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Motivation

• Random FM (RFM) waveforms based on spectrum shaping have some useful 
attributes:

– Fourier relationship between spectral density and autocorrelation means “goodness” can 
be achieved through spectrum shaping

– Degree of transmitter distortion impacted by out-of-band roll-off

– Readily incorporate spectral notching to reduce mutual interference between radar and 
other spectrum users

• However, reducing range sidelobes and improving spectral containment are 
competing goals.

– Gaussian-shaped spectral density → Gaussian-shaped autocorrelation, meaning no 
sidelobes (theoretically)

– Much tighter roll-off than a sinc function (associated with phase codes), but still broader 
than LFM
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Motivation

• While traditional noise radar can achieve wideband operation, long-range and 

high-power wideband applications are typically reserved for LFM

– FM minimizes spectral regrowth due to nonlinear transmitter distortion (constant 

amplitude, continuous phase, and no instantaneous intermodulation)

– Compact LFM spectrum allows for nominal receive sampling

• RFM structure can provide the extremely high dimensionality of noise radar 

while enabling high-power operation

– But Gaussian roll-off requires “over-sampling” relative to 3-dB bandwidth to ensure 

waveform fidelity is retained
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Here we experimentally evaluate a recent approach to 

improve the spectral compactness of RFM waveforms
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Gaussian Design Template

• Previous RFM spectral shaping approaches [1-3] have relied on a Gaussian template

– For pulsed structure, with pulse width T and 3-dB bandwidth B, optimized RFM 

waveforms can realize approaching 20 log10(TB) dB on a per-pulse basis

– A further 10 log10(M) dB in sidelobe suppression is achieved via slow-time processing 

due to incoherent sidelobe averaging (mainlobe remains coherent)

• However, while the need for 2 to 4 oversampling, relative to B, is fine for10s of 

MHz, wideband operation in the 100s of MHz to GHz may not be feasible

• Consequently, it was recently shown that use of a super-Gaussian template provides a 

useful trade-space to reduce this sampling overhead
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Super-Gaussian Design Template

• The super-Gaussian template takes the general form

where exponent n controls the trade-off between lower 
autocorrelation sidelobes and better spectral containment

– n = 2 corresponds to Gaussian, while 𝑛 → ∞ corresponds to a 
rectangular template

• Templates compared here are generated to have identical 
3-dB bandwidths using

• Corresponding autocorrelations (via inverse Fourier 
transform) reveal higher “persistent” sidelobes as the 
spectrum becomes more compact
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Comparison of super-Gaussian spectral templates

Comparison of super-Gaussian autocorrelations   

(inverse Fourier transform of spectral templates)



University of Kansas – Lawrence, KS

To assess in practice, we need to select an RFM 

waveform design approach …
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PRO-FM Optimization

• For the purpose of demonstration, consider the PRO-FM method [1] for 
spectrally shaping RFM waveforms

• For a set of Mwaveforms, PRO-FM seeks to match the spectral 
template 𝐺 𝑓 2 after initializing the mth waveform with randomly 
generated FM signal 𝑝0,𝑚 𝑡 via K alternating projections of

𝑟𝑘+1,𝑚(𝑡) = 𝓕−1{ 𝐺 𝑓 exp 𝑗∠ 𝓕 𝑝𝑘,𝑚 𝑡 }

and

𝑝𝑘+1,𝑚 𝑡 = 𝑢 𝑡 exp 𝑗∠ 𝑟𝑘+1,𝑚 𝑡

where u(t) is a rectangular pulse with support on [0, T ]
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Super-Gaussian PRO-FM

• For n = 2, 8, and 32 super-Gaussian spectral templates, 
5000 unique PRO-FM waveforms were generated for 
each case
– Based on TB = 472 and 10 oversampling relative to 3-dB 

bandwidth

• Compare the idealized autocorrelations (inverse Fourier 
transform of spectral templates) with the simulated RMS 
combination of 5000 PRO-FM waveforms

• Perfectly matching the spectral template is not possible 
given the constraint on rectangular pulse shape

• Higher values of n (tighter spectrum) produces:
– Higher & broader extent of persistent sidelobes (same as 

ideal) 

– Somewhat raised sidelobe floor (different from ideal)
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Comparison of super-Gaussian autocorrelations   

(inverse Fourier transform of spectral templates)

Comparison of super-Gaussian autocorrelations   

(RMS combination over 5000 PRO-FM each)
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Experimental Setup – Loopback 

• Use the same sets of 5000 PRO-FM waveforms for n = 2, 8, and 32, implemented on 

an arbitrary waveform generator (AWG) and captured in loopback via a spectrum 

analyzer

– Loopback capture allows for characterization of hardware-induced distortion

• Here, T = 6.67 s and B = 70.7 MHz (hence TB = 472), PRF = 50 kHz, and the 

center frequency 𝑓c = 3.55 GHz

• Though this arrangement is still narrowband, it permits examination of the sidelobe 

vs spectral containment trade-space

• We use the loopback-captured versions to evaluate autocorrelations, cross-

correlations, and spectral densities

– Computed on a per-waveform basis, ensemble RMS, and slow-time processing
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Loopback Autocorrelations

• As with simulation, we see slight elevation in RMS sidelobe 
floor with increasing n

• Likewise for higher / broader sidelobe extent for higher n

• Near-in “shoulder” lobes also appear due to hardware effects
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Loopback autocorrelation for 

5000 waveforms (n = 2)

Loopback autocorrelation for 

5000 waveforms (n = 8)

Loopback autocorrelation for 

5000 waveforms (n = 32)
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Loopback Autocorrelations

• As with simulation, we see slight elevation in RMS sidelobe 
floor with increasing n

• Likewise for higher / broader sidelobe extent for higher n

• Near-in “shoulder” lobes also appear due to hardware effects

• Note the PSL determination with vs. without these effects
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RMS PSL (including
persistent/shoulder 

sidelobes)

RMS PSL (excluding
persistent/shoulder 

sidelobes)

n = 2 −32.6 dB −39.8 dB

n = 8 −17.1 dB −36.5 dB

n = 32 −15.4 dB −36.2 dB

fairly consistentquite different

Loopback autocorrelation for 

5000 waveforms (n = 2)

Loopback autocorrelation for 

5000 waveforms (n = 8)

Loopback autocorrelation for 

5000 waveforms (n = 32)
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Loopback Cross-Correlations

• For cross-correlation, the first waveform in each set was cross-correlated with the other 4999, 
followed by RMS combining or slow-time combining (incoherent in this case), where the 
latter yields 10 log10(4999) = 37 dB further cross-correlation suppression

• The three sets of results are practically identical, so only the n = 8 case is shown
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• Increasing n does produce slight degradation of RMS cross-correlation floor

– For n = 2, the floor is 1.8 dB lower, while for n = 32, the floor is 0.5 dB higher

Loopback cross-correlation 

results for 5000 waveforms (n = 8)
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Loopback Spectra

• Templates & resulting waveforms all have approximately the same 3-dB bandwidth

• The percentage of “in-band power” is 75.1%, 97.5%, and 98.5% for n = 2, 8 and 32, respectively

– Thus higher n provides greater concentration of spectral content

• For n = 2, 8, and 32, the RMS spectra deviate from the template by 5% of 3-dB bandwidth at −8.3 dB, 

−14.3 dB, and −18.0 dB, respectively

– Increasing n appears to enable better template matching
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Loopback spectral content for 

5000 waveforms (n = 2)

Loopback spectral content for 

5000 waveforms (n = 8)
Loopback spectral content for 

5000 waveforms (n = 32)
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In-Band Power (Simulation)

• Based on experimental observations for spectral power concentration, the percent of in-band (3 dB) 

power was simulated as a function of n

• In the limit as 𝑛 → ∞, the template approaches a rectangle, where 100% of the spectral content is 

contained within the 3-dB bandwidth. This condition is essentially attained when n > 15

• For PRO-FM, power concentration saturates at 98.5% for n > 15. The residue is due to enforcement of 

the rectangular pulse shape (perfect band-limiting is impossible)
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Simulation of percent in-band 

power within 3-dB bandwidth vs. n
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Open-Air Measurements

• Open-air MTI measurements were collected for the 
5000 waveforms in the n = 8 case, illuminating the 
23rd & Iowa traffic intersection in Lawrence, KS from 
the roof of Nichols Hall on the KU campus

• Results include a -40 dB Taylor window (for Doppler 
sidelobes) and a simple zero-Doppler projection for 
clutter cancellation

• Multiple movers are clearly visible and results are 
consistent with other RFM waveform approaches

• Confirms that improved spectral containment via 
super-Gaussian shaping is viable for practical RFM 
waveform design
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Open-air range-Doppler response for 

5000 waveforms (n = 8)
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Conclusions

• The super-Gaussian function has been experimentally demonstrated to 
provide a practical spectral design template for random FM waveforms

• Increasing the exponential shape parameter n greater than 2 (Gaussian) 
yields increasingly tighter spectral containment

– Greater signal power density within signal bandwidth

– Necessary for extension to wideband operation where oversampling is less feasible

• The trade-offs incurred for better containment include 

– emergence of persistent range sidelobes close to the mainlobe, which could be 
viewed as a broadened mainlobe

– Marginal increase in the RMS autocorrelation sidelobe floor

– Similar small increase in the cross-correlation floor.
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