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Motivation

2

• Increasing spectral congestion is driving research into radar/communication 
cohabitation strategies
– Here we consider experimental validation of a co-design approach for a single multi-

function system

• In [1], a power-efficient, multi-function arrangement denoted as Tandem-
Hopped Radar and Communications (THoRaCs) was introduced
– A two-stage optimization procedure places an undistorted OFDM signal into a constant 

amplitude FM noise waveform

• Here we focus on experimental evaluation of THoRaCs
– Dual-function radar and communication perspectives are considered in loopback and 

open-air measurements

[1] B. Ravenscroft, P.M. McCormick, S.D. Blunt, E.S. Perrins, J.G. Metcalf, “A power-efficient formulation

of tandem-hopped radar and communications,” IEEE Radar Conf., Oklahoma, City, OK, Apr. 2018.
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THoRaCs Structure

• In the THoRaCs formulation, the composite radar + OFDM waveform is 
directly designed as a single dual-purpose emission
– This composite waveform is constant amplitude and continuous,                                             

=> thus amenable to high-power transmitters

– The two-stage optimization procedure provides undistorted communication subcarriers

– The undistorted OFDM signal is a component of a constant amplitude FM signal
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THoRaCs is NOT constant-envelope OFDM (CE-OFDM) 
where subcarriers are placed directly in the exp(•) term

( ) ( ) ( ) exp( ( ))s t r t e t j t  
Composite waveform

OFDM signal
“excess” signal required to 

enforce right-hand side
Continuous phase 

function
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THoRaCs Waveform Optimization

• We wish to generate a pulsed FM radar waveform of duration T and 3-dB 
bandwidth B that contains N embedded OFDM subcarriers
– Subcarriers modulated with arbitrary QAM symbols

– Here there is one symbol / subcarrier / pulse

• As long as N is sufficiently less than BT, the two-stage optimization 
procedure exploits the available degrees of freedom to produce a true OFDM 
signal that resides within an FM waveform

• Each waveform is spectrally-shaped to yield low autocorrelation sidelobes
– A Gaussian shaped power spectrum is employed here

• A total of M unique pulsed waveforms are produced to form a coherent 
processing interval (CPI)
– The inherent waveform agility realizes incoherent sidelobes that average out when 

combined in slow-time
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THoRaCs Optimization – Initialization

• Initialize the mth pulse, defined on –T/2 ≤ t ≤  T/2, with a random FM waveform 
denoted as             via a random instantiation of polyphase-coded FM (PCFM) [2]

• Over the same time interval, define the communication signal as 

where, for the mth pulse, 
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0, ( )ms t

[2] S.D. Blunt, M. Cook, J. Jakabosky, J. de Graaf, E. Perrins, “Polyphase-coded FM (PCFM) radar waveforms, part

I: implementation,” IEEE Trans. Aerospace & Electronic Systems, vol. 50, no. 3, pp. 2218-2229, July 2014.
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is the frequency of the nth subcarrier,

is the QAM symbol encoded onto the nth subcarrier,

is the amplitude scaling factor that shapes the spectrum at the nth subcarrier.
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THoRaCs Optimization – Stage One
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complement of subcarriers 
& then insert OFDM signal

Extract continuous 
phase to enforce 

constant amplitude & 
enforce pulse shape

Fourier 
transforms
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THoRaCs Optimization – Stage Two
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Options for OFDM Parameterization

• In the formulation of          , three design parameters are examined:
1) Size of the OFDM symbol constellation

2) Number of OFDM subcarriers N relative to waveform BT

3) Placement of subcarriers within the radar spectrum
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( )mr t

Symbol 
constellation

Subcarrier 
percentage

Subcarrier                          
placement

4-QAM 25% BT “Contiguous Fixed”

16-QAM “Contiguous Hopped”
75% BT64-QAM “Non-Contiguous Hopped”

Subcarriers grouped together, 
static from pulse-to-pulse 

Subcarriers grouped together, 
location moves from pulse-to-pulse 

Subcarriers move independently 
from pulse-to-pulse 

All N subcarriers forced to 
reside within 3-dB bandwidth
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Simulated Assessment: Subcarrier Capacity
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• A noise-free simulation of the optimized THoRaCs waveforms is conducted to 
assess distortion caused to the embedded OFDM signal via optimization only
– A set of M = 103 THoRaCs waveforms with BT = 200 are optimized and the OFDM 

subcarriers are demodulated with knowledge of the constellation and subcarrier 
placement

• Two instantiations of embedded OFDM parameters are considered
– 4-QAM constellation with N = 50 (25% of BT = 200) & N = 150 (75% of BT = 200)  

subcarriers per pulse, embedded via the “Contiguous Fixed” placement strategy

– Highlights impact of OFDM distortion caused by the optimization procedure

• The “spread” of the demodulated symbols around their respective 
constellation points is assessed via the root-mean-square (RMS) error vector 
magnitude (EVM), expressed as a percentage of the average symbol energy
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Simulated Assessment: Subcarrier Capacity
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4-QAM constellation and “Contiguous Fixed” subcarrier placement

N = 50 subcarriers/pulse N = 150 subcarriers/pulse

Increasing N degrades demodulation accuracy for fixed BT

RMS EMV = 
0.45%

RMS EMV = 
10.9%
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Experimental Assessment: Hardware Implementation
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• For all experimental evaluations conducted, a set of M = 103 THoRaCs 
waveforms were optimized having BT = 200 (B = 66.7 MHz and T = 3 μs)
– The collective CPI has aggregate BT = 2  105 that yields ~53 dB of coherent integration gain 

at the radar receiver

• Each waveform is physically implemented on a Tektronix arbitrary 
waveform generator (AWG) for transmission
– Digitally up-sampled to 10 GS/s at a center frequency of 3.55 GHz and PRF of 25 kHz

• Each received signal is captured by a Rohde & Schwarz real-time spectrum 
analyzer (RSA)
– I/Q sampled at a rate of 200 MHz
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Experimental Radar Assessment: Open-Air
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• Experimental assessment of the radar operation of optimized THoRaCs 
waveforms was conducted in an MTI mode
– Vehicular traffic captured from the roof of a building on the University of Kansas campus

• Captured reflections of the CPI are pulse-compressed with loopback-
measured versions of the waveforms
– Accounts for hardware distortion effects

• Range-Doppler response is formed via standard FFT Doppler processing
– Zero-Doppler projection clutter notch (stationary platform)

– Taylor window applied across Doppler
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Experimental Radar Assessment: Open-Air

13

4-QAM constellation and “Contiguous Fixed” subcarrier 
placement with N = 50 (25% of BT) subcarriers

Results agree with 
previous radar 

assessment of FM 
noise waveforms

Low range sidelobes 
due to incoherent 

combining in slow-
time
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Experimental Comm. Assessment: Loopback
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• To assess communication performance, loopback captures are first performed 
to establish a baseline
– Transmitter (AWG) is connected directly to receiver (RSA) and both are referenced from 

the same clock to avoid synchronization issues (not realistic)

– Hard-wired channel does not possess multi-path and removes need for equalization

– Lack of synchronization and channel equalization are addressed in open-air 
measurements

• Optimized THoRaCs waveforms with three instantiations of embedded 
OFDM parameters are considered
– 4-QAM, 16-QAM and 64-QAM constellations with N = 50 (25% of BT = 200) subcarriers 

per pulse, embedded via “Contiguous Fixed” placement strategy

– Corresponds to data rates of 2.5, 5.0 and 7.5 Mbps, respectively, at PRF = 25 kHz

• The RMS EVM again used to assess the accuracy of symbol demodulation



2019 International Radar Conference – Toulon, France

Experimental Comm. Assessment: Loopback
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4, 16 and 64-QAM constellations with “Contiguous Fixed” subcarrier placement 
and N = 50 (25% of BT) subcarriers

RMS EMV = 4.0%

Excellent agreement with true symbols – no demodulation errors

RMS EMV = 3.0% RMS EMV = 3.2%
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Experimental Comm. Assessment: Open-Air

16

• The open-air communication capability of 
THoRaCs waveforms was experimentally 
assessed in a line-of-sight (LOS) configuration 
– Transmit and receive antennas placed directly facing 

each other separated by ~ 50 meters

– Direct LOS is present with some multipath due to 
surrounding buildings/trees and ground bounce

• The same three waveform sets evaluated for 
loopback communication were evaluated in 
open-air
– Transmit antenna is fed by AWG and RSA obtains 

signal captured by receive antenna

– No common reference clock
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Experimental Comm. Assessment: Open-Air
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• Open-air communication operation requires the receiver to perform 
synchronization and channel estimation/equalization
– Accomplished via a-priori knowledge of pilot symbols

• Embedded OFDM signal does not contain a cyclic prefix
– Standard OFDM frequency domain equalization is expected to realize degradation due 

to mismatch effects

• Equalization is instead performed by estimating the inverse channel 
response with a Wiener Filter (WF) and forming an inverse filter using a 
zero-forcing (ZF) equalizer
– Inverse filter is applied to captured waveform to compensate for channel distortion

• Communication performance is assessed through demodulated RMS EVM 
and symbol error rate (SER)
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Open-Air Comm. Equalization/Synchronization
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• For each set of 1000 waveforms, every 50th pulse serves as a pilot waveform 
for channel equalization

• Receiver must perform synchronization due to lack of a common clock
– Pulse-to-pulse frequency offset (small) can be estimated as a constant phase drift 

between pulses (with some estimation error inherent)

• The 1st and 2nd pulses of each 1000 pulse set are used as pilots to estimate the 
phase offset
– Frequency offset compensation applied to all other pulses in a progressive manner

• Progressive frequency offset compensation is restarted at every 50th pulse 
when channel re-estimation occurs 
– Reduces error-induced phase shift
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Experimental Comm. Assessment: Open-Air
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4, 16 and 64-QAM constellations with “Contiguous Fixed” subcarrier placement 
and N = 50 (25% of BT) subcarriers

RMS EMV = 10.2%

Increased (and phase-oriented) spreading compared to loopback baseline

RMS EMV = 5.6% RMS EMV = 5.2%

SER = 1.8  10-3SER = 0SER = 0
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Conclusions

• Experimental assessment of THoRaCs in radar and communication modes 
demonstrates viability as a dual-function waveform

• Channel estimation, equalization, and synchronization was crude and 
unsophisticated
– Communication performance stands to benefit from more sophisticated 

estimation/equalization/synchronization methods along with error correction coding 

• Nonlinear distortion and memory effects of a high-power transmitter could 
further impact communication performance … though not as much as 
standard OFDM
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