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Motivation
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• Standard MTI radar involves illumination by a repeated waveform, such as the commonly 
used linear frequency modulated (LFM) chirp
– Range and slow-time Doppler domains are decoupled, permitting sequential receive processing

• In contrast, a CPI of nonrepeating waveforms provides a multiplicative increase in design 
degrees-of-freedom (DoF)
– enables new waveform-agile sensing modes such as dynamic spectral notching

• The DoF increase is due to coupling of range and slow-time Doppler domains … which 
introduces the phenomenon of range sidelobe modulation (RSM)
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Range Sidelobe Modulation
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• When performing sequential range/Doppler processing on agile waveforms, RSM yields a 
smearing of clutter across the entire Doppler domain, hindering clutter cancellation

Repeated (standard) Waveform-Agile

• Simply put, the greater DoF for waveform-agile operation comes at the cost of requiring some 
manner of compensation for clutter cancellation
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Waveform-Agile Clutter Cancellation
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• Initial approaches sought to compensate for RSM by “homogenizing” pulse compression 
responses on a pulse-to-pulse basis … but the trade-off is higher sidelobes 

• Non-Identical Multiple Pulse Compression (NIMPC) [1] was developed to perform joint delay-
Doppler clutter cancellation by forming a structured (clutter + noise) covariance matrix
– But joint domain processing can be prohibitively expensive => simply the curse of dimensionality

• However, it was recently shown [2] that NIMPC can be refactored to reveal a block-Toeplitz 
structure, enabling efficient solvers

Here we leverage this block-Toeplitz structure and a projection formulation (akin to [3]) to achieve 
multiple orders-of-magnitude reduction in computational cost … potentially reaching real-time

[1]   T. Higgins, et al., "Aspects of non-identical multiple pulse compression," IEEE Radar Conf., Kansas City, MO, May 2011.

[2] C. Sahin, et al., "Reduced complexity maximum SINR receiver processing for transmit-encoded radar-embedded communications," IEEE 

Radar Conf., Oklahoma City, OK, May 2018.

[3] F. Colone, et al., “A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar,” IEEE 

Trans. Aerospace & Electronic Systems, vol. 45, no. 2, pp. 698-722, Apr. 2009.
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… and now for the math …
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Single-Pulse Snapshot Model
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• Denote an N×1 collection of contiguous fast-time received samples induced by the mth pulse as

where l indicates the range cell index and nm(l) contains the N associated noise samples

• The N×(2N−1) matrix Sm,ω= Sme j(m−1)ω accounts for the phase shift from Doppler frequency ω

• The Toeplitz structure of

models convolution of N discretized samples of waveform sm(t), denoted as                                       ,                                       

with (2N−1) discretized range samples of complex scattering in xω(l)
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Multiple-Pulse Model
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• Extending to M pulses, the previous N×1 receive vector becomes the NM×1 vector

where        is the concatenation of the M noise vectors          and 

is the NM×(2N−1) block-Toeplitz matrix of range & Doppler shifts for each scattering vector

• Thus the joint-domain matched filter for Doppler     can be defined as 
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NIMPC Filters
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• NIMPC uses this joint model to specify a bank of K clutter Doppler frequencies as

from which is formed the structured (clutter + noise) correlation matrix

that is used to construct the NIMPC filter for frequency ω as

• Therefore, the matched filter and NIMPC filter for frequency ω are respectively applied as
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Reformulating NIMPC
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• Solving for NIMPC filters directly involves construction and inversion of an NM×NMmatrix

• Even when using efficient block-Toeplitz solvers, cost is prohibitive even for modest N and M

• Rather than solving directly, the problem can be reformulated as the solution to M linear 
systems of equations
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Preconditioned Conjugate Gradient

10

• Separating each of the M systems of equations, the matrix inverse can be posed as an 
equivalent convex optimization problem 

• I iterations of linear conjugate gradient (CG) or preconditioned linear conjugate gradient 
(PCG) can then be performed to iteratively converge to solution of the system 
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Efficient Matrix Operations
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• Using the block-Toeplitz structure of       , storage of      can be avoided by performing Toeplitz 
matrix multiplies (equivalent to convolution) as frequency-domain multiplication

• The complexity of the matrix inverse goes from O(N 3M 3) to O(2 IMK (2N−1) log2(2N−1)) for I

iterations and no preconditioner

• While CG and PCG converge superlinearly, iterating for fixed I does not guarantee the exact 
solution … but the iterative nature provides a trade-space between accuracy and computation time 
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A Note on Preconditioning
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• Optimal preconditioning can greatly improve rate of convergence, but likewise increases       
per-iteration computational cost

• Rather than an optimal preconditioner, here it is more practical to select a preconditioner that 
improves rate of convergence without significantly altering complexity (~M (2N−1)log2(2N−1)) 

• A block-circulant preconditioner that approximates      has been shown to improve the rate of 
convergence, but increases per-iteration cost by 2M 2N log2(N) => factor of M greater than CG

• Alternatively, if clutter is localized in Doppler, a block-circulant preconditioner that 
approximates the diagonal blocks of      improves convergence (to a lesser degree) while only 
increasing per-iteration cost by 2M N log2(N) => strictly less than the complexity of CG

R

R
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An “All-of-Range” Collective Model
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• Where the previous model operated on N×1 range-indexed snapshots, the entire L×1 receive 
interval (in range) can be employed to form a projection onto the nullspace of the clutter 

• The L×1 measurement vector induced by the mth pulse is denoted in a similar form as

which is likewise extended to M pulses via the ML×1 aggregate receive vector

• This representation increases the dimensionality of each Toeplitz matrix, thereby improving 
FFT efficiency and accuracy of the circulant approximation
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Projection NIMPC (Proj-NIMPC)
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• This collective model is then used to define the bank of K Doppler frequencies and subsequent 
projection

which projects onto the null space of the clutter in a manner akin to the extensive cancellation 
algorithm (ECA) [3], with matched filtering applied thereafter

• As before, each operation in the projection can be implemented efficiently via frequency 
domain multiplication and PCG: 
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Order of Complex Operations

NIMPC (direct) K(2N−1) (MN)2 + (MN)3 + D (MN)2

NIMPC (direct w. efficient solver) K(2N−1) (MN)2 + M(MN)2 + (MN)2

NIMPC PCG 2IM 2K(2N−1) log2(2N−1) + 2IM 2N log2(N)

Proj-NIMPC (direct w. efficient solver) K 3(L− N +1)2 + 2K 2M(L− N +1) L log2(L)

Proj-NIMPC PCG 4(2I +1) KML log2(L)

Computational Complexity

15

• Computational cost for direct NIMPC and the 
block-diagonal PCG versions were determined 
to get a sense of overall complexity

• In addition to substantial efficiency gains as N
and M grow, the PCG implementations avoid 
the need to store large matrices

• Proj-NIMPC scales linearly with Mwhile all the 
NIMPC approaches scale by at least M2

• The larger Toeplitz matrices in Proj-NIMPC 
yield a more accurate circulant approximation

Now consider an application example with open-air measurements that assigns values to these 
parameters for a more meaningful comparison of efficiency improvement

Variables Definitions

N Samples per Waveform

M Pulses per CPI

K # Doppler Frequencies to Suppress

D # Doppler Frequencies to Estimate (direct NIMPC only) 

L Samples per PRI

I Conjugate Gradient Iterations
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Experimental Setup
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• Open-air measurements were collected with an S-band 
radar testbed to assess the different NIMPC joint-domain 
implementations on real MTI data

– 3.55 GHz center frequency, 33.3 MHz 3-dB bandwidth, 4.5 µs 

pulses, 5 kHz PRF

– Separate (but collocated) Tx and Rx antennas produce significant 

direct-path leakage

• M =100 pulsed, random FM waveforms (i.e. no repeat 
during the CPI) illuminated a traffic intersection in 
Lawrence, KS (from roof of Nichols Hall on KU campus)

– Receive sample rate yielded N = 900 and L = 5.9×103 range cells

– NIMPC clutter cancellation uses K=10 bins equally spaced over 
±150 Hz in Doppler

– NIMPC filters diagonal loaded with σ2
nse = 10-4

– I = 10 iterations were performed for both NIMPC PCG and 
Proj-NIMPC PCG

Annotated field of view for measured results
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Experimental Validation: NIMPC Baseline
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• First compare original NIMPC with standard processing (matched filter & Doppler processing), 
with and without simple projection-based clutter cancellation

Doppler Only 

Cancelation

Matched Filter 

(no cancellation) NIMPC
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Matched Filter 

(no cancellation)

Doppler Only 

Cancelation

Experimental Validation: NIMPC Baseline
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• The RSM speckle in the intersection is pushed below the noise floor by NIMPC

NIMPC

Traffic intersection with moving vehicles (see inset for detail view)
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Doppler Only 

Cancelation

Matched Filter 

(no cancellation)

Experimental Validation: NIMPC Baseline
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• NIMPC provides significant suppression of clutter RSM (here caused by direct-path leakage)

Unlike NIMPC, Doppler-only cancellation does not account for RSM

NIMPC

Direct Path RSM
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Direct Proj-NIMPC

Experimental Validation: Proj-NIMPC (Direct)
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• Now compare the direct form of Proj-NIMPC with standard processing (with clutter 
cancellation) and original NIMPC

Proj-NIMPC yields RSM suppression on par with NIMPC for a markedly lower cost

Doppler Only 

Cancelation NIMPC
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Evaluation of Efficient Direct Solvers
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• For the direct NIMPC approaches, an 
efficient block-Toeplitz solver reduces 
computational cost by an order of 
magnitude

• Using the block-Toeplitz structure for the 
Proj-NIMPC implementation reduces 
complexity by almost two additional orders 
of magnitude

• However, these direct solutions require 
storage of extremely large matrices … and 
further computational reduction is possible

Number of Complex Operations For Experiment

NIMPC (direct) 9.5×1014

NIMPC (direct w. efficient solver) 8.7×1013

NIMPC PCG

Proj-NIMPC (direct w. efficient solver) 1.9×1012

Proj-NIMPC PCG
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Experimental Validation: NIMPC PCG
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NIMPC PCG I = 10

• Compare to the NIMPC PCG implementation after 10 iterations

Doppler Only 

Cancelation NIMPC
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Doppler Only 

Cancelation NIMPC

Experimental Validation: NIMPC PCG
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NIMPC PCG I=10

• 10 iterations is enough to push the intersection RSM below the noise floor

Intersection with moving vehicles
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Doppler Only 

Cancelation NIMPC

Experimental Validation: NIMPC PCG
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10 iterations of PCG has mitigated RSM at the intersection, but some direct path RSM remains 

NIMPC PCG I=10

• However, 10 iterations is not enough to fully suppress the RSM from direct path leakage

Direct Path RSM
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Experimental Validation: Proj-NIMPC PCG
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• Finally, consider 10 iterations of Proj-NIMPC PCG

Proj-NIMPC 

PCG I = 10

Doppler Only 

Cancelation NIMPC
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Doppler Only 

Cancelation NIMPC

Experimental Validation: Proj-NIMPC PCG
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• 10 iterations is again enough to push the intersection RSM below the noise floor

Proj-NIMPC 

PCG I = 10

Intersection with moving vehicles
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Doppler Only 

Cancelation NIMPC

Experimental Validation: Proj-NIMPC PCG
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• Moreover, now the direct path RSM is suppressed to the same degree as NIMPC

Proj-NIMPC PCG suppresses RSM on par with NIMPC for a significantly lower computational cost 

Proj-NIMPC 

PCG I=10

Direct Path RSM
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Evaluation of Iterative Solvers
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Number of Complex Operations For Experiment

NIMPC (direct) 9.5×1014

NIMPC (direct w. efficient solver) 8.7×1013

NIMPC PCG 2.3×1010

Proj-NIMPC (direct w. efficient solver) 1.9×1012

Proj-NIMPC PCG 3.1×109

• 10 iterations of NIMPC PCG reduces 
computational cost by 4 orders of magnitude
relative to original NIMPC

• However, 10 iterations is not enough for 
NIMPC PCG to sufficiently converge so 
some residual RSM remains

• Alternatively, with reduction in 
computational cost more than 5 orders of 
magnitude, 10 iterations of Proj-NIMPC 
PCG yields RSM suppression as well as 
NIMPC

Direct Path RSM Improvement vs Iteration
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Direct Path RSM Improvement

Conclusions
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• Traditional clutter cancellation does not account for   
range-Doppler coupling that occurs with waveform 
agility

• NIMPC performs joint range-Doppler clutter 
cancellation … but incurs a high computational cost

• Using efficient solvers and reformulating NIMPC as a 
projection can each reduce computational overhead

• Further, both NIMPC and Proj-NIMPC can be 
iteratively implemented with PCG to significantly 
improve efficiency … potentially to the point of 
achieving real-time processing

Number of Complex Operations For Experiment

NIMPC (direct no structure) 9.5×1014

NIMPC (direct with structure) 8.7×1013

NIMPC PCG 2.3×1010

Proj-NIMPC (direct with structure) 1.9×1012

Proj-NIMPC PCG 3.1×109


