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Abstract

This thesis expands on the previous work done in the area of intra-pulse radar 

embedded  communication  by  examining  some  of  the  practical  aspects  of  the 

waveform  design.  Communication  waveform  mismatches  between  the  tag  and 

receiver  due to  multipath distortion,  sampling rate  differences  and using different 

lengths  for  the  radar  waveform  are  explored  for  each  of  the  three  previously 

developed design methods. The Dominant-Projection approach is shown to be robust 

to most mismatches while the other two approaches significantly degrade or fail with 

any mismatch.  Lack of synchronization between the receiver  and tag is  shown to 

increase the occurrence of symbol errors, since the receiver is required to search over 

multiple  samples  for  the  communication  waveform  sent  by  the  tag.  Attempts  to 

reduce the number of errors caused by the lack of synchronization are also made, first 

by  taking  a  three  sample  average  of  the  filter  output  and  second  by  generating 

waveforms  with  lower  local  cross-correlation,  with  both  attempts  shown  to  be 

unsuccessful.  Other attempts are also made to improve the waveform design. It is 

shown that temporal expansion can be used to either improve symbol error rate or 

reduce the amount of bandwidth expansion required. A rule-of-thumb is developed for 

the bandwidth expansion versus temporal expansion trade-off. It is also shown that 

more of the dominant space can be projected out with Dominant-Projection to reduce 

the probability of symbol error, but this comes at the cost of being more susceptible to 

being detected by an intercept receiver.
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CHAPTER 1

INTRODUCTION

The  ability  to  communicate  without  interception  can  at  times  be  highly 

desirable, especially in military applications. Previously, systems have been deployed 

that embed communication signals into the backscatter of radar by operating on a 

pulse to pulse basis to achieve covert communication, but at a low data rate. Previous 

work in [1]-[4] develops symbol waveforms that work instead on an intra-pulse basis 

to achieve a higher data rate than the inter-pulse methods while still remaining covert. 

In  this  thesis,  some  of  the  practical  aspects  of  an  intra-pulse  radar  embedded 

communication  system are discussed and the  three  symbol  waveform designs  are 

tested  to  see  how  they  perform  in  more  real  world  situations.  Also,  the 

communication waveform design is explored and modified in an attempt to reduce the 

symbol error rate (SER) while maintaining a low probability of intercept (LPI).

In  a  radar  system,  a  transmitter  sends  out  a  radio  frequency  (RF)  signal 

(pulsed or continuous) that scatters off  objects that it encounters. A receiver collects 

the  scattered  signal  to  determine  information  (range,  velocity,  cross-section,  etc.) 

about the illuminated objects [5]. An RF tag/transponder that is illuminated by the 

radar  can  embed  a  communication  signal  in  its  backscatter  by  remodulating  the 

incident waveform. To be effective, the communication waveforms need to be similar 

enough to the ambient scattering of the radar signal to be difficult to intercept, yet 

separable enough from the clutter to be detected by an intended receiver with a low 
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probability of symbol error.

Three  design  methods  were  previously  developed  to  generate  the  symbol 

waveforms for intra-pulse communication. Each method utilizes that the spectrum of 

most radar signals spread out beyond their passband. This “bleeding” spectrum of the 

radar waveform is used as expanded bandwidth for the communication waveforms to 

reside. Also, each method uses the eigenvectors from a correlation matrix based on 

the ambient scattering of the radar signal to produce communication waveforms that 

are partially correlated with the clutter in an effort to be more hidden.

 1.1 MOTIVATION OF THESIS

The motivation of this thesis is to examine some of the practical aspects of 

intra-pulse  radar  embedded  communication  when  using  the  three  previously 

developed  waveform  design  approaches  in  [1]-[4].  Also,  attempts  to  improve 

waveform and receiver design are explored in order to achieve a higher symbol error 

rate and/or to have the communication signal be more hidden and thus have a lower 

probability of intercept.

Each of the communication waveform design methods use the incident radar 

signal at  the tag in the symbol generation process to produce waveforms that are 

partially correlated with the ambient scattering. A tag or receiver that is not co-located 

with the radar would first need to sample the incident radar waveform. Mismatches in 

the  sampled  radar  waveform  could  then  result  in  communication  waveforms 

generated at the tag that are different than the waveforms generated at the receiver.
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Three situations that would cause changes in the sampled radar waveform are 

explored by examining the effect of those differences on the resulting communication 

waveforms. The first scenario considered is distortion of the incident radar waveform 

by forward scatter (i.e. multipath). A tag (or remote receiver) could receive multiple 

copies  of  the  transmitted  radar  waveform  due  to  reflections  off  objects  being 

illuminated by the radar. The multiple copies received from the multipath channel can 

also cause the radar waveform to appear longer, making it difficult to determine the 

exact length of the transmitted waveform. The second mismatch situation explored is 

then  when the tag  and receiver  determine different  lengths  for  the sampled radar 

waveform used in the symbol generation, but without distortion. The last mismatch 

that is considered occurs from the tag and receiver using different sampling rates for 

the incident radar waveform.

The  second  practical  aspect  considered  is  when  the  receiver  is  not 

synchronized  with  the  symbol  waveform  sent  by  the  tag.  The  simulations  to 

determine the probability of symbol error, performed previously in [1]-[4], assumed 

that  the  receiver  had  exact  knowledge  of  the  time  delay  of  the  embedded 

communication signal. The receiver could then use the filter output at the match point 

to determine the most likely symbol sent. If the time delay is not known, the receiver 

would  need  to  search  over  multiple  samples  to  extract  the  embedded  symbol, 

increasing the probability of a symbol error.

Attempts will also be made to improve the waveform design with the goal of 

reducing errors and/or the probability of intercept. In order to improve performance, 
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the time length, as well as the bandwidth, of the radar waveform can be expanded as 

added dimensionality for communication waveform design. A rule-of-thumb is then 

developed for the trade-off between temporal and bandwidth expansion for a given 

symbol error rate. The second attempt at improving waveform design is to modify the 

Dominant-Projection approach to generate symbols that have less cross-correlation. 

This is  achieved with two different methods. The first is giving a larger weight to the 

previously generated symbol  waveforms in the projection matrix  when generating 

new  symbols  and  the  second  is  combining  the  approach  with  the  Gram-Schmitt 

procedure. The third attempt at improving performance is to equalize the correlation 

of the symbol waveforms with the interference by using the Hadamard transform. 

This is done to remove any symbol biases in the receiver caused by some symbols 

having  a  higher  correlation  with  the  interference  than  other  symbols.  The  final 

method explored for improving the symbol waveform design to reduce symbol errors 

is  accomplished  by  adjusting  the  size  of  the  non-dominant  space  used  when 

generating  the  symbols  with  Dominant-Projection.  When  the  size  of  the  non-

dominant space is reduced, more of the dominant space will be projected away and 

the communication waveforms will be less correlated with the clutter interference. As 

a result, less symbol errors should occur. However, reducing the correlation of the 

communication waveforms with the interference would also make them less hidden 

thus increasing the probability of intercept by an unintended receiver.
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 1.2 ORGANIZATION OF THESIS

The remainder of thesis is organized into the following chapters. Chapter 2 

covers  some  of  the  background  on  radar-embedded  communication,  specifically 

covering the previous work on intra-pulse coding. In chapter 3, situations that may 

cause mismatches in the communication waveforms used by the tag and receiver are 

explored.  Receiver  synchronization  issues  are  examined  in  chapter  4  with  two 

methods explored for reducing the effect of a lack of synchronization. Attempts to 

improve communication waveform design are discussed in chapter 5. Conclusions 

and future work to be performed are presented in chapter 6.
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CHAPTER 2

BACKGROUND

The foundation for radar embedded communication beyond on-off signaling 

started  in  1948  with  Stockman's  idea  of  using  mechanically  controlled  corner 

reflectors to modulate the backscatter radiation [6]. More information could then be 

conveyed from the target back to the receiver by changing the reflector over multiple 

pulses. This idea was then expanded upon to develop more methods to use modulated 

reflectors as a means of communication. The majority of the methods developed for 

embedding  communication  signals  in  radar  backscatter  involved  changing  the 

modulation from pulse to pulse. In [7]-[11], a phase-shift sequence is applied to the 

reflections over multiple pulses. The phase-shifts can be imparted in a way that, to an 

unintended receiver that does not know the sequence, the phase modulation appears 

to  be a Doppler signature.  This approach allows the communication to  be covert. 

These  inter-pulse  modulation  techniques,  though,  often  require  on  the  order  of 

hundreds of pulses for the symbol sequence. This results in a low data rate on the 

order of bits per coherent processing interval (CPI), which translates to a throughput 

of only a couple of bits per second (bps).

By  operating  on  a  intra-pulse  basis,  the  incident  radar  waveform  is 

remodulated into one of K different symbol waveforms. This allows transmission 

on the order of a few bits  per pulse.  Therefore,  a radar  having a  pulse repetition 
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frequency (PRF) in the kHz range would have a communication rate on the order of 

kilobits per second (kbps). This greatly increases the amount of data that can be sent 

and  if  the communication  waveforms are  properly designed,  can still  have  a  low 

probability of intercept.

In [12], convolutional coding is used as an intra-pulse technique to remodulate 

the incident waveform. This modulation can achieve data rates up to 256 kbps, but the 

convolution coding uses the same mathematical structure as physical scattering. This 

process would initially appear to have a higher probability of intercept, since standard 

radar  detection  could  most  likely  be  used  to  intercept  the  embedded  symbol 

waveforms. More work is needed to compare the convolution modulation with the 

design approaches discussed below.

The intra-pulse  waveform design  methods  developed in  [1]-[4],  which  are 

further explored and expanded in this thesis, utilize the spectrum of the radar signal 

outside its  passband as a  place to  embed a  communication signal.  Expanding the 

bandwidth of the radar  waveform provides a design space for the communication 

waveforms. The waveforms are designed to be similar to the ambient scattering of the 

radar making them harder to detect  and more covert,  but separable enough at  the 

intended  receiver  to  have  a  low  probability  of  symbol  error.  The  design  of  the 

communication waveforms is further discussed in the next section.
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 2.1 WAVEFORM DESIGN

As discussed above, the three intra-pulse waveform design approaches take 

advantage  of  the  spectral  bleeding  of  the  radar  signal  for  embedding  covert 

communication  signals.  This  spreading  of  the  radar  spectrum is  shown below in 

figure 2.1.1. Since the radar occupies its entire passband, expanding into this bleeding 

region  provides  space  to  design  the  communication  waveforms.  In  order  for  the 

communication waveforms to have a low probability of intercept (LPI), each of the 

three  design  methods  generate  waveforms  that  are  partially  correlated  with  the 

ambient  scattering  of  the  radar  signal.  This  similarity  allows  the  communication 

waveforms to be better  hidden by the interference.  The process of generating the 

symbol waveforms to be similar to the ambient scattering is further discussed below.

Figure 2.1.1: Radar spectral “bleeding” effect.
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First,  let s t be  the  transmitted  radar  waveform.  Oversampling  this 

waveform by a factor of M results in the NM length vector s=[s0 s1  sNM−1]
T , 

where N is the length of the radar waveform when sampled at Nyquist and ⋅
T is 

the transpose operation. The ambient scattering of the radar waveform could then be 

modeled as

Sx=[
sNM−1 s NM−2 ⋯ s0 0 ⋯ 0

0 s NM−1 ⋯ s1 s0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ s NM−1 sNM−2 ⋯ s0

]x (2.1)

where the NM×2 NM−1 matrix S is the the set of 2 NM−1 possible delay 

shifts  of  the  sampled incident  radar  waveform s and the  vector x is  the  range 

profile  of  the  ambient  scattering.  A convenient  basis  for  the  generation  of  the 

communication  waveforms  is  obtained  from  the  eigen-decomposition  of  the 

correlation of S as

SS H=V  V H (2.2)

where V=[v0 v1  vNM−1] are the NM eigenvectors,  is a diagonal matrix of 

the  associated  eigenvalues  (in  order  of  decreasing  magnitude)  and ⋅
H is  the 

Hermitian operator.  Figure 2.1.2 shows a plot  of the eigenvalues of SS H with a 

linear frequency modulated (LFM) waveform oversampled by a factor of M=2 . In 

the plot,  we see that  the eigenvalues are  roughly divided into dominant and non-

dominant spaces, but there is a similar “bleeding” of values into the non-dominant 

space.  The  Eigenvectors-as-Waveforms,  Weighted-Combining  and  Dominant-
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Projection  waveform  design  approaches  utilize  the  non-dominant  space  for  the 

communication waveforms. Each uses a different method of using the eigenvectors of 

SSH  to generate the K symbols ck .

Figure 2.1.2: Eigenvalue plot with the radar waveform oversampled by 2.

 2.1.1 EIGENVECTORS-AS-WAVEFORMS

The simplest design method uses a subset of the individual eigenvectors of the 

correlation  matrix SS H for  the  communication  waveforms.  The  least  dominant 

eigenvectors  are  used  such  that  each  will  have  equal  interference  with  the  radar 

scattering. The communication waveforms are then the eigenvectors with the smallest 

eigenvalues as

ck=v NM− k for k=1K. (2.3)

The resulting waveforms occupy a narrow bandwidth outside of the radar spectrum 

and have low correlation with the clutter interference. Due to this, the Eigenvectors-
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as-Waveforms approach has the best performance in terms of symbol error rate, but it 

is also easy for an intercept receiver to detect and is the worst performer in terms of 

having a low probability of intercept (LPI).

 2.1.2 WEIGHTED-COMBINING

The Weighted-Combining approach “spreads” the communication waveforms 

over the available design space. This spreading of the waveforms over the available 

non-dominant  subspace  is  similar  to  spread  spectrum communication  [13],  which 

spreads the power of the signal over a larger bandwidth than required for the given 

data rate. With spread spectrum signals, the power of the signal can even be dropped 

below the noise, making intercept by an unintended receiver difficult.

The  spreading  of  the  communication  waveforms  is  accomplished  by 

computing a weighted sum of the L individual, non-dominant eigenvectors. These 

non-dominant eigenvectors, given as

VND=[ vNM−L  v NM ] (2.4)

are a subset of V and are combined as

ck=VND bk for k=1K (2.5)

to generate each communication waveform, where bk is a Gaussian weight vector 

of  length L known  to  both  the  tag  and  the  receiver.  The  Weighted-Combining 

approach, by combining eigenvectors with larger eigenvalues, has more correlation 

with the ambient scattering. The waveforms are therefore less likely to be intercepted 

by an unintended receiver, but it also increases probability of symbol error.
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 2.1.3 DOMINANT-PROJECTION

Instead  of  directly  using  the  non-dominant  eigenvectors  to  generate  the 

communication waveforms he Dominant-Projection approach a projects away from 

the eigenvectors corresponding to the dominant space resulting in waveforms spread 

across the entire non-dominant space. Since the dominant space is used as a whole, 

the approach is less susceptible to changes in the individual indexed eigenvectors 

used  in  the  other  two  approaches.  The  Dominant-Projection  design  method  also 

spreads the communication waveform over the design space resulting in a similar 

symbol error rate and probability of intercept as the Weighted-Combining approach.

In order for the communication waveforms to be separable at the receiver, 

they should be designed to be pairwise orthogonal. With the other two approaches, 

that use either the individual or combinations of the eigenvectors (which are each 

orthogonal),  the  resulting  communication  waveforms  will  be  orthogonal.  For 

Dominant-Projection,  each  new  communication  waveform  needs  to  be  projected 

away from any previously generated waveform as well  as the eigenvectors of the 

dominant space. Therefore, when generating the k th communication waveform, any 

previously generated waveform is appended to the scattering matrix S as

Sk=[S c1  ck−1] . (2.6)

The new eigen-decomposition is then

Sk Sk
H
=V k  k V k

H (2.7)

where Vk=[v k ,0 vk ,1  vk , NM−1] are the NM eigenvectors. The projection matrix 
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is generated by subtracting away the NMk−1−L eigenvectors corresponding to 

the dominant space as

Pk=I− ∑
i=0

NM k−L−2

vk , i v k ,i
H (2.8)

where I is an NM×NM identity matrix. The size of the dominant space that is 

included  in  the  projection  matrix  is  increased  by k−1 to  accommodate  for  the 

addition of the previously generated communication waveforms that are now present 

in the eigen-decomposition. Each communication waveform is generated as

c k=Pk bk (2.9)

where bk is a seed vector known to both the tag and receiver and then normalized 

as

ck=
c k

∥c k∥
. (2.10)

 2.2 RECEIVER DESIGN

For  radar-embedded  communication,  the  similarity  of  the  communication 

waveforms  to  the  radar  clutter  that  allows  for  hiding  the  signal  for  covert 

communication,  can provide additional obstacles for the receiver  design.  Previous 

work on the receiver design performed in [1]-[4] is outlined below.

The NM length  vector  of  the  sampled  received  signal  (assuming 

synchronization) is

r=ckS xv (2.11)
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where ck is  the  communication  symbol, x is  a  length 2 NM−1 vector  of  the 

radar range profile of the clutter (not necessarily the same as in equation 2.1) and v

is NM samples  of  additive  noise.  Using  a  matched  filter,  the  embedded 

communication symbol can be determined by selecting the symbol that satisfies

k=arg{max
k

{∣ck
H r∣}}. (2.12)

Due to the relative power levels needed to hide the communication waveform in the 

backscatter  of  the  radar  and  the  correlation  of  the  waveforms  with  the  ambient 

scattering, the high interference levels cause significant degradation in symbol error 

rate performance when a matched filter is used. 

Similar  to  a  CDMA (code  division  multiple  access)  system  which  must 

separate  out  the  symbol  waveforms  from  the  individual  users  using  the  same 

bandwidth,  the  receiver  for  radar  embedded  communication  must  separate  the 

individual symbol waveforms as well as delayed copies of the radar waveform caused 

by the clutter interference. A variation of the decorrelating receiver in [14],[15] was 

then  developed  in  [1]-[4]  to  improve  the  symbol  error  rate  performance  of  the 

receiver. The NM×2 NMK−1 matrix

C=[S c1  c K ] (2.13)

is formed by appending the symbol waveforms c k to the scattering matrix S and 

represents the possible interference and signal components that could be present in 

the received signal r . The k th decorrelating filter is then

15



wk=CCH

−1ck for k=1,2, , K (2.14)

and equation 2.11 is changed to select the embedded waveform as

k=arg{max
k

{∣w k
H r∣}} . (2.15)

With its ability to better separate out the symbol waveform from the interference, the 

decorrelating filter achieves much better symbol error rate performance than when the 

matched filter is used.
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CHAPTER 3

WAVEFORM MISMATCHES BETWEEN TAG AND RECEIVER

Chapter  2  presented  the  three  previously  developed design  approaches  for 

generating  communication  waveforms  for  intra-pulse  radar  embedded 

communication.  In  each  approach,  the  incident  radar  waveform  is  used  in  the 

communication waveform generation process such that each symbol is sufficiently 

similar to the ambient scattering. This allows for the communication waveforms to 

remain hidden and to have a low probability of intercept (LPI), but separable enough 

to have a viable symbol error rate. Any mismatch between the radar waveform used 

by the tag and the radar waveform used by the receiver may result in the symbol 

waveforms being different, thereby increasing the probability of symbol error.

Each of the three design methods for the communication waveforms start with 

oversampling the incident radar waveform s t  by a factor of M . This results in 

the sampled radar waveform vector s=[s0 s1  s NM−1]
T of length NM , where N  

is  the  length  of  the  radar  waveform  sampled  at  the  Nyquist  rate.  The 

NM×2 NM−1 matrix

S=[
sNM−1 sNM−2 ⋯ s0 0 ⋯ 0

0 sNM−1 ⋯ s1 s0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ sNM−1 s NM−2 ⋯ s0

] (3.1)

is  then  the  set  of  2 NM−1 possible  delay  shifts  of  the  sampled  incident  radar 
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waveform s . The three previously developed design approaches each have different 

methods  of  using  the  eigenvectors  of SSH to  generate  the K communication 

waveforms ck .

If  the  tag  and  receiver  each  have  different  versions  of  the  sampled  radar 

waveform vector s , the eigenvectors of the correlation matrix SSH used to produce 

the communication waveforms may also be different. Figure 3.1 shows a conceptual 

illustration of  mismatches occurring in these eigenvectors with some eigenvectors 

moving to different indexes as well as mixed with other eigenvectors.

Figure 3.1: Illustration of eigenvector mismatches.

In this chapter, we will consider three situations where the radar waveform 

s t  that is incident at the tag and receiver may be different. In the first case, the the 

incident  waveforms  are  different  due  to  distortion  caused  by  forward  scattering 

effects (i.e. multipath). The second mismatch situation considered is if the tag and 

receiver use different lengths N to sample the incident radar waveform.  We will 

also  examine  mismatches  occurring  due  to  the  tag  and  receiver  having  different 

sampling rates, resulting in each having a different oversample value M .

18
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 3.1 FORWARD SCATTERING (MULTIPATH)

The radar signal incident at the tag (or a receiver not co-located with the radar) 

may include multiple copies of the waveform due to reflections off objects within the 

radar's illumination. An illustration of the multiple paths that the signal can travel 

between the transmitter and the tag causing multiple, delayed copies of the waveform 

being incident is shown in figure 3.1.1. In the radar literature, these reflections are 

generally  known  as  forward  scattering;  in  communications,  they  are  known  as 

multipath. In this section, we consider the situation in which the tag is located in a 

multipath environment and the receiver is the radar receiver and thus, has the exact 

waveform that is transmitted. Multipath distortion of the symbol waveforms from the 

tag to the receiver will not be considered in this chapter; it will be discussed later in 

section 4.5.

Figure 3.1.1: Illustration of multipath propagation.
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To simulate the effect of the multipath environment on the radar waveform 

incident at the tag, the impulse response of the channel h t  is generated based on a 

multipath model. The distorted radar waveform s t received at the tag is then

s t =s t ∗ht  (3.2)

where ∗ is  the  convolution  operation.  Three  different  multipath  models  are 

simulated: 1) an impulse at t=0 and additive white Gaussian noise, 2) the same 

impulse  with  a  second,  randomly  delayed  impulse  having  a  random  complex 

amplitude, and 3) a severe multipath scenario with many randomly delayed impulses 

each with a random complex value (including the direct path component).

For  the  simulations  in  this  chapter,  a  sampled  linear  frequency modulated 

(LFM) radar waveform of type P3 from [16] is used with a length of N=100 . In 

order  to  simulate  the  continuous  nature  of s t ,  the  P3  radar  waveform  is 

oversampled by a factor of M c=10 given as

scn=e
j 

N


n
M c


2

(3.3)

for  n=[0 1  NM c−1] ,  which  results  in  the NM c length  vector sc .  The 

oversampled version of the multipath distorted radar waveform is then

sc= sc∗h (3.4)

where h is  the  sampled  version of  the  channel  impulse  response  and ∗ is  the 

convolution operation. The tag truncates s c to the correct length and samples the 

result to obtain s and the receiver samples the undistorted sc to obtain s , each 
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having a final oversampling rate of M=2 and length of NM=200 . The tag and 

receiver  use the vectors s and s to  generate K=4 communication waveforms 

c k  and  ck  respectively,  using  the  three  design  approaches  described  in  sections 

2.1.1-3. The Weighed-Combining and Dominant-Projection approaches use L=100  

for  the  size  of  the  non-dominant  space.  The  tag  transmits  the  communication 

waveforms  c k  generated  from  the  multipath  distorted  radar  waveform  and  the 

receiver uses the decorrelating filters wk  from ck  generated without multipath as in 

equation (2.14), to detect the transmitted waveforms via equation (2.15).

Monte Carlo simulations are run simulating 10,000 symbol transmissions with 

a new multipath profile independently generated every 100 symbols. For each of the 

simulations, a symbol to interference ratio (SIR) of -35 dB is used with the signal to 

noise ratio (SNR) varied from -15 dB to 0 dB in 5 dB steps. The symbol error rate 

performance is compared for each of the three design approaches for generating the 

communication waveforms and for each of the three multipath models. 

 3.1.1 IMPULSE AND AWGN

The  first  forward  scattering  model  considered  is  an  impulse  with  additive 

white Gaussian noise (AWGN). This model represents multipath distortion caused by 

small local clutter around the tag. This is modeled mathematically as

h t =t nt  (3.5)

where t  is the Dirac delta function and n t  is AWGN of length max with 

an average power of 0 . With this model, a copy of the radar waveform from the 
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direct path (delta function) plus many smaller, delayed copies from the convolved 

AWGN are incident and sampled by the tag.

Figure 3.1.2: SER with and without impulse and -40dB AWGN multipath 
at the tag.

The  symbol  error  rate  (SER)  results  of  the  Monte  Carlo  simulation  with

max=50 samples  of  the  radar  waveform  at  Nyquist  (i.e.  50%  of  the  radar 

waveform length) and 0=−40 dB are shown in figure 3.1.2. From the SER curves, 

we  see  that  the  Eigenvectors-as-Waveforms  approach  is  most  effected  by  the 

multipath distortion. Without multipath, it has the best SER performance, but with 

even this small amount of multipath it becomes the worst performer and is basically 

unusable.  The  Weighted-Combining  approach  is  also  affected  by  the  multipath 

distortion, but  the increase in the probability of symbol error is much less than with 
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the  Eigenvectors-as-Waveforms  approach.  The  SER  performance  with  the 

communication waveforms generated by the Dominant-Projection approach appears 

to be completely unaffected by the multipath distortion at the tag.

Figure 3.1.3: SER with and without impulse and -10dB AWGN multipath 
at the tag.

The  simulation  is  again  performed  with max=50  samples,  but  with  the 

power of the AWGN increased to  0=−10 dB . The SER performance curves are 

shown  in  figure  3.1.3.  In  this  scenario,  both  Eigenvectors-as-Waveforms  and 

Weighted-Combining  approaches  break  down  and  become  unusable.  With  a 

probability of symbol error of about 0.75 and K=4 communication symbols, there 

appears  to  be  enough  of  a  mismatch  in  the  communication  waveforms  that  the 

receiver  randomly  selects  which  symbol  was  sent  by  the  tag.  The  Dominant-
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Projection approach, on the other hand, experiences only a negligible difference in the 

probability of symbol error, appearing virtually unaffected by the forward scatter seen 

by the tag.

 3.1.2 IMPULSIVE CHANNEL

The next forward scattering model is th case when the tag receives a second, 

delayed copy of the radar waveform with magnitude commensurate with the direct 

path. This second copy of waveform could represent a reflection from another object 

such as a building, mountain or vehicle that is also illuminated by the radar. This 

single multipath component is larger on average than the multiple copies generated by 

the  convolved  AWGN  in  the  previous.   This  multipath  model  is  represented 

mathematically as

h t =t t− (3.6)

where t  is  the  Dirac  delta  function,  is  the  complex  Gaussian  random 

amplitude  of  the  reflector  and  is  the  time  delay  of  the  reflection  uniformly 

distributed over 0,max ] . The distorted radar waveform s t received at the tag 

is then given by equation (3.2).

In  figure  3.1.4,  the  probability  of  symbol  error  for  each  communication 

waveform design approach is  compared with and without  the multipath distortion 

from  equation  3.6  and max=50 samples.  The  Eigenvectors-as-Waveforms  and 

Weighted-Combining  approaches  both  fail  to  produce  usable  communication 

waveforms when the tag experiences the multipath environment, as the probability of 
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symbol error of each is about 0.75. The Dominant-Projection approach, on the other 

hand, has no discernible degradation in SER performance from the added multipath 

component, again appearing robust to the distortion.

Figure 3.1.4: SER with and without multipath from a random impulse at  
the tag.

 3.1.3 MANY RANDOM IMPULSES (SEVERE MULTIPATH)

The final forward scattering model considered is a severe multipath scenario 

with the tag receiving many random copies of the radar waveform. In this case, the 

direct path component at t=0 is not necessarily the most dominant copy received. 

For this scenario, the channel response is generated as

h t =0t ∑
l=1

L−1

lt−l (3.7)
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where 0 and l for l=1, , L are  i.i.d.  complex  Gaussian  random variables, 

l for l=1, , L is  uniformly  distributed  over 0,max ] ,  and t  is  the 

Dirac delta function.

Figure 3.1.5: SER with and without the tag experiencing severe multipath.

The SER curves for the severe multipath simulation with max=50 samples 

are shown in figure 3.1.5. Consistent with the previous results, both the Eigenvectors-

as-Waveforms and Weighted-Combining approaches break down and are unusable 

with the multipath distortion, while the Dominant-Projection approach, even in this 

severe  multipath  environment,  generates  communication  waveforms  with  no 

discernible difference in symbol error rate performance compared to those generated 

without the multipath distorted radar waveform. The Dominant-Projection approach, 

therefore,  appears  to  be  robust  to  the  effects  of  multipath  distortion  of  the  radar 
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waveform incident  on the tag.  The basis  for  Dominant-Projection  as  more robust 

waveform generation approach is further explored in the next section.

 3.1.4 ROBUSTNESS OF DOMINANT-PROJECTION

In  each  of  the  multipath  scenarios  in  sections  3.1.1-3  above,  the  SER 

performance of communication waveforms generated with both the Eigenvectors-as-

Waveforms  and  Weighted-Combining  approaches  were  severely  degraded  by 

moderate  multipath  distortion,  but  the  Dominant-Projection  approach  remained 

mostly unaffected, even under severe multipath conditions. To determine the reason 

the dominant-projection approach is robust to the multipath distortion, we must look 

closer at the process for generating the communication waveforms. 

Recall that in order to produce communication waveforms that are similar to 

the  ambient  scattering  in  an  effort  to  remain  LPI,  each  design  method  starts  by 

generating  the  scattering  matrix S representing  the  possible  delay  shifts  of  the 

sampled radar waveform s . The ambient scattering would then be Sx , where x is 

the range profile vector for the local clutter. In continuous time, the ambient local 

scattering is  represented as the convolution

y t =s t ∗x t  (3.8)

where x t  is the impulse response of the illuminated radar range profile. This is 

observed to be the same operation governing the multipath distor in section 3.2 where 

the  radar  waveform s t is  distorted  by  the  multipath  channel h t  such  that

s t=s t ∗ht  is incident. Therefore, for the combination of multipath distortion 
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and ambient scattering, we can substitute (3.2) into (3.8), to obtain

y t= s t ∗x t =st ∗h t ∗x t=s t ∗x t  (3.9)

where x t =x t ∗h t  can just be treated as a different range profile. Multipath 

distortion thus has the same mathematical structure as the local scattering mimicked 

in the generation of the communication waveforms.

Each  waveform  design  approach  has  a  different  method  of  utilizing  the 

eigenvectors  of  the  correlation  matrix SSH to  form  the K communication 

waveforms ck . Although the multipath possesses the same mathematical structure as 

the  ambient  scattering  modeled  in S ,  the  distortion  causes  changes  in  the 

eigenvectors of SSH . Depending on the design approach, the eigenvector mismatches 

can cause the generation of different communication waveforms. To understand the 

differences in the eigenvectors caused by the multipath distortion, we will look at the 

correlation between the sets of eigenvectors with and without the multipath distortion 

to compare their similarities and differences.

From section 2.1, the matrix V is the set of eigenvectors of the correlation 

matrix SSH  used to generate the communication waveforms. Let the matrix V be 

the set of eigenvectors from S S H , where S is obtained via (3.1) using the vector 

s ,  the  sampled  version  of  the  multipath  distorted  radar  waveform s t  .  The 

correlation  of  the  two  sets  of  eigenvectors  is  then  calculated  as ∣V H V∣ .  If  the 

eigenvector  sets  are  identical  (i.e V= V ),  the  resulting  correlation  would  be

∣V H V∣=∣VH V∣=I  where I is the identity matrix.
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As in sections 3.1.1-3, a P3 radar waveform of length N=100 is used and 

oversampled by a factor of M=2 . This results in the set of MN=200  eigenvectors. 

From the length and bandwidth of radar  waveform, the eigenvectors  with indices 

from 1 to 100 correspond to the dominant space occupied by the radar waveform with 

the non-dominant space consisting of the eigenvectors with indices from 101 to 200. 

The  average  eigenvector  correlation  ∣V H V∣  is  calculated  over  100 Monte Carlo 

simulations of different random multipath profiles to see how the distortion affects 

the eigenvector sets. Also, the correlation of the communication waveforms generated 

from each eigenvector  set  is  averaged over  the  100 multipath  profiles  to  see  the 

resulting effect of the changed eigenvectors for each of the three symbol waveform 

generation  approaches.  These  results  are  then  compared  with  the  probability  of 

symbol error results in sections 3.1-3.

The average eigenvector correlation is calculated for the impulse and AWGN 

multipath  model  in  section  3.1.1  with  random multipath  profiles  generated  from 

equation (3.3) with 0=−40 dB and max=50 samples. The intensity plot of the 

eigenvector  set correlation is shown in figure 3.1.6. From this simulation, we observe 

a smeared diagonal line of high correlation where the index of V is equal to the 

index  of V .  If  the  two sets  of  eigenvectors  were  identical  and ∣V H V∣=I ,  the 

intensity plot would consist of a line at 0 dB on the diagonal and - dB elsewhere. In 

this  case,  the  multipath  distortion  appears  to  smear  the  eigenvectors,  resulting  in 

correlations occurring off of the diagonal. Here, signal components that exist in an 
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eigenvector  at  one  index  in V may be  present  in  eigenvectors  at  other  indexes 

within V .

Figure 3.1.6: Eigenvector correlation intensity plot (in dB) with impulse 
and -40dB AWGN.

The average  correlation  of  the  communication  waveforms produced at  the 

receiver  without  multipath  and  the  waveforms  generated  at  the  tag  under  this 

multipath condition are shown in figure 3.1.7. Here, the correlation for each of the 

four communication waveforms is averaged over the 100 random multipath profiles 

and  shown  for  each  of  the  three  design  approaches.  Looking  at  the  average 

correlations,  each  of  the  three  methods  continue  to  produce  waveforms  that  are 

significantly correlated at the match point with the tag in the multipath environment. 

The  waveforms  generated  by  the  Eigenvectors-as-Waveforms  and  Weighted-
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Combining  approaches,  though,  are  slightly  below  0  dB  at  0  delay  offset  and 

therefore,  are  no  longer  perfectly  matched.  Also  noted  is  that  due  to  the  narrow 

bandwidth  of  the  communication  waveforms  produced  with  the  Eigenvectors  as 

waveforms approach, the correlation of the waveforms has a slower roll-off than the 

waveforms from the other two methods that are more spread out in bandwidth. 

Figure 3.1.7: Symbol Correlations for impulse and -40 dB AWGN 
multipath.

The SER performance for  this  multipath scenario,  as  seen in  figure 3.1.2, 

shows that the Eigenvectors-as-Waveforms approach suffered the most degradation 

from the  multipath  distortion.  Recall  that  this  approach uses  the  individual,  least 

dominant eigenvectors for the communication waveforms. These are the eigenvectors 

with indexes near 200, which from figure 3.1.6 show smearing in their correlation. 
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This leads to the mismatch in the communication waveforms seen in figure 3.1.7 and 

degradation in SER performance. The Weighted-Combining approach, on the other 

hand,  uses  randomly  weighted  combinations  of  the L individual  non-dominant 

eigenvectors. This approach also suffers degradation of SER performance under this 

multipath  condition,  but  not  to  the  degree  that  the  Eigenvectors-as-Waveforms 

approach. Therefore, there must be a higher correlation of the combination of the 

eigenvectors  of  the  non-dominant  space  than  the  individual  least-dominant 

eigenvectors  used  in  the  Eigenvectors-as-Waveforms  approach.  Looking  at  figure 

3.1.6, we see that the eigenvectors nearer to the dominant space (near index 100), 

appear to experience less smearing than the least dominant eigenvectors (near index 

200). By combining these more correlated eigenvectors, the resulting communication 

waveforms are more correlated than the individual, least dominant eigenvectors.

If  the  power  level  of  the  noise  is  increased  from 0=−40dB to

0=−10dB for the impulse and AWGN multipath model,  we have the average 

correlation intensity plot shown in figure 3.1.8. For this situation, we observe that the 

smearing of the eigenvectors caused by the multipath distortion increases to the point 

that there is no longer a defined diagonal of high correlation where the index of V  is 

equal to the index of V .
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Figure 3.1.8: Eigenvector correlation intensity plot (in dB) with impulse 
and -10dB AWGN.

From the average correlation of the communication waveforms in figure 3.1.9, 

it  is  observed  that  the  Eigenvectors-as-Waveforms  and  Weighted-Combining 

approaches  now  fail  to  produce  matching  communication  waveforms  with  the 

receiver using the exact radar waveform and the tag using the multipath distorted 

waveform.  The  increased  multipath  distortion  caused  by  the  larger  noise  power 

smears  the  eigenvectors  such  that  the  indexed  sets  are  no  longer  correlated.  The 

Dominant-Projection  approach,  however,  continues  to  generate  communication 

waveforms  that  are  highly  correlated  between  the  tag  and  receiver,  with  the 

correlation at the match point remaining near 0 dB.
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Figure 3.1.9: Symbol Correlations with impulse and -10 dB AWGN 
multipath.

The SER curves from figure 3.1.3 confirm the symbol waveform correlation 

results  shown in figure 3.1.9. Both the Eigenvectors-as-Waveforms and Weighted-

Combining approaches fail, as the symbol error performance is no better than that of 

random symbol selection. Since the eigenvectors are no longer correlated between the 

tag  and  receiver,  both  approaches,  which  use  the  indexing  of  the  individual 

eigenvectors, generate communication waveforms that are uncorrelated between the 

tag  and  receiver  with  this  multipath  scenario.  The  Dominant-Projection  approach 

remains unaffected and robust to the distortion.
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Figure 3.1.10: Eigenvector correlation intensity plot (in dB) with  
multipath from second random impulse seen by the tag.

Figure 3.1.10 shows the intensity plot of the average eigenvector correlation 

when  the  radar  waveform  experiences  a  second,  randomly  delayed,  multipath 

component with a random complex amplitude with the model given equation (3.6). 

As was seen in figure 3.1.8 with an impulse and -10 dB of AWGN, there is again 

significant smearing of the eigenvectors off of the diagonal of equal indexes. This is 

caused by the second radar waveform component from the multipath reflection.
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Figure 3.1.11: Symbol Correlations for multipath from second random 
impulse multipath.

The average communication waveform correlation for this multipath scenario 

is shown in figure 3.1.11. Again, both the Eigenvectors-as-Waveforms and Weighted-

Combining  methods  do  not  produce  communication  waveforms  that  are  similar 

enough  to  be  effective,  but  the  Dominant-Projection  method  still  generates 

communication  waveforms  that  are  matched  between  the  tag  and  receiver.  This 

confirms the SER performance for this multipath model in figure 3.1.3, where the 

Eigenvectors-as-Waveforms  and  Weighted-Combining  approaches  fail  and  the 

Dominant-Projection approach is unaffected by the multipath distortion.
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Figure 3.1.12: Eigenvector correlation intensity plot (in dB) with severe 
multipath at the tag.

For the severe multipath scenario given in equation (3.7), we have the average 

eigenvector correlation given by the intensity plot in figure 3.1.12. Again, we see a 

large  amount  of  smearing  of  the  eigenvectors  caused  by  the  multipath  distortion. 

Unsurprisingly, the Eigenvector-as-Waveforms and Weighted-Combining approaches 

fail to produce communication waveforms at the tag that are correlated to the receiver 

waveforms  when  using  the  Eigenvectors-as-Waveforms  and  Weighted-Combining 

approaches, but even under this severe multipath distortion, the Dominant-Projection 

approach still  produces matched waveforms. This is shown in the average symbol 

correlation in figure 3.1.13 and confirmed by the SER curves in figure 3.1.5.
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Figure 3.1.13: Symbol Correlations for multipath with severe multipath.

From the eigenvector correlation intensity plots above, we are able to directly 

see the smearing of the eigenvectors that cause the Eigenvectors-as-Waveform and 

Weighted-Combining approaches to fail. However, there is also a consistent aspect to 

each that leads to the reasoning the Dominant-Projection approach is robust to each of 

the models for multipath distortion. Instead of using the individual eigenvectors, the 

Dominant-Projection  approach  uses  the  set  of  eigenvectors  corresponding  to  the 

dominant space as a whole to generate the communication waveforms. In each of the 

multipath scenarios, even with the severe case, while there is significant smearing of 

the individual eigenvectors, the dominant and non-dominant spaces remain mostly 

separate. This can be observed with the aid of the black lines in each of the intensity 

plots showing the division between the two subspaces. In the Dominant-Projection 
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procedure, when generating each new waveform, the eigenvectors of the dominant 

space and any previously generated communication waveform is projected away from 

a random vector that is known to both the tag and receiver. Although the individual 

eigenvectors  at  the  tag  are  not  the  same,  as  seen  in  figures  3.1.5-8,  most  of  the 

information is contained by each set of the dominant eigenvectors as a whole. This 

results  in  a  similar  projection  away  from  the  seed  vector  and  matching 

communication waveforms are generated.

 3.2 WAVEFORM LENGTH DIFFERENCES

Another problem caused by forward scatter is that the multiple, delayed copies 

of the radar waveform expand the apparent length of the received pulse. This can 

make  it  difficult  to  determine  the  exact  length N to  use  for  the  incident  radar 

waveform  s t .  This  could,  in  turn,  lead  to  mismatches  in  the  generated 

communication waveforms used by the tag and receiver. An illustration of the time 

expansion of the radar signal is shown in figure 3.2.1.  Here, the radar waveform is 

distorted by multipath as in section 3.1.1 with max=50 samples and 0=−10 dB

.  The  multipath  distorted  waveform  appears  to  continue  well  past  the  original 

waveform, making it appear longer. As a result, the tag and receiver could determine 

different  lengths  for  the  radar  pulse  and  the  generation  of  the  communication 

waveforms that are no longer correlated. 

39



Figure 3.2.1: Radar waveform length ambiguity due to multipath.

In the previous simulations, both the tag and receiver were presumed to have 

exact knowledge of the radar waveform length N to be used in the generation of the 

communication waveforms. If either the tag or receiver (not in the radar) does not 

have  prior  knowledge  of  the  length  of  the  radar  waveform,  it  would  need  to  be 

determined from the incident waveform. As discussed above, this could lead it to use 

a  different  value for  the  length N for  the  radar  waveform.  Here  the  undistorted 

radar  waveform s t is  sampled  to  form  the  length N M vector s used  to 

generate the N M×2 N M−1 scattering matrix  S . The  set of eigenvectors  V

from S S H would then be used to generate the communication waveforms c k . For 

Weighted-Combining and Dominant-Projection the size of the non-dominant space 

would then be L=M−1 N .
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To simulate these waveform length differences between the tag and receiver, 

we  will  again  use  the  P3  radar  waveform  with  a  length  of N=100 and  an 

oversample  factor  of M=2 to  generate K=4 communication  waveforms.  The 

receiver is presumed to have the exact knowledge of the radar waveform length, but 

the  length  of  the  waveform used  at  the  tag  is  varied  from N=50 to  N=150 . 

Monte Carlo simulations are run simulating 10,000 symbol transmissions for each 

value of N . The symbol error rate is calculated for each of the three communication 

waveform design approaches and plotted in the figures below.

Figure 3.2.2: SER curves for length differences with Eigenvectors-as-
Waveforms.

The symbol error rate curves for the Eigenvectors-as-Waveforms approach are 

shown in figure 3.2.2. Here we see that any value of N used by the tag that is not 
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equal to the actual radar waveform length N=100 used by the receiver, results in 

an unusable symbol error rate, with the probability of symbol error at about 0.75. 

From the SER curves for the Weighted-Combining approach in figure 3.2.2 below, we 

observe that again any mismatch between N and N renders it unusable. From the 

observations of section 3.1.4, it is suspected that a difference between N and  N  

will cause mismatches in the eigenvectors sets V and V . The generated symbol 

waveforms from the different eigenvectors sets will be uncorrelated and unusable for 

communication.

Figure 3.2.3: SER curves for length differences with Weighted Combining.

The SER curves for the different values of N when the Dominant-Projection 

approach is used are shown in figure 3.2.4. From the plot, we see that when the tag 

uses a shorter radar waveform length of N=75 , the SER performance at 0 dB SNR 
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is significantly degraded to about 0.08 from about 0.003 with the correct length of 

N=100 . The probability of error gets even worse to about 0.4 when length of the 

radar waveform used at the tag is reduced to N=50 . However, if  the tag uses a 

longer  radar  waveform  length  of N=125 or N=150 the  symbol  error  rate  is 

mostly unchanged from when the correct length of the radar waveform is used. It then 

appears that the Dominant-Projection approach is also robust to differences in the 

radar waveform length, as long as the tag uses a length of the radar waveform that is 

equal or greater than the length used at the receiver. To gain a further understanding 

of why using a longer radar waveform at the tag does not affect the SER performance, 

we again will look at the correlations of the eigenvector sets when different waveform 

lengths are used.

Figure 3.2.4: SER curves for length differences with Dominant-Projection.
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To  compare  the  eigenvector  sets  used  by  the  receiver  and  tag  in  the 

communication waveform generation process, we will again calculate the correlation 

matrix ∣V H V∣ .  When N≠N ,  the  length  of  the  eigenvectors  in V will  be 

different  than  those  in V .  The  shorter  of  the  two  is  zero  padded  for  the 

dimensionality to match to be able to calculate ∣V H V∣ .

Figure 3.2.5: Eigenvector Correlation (in dB) with N=100 and
N=150 .

The eigenvector correlation intensity plot for the tag using a radar waveform 

length  of N=150 is  shown  in  figure  3.2.5.  From  this  plot,  we  again  see  the 

eigenvector  smearing  that  is  detrimental  to  the  Eigenvectors-as-Waveforms  and 

Weighted-Combining approaches. It can also be observed, that with the tag using a 

longer  radar  waveform,  the  dominant  and  non-dominant  spaces  remain  mostly 
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separate.  Here,  the  eigenvectors  indexed  between  1-100  and  101-200  in V are 

correlated  mostly  with  eigenvectors  of V indexed  between  1-150  and  151-300 

respectively.

Figure 3.2.6: Eigenvector Correlation (in dB) with N=100  and N=50 .

The eigenvector correlation when the tag uses a radar waveform length of

N=50  is shown in figure 3.2.6. Here, the size of the non-dominant space that the tag 

estimates  is  L=50 .  From the  intensity  plot,  we see  that  the  dominant  and  non-

dominant spaces no longer appear separate. The eigenvectors indexed between 1-100 

corresponding to the dominant space of V have high correlations with eigenvectors 

indexed out past 70 of V . When the communication waveforms are generated at the 

tag,  only  the  eigenvectors  indexed  between  1-50  will  be  projected  out  with  the 

dominant projection approach, resulting in waveforms that are less matched with the 
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decorrelating filters used by the receiver and more correlated to the ambient scattering 

interference. Looking at the plot, there also appears to be a 'loop' of correlation where 

eigenvectors from V have high correlations with eigenvectors at two indexes in V . 

This  appears  to  be  caused  by  some  sort  of  aliasing  due  to V having  less 

eigenvectors than V . 

 3.3 SAMPLING RATE DIFFERENCES

Another  situation  that  can  cause  a  mismatch  between  the  communication 

waveforms generated by the tag and receiver is a difference in sampling rate when 

sampling the incident radar waveform s t . If the tag has a different sampling rate, it 

would have a different oversample factor M than the value M at the receiver. The 

sampled radar waveform vector s would then be of length N M and would be 

used to generate the N M×2 N M−1 scattering matrix S . The  communication 

waveforms c k would then be generated by the set of eigenvectors  V  from S S H . 

To  simulate  the  mismatch  in  sampling  rates,  the  receiver  will  have  a  constant 

oversample factor of  M=2 . The sample rate at the tag is varied from M=1.6 to 

M=2.4  in 0.2 steps. We will again use a P3 radar waveform of length N=100 and 

generate K=4 communication  waveforms  using  the  size  of  the  non-dominant 

space as L= M−1N . 
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Figure 3.3.1: SER curves of sampling rate difference with Dominant-
Projection

Consistent with the results in the previous sections, both the Eigenvectors-as-

Waveforms and Weighted-Combining approaches are  unusable with any mismatch 

between M and  M .  For  brevity,  these  plots  are  omitted  as  they  are  similar  to 

figures 3.2.1 and 3.2.2. For Dominant-Projection, the SER results are shown in figure 

3.3.1.  Here,  we  see  that  the  probability  of  symbol  error   goes  up  with  a  lower 

oversample factor of M=1.8 and gets even worse when decreased to M=1.6 . For 

a higher sampling rate with M=2.2 , there is a slight increase in SER performance 

that further increases when M=2.4 . Dominant-Projection then appears fairly robust 

to sample rate differences, but is more affected by the tag using a lower sample rate 

than a higher sample rate.
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Figure 3.3.2: Eigenvector correlation with M=2 and M=2.4 .

We again look at the intensity plots for the eigenvector correlation ∣V H V∣  to 

gain a better understanding of the effect of different sample rates between the tag and 

receiver on the eigenvectors used to generate the symbol waveforms. Again, the rows 

for shorter  of V and V are zero padded in order to  perform the inner  product 

operation for  the correlation matrix.  The eigenvector  correlation intensity  plot  for

M=2.4 is shown in figure 3.3.2 and for M=1.6 in figure 3.3.3 below. In both 

plots, we again see the smearing of the eigenvectors that causes the Eigenvectors-as-

Waveforms and Weighted-Combining approaches to fail. For the higher sampling rate 

of M=2.4 , we see that the dominant and non-dominant spaces are mostly separate, 

but  the  size  of  the  non-dominant  space  would  be  L= M−1×N=140  and  the 

eigenvectors indexed between 1-100 would correspond to the dominant space. From 
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figure  3.2.2,  we  see  that  the  correlations  smear  out  past  index  100.  These  are 

components that will not be projected out during the waveform generation process. 

The  symbols  generated  by  the  tag  will  be  less  correlated  with  the  waveforms 

generated by the receiver and more correlated with the clutter interference. This will 

causes the SER degradation that is seen in figure 3.3.1. In the eigenvector correlation 

intensity plot for M=1.6 shown in figure 3.3.3 below, there is even more smearing 

of the eigenvectors between the dominant and non-dominant spaces. This leads to the 

further SER performance degradation seen in figure 3.3.1.

Figure 3.3.3: Eigenvector correlation with M=2 and M=1.6
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CHAPTER 4

SYNCHRONIZATION ISSUES

In the previous analysis evaluating the symbol error rate performance of the 

waveforms for intra-pulse radar embedded communication, it was assumed that the 

tag and receiver were synchronized. This meant that the receiver had exact knowledge 

of the time that the communication waveform was received from the tag. In a real-

world scenario,  the receiver may not know the time delay from the tag and must 

search in time for the communication waveforms. For example, if the receiver is in 

the radar and a mobile tag is in the illuminated field, the receiver may need to search 

over multiple range cells to extract the embedded symbol waveform. In continuous 

time, this time delay of the communication waveform from the tag as seen by the 

receiver is

r t=ck t−s t ∗x t v t  (4.1)

where ck t− is the transmitted communication waveform offset in time by   , 

s t∗x t   is the local clutter generated from the radar waveform s t convolved 

with the clutter range profile x t  , and v t   is additive white Gaussian noise. At 

the receiver, r t  is sampled at time i to form the vector

r i=c k , i−Sx iv i (4.2)

where c k , i− is  the sampled communication waveform offset  in  time by  ,  the 

matrix S is composed of the shifts of the sampled radar waveform vector s as in 
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equation  (3.1), x i is  sampled  local  clutter  range  profile,  and v i is  the  additive 

white  Gaussian noise.  The  receiver  detects  which symbol  was  sent  by taking  the 

maximum output of the decorrelating filter over some search period. This is described 

mathematically as

k=arg{max
k { max

−max≤i≤max

{∣w k
H ri∣}}} (4.3)

where wk is the decorrelating filter for the k th symbol and max is the maximum 

offset for the symbol waveform.

In this chapter, we will simulate a receiver that is not synchronized with the 

tag  and  thus  is  required  to  search  in  time  for  each  symbol.  Again,  a  P3  radar 

waveform of length N=100 is used oversampled by a factor of M=2 . The tag 

and receiver are presumed to have the same K=4 communication waveforms ck  

generated using the Dominant-Projection approach,  each of length  MN=200 .  To 

approximate the continuous nature of the waveform between the tag and receiver, 

each communication waveform is interpolated by a factor of M c=10 . The waveform 

is  then  offset  randomly  by  M c ,  which  is  uniformly  distributed  between 

[−max M c ,max M c ] . The interpolated and time offset communication waveform is 

then  down sampled  by M c=10 to  form the  vector ck , i− that  is  added  to  the 

random clutter and noise as in equation (4.2) to generate the received waveform r i . 

The receiver detects the symbol sent by the tag by using the decorrelating filters with 

the  maximum  output  over  −max≤i≤max .  This  process  performed  over  10,000 
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Monte Carlo simulations of symbol transmission with random time delays and the 

symbol error rate is calculated.

 4.1 SER PERFORMANCE SEARCHING OVER TIME

The SER results of simulations with max=0, 1, 3,5, 10 samples are shown in 

figure 4.1.1. As a baseline, the SER curve with max=0 samples represents the case 

where the receiver is synchronized with the waveform from the tag. With  max=1  

sample the match point of the communication waveform in r i has an offset that is 

uniformly distributed between −1 ≤ i ≤ 1 in steps of 1/M c=0.1 samples.

Figure 4.1.1: SER of Dominant-Projection searching over max  samples.

 Here, we see as max is increased, the SER performance degrades. In other 

words, the more samples that the receiver must search increases the chance that an 
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error will occur. In the next two sections we will attempt to reduce the amount of 

errors caused by the receiver searching over time because of a lack of synchronization 

with the tag.

 4.2 THREE SAMPLE AVERAGE

The first attempt at improving SER performance when the tag and receiver are 

not  synchronized  comes  about  from  looking  at  the  autocorrelation  of  the 

communication waveforms generated with the Dominant-Projection approach.  The 

autocorrelation  plots  for  each  of  the four  symbol  waveforms are  shown in figure 

4.2.1.

Figure 4.2.1: Autocorrelation of Dominant-Projection communication 
waveforms.
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 In the autocorrelation for each symbol, at delay offsets of +/- 1 the correlation 

is just 2-3 dB down from the match point (0 offset). Intuitively, it seems that it may be 

possible  to  average  over  three  samples  to  take  advantage  of  this  width  in  the 

autocorrelation. Noise and interference that may cause a symbol error at one sample 

offset  in  the  receiver  may  be  averaged  out  over  three  samples,  thereby  reducing 

symbol errors. The receiver would then average the output of equation (4.2) as

r i=
1
3
r i−1r ir i1 (4.4)

and then used in equation (4.3) to detect the embedded waveform.

Figure 4.2.2: SER searching over time and averaging 3 samples.

Monte Carlo simulations were run with and without the three sample average 

with the receiver searching over the same range values of max as in section 4.1. The 
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SER results for the simulation are shown in figure 4.2.2.  Here, we see that the three 

sample average does not seem to improve SER performance of the receiver. Actually, 

in the majority of data points, the average slightly increases the probability of symbol 

error. The output of the decorrelating filters at plus and minus one sample from the 

match  point  do  not  appear  to  contain  any  more  information  for  detecting  the 

communication waveform and may instead introduce more noise and interference. 

This would then cause an increase in the probability of symbol error. This is further 

examined later in section 4.4.

 4.3 SYMBOLS WITH LESS LOCAL CROSS-CORRELATION

The  second  attempt  to  improve  the  SER  performance  when  the  receiver 

searches over multiple samples comes about from examining the cross-correlations of 

the symbol waveforms generated with the Dominant-Projection approach. In figure 

4.3.1, the cross-correlation between each symbol waveform with the first symbol is 

shown.

In these plots, we see that the correlation between the first waveform and the 

three other communication waveforms goes down to about -40 dB at the match point. 

This  null  results  from  the  Dominant-Projection  approach;  since  the  dominant 

eigenvectors and each previously generated communication waveform are projected 

away  from  the  random  seed  vector,  the  resulting  new  waveform  will  be  less 

correlated with any previously generated waveform at the match point. 
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Figure 4.3.1: Cross-correlation of communication waveforms.

If,  instead  of  just  projecting  away  from  the  previously  generated 

communication waveforms at their match point, shifted versions of the waveforms are 

also projected out,  communication waveforms can be generated with lower cross-

correlation local to the match point.  This changes equation (2.6) in the Dominant-

Projection approach to

Sk=[S C1  Ck−1] . (4.5)

where the 2 f1×MN  matrix

Ck=[
ck , f ⋯ ck , 0 ⋯ 0

ck , f1 ⋯ c k , 1 ⋯ ⋮

⋮ ⋱ ⋮ ⋮ ck , NM f −2

0 ⋯ ck , NM−1 ⋯ ck , NM f −1
] (4.6)
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contains  the  2 f1  shifted  versions  of  the  communication  waveform

ck=[ck ,0 ck ,1  ck , MN−1]
T .

Figure 4.3.2: Dominant-Projection with less local cross-correlation.

Communication  waveforms  were  generated  with  the  Dominant-Projection 

approach including the delay shifts of -1, 0, and +1 ( f =1 ) of each of the previously 

created  waveforms  in  the  projection  matrix.  The  cross-correlation  plots  of  the 

resulting symbol waveforms are shown in figure 4.3.2. From these cross-correlations, 

we see that projecting away the delay shifts of the previously generated waveforms 

has the desired effect of widening the null near the match point, but the null is not 

quite as deep as the waveforms generated without the shifts included.
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Figure 4.3.3: SER of Dominant-Projection with local cross-correlation,  
searching over time.

Monte Carlo simulations were again run comparing the probability of symbol 

error when using the communication waveforms generated with the lower local cross-

correlation with symbols generated with the original Dominant-Projection method. 

From the SER curves shown in figure 4.3.3, we see that the waveforms with lower 

local cross-correlation do not appear to perform better in terms of symbol error rate. 

As  with  the  three  sample  average,  at  many  of  the  data  points,  the  waveforms 

generated  to  have  less  local  cross-correlation  actually  have  a  slightly  higher 

probability  of  symbol  error  in  comparison  to  the  waveforms  generated  with  the 

regular  dominant  projection  approach.  This  will  be  further  explored  in  the  next 

section. 
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 4.4 DISTRIBUTION OF FILTER OUTPUTS

In the last two sections, attempts were made to improve the SER performance 

using the Dominant-Projection approach when the receiver is not synchronized with 

the tag waveform and must search over a number of samples to detect the embedded 

communication  waveform.  The  proposed  improvements  included  using  a  three 

sample  average  of  the  filter  outputs  to  take  advantage  of  the  width  of  the 

autocorrelation of the communication waveforms as well as reducing the local cross-

correlation of the waveforms by projecting away shifts of the previously generated 

waveforms when using the Dominant-Projection approach. In this section, we will 

examine  the distribution  of  the output  magnitude of  the  decorrelating  filter  as  an 

estimate of each filter output's probability density function (pdf). This is done in order 

to gain a better understanding of the causes behind symbol errors that are occurring 

and some reasons these two approaches fail to reduce the number of errors.

Recall  that  the  receiver  uses  the  filter  with  largest  output  magnitude  to 

determine which symbol was sent by the tag as in equation (4.3). A symbol error will 

occur  when  the  output  of  one  of  the  other  three  filters  is  larger  than  the  filter 

corresponding  to  the  symbol  that  was  actually  sent  (i.e.  k≠k ).  Therefore, 

estimating the probability density function (pdf) of each filter output ( ∣w k
H r i∣ ) can 

give a better understanding of the effect of interference and noise in causing symbol 

errors. Also, the effect on the pdfs from the attempts to improve SER performance 

from the previous two sections can be observed and give more information as to why 

the approaches were not effective. 
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To approximate  the  pdfs  of  the  decorrelating  filter  outputs,  10,000 Monte 

Carlo simulations are run with the tag sending the first generated symbol. The symbol 

is added to random clutter and noise as in equation (4.2), the output magnitude of 

each decorrelating filter ( ∣w k
H r i∣ ) for i=−1,0,1 is computed and a histogram of 

the output magnitude values is generated with 25 bins for values ranging from 0 to 2. 

The  histogram is  then  plotted  as  a  line  plot  as  an  estimate  of  the  pdf  for  each 

decorrelating filter output magnitude.

Figure  4.4.1  shows the  estimated  probability  density  function  plots  of  the 

output magnitude for each decorrelating filter with -35 dB SIR and -5 dB SNR at the 

match point of the symbol waveform (i.e. tag and receiver synchronized). Here, we 

see  that  the  distribution  of  the  output  magnitude  of  the  filter  for  the  transmitted 

symbol  (symbol  1)  is  clearly  distinguishable  and  set  apart  from  the  other  three 

symbols (symbols 2-4). The more that the transmitted waveform can be separated 

from the other possible waveforms, the less probability of a symbol error. The mean 

output magnitude of the filter for symbol 1 is around 1.0. The value near unity is 

attributed to match between the tag waveform and the decorrelating filter used by the 

receiver. The magnitude of the filter output varies from the clutter and the noise with 

a standard deviation of 0.23. The mean output magnitude for the decorrelating filters 

for the other three symbols is each around 0.27 with a standard deviation of 0.14. 

Recall that the communication waveforms are designed to be partially correlated with 

ambient scattering to have a low probability of intercept; therefore, each filter will be 

partially correlated with the received clutter interference.
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Figure 4.4.1: Estimated pdfs of Dominant-Projection reception.

If  only two communication waveforms were used,  the overlap of the pdfs 

between symbol 1 and symbol 2 in figure 4.4.1 would give a good indication of the 

probability of symbol error, given an error occurs when the output magnitude of the 

filter corresponding to symbol 2 is larger than the magnitude of symbol 1 filter (with 

symbol 1 being sent). With four symbols, an error will occur when the output of any 

of the other three decorrelating filters has a larger magnitude than the output of the 

filter corresponding to the actual embedded symbol. The pdfs of the three other filter 

outputs must be combined and compared to the pdf for the symbol sent. Since it is the 

largest magnitude of the three other filter outputs that will cause an error, the pdf of 

maximum value of the filters for symbols 2-4 will be generated and compared to the 

estimated pdf for symbol 1.
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Figure 4.4.2 shows the estimated pdf of the largest output magnitude of the 

decorrelating filters for symbols 2-4 with the pdf for the symbol 1 filter. From the 

plot, we see that the combination of the three individual pdfs from figure 4.4.1 by 

taking  the  maximum  value,  increases  the  mean  to  about  0.40  from  about  0.27 

individually.  There is  also only a very slight  decrease in  standard deviation.  This 

increase in the mean value pushes the pdf of an erroneous symbol further into the pdf 

of the correct symbol, increasing the probability of symbol error. This would be a 

major contributer to the decrease in SER performance when increasing the number of 

symbols K used in the system. With more symbols, there are more possibilities for 

the magnitude of a decorrelating filter corresponding to a symbol that was not sent to 

have a larger magnitude than the filter for the correct symbol, causing a symbol error.

Figure 4.4.2: Estimated pdf of Dominant-Projection detection.
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When  the  receiver  is  not  synchronized  with  the  tag,  it  must  search  over 

multiple samples to find the symbol waveform that was sent. In this case, the receiver 

takes the largest filter output over the samples searched. That means at any sample 

offset searched, if any of the decorrelating filters for the three other symbols not sent 

by the tag is larger than the largest filter output of the symbol that was sent, a symbol 

error  occurs.  Figure  4.4.3  shows  the  resulting  pdfs  when  searching  over  three 

samples, corresponding to the max=1 SER curve from figure 4.1.1. From the plot, 

we see that  the mean of the largest  competing symbol  that  would cause an error 

increases to about 0.51. This is up from about 0.42 of the synchronized case in figure 

4.4.2. The increased overlap between the error symbol and correct symbol illustrates 

the degradation in SER performance seen when searching over the three samples.

Figure 4.4.3: Estimated pdf with searching in time +/- 1 sample.
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In section 4.2, a three sample average of each filter output was used in an 

attempt to improve SER performance when searching over multiple samples. Since 

the autocorrelation of the symbol waveforms at +/- one sample is just 2-3 dB down 

from the match point, an average over those three samples was thought to be able to 

reduce symbol errors. In figure 4.4.4, we see the effect of a three sample average on 

estimated pdfs for the decorrelating filter outputs for symbol 1 and the maximum of 

symbols 2-4. The pdfs are shown at the match point, offset by +/- 1 sample, and the 

three sample average.

Figure 4.4.4: Estimated pdf for Dominant-Projection at three sample 
offsets and with average.

 From the plot,  we see that the three sample average reduces the standard 

deviation of the filter output for symbol 1, but since the correlation at +/-1 sample 
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from the match point is down 2-3 dB, the average over these samples also reduces the 

mean of  the distribution.  The pdf  for  the maximum filter  output  for symbols  2-4 

shows a slight decrease in both the mean and standard deviation.

Figure 4.4.5: Estimated pdf for DP with three sample average detection.

The distributions resulting from the three sample average of the filter outputs 

are shown in figure 4.4.5. These plots correspond to the SER curve in figure 4.2.2 

with max=0 . Here, we see that the pdf of the maximum of the three sample average 

for symbols 2 – 4 has a mean that decreases from 0.43 without the three sample 

average to about 0.41. But, with the decrease in the mean for symbol 1 from 1.01 to 

about 0.93 and without a significant reduction of the variance, resulting in the two 

distributions moving closer together. This slight increase in the overlap of the two 

distributions matches the slight increase in the probability of symbol error that was 
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observed in figure 4.2.2.

In section 4.3, the symbol waveforms were generated to have less local cross-

correlation with the other symbols in an attempt to improve SER performance. This 

was  accomplished  by projecting away shifts  of  the  previously created  waveforms 

along with each symbol at the match point in the Dominant-Projection procedure. The 

thought  is  that  the  lower  correlation  between  waveforms  at  small  offsets  would 

reduce the chance of symbol error when the receiver searches over multiple samples 

for the waveform from the tag.

Figure 4.4.6: Estimated pdf DP with lower local cross-correlation.

 Figure  4.4.6  compares  the  distributions  of  the  decorrelating  filter  output 

magnitude  for  the  Dominant-Projection  symbols  generated  with  and  without  the 

shifted versions of the previously generated symbols included in the projection to 
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generate  new symbols.  The distribution of the filter  output  for symbol 2 at  +/-  1 

sample  delay  from the  synchronization  point  is  shown  with  the  tag  transmitting 

symbol 1. To improve SER performance, the lower-cross correlation should reduce 

the outputs of the other three filters one sample off the match point. Here, we see that 

the  lower  local  cross-correlation  only  slightly  reduces  the  mean  and  standard 

deviation of the filter output for symbol 2. Similar results are seen for the other two 

symbols.

Figure 4.4.7: Estimated pdf DP with lower local cross-correlation.

In figure 4.4.7, we see the pdfs of the transmitted waveform (symbol 1) and 

the maximum of the other three waveforms with the Dominant-Projection approach 

with the inclusion of the shifted communication waveforms used to achieve lower 

local cross-correlation between the symbols. Here, we see that the distributions are 

67



not significantly different than resulting pdfs when using symbols generated by the 

original dominant projection approach, as shown in figure 4.4.3. As seen in the SER 

curve  in  figure  4.3.3  with  max=1 ,  the  lower  local  cross-correlation  does  not 

appreciably reduce the probability of symbol error.

Figure 4.4.8: Estimated pdf DP with lower local cross-correlation and 
average.

In figure 4.4.8, the two approaches from sections 4.2 and 4.3 are combined 

such  that  the  communication  waveforms  are  generated  with  lower  local  cross-

correlation used with the receiver using a three sample average of the filter outputs. 

Here, we see that the pdfs of the transmitted symbol and the maximum of the three 

other  symbols  are  not  significantly  improved  by  the  combination  of  the  two 

approaches; therefore, a decrease in SER is not anticipated from the combining of the 
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two approaches.

 4.5 MULTIPATH AND SYNCHRONIZATION

In section 3.1, multipath distortion of the radar signal between the transmitter 

and the tag was considered. In the simulations, the sampled version of the multipath 

distorted  radar  waveform  was  used  by  the  tag  to  generate  the  communication 

waveforms, but the symbols did not encounter a multipath channel from the tag to the 

receiver.  If  the  receiver  is  co-located  with  the  transmitter,  by  reciprocity,  the 

communication signal should encounter the same multipath channel from the tag back 

to the receiver. In this section, we will test the symbol error rate performance when 

the  communication  waveforms  are  distorted  by  multipath  between  the  tag  and 

receiver.

In section 3.1, it was shown that the Dominant-Projection waveform design 

approach was robust to multipath distortion, generating correlated symbol waveforms 

even  under  severe  multipath  conditions.  For  the  simulations  in  this  chapter,  the 

sampled  radar  waveform  vector s is  again  distorted  by  the  sampled  impulse 

response of the multipath profile vector h such as

s=s∗h (4.4)

where ∗  is the convolution operation. The vector s is then truncated and used by 

the   tag  to  generate  the K=4 the  communication  waveforms ck using  the 

Dominant-Projection approach. The receiver again uses the undistorted sampled radar 

waveform s to  generate  the decorrelating filters wk used to  detect  the symbols 
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sent by the tag. The symbol waveforms are distorted by the same multipath profile h  

such that the signal sampled at the receiver r is given by

r=c k∗hS xv (4.5)

where  the  result  of  the  convolution c k∗h is  truncated  to  length  NM , x is  a 

length 2 NM−1 vector of the radar range profile of the clutter and v is NM

samples of additive noise.

Figure 4.5.1: SER performance with and without multipath distortion from 
-10 dB AWGN with the receiver searching over max samples.

Figure  4.5.1  shows  the  SER  results  with  the  receiver  searching  over

max=0,1, 3,5,10 samples with and without multipath distortion of an impulse with 

additive white Gaussian noise (AWGN) with an average power of -10 dB. This is the 

same multipath scenario tested in section 3.1.1 with SER results (without multipath 
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between the tag and receiver) shown in figure 3.1.3. While the distortion caused by 

this  multipath  profile  did  not  cause  different  communication  waveforms  to  be 

generated between the tag and receiver (as seen by the negligible difference in SER 

performance),  there  is  a  noticeable  degradation  in  performance  when  the 

communication waveform is distorted by this multipath profile.

Figure 4.5.2: SER performance with and without multipath distortion from 
from a second random impulse with the receiver searching over max

samples.

Figure 4.5.2 shows the SER results when the multipath is instead caused by a 

second, randomly delayed impulse with a random complex amplitude as was used in 

section 3.1.2. Again, we see an increase in symbol errors caused by the distortion of 

the  symbol  waveform from multipath.  From the  SER performance  of  Dominant-

Projection  observed  in  figure  3.1.4,  this  multipath  profile  did  not  cause  enough 
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difference in the symbol waveforms to cause an increase in errors when only applied 

to  the  radar  signal  between  the  transmitter  and  the  tag,  but  does  increase  the 

probability of error when the symbol waveforms are distorted from the tag to the 

receiver.

Figure 4.5.3: SER performance with and without multipath distortion from 
-15 dB AWGN with the receiver searching over max samples.

Figure  4.5.3  shows  the  SER  performance  curves  when  the  power  of  the 

AWGN is decreased to -15 dB from the -10 dB used in the simulation shown in figure 

4.5.1. Here, we see that the decrease in the power of the convolved noise decreased 

the degradation caused by the multipath distortion. Also, in figure 4.5.4 we see that by 

decreasing the average complex amplitude of the impulse for the second multipath 

component  to  -7  dB from 0  dB used  in  figure  4.5.2,  significantly  decreases  the 
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degradation caused by the distortion. From these plots, we see that the receiver is 

robust to  moderate levels  of multipath distortion of the communication waveform 

from the tag, but higher levels of distortion will cause an increase in the occurrence of 

symbol errors. More work will need to be done to improve SER performance in the 

presence of more significant multipath channel between the tag and receiver. If the 

tag  can  determine  the  channel  response  from  the  incident  radar  waveform,  the 

communication waveforms could be pre-distorted such that a gain could be realized 

from the multipath channel. The other possibility is the receiver using deconvolution 

to remove the distortion as in adaptive pulse compression (APC) as in [17].

Figure 4.5.4: SER performance with and without multipath distortion from 
from a second random impulse with the receiver searching over max

samples.
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 4.6 INTERCEPT RECEIVER SYNCHRONIZATION

Lack of synchronization with the tag can also cause problems for an intercept 

receiver  trying  to  detect  any  communication  waveforms  sent.  Previously,  a  low 

probability of intercept (LPI) metric was developed to compare how well each of the 

original three symbol waveform generation methods remained hidden in the clutter 

and thus, had less probability of being detected by an unintended receiver. The LPI 

metric  was  generated  by projecting away a  percentage of  the  eigenvectors  of  the 

correlation matrix SS H and calculating the normalized correlation of the result with 

the  actual  communication  waveform  sent.  This  LPI  metric  assumed  both 

synchronization  with  the  tag  and that  the  intercept  receiver  knew the  oversample 

factor M used to generate the symbol waveforms. In this section, the effect on the 

LPI metric of sample offsets and a larger over sample factor for the intercept receiver 

are simulated.

In simulating the delay offset's effect on the LPI metric, the symbol waveform 

is  shifted by the number of delay samples and added to random interference and 

noise.  The  eigenvectors  of SS H are  projected  away  one  by  one  with  the  result 

correlated with the known symbol waveforms as a measure of the intercept receiver's 

ability to recover the transmitted symbol waveforms. Here, only the correlation plot 

of the symbol waveform sent (symbol 1) is shown to compare its LPI metric at the 

different sampling offsets.
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Figure 4.6.1: LPI Metric at different sample offsets.

In figure 4.6.1, the LPI metric is shown with the intercept receiver having 

delay offsets ranging from -2 to +2 samples. Here, we see that the peak correlation 

level  decreases  with  a  larger  sampling  offset  going  from  about  0.30  when 

synchronized to about 0.25 with +/- 2 sample offset. Also, the peak correlation level 

for  0  offset  is  near  60% of the space projected out.  At  this  point  the normalized 

correlation values with an offset are noticeably reduced. With all of this, it appears 

that a lack of synchronization would make it more difficult for the intercept receiver 

to detect the communication waveforms sent by the tag.

Another  assumption  made with  the  previously  used LPI metric  is  that  the 

oversample factor used by the tag to generate the symbol waveforms is known by the 

the intercept receiver. If this bandwidth is not known, the intercept receiver could 

75



instead  further  oversample  received  waveforms  while  searching  for  the 

communication waveforms.  With the increased bandwidth,  the symbol  waveforms 

must be interpolated to the oversample factor used by the simulated intercept receiver 

and added to random signal and noise. The intercept receiver uses the oversampled 

radar waveform to generate and project out the eigenvectors of the correlation matrix 

SS H . The LPI metric is then calculated as before with the correlation of the actual 

waveform sent (symbol 1) compared with the other three waveforms.

Figure 4.6.2: LPI metric with a higher sampling rate.

Figure  4.6.2 shows the  LPI metric  with the tag oversampling  the incident 

radar waveform factor of M=2 to generate the communication waveforms and the 

intercept  receiver  using  an  oversample  factor  of M=4 to  the  search  for  the 

waveforms. Here, we observe that the peak correlation level of the actual waveform 
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present is about 0.35 and for the other waveforms it is about 0.08. The increase in 

peak correlation from around 0.30 seen in figure 4.6.1 may make it slightly easier for 

the intercept receiver to detect the communication waveforms, but there is a higher 

computational cost of using a larger bandwidth. The increase in sampling rate also 

moves the normalized correlation “hump” seen in figure 4.6.1 from about 50% to 

100% of  the  space  projected  away to  about  25% to  75%. Based on this  and the 

changes in the correlation plots from sample offsets in figure 4.6.1, it may be difficult 

for the intercept receiver to determine the amount of space to project away to best 

detect the communication waveforms.
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CHAPTER 5

IMPROVING WAVEFORM DESIGN

While  chapters  2  and  3  dealt  with  issues  of  generating  and  receiving  the 

communication  waveforms,  this  chapter  will  focus  on  improving  the  symbol 

waveform design to reduce the probability of symbol error. By increasing the length 

used  for  the  incident  radar  waveform  (and  thus,  increasing  the  communication 

waveform length), each symbol should be more separable by the receiver while still 

remaining hidden in the ambient scattering. Also, by generating symbol waveforms 

that have less cross-correlation, they should be more separable by the receiver. If the 

symbols  have different  amounts  of  correlation with the interference,  mixing them 

with the Hadamard Transform should equalize the correlation, leading to less errors. 

Lastly, adjusting the amount of correlation of the symbol waveforms with the clutter 

should  influence  SER  performance;  decreasing  the  correlation  will  increase 

performance. These four methods are further explored below.

 5.1 TEMPORAL EXPANSION

For each communication waveform generation method, the spectral bleeding 

of the radar signal is utilized to hide the symbols for covert  communication.  The 

bandwidth of the radar waveform is expanded as an added design dimension for the 

communication waveforms such that they can remain hidden. As was seen in chapter 

3, the multiple, delayed copies of the radar waveform caused by forward scattering 
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and clutter  can  also make it  difficult  to  determine  the length of  the  radar  signal, 

making  the  waveform  appear  longer  (see  figure  3.2.1).  The  communication 

waveforms  could  then  also  be  longer,  while  still  being  hidden  by  the  ambient 

scattering. Temporal expansion may then be used along with the expanded bandwidth 

as  an  additional  dimension  for  communication  waveform  design.  The  resulting 

communication waveforms achieve an improvement in SER performance.

 5.1.1 SER PERFORMANCE WITH TEMPORAL EXPANSION

In section 3.2, simulations were run with the tag determining a different length 

for  the  radar  waveform used in  the  generation of  the  communication waveforms. 

From  the  SER  results  in  figure  3.2.4,  when  the  tag  used  a  shorter  length,  the 

probability of symbol error increased, but when a longer length was used, there was 

not a significant difference in probability. It would seem that the increased SER with 

the tag using a shorter waveform length would be unchanged if the receiver also used 

the shorter length and if the receiver and tag both use the longer waveform length the 

SER would improve. Monte Carlo simulations were then run again as in section 3.2, 

but in this case both the tag and receiver use the same value N for the sampled 

incident radar waveform.

The SER performance from the simulations with the tag and receiver both 

using radar  waveform lengths  of N=100,110,130,150 used with the Dominant-

Projection approach to generate the communication waveforms is shown in figure 

5.1.1.  From the  SER  curves,  we  observe  that  the  probability  of  symbol  error  is 

significantly decreased with each increase in the length of the radar waveform. The 
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length could then be increased based on the ambient scattering to improve the SER 

while remaining LPI.

Figure 5.1.1: SER Performance Increases with Increasing Radar 
Waveform Length

 5.1.2 ADDED DIMENSIONALITY OF TEMPORAL EXPANSION

Increasing  the  length  of  the  sampled  radar  waveform  used  in  the 

communication  waveform  generation  process  adds  extra  dimensionality  for  the 

waveforms  to  occupy.  Figure  5.1.2  illustrates  the  bandwidth  and  time  length 

expansion  of  the  radar  waveform that  is  used  for  embedding  the  communication 

signals.  Here, B and T are  the  notional  bandwidth  and  time  length  of  the 

transmitted radar waveform, respectively, while B  is the expanded bandwidth and 

T  is the expanded time length used for the communication waveforms. When the 
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correct length of the radar waveform is used, the blue section on the left side can be 

used for the communication waveforms, with the red section being occupied by the 

radar. By using a longer waveform, the blue section on the right can also be used as 

more space for communication, but the green section is occupied by the extended 

clutter  of  the radar  and is  unavailable.  It  appears  that  there  would  be a  trade-off 

between  the  extra  bandwidth  used  versus  the  length  of  waveform  used  while 

maintaining  the  same  SER,  but  at  least  some amount  of  bandwidth  expansion  is 

necessary.

Figure 5.1.2: Illustration of the expansion of time width 
and bandwidth of the ambient radar scattering.

 5.1.3 TEMPORAL AND BANDWIDTH EXPANSION TRADE-OFF

As  discussed  in  the  last  section,  it  appears  that  a  trade-off  can  be  made 

between expanding the bandwidth and extending time length of the radar waveform 

used in the generation of the communication waveforms while maintaining similar 

SER performance. To determine the trade-off, 10,000 Monte Carlo simulations are 

run for each of  M=1.6,1.8,2.0,2.2,2.4  and  N=100,120,140,160,180,200 . The 

contour  plots  of  iso-SER performance  curves  for  the  percentage  increase  in  time 
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length  ( T /T )  versus  the  percentage  increase  in  bandwidth  ( B/B ),  where 

T /T= N−N /N  and B/B=M−1 are shown in figure 5.1.3. 

Figure 5.1.3: Iso-SER contours for time width versus bandwidth 
expansion with -35 dB SIR and -15 dB SNR.

From the illustration in figure 5.1.2, with the blue area designating the space 

available for the communication waveforms to occupy, the expected rule-of-thumb 

relationship

B⋅TT =constant (5.1)

would  represent  the  trade-off  between  temporal  and  bandwidth  expansion.  This 

relationship is confirmed by the iso-SER contours shown in figure 5.1.3. Therefore, 

given a specified value of B1/B that  yields a desired symbol error rate with 

T 1/T=0 ,  the  bandwidth  can  be  decreased  to B2/B as  long as  the  time 
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length is increased to

T 2=T [ B1
B2

−1] (5.2)

to maintain similar SER performance. Since the embedded communication signal is 

masked by the bleeding spectrum of the radar waveform and ambient scattering, it is 

expected that reducing B/B with the required increase in T /T will be more 

LPI  (given  that  the  increased  time length  does  not  extend past  the  length  of  the 

ambient scattering).

 5.2 SYMBOL WAVEFORMS WITH LESS CROSS-CORRELATION

The  Dominant-Projection  waveform  generation  approach  produces 

communication waveforms that have about -40 dB pairwise cross-correlation at the 

match point. Generating communication waveforms that have lower cross-correlation 

should  make  the  symbol  waveforms  more  separable  and  possibly  improve  SER 

performance.  The  two  methods  explored  are  1)  giving  a  larger  weight  to  the 

previously generated waveforms in the projection matrix and 2) adding the Gram-

Schmitt approach.

 5.2.1 WEIGHTED DOMINANT PROJECTION

With the Dominant-Projection approach,  each  communication  waveform is 

generated  by  projecting  away  the  eigenvectors  of  the  dominant  space  and  any 

previously generated waveform from a random seed vector, known to both the tag 

and receiver. By giving a larger weight to the previously generated waveforms by 
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changing equation (2.6) to

Sk=[S a⋅c1  a⋅ck−1] (5.3)

where a is the weight value, they will be more prominent in the projection matrix in 

equation (2.8) and the new waveform will have more of the components in common 

with the other waveforms projected away. The resulting waveforms will then be less 

correlated with each other. 

Figure 5.2.1: Cross-correlation of codes with Weighted-Dominant-
Projection.

Figure  5.2.1  shows  the  cross-correlation  plots  for  each  of  the  symbols 

generated  with  the  Weighted-Dominant-Projection  approach  with  the  first  symbol 

waveform. Here we see that the cross-correlation between symbols 2-4 and symbol 1 

now drops to below -60 dB at the match point. This is down from the -40 dB seen 
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with the original Dominant-Projection approach shown in figure 4.3.1. The symbol 

waveforms are then less correlated with the weighted symbol waveforms.

The SER performance when using the symbol waveforms generated with the 

Weighted-Dominant-Projection  approach  is  compared  with  the  performance  when 

using the waveforms generated with the original Dominant-Projection approach in 

figure 5.2.2. From the SER curves, we see that the symbol waveforms with less cross-

correlation generated with the Weighted-Dominant-Projection approach do not reduce 

the probability of symbol error, as the SER performance with the waveforms from 

both  approaches  is  virtually  identical.  The  reasons  for  this  are  explored  more  in 

section 5.2.3.

Figure 5.2.2: SER performance of Dominant-Projection and Weighted 
Dominant-Projection.
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 5.2.2 DOMINANT-PROJECTION WITH GRAM-SCHMITT

The second method considered for generating communication waveforms that 

have less cross-correlation is combining the Dominant-Projection approach with the 

Gram-Schmitt procedure of producing orthonormal vectors. With the Gram-Schmitt 

procedure [18], a random vector x1 is selected from the set and normalized as

u1=
x1

∥x1∥
(5.4)

to generate the first orthonormal vector. A second vector x2 is then selected from 

the given set, the projection of x2 onto u1 is subtracted out as

u 2=x2−u1
H x2u1 (5.6)

and the result is normalized as

u2=
x2

∥x2∥
(5.6)

to generate the second orthonormal vector. A third vector x3 is then selected from 

the given set, the projection of x3 onto u1 and the projection of x3 onto u2 are 

subtracted out as

u3=x3−u1
H x3u1−u2

H x3u2 (5.7)

and the result again normalized to form the third orthonormal vector u3 . This can be 

repeated to generate orthonormal vectors based on the size of the space that contains 

the set of vectors x i .
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Since the eigenvectors  V=[v0 v1  vNM−1]  of the correlation matrix  SSH  

used in the Dominant-Projection approach are already orthonormal, the Gram-Schmitt 

procedure can then be used to generate each communication waveform as

ck=bk− ∑
i=0

MN−L

bk
H v ibk−∑

j=0

k−1

bk
H c jbk (5.8)

where bk is the random seed vector known to both the tag and receiver, N is the 

length of the radar waveform, M is the oversample factor, L is the size of the 

non-dominant  space  and ⋅
H is  the  Hermitian  operator.  Here,  the  dominant 

eigenvectors and the previously generated symbol waveforms are directly projected 

out of the seed vector.

Figure 5.2.3: Cross-correlation of symbol waveforms with Dominant-
Projection with Gram-Schmitt.
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Figure  3.2.3  shows  the  cross-correlation  plots  for  the  symbol  waveforms 

generated with the combined Dominant-Projection-Gram-Schmitt procedure. In the 

plots  we see  that  the  pairwise  cross-correlation  is  significantly  reduced,  dropping 

down to about -160 dB for symbols 2, 3 and 4 with symbol 1. 

The  SER  performance  for  these  new  waveforms  are  compared  with  the 

original  waveforms  in  figure  5.2.4.  Here,  we  again  see  that  the  communication 

waveforms with less cross-correlation do not appear to reduce the number of symbol 

errors. Although it does not improve SER, this procedure does have the computational 

benefit of only needing to perform one eigen-decomposition instead of one for each 

symbol required by the Dominant-Projection approach. 

Figure 5.2.4: SER performance of Dominant-Projection and Dominant-
Projection with Gram-Schmitt.
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 5.2.3 FAILURE TO IMPROVE SER

In the last two sections, we saw that generating communication waveforms 

that have less cross-correlation does not  improve SER performance.  Although the 

symbol waveforms are less similar, that does not make them more distinguishable at 

the  receiver.  To  observe  why  this  is  the  case,  we  again  look  at  the  probability 

distribution functions (pdfs) for the output magnitude of the decorrelating filters in 

the receiver. The estimated pdfs of the filter for the first symbol (which was sent) and 

the maximum output magnitude of the other three symbols are again generated as in 

section  4.4.  The  pdfs  for  Weighted-Dominant-Projection  and  the  Dominant-

Projection-Gram-Schmitt  approaches  are  compared  with  the  original  Dominant- 

Projection approach in figure 5.2.5 below.

Figure 5.2.5: Estimated pdfs for the communication waveforms with less  
cross-correlation.
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 From the  plots,  we  see  that  both  of  the  new  approaches  have  basically 

identical probability distributions of the filter outputs. The waveforms with less cross-

correlation do not reduce the output magnitude of the maximum of the other three 

filters or increase the output magnitude of the symbol sent. From these results and the 

results  from section 4.4,  it  appears that  the main contributer  to the occurrence of 

symbol  errors  is  the  correlation  of  each  of  the  symbol  waveforms  with  the 

interference from clutter. Of course, the communication waveforms are designed to 

be similar to the clutter in order to remain LPI, so the correlation is intended in the 

waveform design.

 5.3 EQUALIZING INTERFERENCE LEVELS AMONG SYMBOLS

Because  the  correlation  of  the  communication  waveforms  with  the 

interference from ambient scattering is  a major contributer to symbol error,  if  the 

symbol  waveforms  each  have  different  levels  of  correlation  with  the  clutter, 

interference can cause the magnitude of the decorrelating filters for symbols with a 

higher  correlation  with  the  clutter  to  be  larger  on  average  than  those  with  less 

similarity to the clutter. This unbalance would throw off the probability distributions 

causing more overlap resulting in more symbol errors.

The correlation of the symbol waveforms with the clutter interference can be 

equalized  by  using  the  Hadamard  Transform  [19]  or  some  other  unitary 

transformation. This is accomplished by taking a matrix multiplication of the symbol 

waveforms with a K×K Hadamard matrix which consists of pairwise orthogonal 

rows  with  values  {−1,1} .  The  Hadamard  Transform mixes  the  communication 
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waveforms in order to equalize the correlation of each waveform with the ambient 

scattering,  while  still  maintaining  the  pairwise  orthogonality  of  the  symbols.  An 

example of a 4×4 Hadamard matrix is

H 4=
1
4 {

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

} . (5.9)

To simulate the effect of equalizing the correlation of the symbol waveforms 

with the clutter interference by mixing them with the Hadamard Transform, we will 

use a P3 waveform of length N=100 oversampled by a factor of M=2 . The size 

of  the  non-dominant  space  is L=64 with K=64 communication  waveforms 

generated such that the entire non-dominant space is used.

The  SER  performance  for  this  simulation  comparing  Dominant-Projection 

approach with and without the Hadamard Transform is shown in figure 5.3.1. From 

the  plots,  we  observe  that  the  Hadamard  Transform  does  not  improve  the  SER 

performance  for  Dominant-Projection.  The  communication  waveforms  generated 

appear  to  already  have  an  equal  interference  with  the  radar  clutter  without  the 

Hadamard Transform.
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Figure 5.3.1: SER performance of Dominant Projection with the 
Hadamard Transform.

A situation was found in which the Hadamard Transform did improve the SER 

performance. If K=64 waveforms are generated with the size of the non-dominant 

space of L=63 , when the 64th waveform is generated, the entire space for the new 

communication waveform has already been used. The result is a random signal for the 

last waveform from residual error from the floating point computation. This random 

waveform has a higher correlation with the clutter due to the components in common 

with  the  dominant  eigenvectors  and  the  other  waveforms  are  no  longer  being 

projected  out.  After  the  Hadamard Transform is  applied,  the  SER performance is 

significantly  improved  as  seen  in  figure  5.3.2.  This  suggests  the  possibility  of 

generating more symbol waveforms (i.e. KL ) by mixing the waveforms generated 
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with the Dominant-Projection approach with either random or zero vectors. It does 

show that if a newly developed communication waveform generation approach yields 

waveforms  that  have  unequal  correlation  with  the  clutter,  the  Hadamard 

Transformation could be used to equalize the interference.

Figure 5.3.2: SER performance of Dominant Projection with the 
Hadamard Transform equalizing a random symbol.

 5.4 ADJUSTING SYMBOL CORRELATION WITH CLUTTER

The amount  of  correlation  between the  symbol  waveforms and the  clutter 

interference can  be adjusted  by changing the value used for  the  size of  the  non-

dominant  space L with the  Dominant-Projection  approach.  When L is  smaller, 

more  of  the  dominant  eigenvectors  will  be  projected  away,  making  the 

communication waveforms less like the ambient scattering. With a larger L , less of 

93



the dominant eigenvectors will be projected out, resulting in the waveforms being 

more similar to the scattering.

The SER performance for L=50,75,100,125,150 is shown above in figure 

5.4.1.  In  the  plot,  we  see  that  as  expected,  larger  values  of L have  a  higher 

probability of symbol error and vice versa. The less similar the symbol waveforms are 

to the clutter interference, the better the receiver can separate them and the less likely 

an error will occur. 

Figure 5.4.1: SER performance when adjusting size of nondominant 
space.

In  figure  5.4.2,  we  see  how  the  different  values  of L change  the 

distributions of the decorrelating filter outputs. With a decrease in L , the distribution 

of the symbol that is present in the received waveform is narrower and taller with a 
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mean near 1. Also, the maximum of the other three filters has a mean that is reduced 

with each decrease in L . Less correlation of the symbol waveforms with the ambient 

scattering  lessens  the  effect  of  the  interference  on  the  distributions  of  the 

decorrelating  filter  output  magnitude.  The  resulting  pdfs  will  have  less  overlap 

leading to the improvement in SER performance seen in figure 5.4.2.

Figure 5.4.2: Changes in estimated pdf from adjusting size of the non-
dominant space.

Figure 5.4.3 shows the consequence of reducing the size used for the non-

dominant space on the ability of the communication to be covert. When the symbol 

waveforms are less like the clutter, they will have a greater probability of intercept. 

From the plot, it is observed that when L is decreased, the LPI metric increases. 

The  SER  performance  can  then  be  improved  by  increasing  the  amount  of  the 
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dominant space that is  projected out using Dominant-Projection,  but improvement 

comes at the cost of LPI.

Figure 5.4.3: LPI metric when adjusting the size of the dominant space.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This thesis explored some of the real-world aspects of implementing intra-

pulse  radar-embedded  communication.  Both  the  Eigenvectors-as-Waveforms  and 

Weighted-Combining communication waveform generation approaches are sensitive 

to mismatches in the sampled radar waveform, since each method uses the individual, 

indexed eigenvectors of the correlation of ambient scattering model generated from 

the  sampled  waveform.  Multipath  distortion,  sample  rate  differences  and  length 

variations  used  for  the  radar  waveform  all  cause  smearing  of  the  eigenvectors, 

generating mismatched symbol waveforms and resulting in an unusable symbol error 

rate. The Dominant-Projection approach, on the other hand, uses the eigenvectors of 

the dominant space as a whole to generate the communication waveforms. Since the 

smearing  of  the  eigenvectors  is  mostly  contained  within  the  dominant  and  non-

dominant spaces under most of the mismatch scenarios, the approach continues to 

produce symbol waveforms that are matched, making it robust to the radar waveform 

mismatches. The probability of symbol error does increase, however, with a lower 

sampling rate or a shorter length for the radar waveform.

Synchronization is important for intra-pulse radar embedded communication 

to be effective, as the number of samples over which the receiver must look for the 

communication waveform from the tag increases the probability of a symbol error. 

Differing  levels  of  synchronization  could  be  achieved  with  the  receiver  having 
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previous  knowledge  of  the  tags  location  (and  thus,  time  delay)  or  searching  and 

tracking a moving tag. SER performance would then be dependent on the receiver's 

ability to track the time delay of the waveform sent by the tag.

Attempts to improve SER performance without perfect synchronization were 

made by averaging over three samples and generating waveforms with lower local 

cross  correlation,  but  neither  was  able  to  reduce  the  number  of  symbol  errors  in 

simulations.  Also,  communication  waveforms  with  less  cross-correlation  were 

generated in a failed attempt to make the symbols more separable and decrease the 

chance of error. The less cross-correlated waveforms and the waveforms with less 

local cross correlation do not improve SER performance due to the correlation of 

each  symbol  with  the  clutter  interference  dominating  over  the  pairwise  cross-

correlation between each symbol waveform.

Adjustments can be made to the Dominant-Projection approach based on the 

environment. Because each symbol is correlated with the ambient scattering in order 

for it to be hidden and have a low probability of intercept (LPI), by projecting away 

more  of  the  dominant  eigenvectors  the  communication  waveforms  will  be  less 

correlated with the clutter interference. This will decrease the probability of symbol 

error, but increase the probability of intercept. The time length of the radar waveform 

can be increased in addition to the bandwidth expansion for added dimensionality in 

the  generation  of  the  communication  waveforms.  The  longer  resulting  symbol 

waveforms are easier for the intended receiver to separate from the interference and 

noise, but still remain hidden due to the extended length of the clutter interference. 
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The bandwidth used for the communication waveforms could also be decreased when 

increasing the waveform length to retain the same SER performance. This trade-off 

would result in more LPI communication with less bandwidth used outside the radar 

as  long  as  the  longer  waveform does  not  extend  past  the  length  of  the  ambient 

scattering.

FUTURE WORK

1. Only the output magnitude of the decorrelating filter is used in the receiver. 

The phase of the output may be used as an extra dimension to encode data (as 

in M-PSK) or as a way to differentiate the signal from the noise.

2. Simulations to this point have assumed that there is always a communication 

signal  present.  Further  work  is  needed  for  detecting  whether  a  symbol  is 

present  in  the  backscatter  (inclusion  of  the  null  set).  The  probability 

distribution functions from chapter  4 could be used as a  starting point for 

setting a detection level, but requires calibration based on the power level of 

the communication waveform at the receiver.

3. So far, only one symbol waveform has been sent by the tag at a time. With the 

waveforms being orthogonal, more than one waveform could be sent by the 

tag and detected at the receiver at one time, similar to CDMA or at different 

dleays.  Being able  to  send multiple  waveform could be  used  as  a  way to 

encode more bits for a higher data rate or to aid in detection (some number of 

waveforms must be detected to determine a symbol was present).
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4. The convolutional coding method for intra-pulse communication should be 

compared with the Dominant-Projection approach in terms of symbol error 

rate performance and the probability of intercept.

5. More work is needed to improve performance of the receiver when the symbol 

waveforms encounter multipath distortion from the tag.

6. The tag using convolution coding may be combined with intra-pulse phase 

changed  to  provide  masking  interference  as  well  as  registration  for  the 

receiver.

7. Develop  a  communication  waveform  generation  approach  that  is  less 

computationally  intensive  than  the  Dominant-Projection  approach  (i.e.  a 

method that does not require an eigen-decomposition).
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