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Motivation
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• Doppler processing is instrumental for discrimination between movers and clutter for moving target 
indication (MTI) radar based on radial motion relative to the platform

• Uniform pulse repetition interval (PRI) maintains a constant repetition interval over the coherent 
processing interval (CPI)
– Introduces a trade-space between unambiguous range and Doppler (velocity) that is dictated by the 

PRI and pulse repetition frequency (PRF), respectively
– Doppler frequencies outside the unambiguous interval of [−PRF/2, +PRF/2] are aliased back into this 

interval due to PRI periodicity
– Realizes uniform slow-time sampling that permits the use of the fast Fourier transform (FFT)

• Random PRI staggering varies the PRI extent on a pulse-to-pulse basis over the CPI
– Avoids trade-space restriction of unambiguous Doppler to avoid aliasing of movers
– Imposes non-uniform slow-time sampling
– Creates some additional complications …
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Motivation
• Doppler Processing of uniform PRI using FFT is well 

known to produce a periodic-sinc response
– Windowing is often used to reduce sidelobes, with 

degraded resolution and signal-to-noise ratio (SNR) loss 
also occurring

• Doppler processing of random PRI Staggering deviates 
from periodic-sinc response, causing higher and 
somewhat flatter sidelobes
– Windowing provides no benefit for PRI staggering

• Here we use re-iterative superresolution (RISR) to 
reduce Doppler sidelobes of random PRI staggering in 
the context of clutter cancellation

• This approach is demonstrated experimentally with free-
space measurements
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Standard and tapered Doppler processing for 
uniform and randomly staggered PRI
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y(m,t) = [s(t)∗ x(t; fD )]e
jπ fDTacc (m) + n

fD

∑ (m,t)

z(ℓ) = "x(ℓ; fD )v( fD )+ !n
fD
∑ (ℓ) ≅ V"x(ℓ)+ "n(ℓ)

• Consider a radar receiving M PRIs in a CPI. Each PRI contains a low duty cycle pulse with the same 
pulse duration across the CPI.  The received response from the illuminated scatterers and noise for the 
mth PRI can be expressed as

PRI-Staggered Radar Signal Model
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defined over: 

range profilewaveform noise

0 ≤ t ≤ Tm
• Pulse compression is performed using matched (or mismatched) filter 

h(t) as 

• Following pulse compression and IQ sampling, the M ´1 collection of 
slow-time samples at the !th range bin can be represented as

Tm = Tavg + ΔTm

ΔTm ~U (−δ ,+δ )

Tacc (m) = Tq
q=0

m−1

∑
mth accumulation

mth deviation

mth PRI

z(m,t) = h(t)∗ y(m,t)

pulse compressed scattering

steering vector steering vectors in columns 

scatteringnoise

fixed value

Doppler frequency

average PRI
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oversampling 
factor

• Each M ´1 Doppler steering vector is a function of Doppler frequency 

• A M ´ N Doppler filter bank is formed from Doppler steering vectors

• K > 1 provides better visibility and reduces Doppler straddling
• β = 1 for uniform PRI → Doppler extent [ − favg /2, + favg /2]
• β > 1 for PRI staggering → Doppler extent [ −β favg / 2, +β favg / 2]

which could be quite large for some staggering sequences
• Can replace β with βmov to include all expected movers

avg avg avg avg( / 2) ( / 2 ) ( / 2 2 ) ( / 2)f f f f f fb b b bé ù= - - + D - + D +ë ûV v v v v!

Doppler Filter Bank
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extent of unambiguous 
Doppler

D acc D acc D acc(2) (3) ( )
D( ) 1

Tj f T j f T j f T Mf e e ep p pé ù= ë ûv !

β = TavgLCM{ f1, f2 ,!, fM}

favg = 1/ Tavg

Spacing between frequencies points: Δf = β favg /N Number of columns: N = βKM

average PRF
PRFs
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• The N ´1 standard Doppler response can be expressed as

where cancellation is performed using M ´ M cancellation matrix

comprised of the covariance matrices for clutter Rclut(!), interference Rint(!) and noise Rnse(!)
and matrix standard Doppler processing is performed using normalized filter bank

• We will use a reiterative minimum mean-square error (RMMSE) transform to replace WDP to:
– Reduce Doppler sidelobes relative to those produced by WDP , and
– Achieve superresolution with minimal SNR loss

Standard Doppler Processing
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DP (1/ )M=W V

canc clut int nse( ) ( ) ( ) ( )= + +R R R R! ! ! !

1 1
DP DP canc cancˆ ( ) ( ) ( ) (1/ ) ( ) ( )H HM- -= =x W R z V R z! ! ! ! !
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• Re-iterative superresolution (RISR) is a form of RMMSE estimation developed for robust adaptive 
beamforming [1]

• A partial gain constraint was developed for RISR to enhance practical performance [2]
– Incorporates unity gain constraint, then introduces trade-off between constrained/unconstrained
– For high fidelity (mitigate Doppler straddling), oversampling relative to nominal resolution is 

required

• In [3], RISR was expanded for use with clutter cancellation in both joint and sequential cancel-then-
estimate procedures, which involve replacing the Fourier transform with a RISR transform

• Here it is shown that the sequential procedure can likewise be employed for Doppler 
processing when PRI-staggering is used

Re-iterative Superresolution
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Re-iterative Superresolution
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• RISR is obtained using the MSE cost function:

JMSE(ℓ, fD ) = E | !x(ℓ; fD )− w
H (ℓ, fD )z(ℓ) |

2⎡⎣ ⎤⎦

expected power in a given
range/Doppler cell

D(ℓ) = VP(ℓ)VH +Rn

ρ(ℓ, fD ) = E | !x(ℓ; fD ) |
2⎡⎣ ⎤⎦

structured covariance matrix

Rn =σ n
2IM×M

• Unconstrained (U) 
Filter [1]: 

• Gain-Constrained 
(GC) Filter: 

• Partially Constrained 
(PC) Filter: 

wU (ℓ, fD ) = E[z(ℓ)zH (ℓ)]( )−1 E[ !x*(ℓ; fD )z(ℓ)]
= D−1(ℓ)v( fD )ρ(ℓ, fD )

wGC(ℓ, fD ) =
1

vH ( fD )Di
−1(ℓ)v( fD )

Di
−1(ℓ)v( fD )

wPC(ℓ, fD ) =
(ρ(ℓ, fD ))

1−α

vH ( fD )D
−1(ℓ)v( fD )( )α

D−1(ℓ)v( fD )

noise covariance

constraint parameter
(U) 0 ≤α ≤1 (GC) 

noise power

P(ℓ) = [x̂(ℓ)x̂H (ℓ)]⊙ IN×N

expected power matrix

[1] S.D. Blunt, T. Chan, K. Gerlach, "Robust DOA estimation: the reiterative superresolution (RISR) algorithm," IEEE Trans. 
Aerospace and Electronic Systems, vol. 47, no. 1, pp. 332-346, Jan. 2011.
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• The unconstrained RISR produces significant superresolution enhancement, but has the tendency to 
suppress lower SNR signals and provides no meaningful noise floor for subsequent detection processing

• The constrained RISR produces modest superresolution enhancement, and preserves lower SNR signals
while providing a meaningful noise floor for detection processing

• The resulting partially constrained [2] filter provides a useful middle ground

• The collection of partially constrained Doppler filters likewise form a M ´ N filter bank

• Thus, the MMSE Doppler response is obtained by simply applying the filter bank

• The expected power ρ(!,fD) needed for filter formulation is not known a priori. Instead, a recursive 
procedure is used to estimate this quantity

Re-iterative Superresolution
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PC PC avg PC avg( ) ( , / 2) ( , / 2)f fb bé ù= - +ë ûW w w! ! " !

[2] E. Hornberger, S.D. Blunt, T. Higgins, "Partially constrained adaptive beamforming for super-resolution at low SNR," IEEE 
Intl. Workshop Computational Advances in Multi-Sensor Adaptive Processing, Cancun, Mexico, Dec. 2015

1 1
DP DP canc cancˆ ( ) ( ) ( ) (1/ ) ( ) ( )H HM- -= =x W R z V R z! ! ! ! !PC PCˆ ( ) ( ) ( )H=x W z! ! !
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wi(ℓ,−β favg / 2+ Δf )

Adaptive Doppler Estimation
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Collect into filter bank

Apply filter bank

Initial estimate

Compute expected power

Form adaptive filters 

Receive Processing 
Flow Diagram 0 DPˆ ˆ( ) ( )i= =x x! !

1 1ˆ ˆ( ) [ ( ) ( )]H
i i i N N- - ´=P x x I! ! ! "

wi(ℓ, fD ) =
(ρ(ℓ, fD ))

1−α

(vH ( fD )Di
−1(ℓ)v( fD ))

α Di
−1(ℓ)v( fD )

avg avg( ) ( , / 2) ( , / 2)i i if fb bé ù= - +ë ûW w w! ! " !

1
cancˆ ( ) ( ) ( ) ( )H

i i
-=x W R z! ! ! !

ith iteration

avg( , / 2)i fb+w !avg( , / 2)i fb-w ! !

0 DPˆ ˆ( ) ( )i= =x x! ! 1
cancˆ ( ) ( ) ( ) ( )H

i i
-=x W R z! ! ! !0 DPˆ ˆ( ) ( )i= =x x! !
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Open-Air Measurements
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Transmit Parameters

waveform carrier frequency 

Courtesy of Google Maps

Annotated field of view for measured results

Hardware instrumentation setup

3.55 GHzLinear FM

time-bandwidth product
150

sub-CPI pulses per sub-CPI 
30 sub-CPIs 40 pulses

First 4 pulses in each sub-CPI were 
pre-summed. Other 36 were discarded. 

effective average PRF

3.2 kHz 80 Hz
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Experimental Results - Uniform
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Standard Doppler Processing RISR Adaptive Doppler Estimation

Uniform PRIs -- w/o Cancellation

• Pre-summing used to reduce a transmit PRF of 3.2 kHz to effective PRF of 80 Hz
• Standard Doppler processing performed via FFT (uniform) and compensated DFT (staggered)

aliased regions

Receive Processing
Parameters

eff. pulses in CPI
M = 30 

noise power

oversampling
K = 5 

Doppler extent

βmov = 16

number of points

N = 2400

iterations

I iter = 10

α = 0.8
constraint parameter

Doppler sidelobes are suppressed
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Experimental Results - Uniform
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Standard Doppler Processing RISR Adaptive Doppler Estimation

Uniform PRIs – with Cancellation

• Pre-summing used to reduce a transmit PRF of 3.2 kHz to effective PRF of 80 Hz
• Standard Doppler processing performed via FFT (uniform) and compensated DFT (staggered)

Receive Processing
Parameters

eff. pulses in CPI
M = 30 

noise power

oversampling
K = 5 

Doppler extent

βmov = 16

number of points

N = 2400

iterations

I iter = 10

α = 0.8
constraint parameter

aliased regions

movers unmasked & aliased

clutter removed
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Experimental Results - Staggered
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Standard Doppler Processing RISR Adaptive Doppler Estimation

• Pre-summing used to reduce a transmit PRF of 3.2 kHz to effective PRF of 80 Hz
• Standard Doppler processing performed via FFT (uniform) and compensated DFT (staggered)

aliasing avoided
movers obscured Doppler sidelobes are suppressed

movers unmasked

Randomly Staggered PRIs -- w/o Cancellation
Receive Processing

Parameters
eff. pulses in CPI
M = 30 

noise power

oversampling
K = 5 

Doppler extent

βmov = 16

number of points

N = 2400

iterations

I iter = 10

α = 0.8
constraint parameter
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Experimental Results - Staggered
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Randomly Staggered PRIs -- with Cancellation

Standard Doppler Processing RISR Adaptive Doppler Estimation

• Pre-summing used to reduce a transmit PRF of 3.2 kHz to effective PRF of 80 Hz
• Standard Doppler processing performed via FFT (uniform) and compensated DFT (staggered)

movers unmasked
sidelobes still 
present

clutter removed

Receive Processing
Parameters

eff. pulses in CPI
M = 30 

noise power

oversampling
K = 5 

Doppler extent

βmov = 16

number of points

N = 2400

iterations

I iter = 10

α = 0.8
constraint parameter
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Conclusions

• Staggering facilitates the extension of unambiguous Doppler as a trade-off for 
higher and flatter sidelobes

• Re-iterative superresolution (RISR), a form of reiterative MMSE (RMMSE) 
developed for beamforming, has been applied for adaptive Doppler estimation
– applied to uniform and staggered PRI pulse arrangements, without and with 

clutter cancellation
– compensates for high Doppler sidelobes and provides Doppler super-

resolution

• Open-air measurements demonstrate the prospect of enhanced discernibility of 
movers and detection performance benefits
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