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Motivation

• The RF spectrum is becoming increasingly congested due to repeated spectrum 
auctions and subsequent 4G/5G roll-out

• Designing radar waveforms with notched spectral regions can mitigate mutual interference 
with other proximate RF users, at the cost of degraded range-Doppler sidelobe performance [1]

• To evaluate the limitations of correlation-based processing, the null-constrained power spectral 
density (PSD) that globally minimizes correlation (range) sidelobe levels is determined

• The optimal null-constrained PSD and implied correlation (for a given spectral notch location) 
is compared with waveform and pulse compression filter design methods

2

[1] B. Ravenscroft, J.W. Owen, J. Jakabosky, S.D. Blunt, A.F. Martone, K.D. Sherbondy, “Experimental demonstration and analysis

of cognitive spectrum sensing and notching for radar,” IET Radar, Sonar & Navigation, vol. 12, no. 12, pp. 1466-1475, Dec. 2018.
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1) Sense the spectrum environment

2) Ascertain where interference is located

3) Generate physically realizable waveforms 
to mitigate mutual interference

“sense & notch”: 

places notches in the 

radar spectrum 

based on sensed RFI

• Recent work demonstrated real-time cognitive 
radar for spectrum sharing [2]

• The real-time cognitive radar utilized a sense-and-notch (SAN) 
framework for per-pulse RF interference mitigation.

• Correlation-based matched filter processing was implemented 
for moving target indication (MTI)

• To determine the fundamental limitations of correlation-
based processing, the null-constrained power spectral density 
(PSD) that globally minimizes correlation (range) sidelobe
levels is determined

[2] J. W. Owen, C. Mohr, B. Ravenscroft, S. Blunt, B. Kirk, A. Martone, "Real-

Time Experimental Demonstration and Evaluation of Open-Air Sense-and-

Notch Radar," IEEE Radar Conference, New York City, NY, March 2022.
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Fundamentals
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• Power spectral density (PSD) and autocorrelation are a Fourier transform pair for 
deterministic signals.

Fundamentals:

1. The waveform autocorrelation determines the matched filter pulse compression response.

2. Waveforms designed to spectrally adhere to a PSD template have implicit autocorrelation 
properties.

3. Determining the PSD template that minimizes autocorrelation sidelobes (while constraining 
spectral nulls) implies global minimum boundaries for waveform/filter performance. 

𝐫 = 𝐀𝐻𝐠

𝐫 ∶ Autocorrelation
𝐀𝐻 ∶ Inverse DFT Matrix
𝐠 ∶ Power Spectrum (non − negative)
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Problem Statement

5

• The power spectral density (PSD) may be directly optimized to minimize 
autocorrelation integrated sidelobes (ISL).

𝐫 ∶ Autocorrelation
𝐀𝐻 ∶ Inverse DFT Matrix
𝐠 ∶ Power Spectrum (non − negative)
𝑔𝑚 ∶ 𝑚𝑡ℎ element of the power spectrum
𝛾𝑚 ∶ Constrained maximum value for𝑔𝑚 ∈ Ω
Ω ∶ Frequency indices to null constrain
𝐞 ∶ Desired Autocorrelation Response (impulse)

min
𝐠

𝐞 − 𝐀𝐻𝐠 2
2

s. t. 𝑔𝑚 ≤ 𝛾𝑚 for 𝑚 ∈ Ω
0 ≤ 𝑔𝑚 for 𝑚 = 0,1,…𝑀 − 1

The boxed least squares formulation provides a globally convex objective 
function to determine the power spectrum 𝐠 (subject to null constraints) 
that minimizes the integrated sidelobe level (ISL) of the autocorrelation.
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Global Minimum Integrated Sidelobes (ISL)
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𝐫 ∶ Autocorrelation
𝐀𝐻 ∶ Inverse DFT Matrix
𝐠 ∶ Power Spectrum (non − negative)
𝑔𝑚 ∶ 𝑚𝑡ℎ element of the power spectrum
𝛾𝑚 ∶ Constrained maximum value for𝑔𝑚 ∈ Ω
Ω ∶ Frequency indices to null constrain
𝐞 ∶ Desired Autocorrelation Response (impulse)

𝐫𝐠

𝛾𝑚

Ω
𝑀 = 200 window length

Different degrees of beamspoiling are achieved by replacing ഥ𝑀 rows of 
𝐀𝐻 (corresponding to autocorrelation mainlobe roll-off) with zeros, thus 
permitting different mainlobe widths and achievable sidelobe levels

10%10%10%
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Global Minimum Integrated Sidelobes (ISL)
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Spectral notching located closer to the power spectrum center 
degrades the autocorrelation global minimum ISL floor

𝐫 ∶ Autocorrelation
𝐀𝐻 ∶ Inverse DFT Matrix
𝐠 ∶ Power Spectrum (non − negative)
𝑔𝑚 ∶ 𝑚𝑡ℎ element of the power spectrum
𝛾𝑚 ∶ Constrained maximum value for𝑔𝑚 ∈ Ω
Ω ∶ Frequency indices to null constrain
𝐞 ∶ Desired Autocorrelation Response (impulse)

𝑀 = 200 window length

𝐫𝐠

Ω4 Ω3 Ω2 Ω1

Beamspoiling 2%
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Problem Statement
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𝐫 ∶ Autocorrelation
𝐀𝐻 ∶ Inverse DFT Matrix
𝐠 ∶ Power Spectrum (non − negative)
𝑔𝑚 ∶ 𝑚𝑡ℎ element of the power spectrum
𝛾𝑚 ∶ Constrained maximum value for𝑔𝑚 ∈ Ω
Ω ∶ Frequency indices to null constrain
𝐞 ∶ Desired Autocorrelation Response (impulse)

min
𝐠

𝐞 − 𝐀𝐻𝐠 𝑝
𝑝

s. t. 𝑔𝑚 ≤ 𝛾𝑚 for 𝑚 ∈ Ω
0 ≤ 𝑔𝑚 for 𝑚 = 0,1,…𝑀 − 1

𝛻𝐠 𝐞 − 𝐀𝐻𝐠 𝑝
𝑝
= −𝑝 ℜ 𝐀 𝐞 − 𝐀𝐻𝐠 𝑝−2 ⊙ 𝐞− 𝐀𝐻𝐠

• The power spectral density (PSD) may be directly optimized to minimize 
autocorrelation peak sidelobes (PSL).

• The 𝐿𝑝-norm maintains convexity, thus preserving global optimality. 

Sufficiently large 𝒑 values well-approximate the peak sidelobe level (PSL) metric. 

• The gradient is
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Global Minimum Peak Sidelobes (PSL)
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𝐫 ∶ Autocorrelation
𝐀𝐻 ∶ Inverse DFT Matrix
𝐠 ∶ Power Spectrum (non − negative)
𝑔𝑚 ∶ 𝑚𝑡ℎ element of the power spectrum
𝛾𝑚 ∶ Constrained maximum value for𝑔𝑚 ∈ Ω
Ω ∶ Frequency indices to null constrain
𝐞 ∶ Desired Autocorrelation Response (impulse)

𝐫𝐠

Ω
𝑀 = 200 window length

Different degrees of beamspoiling are achieved by replacing ഥ𝑀 rows of 
𝐀𝐻 (corresponding to autocorrelation mainlobe roll-off) with zeros, thus 
permitting different mainlobe widths and achievable sidelobe levels

𝛾𝑚
10%10%10%
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Comparison of Optimum
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𝑀 = 200 window length

Minimize ISL Minimize PSL
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𝐖𝐚𝐯𝐞𝐟𝐨𝐫𝐦 𝐃𝐞𝐬𝐢𝐠𝐧
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Here, waveforms are spectrally shaped to the 
notched PSD template that globally minimizes ISL 

Nonrepeating Spectrally Notched FM Waveforms

• Various methods have been experimentally demonstrated 
to realize spectrally shaped forms of nonrepeating 
random FM (RFM) waveforms [3]

• Notched versions of RFM can achieve > 50 dB notch depth,
while preserving transmitter-amenable FM structure [4]

12

[3] S.D. Blunt, J.K. Jakabosky, C.A. Mohr, P.M. McCormick, J.W. Owen, B. Ravenscroft, C. Sahin, G.D. Zook, C.C. Jones, J.G. Metcalf, T. 

Higgins, “Principles & applications of random FM radar waveform design,” IEEE Aerospace & Electronic Systems Magazine, vol. 

35, no. 10, pp. 20-28, Oct. 2020.

[4] C.A. Mohr, S.D. Blunt, “Analytical spectrum representation for physical waveform optimization requiring extreme fidelity,” IEEE 

Radar Conf., Boston, MA, Apr. 2019.

𝑡

𝑠(𝑡)

𝑡

𝑠(𝑡)
Linear

FM

Random

FM (RFM)
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Waveform Spectrum Templates

1. In [5] the waveform design method mitigated correlation sidelobes by 
matching the waveform PSD to a heuristic template having tapered spectral null borders

2. Here, the waveform design method mitigates correlation sidelobes by 
matching the waveform PSD to the least-squares optimal PSD template that minimizes ISL

13

[5] J. Jakabosky, B. Ravenscroft, S. Blunt, A. Martone, “Gapped spectrum shaping for tandem-

hopped radar/communications & cognitive sensing,” IEEE Radar Conf., Philadelphia, PA, May 2016.

 euristic
 lo al  ptimum

10% 10% 10%

2% Beamspoil

𝑀 = 200 window length
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Notched FM Waveform Generation

The waveform optimization is executed in two stages:

1. Perform K iterations of alternating time-frequency 
projections to produce a pseudo-random optimized FM 
(PRO-FM) waveform [5, 6]

• The desired spectrum 𝐠 is the heuristic or optimal PSD template, 
producing waveforms with shallow spectral notches over Ω

2. Then apply L iterations of the zero-order reconstruction 
optimization of waveforms (ZOROW) [7] to significantly 
deepen spectral notches over Ω

• K=200 and L=1000 iterations to guarantee full convergence, 
ensuring a modest waveform spectrum match to the template

14

෤𝐬(k) = ෩𝐀𝐻 𝐠1/2 ⊙exp 𝑗∠෩𝐀 𝐬(𝑘−1)

𝐬(k) = 𝐮⊙ exp 𝑗∠ ෤𝐬(k)

14

𝐬 𝑛 = 𝑒𝑗𝜙𝑛

𝛟 = 𝜙1 𝜙2 ⋯ 𝜙𝑁
𝑇

𝑆 𝑓𝑚, 𝝓 =
sin 𝜋𝑓𝑚𝑇𝑠

𝜋𝑓𝑚
෍

𝑛=1

𝑁

exp −𝑗 2𝜋𝑓𝑚 𝑛 − .5 𝑇𝑠 + 𝜙𝑛

min
𝛟

෍

𝑚∈Ω

𝑆 𝑓𝑚, 𝝓
2

𝐙𝐎𝐑𝐎𝐖

𝐏𝐑𝐎 − 𝐅𝐌

[5] J. Jakabosky, B. Ravenscroft, S. Blunt, A. Martone, “Gapped spectrum shaping for tandem-hopped radar/communications 

& cognitive sensing,” IEEE Radar Conf., Philadelphia, PA, May 2016.

[6] J. Jakabosky, S.D. Blunt, B. Himed, “Spectral-shape optimized FM noise radar for pulse agility,” IEEE Radar Conf., 

Philadelphia, PA, May 2016.

[7] C. Mohr, J.W. Owen, S.D. Blunt, “Zero-order reconstruction optimization of waveforms (ZOROW) for modest DAC-rate 

systems,” IEEE Intl. Radar Conf., Washington, DC, Apr. 2020.
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Heuristic Spectral Template
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Waveforms designed to the heuristic template exhibit mainlobe

broadening and “shoulder” lobes compared to the global optimum

𝐌𝐞𝐚𝐧 𝐏𝐒𝐃

𝐫 = 𝐀𝐻𝐠

𝐂𝐨𝐡𝐞𝐫𝐞𝐧𝐭 𝐀𝐯𝐞𝐫𝐚𝐠𝐞
𝐀𝐮𝐭𝐨𝐜𝐨𝐫𝐫𝐞𝐥𝐚𝐭𝐢𝐨𝐧

෍

𝑞

𝐫𝑞 = ෍

𝑞

𝐀𝐻𝐠𝑞

෍

𝑞

𝐫𝑞 = 𝐀𝐻෍

𝑞

𝐠𝑞

𝑄 = 1000 pulses

2% Beamspoiling

𝑀 = 800 PSD window samples

𝑁 = 200 pulse parameters
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Optimal Spectral Template
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Waveforms designed to the optimal template match closely, with 

residual sidelobes due to range sidelobe modulation

𝐌𝐞𝐚𝐧 𝐏𝐒𝐃

𝐫 = 𝐀𝐻𝐠

𝐂𝐨𝐡𝐞𝐫𝐞𝐧𝐭 𝐀𝐯𝐞𝐫𝐚𝐠𝐞
𝐀𝐮𝐭𝐨𝐜𝐨𝐫𝐫𝐞𝐥𝐚𝐭𝐢𝐨𝐧

෍

𝑞

𝐫𝑞 = ෍

𝑞

𝐀𝐻𝐠𝑞

෍

𝑞

𝐫𝑞 = 𝐀𝐻෍

𝑞

𝐠𝑞

𝑄 = 1000 pulses

2% Beamspoiling

𝑀 = 800 PSD window samples

𝑁 = 200 pulse parameters
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Heuristic vs. Optimal Spectral Template
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𝐇𝐞𝐮𝐫𝐢𝐬𝐭𝐢𝐜 𝐎𝐩𝐭𝐢𝐦𝐚𝐥
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𝐌𝐢𝐬𝐦𝐚𝐭𝐜𝐡𝐞𝐝 𝐟𝐢𝐥𝐭𝐞𝐫 𝐝𝐞𝐬𝐢𝐠𝐧
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Least Squares Filter Formulation

Because the ISL optimum spectral template is based on least squares in a 2-norm 
sense, it is logical to apply the least squares mismatched filter (MMF) [8-10]
to the same waveform sets

1919

[8] M. H. Ackroyd and F. Ghani, "Optimum Mismatched Filters for Sidelobe Suppression," in IEEE Transactions on Aerospace and 

Electronic Systems, vol. AES-9, no. 2, pp. 214-218, March 1973.

[9] D. Henke, P. McCormick, S. D. Blunt, T. Higgins, “Practical aspects of optimal mismatch filtering and adaptive pulse compression 

for FM waveforms,” IEEE Radar Conf., Washington, DC, May 2015.

[10] B. Ravenscroft, J. Owen, S. Blunt, A. Martone, K. Sherbondy, “Optimal mismatched filtering to address clutter spread from intra-

CPI variation of spectral notches”, IEEE Radar Conf., Boston, MA, Apr. 2019.

𝐰LS = 𝐒𝐻𝐒 + 𝜎𝐈 −1(𝐒𝐻𝐞)

𝐒 ∶ Convolution matrix of signal 𝐬
𝐞 ∶ Desired Correlation Response
𝐠 ∶ Desired Power Spectrum
𝜎 ∶ Regularization term
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The desired correlation response is the IDFT of the optimal spectrum 𝐞 = 𝐀𝐻𝐠
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Heuristic Spectral Template
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𝑄 = 1000 pulses

2% Beamspoiling

𝑀 = 800 CPSD window samples

𝑁 = 200 pulse parameters

𝑃 = 600 filter parameters

𝟐. 𝟓𝟗 𝐝𝐁𝐦𝐢𝐬𝐦𝐚𝐭𝐜𝐡 𝐥𝐨𝐬𝐬
(𝐒𝐍𝐑 𝐥𝐨𝐬𝐬)

Least squares filtering compensates for the heuristic spectrum mainlobe broadening and 
“shoulder” lobes, closely matching the global optimum
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Optimal Spectral Template
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Waveforms matched to the optimal spectral template already exhibit near-optimality, 
such that least squares filtering incurs minimal mismatch loss

𝟏. 𝟑𝟕 𝐝𝐁𝐦𝐢𝐬𝐦𝐚𝐭𝐜𝐡 𝐥𝐨𝐬𝐬
(𝟏. 𝟐𝟐 𝐝𝐁 𝐢𝐦𝐩𝐫𝐨𝐯𝐞𝐦𝐞𝐧𝐭)

𝑄 = 1000 pulses

2% Beamspoiling

𝑀 = 800 CPSD window samples

𝑁 = 200 pulse parameters

𝑃 = 600 filter parameters
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Heuristic vs. Optimal Spectral Template
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𝐇𝐞𝐮𝐫𝐢𝐬𝐭𝐢𝐜 𝐎𝐩𝐭𝐢𝐦𝐚𝐥
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Conclusions
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• The least squares global optimum power spectrum has been determined to 
minimize ISL and PSL when portions of the spectrum are null constrained.

✓ By designing waveform spectra to closely match the optimal template, 
their attendant sidelobes also approach the optimal level. 

✓ Application of the least-squares mismatched filter then 
closes the remaining sidelobe difference, with mismatch loss in trade.

✓ The heuristic PSD template design involving simple tapering of notch 
edges is determined to achieve near-optimal performance with a 
computational cost that is low enough for real-time implementation.
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Thank You!
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