative perspective to forming such 

spatially swept beams through the use of small time shifts ( 1)t t    across the array. 
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Inspired by fixational eye movement [280,281], the FDA framework has also recently been 

subsumed by the notion of spatial modulation [282], which provides the freedom to change the 

rate and direction of fast-time spatial steering via an extension of the PCFM coding in (III-A4). 

For example, relative to standard beamforming Fig. III-C3 illustrates the aggregate beampattern 

from (III-C2) when using spatial modulation with a planar array to traverse a circle during the 

pulsewidth [283]. 

     
Fig. III-C3.  2D aggregate beampattern via a planar array for (left) standard beamforming 

and (right) circular spatial modulation  

 

As is known for space-time adaptive processing (STAP) [264], the increase in useful 

degrees-of-freedom obtained by coupling the antenna’s spatial channels with the slow-time 

(Doppler) channels of the pulses in the CPI is most notably useful when employed adaptively. 

The same holds true for the increased degrees of freedom afforded by MIMO emissions. Due to 

the myriad ways in which MIMO can be realized, juxtaposed against the numerous different 

types of radars, it is not surprising that many different adaptive MIMO receive processing 

algorithms have emerged (e.g. [284-289]). These approaches all seek to exploit the much-

increased dimensionality to enhance sensing performance, that is, to improve 

resolution/discrimination, sidelobe suppression, and interference rejection. Of course, as with 

STAP, MIMO incurs the “curse of dimensionality” in terms of higher computational cost and 

possibly higher sample data requirements (depending on the nature of the algorithm). Further, any 

such adaptive algorithm must rely on models of physically realizable waveforms that can be 
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transmitted by a radar, if possible even using captured replicas of the actual emissions to ensure 

maximum fidelity, and appropriately must consider the straddling effect that arises from 

discretization [110,263,288]. 

Finally, it is worth noting some of the concepts that have emerged from the ubiquitous 

notion of MIMO radar. As a countermeasure to combat passive bistatic exploitation of the 

emission of an active radar, the idea of bistatic denial was developed [290], in which a secondary 

waveform is emitted to mask the spatial sidelobes of the primary waveform. More recently, a 

counter-countermeasure was proposed [291] that seeks to estimate the primary waveform in the 

presence of the secondary waveform interference (from the perspective of the bistatic radar). The 

MIMO-enabled increased degrees of freedom have also been exploited to facilitate the 

embedding of communications within the radar emission [292-294]. Other forms of radar-

embedded communication are discussed in the next two sections. A good subset of references to 

begin further reading on colocated MIMO is [238,247,253,256,258,276]. 

 

D) Distributed Aperture Radar 

While the colocated MIMO formulation in the previous section employs waveform diversity 

to realize delay-angle coupled radar emissions with greater design degrees-of-freedom, the notion 

of distributed aperture radar considers multiple antenna apertures with considerable spatial 

separation. This arrangement has been known by many names including “netted radar” [295,296], 

“statistical MIMO” [240,297-299], and more classically as “multistatic radar” or “multisite radar” 

[300-305]. In this formulation, practical realization of phase coherency may be difficult (though 

progress continues [306,307]), thus often necessitating non-coherent combining to perform target 

detection using the distributed apertures. Further, this arrangement also includes the advantageous 

exploitation of other emitters in the environment, for which one has no control over the structure 

of the associated waveforms. 
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A prospective benefit of this distributed arrangement is a way to address the aspect angle 

dependence of a target’s radar cross section (RCS), which may vary by 10s of dB as the target 

moves with respect to the radar. The well-known Swerling models [308] can be used to represent 

how such RCS fluctuations behave statistically as a function of the target decorrelation time 

(scan-to-scan or pulse-to-pulse) [53, Chap. 7]. In fact, frequency diversity has long been used to 

realize this same fluctuating RCS effect to improve target detection [309-312].  

Of particular note are the distributed coherent aperture X-band radar experiments undertaken 

by MIT Lincoln Lab [248,249] that demonstrated the use of low cross-correlation waveforms to 

perform time and phase synchronization of the incident waveforms upon a selected target (in this 

case the application was ballistic missile defense). Once sufficient synchronization was achieved, 

the same waveform could be used across the distributed aperture to realize a cohere-on-transmit 

(or effectively “cohere-on-target”) mode yielding a 9 dB SNR gain. 

It is important to note that the general notion of a distributed aperture dates back to the very 

earliest work in radar, where the waveforms employed were typically CW and the transmit and 

receive antennas were separated in a bistatic configuration for various operational and technical 

reasons (see Chaps. 1 and 2 of [11] for a fascinating historical review of the subject). For the 

bistatic arrangement, it has been shown [313,314] that the delay-Doppler ambiguity function, 

referenced to the receiver, can be expressed as (modifying the nomenclature for consistency here)  
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The superscripts (a) and (h) denote the actual and hypothesized values of delay   and Doppler 

frequency Df , which are themselves nonlinear functions of the target velocity vector v  and the 

bistatic geometry depicted in Fig. III-D1. The bistatic angle is implicitly defined via the 
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transmitter-to-target, receiver-to-target, and baseline transmitter-to-receiver distances RT, RR, and 

LB, respectively. 

 
Fig. III-D1.  Bistatic geometry 

 

In recent years there has been an explosion of new research on many aspects of bistatic 

radar, particularly the exploitation of illuminators of opportunity such as FM radio, broadcast 

television, commercial cellular, etc. (see surveys in [13,315]). This general research area has been 

referred to as “passive radar”, “hitchhiking”, “passive coherent location”, and more recently as 

“commensal radar”. While one has no control over the waveforms used by the illuminators of 

opportunity, and thus it is fair to assume that such waveforms are generally not optimal for a 

sensing application, the delay-Doppler ambiguity functions for these signals can be inferred based 

on the type of signal and its purpose (see [316,317] and [13, Chap. 6]).  For example, analog FM 

radio has been found to realize an ambiguity function that is highly dependent on the nature of 

signal content (for example, speech vs music, as well as the tempo of the latter as shown in Fig. 

III-D2) and the signal structure (the chrominance subcarrier of analog television contains a 

repeating structure that produces strong ambiguities in range and Doppler per Fig. III-D3). In 

contrast, more recent digital modulation schemes produce delay-Doppler ambiguity functions that 

tend towards a thumbtack response (Fig. III-D4). 
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Fig. III-D2.  Delay-Doppler ambiguity function of fast tempo jazz on FM radio (courtesy of 

Prof. Hugh Griffiths, University College London) 

 

 

 
Fig. III-D3.  Delay-Doppler ambiguity function of the chrominance subcarrier of analog TV 

(courtesy of Prof. Hugh Griffiths, University College London) 
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Fig. III-D4.  Delay-Doppler ambiguity function of Digital Audio Broadcast (courtesy of 

Prof. Hugh Griffiths, University College London) 

 

The bistatic ambiguity function of (III-D1) has also been generalized in different ways to 

account for multiple emitters in a multistatic configuration [318-320]. It then becomes necessary 

to consider how best to select from among the myriad emitters (and their subsequent echo 

responses) that may be present [321,322] and then how to combine the responses in the most 

advantageous way based on the observed/known signal structures and the multistatic geometry 

[323-326]. When concerned with image formation, this approach has also been referred to as 

RF/microwave tomography [327-330]. Surveys of bistatic and multistatic radar techniques can be 

found in [11-14,302-304]. 

 

E) Waveform Agility 

Where the previous two sections considered the impact of waveform diversity via the spatial 

dimension, here we consider the implications of changing the waveform on a pulse-to-pulse basis 

during a coherent processing interval (CPI). Known as pulse agility, pulse diversity, or waveform 

agility, this arrangement provides increased degrees-of-freedom that may be used to suppress 

range sidelobes, to extend maximum unambiguous range, to enable radar-embedded 
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communication, and potentially to improve robustness to structured interference (e.g. commercial 

communications). 

Complementary codes, originally proposed by Golay in the 1960s [39], are a form of 

waveform agility in which the pulse compression responses from two or more codes sum to 

produce an overall response whereby the range sidelobes completely cancel, leaving only the 

mainlobe [44,331-335]. Using (III-C1), the combined responses from a complementary set 

comprised of M waveforms can be expressed as 
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where ( )t  is a Dirac delta and the approximation denotes the fact that this ideal response would 

really comprise the pulse compression mainlobe of finite bandwidth waveforms. It was shown in 

[336] that a similar result could be obtained by modulating a given waveform (e.g. LFM) with a 

set of orthonormal codes. While the complementary arrangement would seem to solve the range-

sidelobe problem, the sidelobe suppression performance for complementary codes is known to 

degrade when the signal structure deviates from the ideal, such as when generated by a physical 

transmitter (due to bandlimiting and distortion) or when Doppler is present. That said, continued 

work is exploring ways in which to improve the Doppler tolerance limitation [335,337,338] and 

practical transmitter effects could be incorporated such as discussed in Section III-A. 

Another well-known form of waveform agility is called stepped frequency, synthetic 

wideband, or frequency jumped burst and essentially involves a center frequency offset of f  

between adjacent pulses [339, Chap. 5]. The benefit of stepped frequency waveforms is that 

wideband, hence high range resolution, sensing can be achieved while avoiding the complexity 

and cost of wideband hardware. Instead, a “burst” of narrowband pulses with offset center 

frequencies is generated, with the resulting received echoes pulse compressed as usual according 

to each individual waveform and then coherently combined across the set of pulses (e.g. via 

inverse FFT). Assuming the same waveform repeated over the set of frequency steps, it was 
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shown in [10] that the delay-Doppler ambiguity function for the overall stepped-frequency 

emission can be generalized from (II-E1) as  

 

 
D s PRI

SF D D

D s PRI

sin ( )
( , ) ( , )

sin ( )

M f k T
f f

M f k T

 
   

 





  for   T  ,                 (III-E2) 

where D( , )f   is the ambiguity function of the single waveform and 

s

PRI

f
k

T


                                                            (III-E3) 

is the linear FM ramp applied across the CPI. 

 A problem with using a constant pulse-to-pulse frequency offset across the CPI is the 

appearance of grating lobes. Consequently, much of the work on this type of emission scheme has 

focused on how to design the frequency offsets and the selection of the individual pulsed 

waveforms so as to reduce these grating lobes [183,340-345]. As discussed in Section IV-B and 

[180, Chap. 5], the stepped-frequency emission structure also provides a convenient way in which 

to avoid other in-band spectrum users, albeit with an expected degradation in sidelobe 

performance. The related concepts of frequency agility [309-312] and frequency diversity [346, 

Chap. 12], which provide robustness to frequency-dependent target RCS fluctuations and radar 

countermeasures, respectively, likewise involve a pulse-to-pulse change of the center frequency, 

even though generally not in as clearly structured a manner as with stepped frequency. It is also 

interesting to note that the stepped-frequency scheme bears some similarity in mathematical 

construction, if not the domain in which it is applied, to the more recent MIMO concept of the 

frequency-diverse array of Section III-C. See [10,53,346] as a primer for further reading on 

complementary codes, stepped-frequency, and frequency-diverse operation. 

Besides the complementary coding and stepped-frequency concepts above, waveform agility 

may also provide an alternative to using multiple PRFs to extend the unambiguous range 

([347,348], [53, Chap. 17], and see Fig. III-E1); it may facilitate the embedding of 

communication or navigation information in radar emissions [349] and may even enable new 
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forms of discrimination. As an example of the latter, a biomimetic form of waveform agility, 

called “twin inverted pulse” (TWIP), was recently developed for sonar [23] and radar [350]. 

TWIP mimics a waveform scheme employed by dolphins to discriminate between linear and 

nonlinear scattering in bubble-rich underwater environments [351,352], such as those from the 

wakes of passing ships. In this formulation, pulse pairs are emitted, with the two pulses having 

opposite polarity ( 2 1( ) ( )s t s t  ). Computing the ratio between the difference and sum of the 

resulting matched filter responses to these waveforms then provides a way to emphasize the 

nonlinear scattering relative to the linear scattering, as demonstrated experimentally in [350]. 

 

 

 
Fig. III-E1.  The same pulse is repeated throughout the CPI (top) so a distant target is 

range-ambiguous while the target could be range-unambiguous if different waveforms were 

used within the CPI (bottom). 

 

An earlier idea that arose to address range ambiguities was to incorporate a pulse-to-pulse 

phase coding [353-357]. Waveform agility can be viewed as a generalization of this idea – instead 

of phase coding the same waveform across the set of pulses, each pulse could be a different 

waveform. However, when changing the waveform on a pulse-to-pulse basis, clutter cancellation 

may be degraded for radar modes on which it is performed. Figure III-E2 illustrates the matched 

filter response to each of four DPSK-implemented length-100 randomly generated binary codes, 

in which we can observe that the sidelobe structure is different for each. Clutter illuminated by 
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waveforms such as these would experience a range sidelobe modulation effect over the CPI that 

in turn would limit the efficacy of clutter cancellation. Thus if one is to consider waveform agility 

in the context of clutter cancellation, it is necessary 1) to compensate for the modulation effect; 2) 

to expand the dimensionality of the receive processing so as to perform fast-time (range) and 

slow-time (Doppler) processing in a joint manner; or 3) to expand the overall dimensionality of 

the radar emission such that these sidelobes are simply driven into the noise since they do not 

combine coherently. 

 

 
Fig. III-E2.  Matched filter responses for four length-100 random binary codes 

implemented with DPSK. Note the sidelobes are quite different. 

 

In the case that only two different waveforms are used and under the assumption that fast-

time Doppler effects are negligible, one can satisfy the sidelobe similarity constraint [349] 

MF,1 1 MF,2 2( ) ( ) ( ) ( )h t s t h t s t                                             (III-E4) 

by setting *
2 1( ) ( )s t s T t  , such that MF,1 2( ) ( )h t s t  and MF,2 1( ) ( )h t s t . However, this 

constraint cannot be met for more than two waveforms because, in general, the frequency 

response for the mth filter would be  
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which is an infinite impulse response (IIR) filter due to the term in the denominator. Thus the 

similarity constraint can only be met approximately for more than two waveforms by using 

mismatched filters of sufficient length. It was shown in [349], and subsequently extended in 

[358,359], that a joint formulation of the least-squares based mismatched filter described in 

Section II-H provides this capability, with the caveat that the number of waveforms still be 

relatively small (say 4 or 5) due to the associated trade-off of a general increase in sidelobes 

across the (now similar) mismatched filter responses. In [360] this filter design problem was also 

considered from a convex optimization perspective. 

One may also consider performing pulse compression and (slow-time) Doppler processing 

jointly. An adaptive processing formulation for this joint perspective on waveform agility was 

developed in [361], though the associated computational cost is rather high. A non-adaptive 

approach was likewise conceived in [362] and subsequently was extended in [363]. While these 

joint processing schemes are clearly more complex and generally have a higher computational 

cost than performing pulse compression and Doppler processing separately, the multiplicative 

increase in adaptive degrees of freedom (not unlike that obtained via STAP [264]) provides the 

means to address the range-Doppler coupling that arises from range-sidelobe modulation of 

clutter. Further, these schemes can be extended to incorporate multiple-time-around clutter, also 

known as range-ambiguous clutter or folded clutter that becomes more prevalent at higher PRF 

[364,365], [366, Chap. 9.5]. 

Finally, an arguably more straightforward approach to addressing range-sidelobe modulation 

is simply to expand the dimensionality of the radar emission to such a degree that the sidelobes 

are driven into the noise since they do not coherently combine. While not necessarily designed for 

this reason, one could contend that this very effect occurs for noise radar [71-75] and the similar 

concept of chaotic radar [367-369]. For example, for the recently developed FMCW noise radar 
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concept in [370], Fig. III-E3 illustrates the RMS average sidelobe response over 10
4
 waveform 

segments (left) that is reduced by roughly 40 dB when coherently integrating over these segments 

(right) such as occurs with Doppler processing. Recently, this concept was also examined for a 

pulsed mode [371] in which it is observed that a high PRF (100 kHz in this case) provides 

performance very similar to the FMCW mode while a lower PRF (1 kHz) necessitates additional 

receive processing since the dimensionality is no longer high enough to drive the sidelobes into 

the noise. See [349,361,371] as a starting point for further reading on waveform agility. 
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Fig. III-E3.  Range sidelobes for FM noise radar for (left) the RMS average over 10

4
 

waveform segments and (right) the coherent integration over these segments 

 

F) Polarization Diversity 

Polarization provides another dimension to utilize for radar detection, tracking, and imaging. 

In 1986 Giuli [372] provided an excellent survey on polarization diversity. Simply put, a dual-

polarized antenna has twice the degrees of freedom as the similar antenna with only one 

polarization channel, though with the caveat of increased complexity and implementation cost. 

Assuming each antenna element (if part of an array) has orthogonally polarized channels, such as 

the simple crossed dipoles depicted in Fig. III-F1, then the additional freedom on both transmit 

and receive may provide several advantages. These advantages include enhanced 

classification/identification/discrimination between targets and clutter [373-380], measurement of 

scattering depolarization for remote sensing applications [381-385], dual-polarized generalization 
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of the matched illumination concept discuss in Section III-B [386,387], dual-polarized SAR 

[388,389], and polarization coding on transmit [390,391]. 

 
Fig. III-F1.  Crossed dipoles to enable dual-polarized operation 

 

 
Fig. III-F2.  Poincaré sphere representing the different polarization states 

 

A useful and well-known way to visualize the polarization state is the Poincaré sphere (Fig. 

III-F2), which includes the basic states (horizontal, vertical, left/right-hand circular) as well as all 

the variations in between. Any two antipodal states on the Poincaré sphere are orthogonal. Thus, 

it is common to express the received radar scattering at a given instant in time in terms of the 

linear horizontal and vertical components via the scattering matrix 

HH HV

VH VV

x x

x x

 
 
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X ,                                                      (III-F1) 
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where the subscripts denote the receive and transmit channel for each component. Therefore the 

horizontal (vertical) antenna captures a co-polarized (cross-polarized) signal as well as a cross-

polarized (co-polarized) signal. It should be noted that many different decompositions of the 

scattering matrix have been developed to achieve greater understanding of the inherent scattering 

properties of an object and to develop recognizable features for various scattering environments 

and target structures [392-395]. 

Because the co-polarized and cross-polarized components of (IV-F1) are superimposed at 

each orthogonal antenna element, accurate estimation of the scattering matrix terms as a function 

of range is often performed by alternating between which of the orthogonal antenna elements 

transmits so as to achieve isolation [396,397]. However, this isolation comes at the cost of 

increased ambiguities since the measurement time is doubled relative to simultaneous dual-

polarized operation. It was suggested in [398,399] that simultaneous operation could be 

performed if the waveforms emitted by the orthogonal antenna elements are sufficiently 

separable. According to Parseval’s theorem, if these two waveforms have the same spectral 

support (which is generally desired in this context to ensure phase coherence between to various 

channels), then there is a limit on how low the cross-correlation between the waveforms can be 

(which is dependent on the time-bandwidth product). Because their cross-correlation is rather flat, 

one could use two LFM waveforms, one an up-chirp and the other a down-chirp, on the 

respective orthogonal antenna elements [398,399]. Various other coding approaches have been 

examined, including bias removal of coherent cross-channel coupling [400], pulse-to-pulse phase 

coding [401], and a frequency-interleaved OFDM structure that minimizes the spectral overlap 

(the spectral maxima of one waveform coincides with the spectral minima of the other) while still 

maintaining the same general spectral support [402]. It has also recently been experimentally 

demonstrated [391] that adaptive range-domain processing using knowledge of the two 

waveforms can separate the co-pol/cross-pol components just as well as the time alternating 

approach (with a higher computational cost, of course). 
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IV.  CONCLUSIONS 

Waveform Diversity is an exciting technology that has sparked intense interest from the 

research community in recent years due to advances in high-fidelity electronic components and 

high-performance computing. WD is expected to have a profound impact on radar spectrum 

management, particularly in light of increasing competition for spectrum usage, as well as to 

facilitate enhanced radar sensitivity/discrimination and perhaps even to enable new sensing 

modes. As mentioned at the beginning of this tutorial, the definition of WD is clearly rather 

broad, but such is to be expected for a topic that continues to evolve. 
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