Computationally Efficient Joint-Domain Clutter Cancellation for Waveform-Agile Radar

Christian Jones^{1,3}, Brandon Ravenscroft¹, James Vogel², Suzanne M. Shontz¹, Thomas Higgins³, Kevin Wagner³, Shannon Blunt¹

¹Radar Systems Lab (RSL), EECS Dept., University of Kansas, Lawrence, KS, USA

²Systems & Technology Research, Woburn, MA, USA

³Naval Research Laboratory - Radar Division, Washington, DC, USA

This work was supported by the Office of Naval Research under Contract #N00014-20-C-1006. DISTRIBUTION STATEMENT A. Approved for Public Release; Distribution Unlimited.

Motivation

- Standard MTI radar involves illumination by a <u>repeated waveform</u>, such as the commonly used linear frequency modulated (LFM) chirp
 - Range and slow-time Doppler domains are decoupled, permitting sequential receive processing
- In contrast, a CPI of <u>nonrepeating</u> waveforms provides a <u>multiplicative increase</u> in design degrees-of-freedom (DoF)
 - enables new <u>waveform-agile</u> sensing modes such as dynamic spectral notching
- The DoF increase is due to coupling of range and slow-time Doppler domains ... which introduces the phenomenon of **range sidelobe modulation (RSM)**

Range Sidelobe Modulation

• When performing sequential range/Doppler processing on agile waveforms, RSM yields a **smearing of clutter across the entire Doppler domain**, hindering clutter cancellation

Waveform-Agile

Repeated (standard)

 Simply put, the greater DoF for waveform-agile operation comes at the cost of requiring some manner of <u>compensation for clutter cancellation</u>

- Initial approaches sought to compensate for RSM by <u>"homogenizing" pulse compression</u> <u>responses</u> on a pulse-to-pulse basis ... but the trade-off is higher sidelobes
- Non-Identical Multiple Pulse Compression (NIMPC) [1] was developed to perform joint delay-Doppler clutter cancellation by forming a structured (clutter + noise) covariance matrix
 - But joint domain processing can be **prohibitively expensive** => simply the curse of dimensionality
- However, it was recently shown [2] that NIMPC can be refactored to reveal a **block-Toeplitz structure**, enabling efficient solvers

Here we leverage this block-Toeplitz structure and a projection formulation (akin to **[3]**) to achieve **multiple orders-of-magnitude reduction in computational cost** ... potentially reaching real-time

- [1] T. Higgins, et al., "Aspects of non-identical multiple pulse compression," *IEEE Radar Conf.*, Kansas City, MO, May 2011.
- [2] C. Sahin, et al., "Reduced complexity maximum SINR receiver processing for transmit-encoded radar-embedded communications," *IEEE Radar Conf.*, Oklahoma City, OK, May 2018.
- [3] F. Colone, et al., "A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar," *IEEE Trans. Aerospace & Electronic Systems*, vol. 45, no. 2, pp. 698-722, Apr. 2009.

•

... and now for the math ...

$$\mathbf{y}_{m}(l) = \sum_{\omega} \mathbf{S}_{m,\omega} \, \mathbf{x}_{\omega}(l) + \mathbf{n}_{m}(l)$$

where *l* indicates the range cell index and $\mathbf{n}_m(l)$ contains the *N* associated noise samples

- The $N \times (2N-1)$ matrix $\mathbf{S}_{m,\omega} = \mathbf{S}_m e^{j(m-1)\omega}$ accounts for the phase shift from Doppler frequency ω
- The Toeplitz structure of

$$\mathbf{S}_{m} = \begin{bmatrix} s_{m,N} & \cdots & \cdots & s_{m,1} & 0 & \cdots & 0 \\ 0 & \ddots & & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & & \ddots & 0 \\ 0 & \cdots & 0 & s_{m,N} & \cdots & \cdots & s_{m,1} \end{bmatrix}$$

models convolution of *N* discretized samples of waveform $s_m(t)$, denoted as $\mathbf{s}_m = [s_{m,1} \ s_{m,2} \ \cdots \ s_{m,N}]^T$, with (2*N*-1) discretized range samples of complex scattering in $\mathbf{x}_{\omega}(l)$

Multiple-Pulse Model

• Extending to *M* pulses, the previous *N*×1 receive vector becomes the *NM*×1 vector

$$\overline{\mathbf{y}}(l) = [\mathbf{y}_1^T(l) \ \mathbf{y}_2^T(l) \ \cdots \ \mathbf{y}_M^T(l)]^T = \sum_{\omega} \overline{\mathbf{S}}_{\omega} \mathbf{x}_{\omega}(l) + \overline{\mathbf{n}}(l)$$

where $\bar{\mathbf{n}}(l)$ is the concatenation of the *M* noise vectors $\mathbf{n}_m(l)$ and

$$\overline{\mathbf{S}}_{\omega} = [\mathbf{S}_{1,\omega}^T \ \mathbf{S}_{2,\omega}^T \ \cdots \ \mathbf{S}_{M,\omega}^T]^T$$

is the NM×(2N–1) block-Toeplitz matrix of range & Doppler shifts for each scattering vector $\mathbf{x}_{\omega}(l)$

• Thus the joint-domain matched filter for Doppler ω can be defined as

$$\overline{\mathbf{b}}_{\omega} = [\mathbf{s}_{1}^{T} \ e^{j\omega}\mathbf{s}_{2}^{T} \ \cdots \ e^{j(M-1)\omega}\mathbf{s}_{M}^{T}]^{T} = \begin{bmatrix} \mathbf{s}_{1} \ \mathbf{0} \ \cdots \ \mathbf{0} \\ \mathbf{0} \ \mathbf{s}_{2} \ \ddots \ \vdots \\ \vdots \ \ddots \ \cdots \ \mathbf{0} \\ \mathbf{0} \ \cdots \ \mathbf{0} \ \mathbf{s}_{M} \end{bmatrix} \begin{bmatrix} 1 \\ e^{j\omega} \\ \vdots \\ e^{j(M-1)\omega} \end{bmatrix} = \mathbf{C}\mathbf{v}_{\omega} \checkmark$$

$$\underbrace{M \times 1 \text{ Doppler steering vector for frequency } \omega$$

NIMPC Filters

• NIMPC uses this joint model to specify a bank of *K* clutter Doppler frequencies as

$$\overline{\mathbf{S}}_{\Omega} = [\overline{\mathbf{S}}_{\omega_1} \ \overline{\mathbf{S}}_{\omega_2} \ \cdots \ \overline{\mathbf{S}}_{\omega_K}]$$

from which is formed the structured (clutter + noise) correlation matrix

$$\overline{\mathbf{R}} = \overline{\mathbf{S}}_{\Omega} \, \overline{\mathbf{S}}_{\Omega}^{H} + \overline{\mathbf{R}}_{\text{nse}}$$

that is used to construct the NIMPC filter for frequency ω as

$$\overline{\mathbf{w}}_{\omega} = \overline{\mathbf{R}}^{-1}\overline{\mathbf{b}}_{\omega} = \overline{\mathbf{R}}^{-1}\mathbf{C}\mathbf{v}_{\omega}$$

• Therefore, the matched filter and NIMPC filter for frequency ω are respectively applied as

Reformulating NIMPC

- Solving for NIMPC filters directly involves construction and inversion of an *NM*×*NM* matrix
- Even when using efficient block-Toeplitz solvers, cost is prohibitive even for modest *N* and *M*
- Rather than solving directly, <u>the problem can be reformulated as the solution to *M* linear <u>systems of equations</u></u>

$$\overline{\mathbf{w}}_{\omega} = \overline{\mathbf{R}}^{-1}\overline{\mathbf{b}}_{\omega} = \overline{\mathbf{R}}^{-1}\mathbf{C}\mathbf{v}_{\omega}$$

$$\overline{\mathbf{R}}\overline{\mathbf{w}}_{\omega} = \overline{\mathbf{R}}\overline{\mathbf{D}}\mathbf{v}_{\omega} = \mathbf{C}\mathbf{v}_{\omega}$$

$$\overline{\mathbf{R}}\overline{\mathbf{D}} = \overline{\mathbf{R}}[\overline{\mathbf{d}}_{1} \quad \overline{\mathbf{d}}_{2} \quad \cdots \quad \overline{\mathbf{d}}_{M}] = \mathbf{C} = [\mathbf{c}_{1} \quad \mathbf{c}_{2} \quad \cdots \quad \mathbf{c}_{M}]$$

Preconditioned Conjugate Gradient

- Separating each of the *M* systems of equations, the matrix inverse can be posed as an equivalent convex optimization problem
- *I* iterations of **linear conjugate gradient** (CG) or **preconditioned linear conjugate gradient** (PCG) can then be performed to <u>iteratively converge to solution of the system</u>

Equivalent Objective Function	Initialization	Descent Routine
Objective: $f(\overline{\mathbf{d}}_m) = \overline{\mathbf{d}}_m^H \overline{\mathbf{R}} \overline{\mathbf{d}}_m - \overline{\mathbf{d}}_m^H \mathbf{c}_m - \mathbf{c}_m^H \overline{\mathbf{d}}_m$ Gradient: $\nabla_{\overline{\mathbf{d}}_m^*} f(\overline{\mathbf{d}}_m) = \overline{\mathbf{R}} \overline{\mathbf{d}}_m - \mathbf{c}_m$ Hessian: $\nabla^2 f(\overline{\mathbf{d}}_m) = \overline{\mathbf{R}}$	Preconditioner: $\overline{\mathbf{M}}$ $\overline{\mathbf{d}}_{m,0} = 0$ or $\overline{\mathbf{d}}_{m,0} = \overline{\mathbf{M}}^{-1}\mathbf{c}_m$ $\mathbf{r}_0 = \mathbf{c}_m - \overline{\mathbf{R}} \overline{\mathbf{d}}_{m,0}$ $\mathbf{u}_0 = \overline{\mathbf{M}}^{-1}\mathbf{r}_0$ $\mathbf{p}_0 = \mathbf{u}_0$ i = 0	while $i < I$ and $\ \mathbf{r}_i\ > \phi$ $\alpha_i = \frac{\mathbf{r}_i^H \mathbf{u}_i}{\mathbf{p}_i^H \mathbf{\bar{R}} \mathbf{p}_i}$ $\mathbf{\bar{d}}_{m,i+1} = \mathbf{\bar{d}}_{m,i} + \alpha_i \mathbf{p}_i$ $\mathbf{r}_{i+1} = \mathbf{r}_i - \alpha_i \mathbf{\bar{R}} \mathbf{p}_i$ $\mathbf{u}_{i+1} = \mathbf{\bar{M}}^{-1} \mathbf{r}_{i+1}$ $\beta_i = \frac{\mathbf{r}_{i+1}^H \mathbf{u}_{i+1}}{\mathbf{r}_i^H \mathbf{u}_i}$ $\mathbf{p}_{i+1} = \mathbf{u}_{i+1} + \beta_i \mathbf{p}_i$ $i = i+1$ end

Efficient Matrix Operations

• Using the block-Toeplitz structure of \overline{S}_{Ω} , storage of \overline{R} can be avoided by performing Toeplitz matrix multiplies (<u>equivalent to convolution</u>) as frequency-domain multiplication

 ΓM

$$\begin{split} \mathbf{\bar{R}}\mathbf{f} &= (\mathbf{\bar{S}}_{\Omega} \, \mathbf{\bar{S}}_{\Omega}^{H} + \mathbf{\bar{R}}_{\text{nse}})\mathbf{f} \\ &= \mathbf{\bar{S}}_{\Omega} \, \mathbf{\bar{S}}_{\Omega}^{H} \mathbf{f} + \mathbf{\bar{R}}_{\text{nse}} \mathbf{f} \\ &= \mathbf{\bar{S}}_{\Omega} \, \mathbf{g} + \mathbf{\bar{R}}_{\text{nse}} \mathbf{f} \\ &= \mathbf{h} + \sigma_{\text{nse}}^{2} \mathbf{f} , \longrightarrow \mathbf{h}_{m} = \mathbf{\tilde{I}}_{N \times (2N-1)} \begin{bmatrix} \sum_{k=1}^{K} \mathbf{A}^{H} \left(e^{j(m-1)\omega_{k}} \left(\mathbf{q} \right)^{*} \odot \left(\mathbf{A} \mathbf{\tilde{s}}_{m} \right)^{*} \odot \left(\mathbf{A} \mathbf{\tilde{f}}_{m} \right) \right) \end{bmatrix} \\ &\mathbf{h} = \begin{bmatrix} \mathbf{h}_{1}^{T} \quad \mathbf{h}_{2}^{T} & \cdots & \mathbf{h}_{M}^{T} \end{bmatrix}^{T} = \mathbf{\bar{S}}_{\Omega} \mathbf{g} , \end{split}$$

$$\begin{aligned} \mathbf{A} : (2N-1) \times (2N-1) \text{ DFT matrix} \\ &\mathbf{A} : (2N-1) \times (2N-1) \text{ DFT matrix} \\ &\mathbf{K} : \text{ append } (N-1) \text{ zeros to the end of arbitrary vector } \mathbf{k} \\ &\mathbf{K} : \text{ append } (N-1) \text{ zeros to the end of arbitrary vector } \mathbf{k} \\ &\mathbf{K} : \text{ append } (N-1) \text{ zeros to the end of arbitrary vector } \mathbf{k} \\ &\mathbf{K} : \mathbf{M} = \mathbf{I}_{N \times (2N-1)} \begin{bmatrix} \sum_{k=1}^{K} \mathbf{A}^{H} \left(e^{j(m-1)\omega_{k}} \left(\mathbf{q} \right) \odot \left(\mathbf{A} \mathbf{\tilde{s}}_{m} \right) \odot \left(\mathbf{A} \mathbf{g}_{k} \right) \right) \end{bmatrix} \\ &\mathbf{h} = \begin{bmatrix} \mathbf{h}_{1}^{T} \quad \mathbf{h}_{2}^{T} & \cdots & \mathbf{h}_{M}^{T} \end{bmatrix}^{T} = \mathbf{\bar{S}}_{\Omega} \mathbf{g} , \end{aligned}$$

٦

- The complexity of the matrix inverse goes from *O*(*N*³*M*³) to *O*(2 *IMK* (2*N*–1) log₂(2*N*–1)) for *I* iterations and no preconditioner
- While CG and PCG converge superlinearly, iterating for fixed *I* does not guarantee the exact solution ... <u>but the iterative nature provides a trade-space between accuracy and computation time</u>

- Optimal preconditioning can greatly **improve rate of convergence**, but likewise increases per-iteration computational cost
- Rather than an optimal preconditioner, here it is more practical to select a preconditioner that **improves rate of convergence without significantly altering complexity** (~*M*(2*N*–1)log₂(2*N*–1))
- A block-circulant preconditioner that approximates $\overline{\mathbf{R}}$ has been shown to improve the rate of convergence, but **increases per-iteration cost** by $2M^2N \log_2(N) =>$ factor of *M* greater than CG
- Alternatively, if clutter is localized in Doppler, a **block-circulant preconditioner that approximates the diagonal blocks** of $\overline{\mathbf{R}}$ improves convergence (to a lesser degree) while only increasing per-iteration cost by $2MN \log_2(N) \Rightarrow$ strictly less than the complexity of CG

- Where the previous model operated on *N*×1 range-indexed snapshots, the entire *L*×1 receive interval (in range) can be employed to form a projection onto the nullspace of the clutter
- The *L*×1 measurement vector induced by the *m*th pulse is denoted in a similar form as

$$\dot{\mathbf{y}}_{m} = \sum_{\omega} \dot{\mathbf{S}}_{m,\omega} \, \dot{\mathbf{x}}_{\omega} + \dot{\mathbf{n}}_{m} \qquad \dot{\mathbf{S}}_{m,\omega} = e^{j\omega(m-1)} \begin{bmatrix} s_{m,1} & 0 & \cdots & \cdots & 0 \\ \vdots & \ddots & & \vdots \\ s_{m,N} & s_{m,1} & & \vdots \\ 0 & \ddots & \vdots & \ddots & \vdots \\ \vdots & s_{m,N} & \ddots & 0 \\ \vdots & & \ddots & s_{m,1} \\ \vdots & & & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & s_{m,N} \end{bmatrix} \leftarrow L \times (L - N + 1) \text{ banded}$$
Toeplitz matrix

which is likewise extended to *M* pulses via the *ML*×1 aggregate receive vector

$$\ddot{\mathbf{y}} = \sum_{\omega} \ddot{\mathbf{S}}_{\omega} \dot{\mathbf{x}}_{\omega} + \ddot{\mathbf{n}} \qquad \qquad \ddot{\mathbf{S}}_{\omega} = [\dot{\mathbf{S}}_{1,\omega}^T \ \dot{\mathbf{S}}_{2,\omega}^T \ \cdots \ \dot{\mathbf{S}}_{M,\omega}^T]^T \longleftarrow \qquad ML \times (L-N+1) \text{ block-Toeplitz matrix}$$

• This representation increases the dimensionality of each Toeplitz matrix, <u>thereby improving</u> <u>FFT efficiency and accuracy of the circulant approximation</u>

• This collective model is then used to define the bank of *K* Doppler frequencies and subsequent projection

which projects onto the null space of the clutter in a manner akin to the extensive cancellation algorithm (ECA) [3], with matched filtering applied thereafter

• As before, each operation in the projection can be <u>implemented efficiently via frequency</u> <u>domain multiplication and PCG</u>:

$$\ddot{\mathbf{z}} = \ddot{\mathbf{P}} \ddot{\mathbf{y}} = (\ddot{\mathbf{I}} - \ddot{\mathbf{S}}_{\Omega} (\ddot{\mathbf{S}}_{\Omega}^{H} \ddot{\mathbf{S}}_{\Omega})^{-1} \ddot{\mathbf{S}}_{\Omega}^{H}) \ddot{\mathbf{y}}$$

$$= \ddot{\mathbf{y}} - \ddot{\mathbf{S}}_{\Omega} (\ddot{\mathbf{S}}_{\Omega}^{H} \ddot{\mathbf{S}}_{\Omega})^{-1} \ddot{\mathbf{S}}_{\Omega}^{H} \ddot{\mathbf{y}}$$

$$= \ddot{\mathbf{y}} - \ddot{\mathbf{S}}_{\Omega} (\ddot{\mathbf{S}}_{\Omega}^{H} \ddot{\mathbf{S}}_{\Omega})^{-1} \ddot{\mathbf{g}}$$

$$= \ddot{\mathbf{y}} - \ddot{\mathbf{S}}_{\Omega} \ddot{\mathbf{a}}$$

$$= \ddot{\mathbf{y}} - \ddot{\mathbf{h}}$$

$$Freq. Multiplication$$

$$Freq. Multiplication$$

$$Freq. Multiplication$$

$$Freq. Multiplication$$

$$Freq. Multiplication$$

$$Freq. Multiplication$$

$$\overrightarrow{\mathbf{a}} = (\ddot{\mathbf{S}}_{\Omega}^{H} \ddot{\mathbf{S}}_{\Omega})^{-1} \ddot{\mathbf{g}}$$

$$= \ddot{\mathbf{x}}_{\Omega}^{H} \ddot{\mathbf{y}} \quad O(2 \ KML \log_{2}(L))$$

$$\ddot{\mathbf{a}} = (\ddot{\mathbf{S}}_{\Omega}^{H} \ddot{\mathbf{S}}_{\Omega})^{-1} \ddot{\mathbf{g}}$$

$$O(4 \ (2 \ I + 1) \ KML \log_{2}(L))$$

$$(\ddot{\mathbf{S}}_{\Omega}^{H} \ddot{\mathbf{S}}_{\Omega}) \ddot{\mathbf{a}} = \ddot{\mathbf{g}}$$

Computational Complexity

- Computational cost for direct NIMPC and the block-diagonal PCG versions were determined to get a sense of overall complexity
- In addition to substantial efficiency gains as *N* and *M* grow, the PCG implementations <u>avoid</u> the need to store large matrices
- Proj-NIMPC scales linearly with *M* while all the NIMPC approaches scale by at least *M*²
- The larger Toeplitz matrices in Proj-NIMPC yield a more accurate circulant approximation

Order of Complex Operations		
NIMPC (direct)	$K(2N-1) (MN)^2 + (MN)^3 + D (MN)^2$	
NIMPC (direct w. efficient solver)	$K(2N-1) (MN)^2 + M(MN)^2 + (MN)^2$	
NIMPC PCG	$2IM^{2}K(2N-1)\log_{2}(2N-1) + 2IM^{2}N\log_{2}(N)$	
Proj-NIMPC (direct w. efficient solver)	$K^{3}(L-N+1)^{2} + 2K^{2}M(L-N+1) L \log_{2}(L)$	
Proj-NIMPC PCG	$4(2I+1) KML \log_2(L)$	

Variables Definitions		
N	Samples per Waveform	
М	Pulses per CPI	
K	# Doppler Frequencies to Suppress	
D	# Doppler Frequencies to Estimate (direct NIMPC only)	
L	Samples per PRI	
Ι	Conjugate Gradient Iterations	

Now consider an application example with open-air measurements that assigns values to these parameters for a more meaningful comparison of efficiency improvement

Experimental Setup

- Open-air measurements were collected with an S-band radar testbed to assess the different NIMPC joint-domain implementations on real MTI data
 - 3.55 GHz center frequency, 33.3 MHz 3-dB bandwidth, 4.5 μs pulses, 5 kHz PRF
 - Separate (but collocated) Tx and Rx antennas produce significant direct-path leakage
- *M* =100 pulsed, random FM waveforms (i.e. no repeat during the CPI) illuminated a traffic intersection in Lawrence, KS (from roof of Nichols Hall on KU campus)
 - Receive sample rate yielded N = 900 and $L = 5.9 \times 10^3$ range cells
 - NIMPC clutter cancellation uses *K*=10 bins equally spaced over ±150 Hz in Doppler
 - NIMPC filters diagonal loaded with $\sigma_{nse}^2 = 10^{-4}$
 - *I* = 10 iterations were performed for both NIMPC PCG and Proj-NIMPC PCG

Annotated field of view for measured results

• First compare original NIMPC with standard processing (matched filter & Doppler processing), with and without simple projection-based clutter cancellation

• The RSM speckle in the intersection is pushed below the noise floor by NIMPC

2021 IEEE RADAR CONFERENCE

• NIMPC provides significant suppression of clutter RSM (here caused by direct-path leakage)

Unlike NIMPC, Doppler-only cancellation does not account for RSM

Experimental Validation: Proj-NIMPC (Direct)

• Now compare the direct form of Proj-NIMPC with standard processing (with clutter cancellation) and original NIMPC

Proj-NIMPC yields RSM suppression on par with NIMPC for a <u>markedly lower cost</u>

Evaluation of Efficient Direct Solvers

- For the direct NIMPC approaches, an efficient block-Toeplitz solver reduces computational cost by **an order of magnitude**
- Number of Complex Operations For Experiment

 NIMPC (direct)
 9.5 × 10¹⁴

 NIMPC (direct w. efficient solver)
 8.7 × 10¹³

 NIMPC PCG
 1.9 × 10¹²

 Proj-NIMPC (direct w. efficient solver)
 1.9 × 10¹²

 Proj-NIMPC PCG
 1.9 × 10¹²
- Using the block-Toeplitz structure for the Proj-NIMPC implementation reduces complexity by almost two additional orders of magnitude
- However, these <u>direct solutions require</u> <u>storage of extremely large matrices ... and</u> <u>further computational reduction is possible</u>

٠

2021 IEEE RADAR CONFERENCE

• Compare to the NIMPC PCG implementation after 10 iterations

• 10 iterations is enough to push the intersection RSM below the noise floor

• However, 10 iterations is not enough to fully suppress the RSM from direct path leakage

10 iterations of PCG has mitigated RSM at the intersection, but some direct path RSM remains

Experimental Validation: Proj-NIMPC PCG

• Finally, consider 10 iterations of Proj-NIMPC PCG

• 10 iterations is again enough to push the intersection RSM below the noise floor

• Moreover, now the direct path RSM is suppressed to the same degree as NIMPC

Proj-NIMPC PCG suppresses RSM on par with NIMPC for a significantly lower computational cost

Evaluation of Iterative Solvers

- 10 iterations of NIMPC PCG <u>reduces</u> <u>computational cost by 4 orders of magnitude</u> relative to original NIMPC
- However, <u>10 iterations is not enough for</u> <u>NIMPC PCG to sufficiently converge</u> so some residual RSM remains
- Alternatively, with reduction in computational cost more than 5 orders of magnitude, 10 iterations of Proj-NIMPC PCG yields RSM suppression as well as NIMPC

Number of Complex Operations For Experiment		
NIMPC (direct)	$9.5 imes 10^{14}$	
NIMPC (direct w. efficient solver)	8.7×10 ¹³	
NIMPC PCG	2.3×10 ¹⁰	
Proj-NIMPC (direct w. efficient solver)	1.9×10^{12}	
Proj-NIMPC PCG	3.1×10 ⁹	

Direct Path RSM Improvement vs Iteration

Conclusions

- Traditional clutter cancellation <u>does not account for</u> <u>range-Doppler coupling</u> that occurs with waveform agility
- NIMPC performs joint range-Doppler clutter cancellation ... but incurs a high computational cost
- Using efficient solvers and reformulating NIMPC as a projection can each reduce computational overhead
- Further, both NIMPC and Proj-NIMPC can be iteratively implemented with PCG to significantly improve efficiency ... potentially to the point of achieving real-time processing

Direct Path RSM Improvement

Number of Complex Operations For Experiment	
NIMPC (direct no structure)	9.5×10^{14}
NIMPC (direct with structure)	8.7×10 ¹³
NIMPC PCG	2.3×10 ¹⁰
Proj-NIMPC (direct with structure)	1.9×10^{12}
Proj-NIMPC PCG	3.1×10 ⁹

