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ABSTRACT 

Two novel approaches are developed for direction-of-arrival (DOA) 

estimation and functional brain imaging estimation, which are denoted as ReIterative 

Super-Resolution (RISR) and Source AFFine Image REconstruction (SAFFIRE), 

respectively. Both recursive approaches are based on a minimum mean-square error 

(MMSE) framework. 

The RISR estimator recursively determines an optimal filter bank by updating 

an estimate of the spatial power distribution at each successive stage. Unlike previous 

non-parametric covariance-based approaches, which require numerous time 

snapshots of data, RISR is a parametric approach thus enabling operation on as few 

as one time snapshot, thereby yielding very high temporal resolution and robustness 

to the deleterious effects of temporal correlation. RISR has been found to resolve 

distinct spatial sources several times better than that afforded by the nominal array 

resolution even under conditions of temporally correlated sources and spatially 

colored noise. 

The SAFFIRE algorithm localizes the underlying neural activity in the brain 

based on the response of a patient under sensory stimuli, such as an auditory tone. 

The estimator processes electroencephalography (EEG) or magnetoencephalography 

(MEG) data simulated for sensors outside the patient's head in a recursive manner 

converging closer to the true solution at each consecutive stage. The algorithm 

requires a minimal number of time samples to localize active neural sources, thereby 

enabling the observation of the neural activity as it progresses over time. SAFFIRE 

has been applied to simulated MEG data and has shown to achieve unprecedented 

spatial and temporal resolution. The estimation approach has also demonstrated the 

capability to precisely isolate the primary and secondary auditory cortex responses, a 

challenging problem in the brain MEG imaging community. 
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

Numerous filter techniques have been developed over the past few decades to 

solve a branch of problems consisting of a sensor array receiving signals from single 

or multiple sources transmitted through some medium. The goal of these techniques 

is to localize the signal source in either two or three dimensions by applying an 

adaptive filter to the signal received at the sensor array. The direction of arrival 

estimation problem addressed in this thesis falls directly under this category. 

Although the neural signal reconstruction problem addressed in the rest of this thesis 

comes from a very different area of signal processing application, it belongs to the 

aforementioned branch of problems because of the signal modeling of the system. 

The proposed solutions to the direction of arrival estimation and to the neural signal 

reconstruction were formulated based on the same mathematical framework, which 

was inspired from a radar adaptive pulse compression processing technique. Due to 

the degradation of most existing DOA estimation methods under correlated signals, 

the robustness to source correlation contributes to one of the most important 

advantages of the proposed approach. These two algorithms also achieve high spatial 

resolution compared to other approaches for the respective problems. Other 

applications of this general estimator framework include radar signal processing [1], 

telecommunications [2], etc. 

The introduction and motivation for each of the two algorithms is discussed 

in the next two subsections. 

1.2 DIRECTION OF ARRIVAL ESTIMATION 

Direction of arrival (DOA) estimation has been an area of active research in 

the past decades with strong focuses on the applications in communications, radar 

and medical imaging [3]. The physical scenario for the estimation problem consists 
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of narrowband radio frequency (RF) signals, which are transmitted by sources in the 

far field, impringing in the form of planewaves upon some sensors in a particular 

spatial arrangement. A common type of sensor configuration is the uniform linear 

array (ULA) antenna [4, 5], which is composed of equally spaced sensor elements. 

With the planewave assumption, the received signal at a sensor can be 

mathematically expressed as the summation of signal energy from all directions in 

space with phase delays across sensor elements. 

Matched filtering, i.e. the conventional beamformer [4], and Multiple SIgnal 

Classification (MUSIC) [6, 7] are among the more commonly used signal processing 

approaches for this problem. However, the low resolution of matched filtering and 

the signal correlation intolerance of MUSIC are drawbacks that lead to further 

research on DOA estimation techniques. Some filtering methods such as spatially-

smoothed MUSIC (SS-MUSIC) [8] and the Least-Squares-based FOCal 

Underdetermined System Solver (FOCUSS) [9,10] are developed to fix the 

drawbacks of the previous approaches yet with the cost of lower spectral resolution, 

increased amount of prior knowledge, filter regularization, etc. These methods will 

be introduced in more details in the Chapter 2. Inspired by the work done for a radar 

adaptive pulse compression (APC) algorithm [1], the approach proposed in this 

study, denoted as Re-Iterative Super-Resolution (RISR), is a parametric estimator 

that iteratively estimates the spectral power by adaptively updating the filter bank at 

each stage without the need of prior knowledge. RISR tolerates correlated signals as 

well as colored noise, while also achieves angular super-resolution. This approach 

will be thoroughly discussed throughout Chapter 3.     

1.3 NEURAL SOURCE LOCALIZATION 

Electroencephalography (EEG) and magnetoencephalography (MEG) are 

imaging techniques used in clinical and research settings to measure the electrical 

and magnetic fields generated directly by the electrical activity of the brain. The main 

clinical application of MEG is functional brain imaging in which it allows 
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non-invasive detection of neural activities, ensuring the safety of the patient. Brain 

imaging involves estimating the locations of brain activity based on the recordings of 

sensor elements surrounding the head. In essence, this localization problem is the 

extension of the direction of arrival estimation in which the location of a region of 

brain activity is estimated. Signal processing techniques are developed to determine 

the precise spatial location of underlying active neural sources [4]. It is done by 

processing measurements obtained by an array of MEG/EEG sensors outside the 

head, for which the electric and magnetic characteristics are modeled mathematically. 

This estimation problem has been a topic of intense research in the past two 

decades and some examples of these signal processing techniques include the linearly 

constrained minimum variance beamformer (LCMV) [11,12] and the Focal 

Underdetermined System Solution (FOCUSS) [9,10]. Since LCMV assumes no 

temporal or spatial correlation between the neural source signals at different locations 

in the brain, it is prone to result in erroneous signal cancellation when such 

correlation is present [8, 13, 14]. The need for availability of relatively long stretches 

of data (to obtain good approximation of the data covariance matrix) in the case of 

LCMV and the required prior knowledge of interferer for multiple constrained 

minimum-variance beamformers with coherent source region suppression 

(MCMV-CSRS) [15], which is a modified version of LCMV, are the main 

drawbacks that limit the use of this class of algorithm. The initial estimates of 

FOCUSS algorithm tend to be biased towards locations close to the surface of the 

brain, which is a result of ill-conditioning of the transformation matrix in the forward 

model caused by the attenuations along the transmitted path of MEG signals. As a 

result, FOCUSS tends to return incorrect estimated locations of neural activity when 

the underlying neural source is deeper within the brain. The mathematic formulations 

and the characteristics of some existing approaches are included in the next chapter. 

The approach presented in this paper, denoted as the Source AFFine Image 

Reconstruction (SAFFIRE) algorithm, resolves the drawbacks of most existing 

algorithms and possesses a number of advantages. It operates within an affine-
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transformed solution space to eliminate the depth bias in the solution due to neural 

signal attenuation with the source-to-sensor distance. A matched filter bank 

initialization is used to provide a low-resolution estimate in order to ensure the 

inclusion of the true solution. The ability to operate on as few as one time-sample 

allows very high temporal resolution compared to the previous approaches as well as 

temporal correlation robustness. It has been shown through simulations that 

SAFFIRE is also highly tolerant of spatial correlation of neural sources, a case in 

which LCMV fails. In simulations, this algorithm has successfully separated the 

simulated activity with the primary and secondary auditory cortex, which is a 

challenging problem in the MEG/EEG imaging community. The promising results of 

this algorithm obtained thus far should motivate further studies of its application in 

other branches of biomedical imaging problems. 

1.4 THESIS OUTLINE 

A presentation of several existing signal processing approaches and the 

classification of the estimation methods are included in Section 2.1 of Chapter 2. It is 

followed by some background material, such as definitions and the physical 

configuration of models, of the two problems addressed in this thesis. These sections 

are necessary since the proposed algorithms are application-specific and require more 

than just the understanding of the mathematical theories of the filters. The advantages 

and drawbacks of some existing algorithms are also discussed at the end of each 

section to compare the performance of RISR and SAFFIRE with other algorithms in 

their corresponding application area.  

Although the direction of arrival estimation problem addressed by RISR is 

more general than the dipole localization by SAFFIRE, each of them is very complex 

in its own way, which leads to different implementations of the respective algorithm. 

Therefore, our two algorithms are introduced and discussed separately in individual 

chapters. Chapter 3 covers the basis and derivation of the RISR algorithm for 

direction of arrival estimation and its modification to enable spectral super-resolution 
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and multiple-data-snapshots processing. The SAFFIRE algorithm is thoroughly 

described in Chapter 4 with the justification of some steps in the algorithm and how 

they dramatically change the performance of the estimator due to the ill-conditioning 

of the forward model transformation matrix. Multiple-time processing of SAFFIRE is 

introduced to allow higher signal-to-noise ratio in the estimation. The next section 

investigates the extension of the basic SAFFIRE algorithm into a multiple-stage 

processing scheme which produces volumetric constraints at each stage to confine the 

region of neural activity for the processing at the next stage. 

The simulation results of both algorithms are presented in Chapter 5 along 

with the discussions and findings from each simulation case. Chapter 6 summarizes 

the work demonstrated in this thesis and gives insights on possible future research 

work pertaining to these estimation methods. 
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CHAPTER 2: BACKGROUND 

2.1 Direction of Arrival Estimation 

Determining the direction of which signal sources are transmitted can be 

achieved by sampling the spatio-temporal signal using a sensor array. The discretized 

signal is processed using some signal processing technique through which the 

information about the number of signals and/or their directions is extracted. Before 

introducing the signal processing approaches, it is essential to model the physical 

setup mathematically so that the quantity or arguments in the DOA approaches 

possess some physical representation. 

2.1.1 PHYSICAL SCENARIO AND SIGNAL REPRESENTATION 

The most typical category of signals is the narrowband signal, where the 

message signal of the source occupies a bandwidth considerably smaller or 

“narrower” than its carrier frequency. In our work, it is also assumed that the 

narrowband signal is transmitted in the far field to allow the plane wave 

approximation of the received signal at the sensors so that the curvature of the 

propagated wave can be ignored in our model. As a result of the narrowband 

assumption under the far field condition, there are two contributions to the difference 

of the received signal across sensors, which are the angular direction of the signals 

and phase change due to the carrier frequency.  

The configuration of a 2-dimensional uniform linear array (ULA), as 

illustrated for the case with only a single source in Fig. 2-1, consists of N equally 

spaced sensors or antenna elements. Analogous to the Nyquist Sampling Theorem, 

the antenna elements are required to be separated by a distance d less than half the 

wavelength of the carrier signal to avoid ambiguity caused by spatial aliasing. An 

antenna element spacing of half the carrier wavelength will be used throughout our 

work presented in this thesis unless stated otherwise. 
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Figure 2-1. Physical setup of M = 1 source signal impringing on an ULA of N sensors 

The signal received at the nth sensor at time to can be represented by a 

summation of signal energy from all directions impringing on the sensor:  

∫−

−= 2

2

)sin()/)(1(2),()(
π

π
φλπ φφ detxty dnj

oon    (2.1) 

where x(φ,to) is the amplitude of signal from angle φ at time to, d is the distance 

between two consecutive sensors and λ is the wavelength of the transmitted signal 

carrier frequency. The complex exponential contains the phase information of the nth 

sensor as a function of the wavelength of carrier sinusoid signal λ and the arrival 

direction of the signal.   

Assuming the sources are sparse, which means there are only a limited 

number of non-zero localized energy signals, the number of underlying signals is 

much less than N, and the noise is additive, the received signal at the nth sensor at 

time index k in the presence of additive noise can be approximated in discrete form 

as:  
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where M is the number of distinct source signals arriving at the nth sensor, ( )kix  is the 

amplitude of the ith source signal at time index k, φi and θi are the direction of arrival 

and the electrical angle corresponding to the ith source, respectively, and v(k) is the 

additive noise. The (n–1) quantity in the complex exponential corresponds to the 

phase shift across different sensors. Since the distance between sensors d and the 

carrier frequency wavelength λ are fixed in the problem, these quantities are 

combined with the angular direction of the signal φi to form a new quantity called the 

electrical angle through the following equation:  

( )ii
d φ
λ

πθ sin2=           (2.3) 

The range of physical angle of source directions φi from –π/2 to π/2 translates 

non-linearly into an electrical angle range from –π to π. The conversion to electrical 

angle simplifies the problem formulation so that some quantities can be 

pre-computed once the fixed parameters such as sensors spacing are known.  

For simplicity, single snapshots are considered and the notation for time 

index k will be dropped for most of the remaining sections. A snapshot is referred as 

a simultaneous sampling of received signals across all array sensors. Notice also that 

we make no assumptions about the nature of the additive noise in the signal model.  

To consider the received signals generated by M signal sources across N 

sensors, the expression in Equation (2.2) can be written more compactly in matrix 

form as 

vSxy +=       (2.4) 

where y is a N×1 vector of the received signal samples, x is a M×1 vector of source 

signal strength at a particular time, v is the N×1 additive noise vector and S is a N×M 

matrix consisting of M steering vectors of length N corresponding to M electrical 

angles given by 
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In the signal model equation (2.4), the vector y is the received signal 

represented as a linear combination of weighted steering vectors from a set of 

electrical angles uniformly sampled from –π to π, i.e.  

    ( ) ππθ −−= 12 i
Ni   i = 1,  … , N   (2.6) 

Applying Nyquist sampling theorem to spatial sampling, the nominal 

resolution of the electrical angle with N sensors is 2π/N radians. Super-resolution 

refers to the capability of distinguishing signal sources closer than 2π/N radians [16]. 

The construction of the original RISR algorithm uses sampling of 2π/N in electrical 

angle, x and S become a N×1 vector and a N×N matrix, respectively, while y remains 

the same size. The steering matrix S in this case has of the same form as a DFT 

matrix, which is full rank and invertible. An element in vector x is non-zero if the 

associated angle matches with any of the M directions of source signals. To expand 

RISR for super-separation of two signal sources, M would be a lot larger than N. 

2.1.2 SIGNAL CORRELATION AND SPECTRAL SUPER RESOLUTION 

Some DOA estimation algorithms, such as MUSIC, degrade significantly or 

fail when the source signals are correlated [8, 14]. There exist two kinds of source 

signal correlation: temporal and spatial. When two sources are close together so that 

their signals have very similar “signature” across the sensors, the sources are said to 

be spatially correlated. In mathematical terms, the magnitude of the inner product of 

the two equal-norm steering vectors corresponding to the two directions is very close 

to the norms of the individual steering vectors. In general, spatial correlation has 

indirect impacts on the spatial resolution of some estimation algorithms because the 
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ability of resolving two sources depend greatly on how different the two sources 

signals “look” at the sensors. Matched filter is one of the algorithms that suffer from 

low spatial resolution and it will be discussed in detail in the next chapter. 

Temporal correlation occurs when the knowledge of the message signal 

transmitted by one source provides some knowledge of another source message 

signal, regardless of the locations or directions of the two sources. A simple example 

of temporal correlation is when the two message signals from different directions 

have identical complex phases, in which case a peak will appear in the cross 

correlation between the two signals. In practice, this could occur in scenarios 

involving multipath propagation or smart jammers. 

Temporal correlation of two sources directly influences the performance of 

algorithms based on eigen-methods [8, 14], which can be explained intuitively by 

considering the sum of two individual received data vectors, each corresponding to 

one of the two different signal directions. If the vectors are temporally correlated 

completely, for example, the phase change of one signal is identical to that of the 

other, then the data covariance matrix, calculated by averaging the outer products 

over time, contains only one dominant eigen vector since the signals cannot be 

discerned through the average.  

2.2 NEURAL SOURCE LOCALIZATION 

2.2.1 NEURAL MECHANISM AND IMAGING TECHNIQUES 

Neurons are the basic units responsible for the processing and transmission of 

neural signals in the human brain. Neurons are made up of soma, which is the cell 

body containing a nucleus, axon, and dendrites, as shown in Figure 2-2. Typically, 

dendrites act as receivers of electrical synapses (or connections), which are electrical 

stimulation, transmitted by another neuron. The signal travels to the soma from 

which an output signal is then transmitted through the axon. During synaptic 

transmission, a spatial change of ion concentration in dendrites generates a current 
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flow in the neuron. According to Maxwell’s equations, electrical current induces 

electrical and magnetic fields with a pattern depending on the current distribution. 

Neuromagnetic fields are weak magnetic fields generated by tens of thousands of 

synchronously activated neurons within a small spatial extent. The field strengths can 

be detected using superconducting quantum interference device (SQUID) [17, 18] 

magnetometer outside of the head in a non-invasive manner as shown in Figure 2-3.  

 

 
Figure 2-2. Structural composition of a neuron [19] 
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Figure 2-3. Biomagnetometer system with 151 channels during cortical MEG 

recording at the Hoglund Brain Imaging Center in KUMC 

One of several ways to construct a model for the neural mechanism 

responsible for the MEG signal is called multiple dipole method. It divides the entire 

brain volume into small grids and approximates the localized current flow due to 

neural mechanism, also known as the primary current, in each of the grids as a 

current dipole [20]. Each dipole can be characterized by its location, orientation, and 

current strength. The brain and its surrounding tissues can be modeled in a first 

approximation as a spherically symmetric homogenous conductor. The magnetic 

field B pattern of a current segment I, as shown in Figure 2-4, indicates that only 

current dipoles with a component tangential to the conductor surface can generate 

magnetic field to be detected by SQUID magnetometer. Therefore radial current 

dipole does not contribute to the MEG measurements [21], which is not a problem 

since most of the sensory cortical regions are located at fissures that guarantee 

tangential current dipole components.  
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Figure 2-4. Magnetic field B of a current I 

 

While human brain structure has been studied and understood through the 

advancement in biological sciences in the past centuries, the bio-imaging technology 

enabled by the recent technological developments provides greater accuracy of the 

internal images of the brain without any surgical procedure [22]. Several important 

medical imaging techniques include computer-assisted x-ray tomography (CAT [23, 

24, 25]), magnetic resonance imaging (MRI [23,24,26,27]), to reveal the anatomical 

structure of the brain with high-resolution yet static images. Relationships between 

functional purposes and the activation of certain regions in the brain can be 

investigated through functional neuroimaging methods such as 

single-photon-emission computed tomography (SPECT [23, 28]), positron-emission 

tomography (PET, [23, 29, 30]) and functional MRI (fMRI, [31]). These methods 

provide functional brain information at relatively low temporal resolution. Another 

drawback of SPECT and PET is that the patients are under radiation exposure, or 

strong static magnetic fields during data acquisition. fMRI has recently been 

developed to deliver real-time brain imaging, called real-time-fMRI (rtfMRI [32, 

33]), but it measures neural activity indirectly based on the detection of blood 

oxygenation level change in the brain, whereas magnetoencephalography (MEG) is a 
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direct measure of neural activity based on the electromagnetic fields generated by 

activated neurons. 

 As mentioned in the introduction section, electroencephalography (EEG) and 

magnetoencephalography (MEG) are the brain imaging techniques used to measure 

the electric and magnetic fields directly generated by neural activities of the brain. 

They are more superior to other imaging methods in terms of temporal resolution and 

based on the fact that they are completely non-invasive. EEG signals can be distorted 

by the uneven structure of the head as compared to the head model and therefore is 

less accurate than MEG signals in determining the spatial location of the current 

dipole. However, since the MEG signals attenuate at a greater degree than EEG 

signals with the source-to-sensor distance, MEG is more difficult to use for localizing 

dipoles deeper in the brain. The use of most MEG signal processing algorithms are 

limited by this problem, which will be discussed in more details in the next section.  

 The main application of MEG is functional brain imaging, which, through 

processing and analyzing sensor data, associates brain regions to particular functional 

purposes and the activation sequences. Since MEG has high temporal resolution and 

it is a direct measure of the neuron activity as opposed to the blood oxygenated level 

change around neurons, MEG can provide direct information on the dynamics of 

neural activity. MEG has applications in a broad range of areas ranging from 

cognitive neuroscience research to epilepsy and pre-surgical brain mapping.  

2.2.2 THE LEADFIELD MATRIX 

Under the conditions that the brain and its surrounding tissues (cerebro-spinal 

fluid, skull, skin) are modeled as a spherically symmetric homogenous volume 

conductor and localized primary current is approximated as current dipoles, the 

magnetic field at any location outside of the head as a function of the location, 

orientation and strength of a particular current dipole in the source space was derived 

by Ilmoniemi et al. [21] and by Sarvas [34] in accordance with Maxwell’s equations 

as follows: 
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μ0  is the permeability of free space. r and rQ are position vectors of the 

current dipole in the source space and the MEG sensor, respectively, Q is a 3×1 

vector representing the orientation and strength of a current dipole, B is a 1×3 

magnetic field vector with each element corresponding to the magnetic field 

generated on one of the three orthogonal directions. The MEG sensors will measure 

the magnetic field component that is orthogonal on each sensor’s area (a scalar 

value). 

A few observations can be made from Equation (2.7). Since the radial 

component of Q is parallel to rQ, the cross product between the vectors is zero, which 

means the radial component of any neural current dipole does not contribute to the 

magnetic field measurement B(r) outside the conductor. In other words, the MEG 

sensors are insensitive to radially oriented current dipoles. This is not a concern to 

the MEG application in brain imaging because, as mentioned in previous section, 

neural activities occur in the fissures of the brain, which are groves in the cortex 

where current dipoles have major tangential components, can be reliably recorded. 

Another observation is that current dipoles located at the center of conductor volume, 

i.e. rQ = 0, B(r) is also zero. The closer a current dipole is to the center of the brain, 

the small its cross product is with Q, and hence, the smaller B(r). 

When multiple MEG sensors are present, B(r) due to a unit-strength current 

dipole can be expressed using a compact matrix representation, denoted as leadfield 

matrix. Let N be the number of MEG sensors, then each N×1 vector of a leadfield 

matrix corresponds to the magnetic field measurement of the N sensors generated by 

one of the three components (the φ , θ , and ρ  in spherical coordinate system) of an 

unit current dipole. Therefore, a leadfield matrix due to a single unit-strength dipole 



16 

is a N×3 matrix. For the MEG applications under the spherically symmetric volume 

conductor approximation, since the radial component of source dipoles does not 

produce magnetic field outside of the cortex, its associated leadfield vector can be 

eliminated to reduce the leadfield matrix to N×2 for a single dipole. 

The source space, which can be either the whole brain or restricted to the 

cortical mantle depending on the application, can be divided into small grids each of 

which is represented by an unit current dipole. In this case, the leadfield matrix can 

be further extended to a collection of B(r) due to each of the current dipole locations. 

Let M be the number of source grids, the leadfield matrix is then a concatenation of 

the M B(r) sub-matrices, resulting a N×2M matrix. In order to sample the brain 

volume with good spatial resolution, M is typically a lot larger than N, which causes 

the leadfield matrix B to be underdetermined. 

Leadfield matrix is essentially a discrete representation of the magnetic field 

produced by neural activity at different locations throughout the cortex region. 

However, the use of this matrix requires consideration about the condition of the 

matrix. As mentioned in the previous section, magnetic fields attenuate rapidly with 

distance to the sensors and as a result, the B(r) associated with inner dipoles with 

small |r| are much smaller than that with the outer dipoles with large |r|. This causes 

the norms of the column vectors in B(r) corresponding to inner dipoles to be a lot 

less than that to outer dipoles. Figure 2-5 below shows the range of norms the 

leadfield vectors take on where the average distance between grid points is 3mm. 
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Figure 2-5. Sorted leadfield vector norms for dipoles in the brain sample space 

The leadfield matrix B has extreme norm discrepancy and very “correlated” 

column vectors has a wide eigen value distribution which, according to the definition 

of matrix condition number, means the matrix can be very ill-conditioned. Figure 2-6 

shows the eigen spectrum of the extremely ill-conditioned leadfield matrix used for 

the computation in the research presented in this thesis. The wide eigenvalue spread 

is partly due to the underdetermined nature of the B matrix, which usually leads to 

non-unique solutions because the high-dimensional underlying signal x is 

transformed by B into a space with much lower dimensions. 

 
Figure 2-6. Eigen spectrum of the auto-correlation matrix of leadfield matrix B 



18 

The condition number of the leadfield matrix is the main reason for the 

performance degradation of some existing source localization algorithms when the 

underlying neural source is close to the center of the brain.  A basin of attraction is a 

region in the solution space onto which if the initial solution falls, the algorithm 

would evolve to a particular solution point in that region. The basins of attraction for 

a system with an ill-conditioned matrix are very uneven and may strongly favor 

solutions to the source locations near the surface of the cortex. In other words, the 

ill-conditioning skews the source localization solution to one that is closer to the 

MEG sensors. For the case of inner dipole activation, the basin of attraction for the 

true solution may be too small for most initialization methods to yield an initial 

solution in. The way this problem can be fixed is explained in the later sections. 

2.2.3 FORWARD SIGNAL MODEL AND THE INVERSE PROBLEM 

With the knowledge of the approximated magnetic field generated by any 

current dipole in the source space in the form of a leadfield matrix, the MEG sensors 

response can be simulated for different types of neural activation, given the 

time-course of the neural activity. The process of simulating MEG sensor signals due 

to neural activity in the source space is called forward modeling. The leadfield matrix 

in this case is also known as the transformation matrix. Due to the superposition 

property of the magnetic fields, the total sensor response generated from multiple 

current dipoles can be represented as a linear sum of the sensor responses generated 

by each of the dipoles.  

Let N and M be the number of sensors and dipole grid, respectively. Equation 

(2.8) below shows the forward model in matrix notation: 

vxBy +=       (2.8) 

where B is the N×2M leadfield matrix, x is the 2M×1 dipole component strength 

vector, v is the N×1 additive noise vector and y is the N×1 received signal vector. 

For example, if only the φ  component of the ith and jth current dipole is activated with 
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unit strength, the resulting sensors vector y is the linear combination of the respective 

leadfield vectors plus additive noise. 

The problem of determining the location and strength of some underlying 

current dipole responsible for MEG signals detected at the sensors is called the 

inverse problem. Since the SAFFIRE algorithm is based on a parametric MMSE 

framework [35], solving the inverse problem require the use of the forward model 

which will be shown in the next chapter. Due to the ill-condition of the leadfield 

matrix in the forward model, most parametric estimators suffer from biased dipole 

localization solution. 

2.3 FILTER THEORY 

2.3.1 MATCHED FILTER 

Matched filter is the most straightforward way to estimate an underlying 

signal. It utilizes the fact that the inner-product of one vector with another yields the 

maximum value when the other vector is the Hermitian of the first. Consider a N×1 

observed vector y that consists of the sum of a scalar multiple, xi, of a N×1 vector ai 

and a N×1 random additive noise vector v as shown in Equation (2.9).  

vay i += ix       (2.9) 

A matched filter h is one that maximizes the Signal-to-noise ratio (SNR), 

which is the expected value of the ratio of the signal and noise components with filter 

h applied: 
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where  ⋅  2

2  is the   l2-norm and E  ⋅  { } is the expectation of the quantity . The SNR 

is maximized when h is equal to the vector ai since the term in the numerator of 

Equation (2.10) is maximized when it contains an inner-product of ai with its 
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Hermitian. When the underlying linear model is extended into containing a 

transformation matrix A and vector x instead of a vector ai and scalar xi, the matched 

filter becomes the Hermitian of the matrix A.  

Matched filter can be applied to any problem that contains linear underlying 

models. For the case of DOA model as defined by Equation (2.4), transformation 

matrix A becomes steering matrix S, whereas for the neural dipole localization 

problem, A becomes the leadfield matrix B.   

Matched filter is the simplest to use and performs well when only a single 

source signal is present. However, it does not consider interference or colored noise, 

which might result in false signal detection. Matched filter might also fail if the 

columns of the transformation matrix A are linear dependent, which in that case the 

matched filter result might maximize SNR corresponding to the incorrect column 

vector. Another drawback is that the matched filter results in the least spatial 

resolution if the neighboring transformation space (column) vectors are highly 

correlated, meaning the inner-product of a vector a with other vectors spatially close 

a are almost as large as the inner product of a with itself. As an example, for the case 

of DOA estimation, the inner product of the steering vector at 0 [rad] with other 

steering vectors are shown in Figure 2-7. The width of the mainlobe spans a wide 

range of angles which can make two spatially close-by signals un-resolvable. 

 
Figure 2-7. Normalized inner-product of steering vectors 
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2.3.2 MULTIPLE SIGNAL CLASSIFICATION (MUSIC) 

A class of filter for estimation based on the eigen representation of the signal 

space is called eigenspace method [7, 36]. They can be applied to problems where the 

observed signal can be written as a sum of complex sinusoids of different frequencies 

and additive white Gaussian noise (AWGN). MUltiple SIgnal Classification 

(MUSIC) [7], which is one of the eigen method algorithms, makes use of the 

orthogonality nature of the signal space and noise space for signal space projection.  

  Consider an observed signal vector y of length M, which consists of a sum of 

P sinusoids correspond to P different frequencies and AWGN, assuming M > P: 
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 ⋅  [ ]T  denotes vector transpose. The M×M autocorrelation matrix of y, Ry, becomes 

the sum of the autocorrelation matrix of x, Rx, and the identity matrix scaled by the 

noise power σv
2: 

 Ry = Rx + σ v
2I = α i

2si ⋅ si
H

i=1

P

∑ + σ v
2I    (2.12) 

Performing the eigen decomposition on Ry: 
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λi’s and vi’s are called eigen values and eigen vectors, respectively. When 

noise is absent, Ry in Equation (2.12) reduces to Rx. Since Rx is of rank P, Ry is also 

of rank P and thus λi are zeros for i = P+1, P+2, …, M. This implies the P steering 
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vectors in vector x span the same P dimensional subspace in ℜM as the first P eigen 

vectors vi, where i = 1, …, P. This P-dimensional subspace is the signal-plus-noise 

subspace since noise correlation matrix is full-rank. The rest of the (M−P) eigen 

vectors, vi, where i = P+1, …, M, corresponding to the noise-only subspace spans a 

subspace orthogonal to the signal-plus-noise subspace.  

MUSIC estimates the true signal frequencies by projecting the steering 

vectors at a particular frequency ω onto the noise-only subspace as follow: 

P(ω) =
1

sH (ω) vi

2

i= P +1

M

∑
   (2.14) 

If a signal is present at frequency ωo, its steering vector s(ωo) is in the 

signal-plus-noise subspace and thus should be orthogonal to the noise-only subspace 

eigen vectors. Therefore the denominator in Equation (2.14) should be numerically 

close to zero, causing a peak at P(ωo) in the P(ω) spectrum. Note that the peaks in the 

P(ω) spectrum indicate the true signal frequencies or directions but the values of 

P(ω) are irrelevant to the actual signal power. 

 MUSIC performs very well with good spectral resolution as long as the 

underlying signal model satisfies the assumed model in Equation (2.11). MUSIC also 

requires the prior knowledge of number of sinusoid signals P, which might not 

always be available or might be hard to attain. MUSIC fails when the number of 

receiver elements M is equal or less than P because Ry eigen space would then be 

spanned entirely by signal steering vectors, resulting an empty noise-only subspace. 

MUSIC degrades when the additive noise is non-white and of which Rv contains an 

eigen vector with significant noise power that belongs to the signal-plus-noise 

subspace.  

In practice, the autocorrelation matrix Ry is computed using the 

time-averaged cross-product of observed signal vectors y. If two underlying signals 

are temporally correlated, they might be represented together as a subspace spanned 

by one eigenvector in Ry. This can lead to insufficient rank in Rx and “bleach over” a 
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part of the signal-space into the noise-only space, causing the subspace projection to 

be incorrect. 

 A preprocessing scheme to resolve the signal-correlation intolerance of 

MUSIC algorithm is called spatial smoothing [8, 14]. Instead of time-averaging the 

outer products of observed vector y to form a M×M autocovariance matrix Ry, each 

time-sample, or snapshot, of M×1 vector y(t) is sub-sectioned into M−L+1 

overlapping vectors of length L. The kth sub-section of y(t) is denoted as yk(t) where 

k = 1, …, M−L+1: 

[ ]TLktyktyktyt )1,()1,(),()( −++= Lky   (2.15) 

where y(t,k) is the kth element of y(t). The spatially-smoothed autocorrelation matrix 

R y (t)  is defined as the “spatial” average a total of M-L+1 subsections of yk(t):  

R y (t) =
1

M − L +1
 Rk (t)

k=1

M −L +1

∑

where Rk (t) = yk (t) ⋅ yk
H (t)

     (2.16) 

The term “spatial” in the averaging is due to the application of this scheme 

into direction of arrival linear arrays models. The overall L×L observed signal vector 

autocorrelation matrix R y  is then just the time-average of all the R y (t) ’s. When two 

coherent signals are present, in which case Rx in MUSIC algorithm becomes 

singular, spatial-smoothing essentially make the modified R x (t) ’s full-rank by using 

up some degrees of freedom in the original ℜM space. As a result, signal-correlation 

intolerance of MUISC can be handled using this preprocessing scheme. The 

algorithm combining MUSIC with this preprocessing scheme is called 

Spatially-Smoothed MUSIC (SS-MUSIC).  

Using spatial-smoothing scheme requires that the number of subsections 

M−L+1 must be greater or equal to the number of underlying sinusoids P in order for 

R x (t) ’s to be non-singular. The size of subsections L must also be greater than P to 

allow noise-only subspace for the operation of MUSIC. Therefore the minimum 
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number of sensors M needed for SS-MUSIC is 2P, which is nearly twice as large as 

that required for the original MUSIC, indicating SS-MUSIC has less degrees of 

freedom and thus poorer spatial resolution than MUSIC for a fixed number of 

sensors. 

2.3.3 MINIMUM MEAN SQUARE ERROR ESTIMATORS 

The standard minimum mean square error (MMSE) estimator is a 

fundamental framework [35, 36] for several other filtering algorithms, including 

RISR. Its formulation minimizes the estimation error e(n) at time index n between 

the filter (estimator) output y(n) and the desired response d(n) as shown in 

Figure 2-8: 

 
Figure 2-8. Block diagram of statistical filtering for estimation 

When a finite-length transversal filter with N elements is applied to estimate the 

desired response d(n), the vectors in Figure 2-8 become: 

x(n) = x(n) x(n −1) ... x(n − (N −1))[ ]T

w = w0 w1 ... wN−1[ ]T

y(n) = wH x(n) = wk
∗ x(n − k)

k= 0

N −1

∑

   (2.17) 

The standard cost function J of the MMSE estimator is defined as the mean square 

error:  
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where E  ⋅  { } is the expectation of the quantity. To obtain the optimal MMSE 

estimator wo, the derivative of J with respect to wk
∗ , k = 0, 1, …, N−1, is taken to 

yield: 
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Expanding the error term e∗(n) and y*(n) within and re-arranging terms to obtain a 

set of Wiener-Hopf equations: 
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where wo,i  is the ith element of wo  filter. The optimal MMSE estimator formulation 

is obtained by writing the N Wiener-Hopf equations in matrix form as a function of 

auto-correlation matrix R and cross-correlation matrix p: 
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 ⋅  ( )∗ denotes the complex conjugate operator. The standard minimum mean square 

error (MMSE) estimator is also called Wiener filter. In order for the MMSE 

estimator to operate in an addition dimension in the observed data, the N×1 filter 



26 

vector wo can be extended to a N×M Wiener filter matrix Wo and the formulation can 

be derived with matrix calculus to yield the following: 
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where Wo is the MMSE estimator matrix, dk
∗(n)  is the kth element of the M×1 

desired response vector d(n), R and P are the auto-correlation and the 

cross-correlation matrix, respectively. The cost function J is then the square of 

2-norm of the error vector e(n). 

MMSE estimator formulation requires some prior knowledge of the 

auto-correlation of the received signal R and the cross correlation between the 

underlying and the received signal p, which might be difficult to compute or un-

attainable. Therefore, MMSE estimation is mainly used for inverse modeling or 

system identification problems. It is not intended for DOA estimation since the 

autocorrelation of x(n) in Equation (2.23) can only be approximated by time-

averaging observed samples, which could produce singular R matrix or poor 

statistical knowledge if insufficient data is collected. RISR formulation, as can be 

seen in the next chapter, is a modified version of the optimal Wiener filter except that 

prior statistical knowledge about the underlying signal is not required. 

Linearly constrained minimum variance (LCMV) approach [11, 12], which is 

applied in a wide range of applications such as neural MEG beamforming, is 

covariance-based MMSE estimator. For the dipole localization problem, the LCMV 

filter minimizes the power of filter output y subject to the condition of unit response 
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at the each of the dipole location. With the filter output substituted with y = WT x , 

the mathematical problem statement is given by 

( ) ( ){ } ( ) ( ) IrBrWrWxCrW =TT

)(
 subject to   )(min tr

oqW
    (2.24) 

where r and B(r) are, as defined previously, the 3×1 dipole position vector and the 

corresponding leadfield vectors, respectively and the C(x) is the covariance matrix of 

the received data vector x. Using the Lagrange multipliers, the solution to the 

constrained optimization problem can be obtained as [36] 

( ) ( ) ( ){ } ( ) )(  )( 111 xCrBrBxCrBrW −−−= TT    (2.25) 

LCMV indirectly handles the leadfield norm-biasing problem by normalizing its 

power estimates by the spatial noise spectrum. Therefore, the normalized estimated 

power of a particular dipole r, denoted as the neural activity index (NAI), is 

calculated as 

( ) ( ) ( )[ ]{ }
( ) ( )[ ]{ }11
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T

T

tr
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where Q is the noise covariance matrix. The construction of the covariance matrix 

C(x) involves averaging the outer products of hundreds of data samples to acquire 

sufficient statistical information. Noise covariance matrix Q is obtained in the same 

manner with pure-noise data samples. 

2.3.4 FOCAL UNDERDETERMINED SYSTEM SOLUTION  

  An iterative nonparametric approach denoted as FOcal Underdetermined 

System Solution (FOCUSS) [9, 10] is a re-weighted minimum norm algorithm that 

determines the maximally sparse signal solution based on the minimization of the 

norm of the weighted estimates. Through iteratively updating the filter at each stage, 

the algorithm converges to a solution with localized energy from an initial lower 

resolution estimates. Although FOCUSS can be applied to non-linear problems, for 
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the applications involved in this thesis assumes a linear transformation A of the 

unknown signal x ∈ CM into its representation y ∈ CN as 

bAx =       (2.27) 

where A is the N×M transformation matrix, x and b are the M×1 unknown signal 

vector and the N×1 data vector, respectively. The weighted minimum norm solution 

for estimation of x is one that minimizes the  l
2-norm of xW+  subject to 

( ) bxWAW =+  where W is a M×M diagonal weighting matrix (not the filter matrix). 

The standard form of the solution is  

bAWWx += )(~      (2.28) 

where  ⋅  { }+ denotes the Moore-Penrose (or pseudo-) inverse defined by 

( ) 1−+ = HH AAAA . The weighting matrix W is updated at each iteration stage with 

the signal estimates from the previous stage. The core components of FOCUSS 

algorithm are outlined below. 

   General FOCUSS algorithm 
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I+ denotes the set of all positive integers, Wpk  is the M×M diagonal weighting matrix 

containing the estimates xk-1 from the previous stage raised to some power l and Wak  

is an additional M×M weighting matrix to allow flexibility for the algorithm for 

different applications. For example, leadfield-norm biasing for neural dipole 

localization can be compensated indirectly by assigning scaled leadfield norm 

differences to the diagonal elements of Wak . 

Initialization is very important to a recursive algorithm in the sense that it 

initially narrows down the solution set from a larger set of possible solutions. 

FOCUSS utilizes the minimum norm estimate of the model in Equation (2.27) as the 
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initialization, i.e. bAx +=)0(~ . Depending on the application, standard minimum 

norm solution could yield an estimate from an incorrect basin of attraction in which 

the converged solution of FOCUSS resides. For example, a heavily ill-conditioned 

transformation matrix A can be characterized by very uneven basins of attraction, 

some of which contains a large solution set that can erroneously attract the minimum 

norm solution. As demonstrated in later chapters, for neural dipole localization this 

initialization method results in biased initial estimates in the wrong basin of 

attraction such that FOCUSS does not converge to the true solution. 

Since noise is not built into the signal transformation formula, regularization 

to stabilize the matrix inverse in the filter formulation becomes an issue when 

implementing FOCUSS. The choices of regularization methods and how the optimal 

regularization parameter values are identified vary for different applications and are 

discussed in detail in the literature [9, 10]. 

2.3.5 DISCUSSION OF DIRECTION OF ARRIVAL ALGORITHMS 

As mentioned in the introduction section, there exist classes of algorithms 

with different abilities to handle temporally correlated signals. The classical methods 

such as the MUSIC algorithm [7] break down when signals from different directions 

are partially or completely correlated in time. The main reason is that they require 

multiple data snapshots to construct or approximate the data covariance matrix of the 

signals, which might match with the outer product of steering vectors from another 

direction when the underlying signals are correlated in time.  

Spatial-smoothing MUSIC [8] differs from MUSIC in terms of the 

construction covariance matrix from which the eigen vectors are decomposed. This 

modification to the algorithm increases its robustness towards correlated signal but 

its super-resolution performance degrades. Since MUSIC is only a detection 

algorithm, estimates of the underlying signals have to be obtained through a separate 

scheme; whereas RISR determines both signal strength and direction in the 

algorithm. SS-MUSIC requires prior knowledge of the number of signals to optimize 
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the size of subarrays to construct the spatially smoothed covariance matrix. The 

RISR estimator does not require any prior knowledge and is inherently tolerant of 

coherence signals.  

FOCUSS is mathematically similar to RISR and it can operate on one 

snapshot as well. However as noted earlier, FOCUSS uses matrix inverse 

regularization to avoid ill-conditioning and the amount of regularization is a dual 

problem that must be solved, hence it is a less attractive approach than RISR. The 

performance comparisons of different algorithms on their robustness on temporal 

correlated signals are presented in the Chapter 5.  

Since noise is not built into the signal transformation formula, regularization 

to stabilize the matrix inverse in the filter formulation becomes an issue when 

implementing FOCUSS. The choices of regularization methods and how the optimal 

regularization parameter values are identified vary for different application and are 

discussed in detail in the literature [9,10]. 

2.3.6 DISCUSSION OF NEURAL LOCALIZATION ALGORITHMS 

 Minimum-norm estimates (MNE) [37], FOCUSS [9, 10], MUSIC [7, 38] and 

LCMV algorithms have been applied to the MEG neural localization problem, 

though with a number of limitations associated with them. Signal correlation is 

known to cause performance deterioration of the MUSIC algorithm. Since the 

construction of the data covariance matrix C(x) for LCMV requires averaging the 

outer products of hundreds of data samples so as to acquire sufficient statistical 

information, LCMV provides accurate yet low resolution estimates of signal power. 

Another drawback of LCMV is the performance degradation due to temporal 

correlation of underlying dipole time courses, in which case LCMV may incorrectly 

localize active dipoles or reconstruct distorted time courses.  

A number of modified versions of LCMV, such as LCMV with partial sensor 

coverage (LCMV-PSC) [39] and multiple constrained minimum variance 

beamformers with coherent source region suppression (MCMV-CSRS) [15, 40], have 

been formulated to solve the problem of interferer insusceptibility. However, the 
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algorithms have a number of limitations, for example, LCMV-PSC reduces the 

degrees of freedom in the estimation by ignoring sensors sensitive to the interferers. 

In order to suppress coherent dipole activities, MCMV-CSRS requires prior 

knowledge of the location of the interferer, which might not always be available.  

Instead of a data covariance matrix, a structured covariance matrix is built 

into SAFFIRE filter formulation, of which the diagonal elements of the matrix 

asymptotically approach the power of the dipoles in the sample space as the solution 

converges. As a result, SAFFIRE does not need to extract statistical prior knowledge 

from a large amount of data samples, enabling SAFFIRE to operate on as few as one 

data snapshot and achieve very finer temporal resolution. 

The standard minimum norm estimate (MNE) method provides a solution that 

minimizes the power of the estimated dipole strengths and matches with the MEG 

sensors data [37]. The known limitations of this method include low spatial 

resolution due to high spatial correlations, and severe bias towards superficial dipoles 

induced by the large associated leadfield norms. 

Despite that FOCUSS achieves finer resolution than LCMV and MNE, the 

bias compensation employed through the weight matrix at each iteration might 

provide proportionate weighting to the dipole estimates for some cases, therefore it 

requires consideration of the nature of the sensor environment and sampling space 

for construct an effective bias adjustment. Moreover, as mentioned previously, 

substantial amount of effort is involved in choosing regularization method and 

determining the optimal parameters to stabilize matrix inverse, which could varies 

depending on experimental setting.  

Since the noise component is incorporated into the SAFFIRE algorithm 

through the noise covariance matrix, which can be approximated easily, there is no 

need for matrix inverse regularization. In order to avoid superficial dipole biasing, 

the filter operation of SAFFIRE is carried out in an affined-transformed space with 

energy normalization at each stage. This strategy effectively eliminates the leadfield 

norm biasing even for dipole located deep in the brain volume. 
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CHAPTER 3: RE-ITERATIVE SUPER-RESOLUTION  

3.1 REITERATIVE MINIMUM MEAN SQUARE ERROR ESTIMATOR  

As discussed in the previous chapter, the autocorrelation matrix R and cross-

correlation matrix p in the MMSE estimator formulation are unknown in advance for 

some applications. An adaptive approach denoted as Reiterative Minimum Mean 

Square Error (RMMSE) estimator, which was inspired by a radar pulse compression 

algorithm, is developed based on the MMSE framework [1, 35] to handle the lack of 

prior statistical knowledge. The fundamental differences between RMMSE and 

MMSE estimators are discussed later in this section. 

Consider the following signal model, which has a similar form as 

Equation (2.4):  

)()()( nnn vSxy +=       (3.1) 

where y(n) is a N×1 observed signal vector, x(n) is a N×1 underlying signal vector, 

v(n) is the N×1 additive noise vector, and S is a N×N transformation matrix. To 

relate RMMSE with the MMSE estimator framework in Chapter 2, their respective 

signal models should have equivalent variable notations, which are listed in 

Table 3-1. 

Table 3-1. RISR and MMSE variables 
RMMSE MMSE 

x(n) d(n) 

y(n) x(n) 

W H y(n) y(n) 

 

To derive RMMSE, Equation (2.23) can first be rewritten as 

{ }( ) { })()()()( 1 nnEnnE HH xyyyW ⋅⋅=
−      (3.2) 
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Incorporating the signal model into the MMSE formulation by substituting in 

Equation (2.4) with a reasonable assumption that the additive noise is uncorrelated 

with the signal, the estimator becomes: 

( ) ( ){ }( ) ( ){ }
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where { })()( nnE HxxRx ⋅=  is the N×N auto-correlation matrix of the underlying 

signal x(n), and { })()( nnE HvvRv ⋅=   is the N×N noise covariance matrix, which can 

be approximated by averaging across time the outer products of the pure-noise 

received signal.  

As one would expect, adaptivity of RMMSE is achieved by re-iteratively 

updating the structured covariance matrix Rx in the filter through which the signal 

estimates )(~ nx  can be refined in successive stages. Assuming the elements in signal 

vector x(n) are statistically uncorrelated to allow an approximation of a diagonal 

structured covariance matrix, the final form of RMMSE at the kth stage can be 

expressed as: 

( ) ( )
kk xvx SRRSSRW ~

1
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−
+= H

k        (3.4) 
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kxR~  is the diagonal matrix of the estimated signal strengths from the previous 

iteration and )(~
, nx ik  is the ith element of the estimated signal. Zero values on the off 

diagonal terms are the result of assuming that signals from different directions are 

temporally uncorrelated. The resulting estimate at the kth stage is then: 
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The above equation reveals some information about the matrix operation of 

the RMMSE estimator onto the observed signal. At the kth stage of the RMMSE 

estimation Equation (3.5), the received signal y(n) is multiplied first by the matrix 

inverse, through which R ˜ x k
 nulls out any active sources estimated from the previous 

re-iteration stage and Rv indirectly cancel effects due to the additive noise v in the 

signal model. The remaining data is then match-filtered by SH to estimate the signal 

that had not been accounted for in the previous RMMSE stage. Finally, the signal 

energy that had been nulled out by the matrix inverse is multiplied back to the 

estimates through R ˜ x k
 to produce the estimator at the current stage. 

The matrix inverse in Equation (3.5) essentially suppresses signal components 

in x(n) according to their signal strengths. For example, if the ith entry along the 

diagonal in R ˜ x k
 from the previous stage is close to zero, meaning there is only a 

small amount of signal energy in that component, the ith column in Wk will have a 

small norm. Therefore multiplying that the Hermitian of the ith column of Wk to the 

y(n) produces a small estimate of the ith component in kx~  at that stage. 

Different initialization methods can be implemented for the structured 

covariance matrix 
0

~xR , depending on the filter application. Those with more 

well-conditioned transformation matrices, such as the DOA estimation, are more 

flexible on the type of initialization; whereas applications with ill-posed signal model, 

neural dipole localization for example, requires caution when determining the 

initialization method for reasons that will be explained in later sections. 

Despite of the fact that RMMSE approach is derived from the general MMSE 

formulation, the two filters have some fundamental differences that permit one of 

them to be used in certain problems where the other cannot. The MMSE formulation 

results in a set of estimated parameters of the signal model and it minimizes the mean 

square error between the estimates )(~ nx  obtained through the MMSE filter and the 

actual signal strengths x(n). The formulation assumes the knowledge of auto-
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correlation of the received signal strength and the cross-correlation between the 

received signal and the actual signal, therefore making it non-adaptive and 

non-iterative. On the contrary, RMMSE algorithm does not require any prior 

knowledge of the signal. The RMMSE filter is formed only as a mean to obtain the 

system coefficients, which are assumed to get closer to the truth signal at successive 

iteration as the solution converges. Given the knowledge from the previous re-

iteration, the estimate at each re-iterative stage results in the smallest MSE possible. 

The self-refining of the solution due to adaptivity of the filter is the main advantage 

of RMMSE estimation algorithm over the original MMSE estimation. 

3.2 RISR ALGORITHM  

RMMSE approach can be directly applied to the direction of arrival problem 

by replacing the general signal model in Equation (2.4) with the uniform linear array 

signal model defined in Chapter 2. This application specific RMMSE algorithm is 

denoted as Re-Iterative Super-Resolution (RISR). 

With the lack of prior knowledge on data statistics, at the initialization stage 

we assume equal weights on steering vectors of all angles by setting the diagonal 

elements of R ˜ x 0
 to unity. We also neglect the noise component in the signal model 

yielding an expression for the initialization stage MMSE filter equivalent to the 

Moore-Penrose pseudo-inverse of the steering vector matrix: 

( ) SSSW 1
0

−
⋅= H             (3.6) 

This filter is independent of the received data and therefore can be 

pre-computed. For the first re-iteration stage of the algorithm, the estimates from the 

initialization stage are used to update the diagonal terms of 
1

~xR  in the RISR 

estimator, which is then applied to the original received data y to form the set of first 

re-iteration stage estimate )(~ n1x : 
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where ˜ x 0,k (n) is the kth element in the ˜ x 0(n). The time-index notation is dropped in 

this section for simplicity. The estimates ˜ x 1(n)  are used to update the R ˜ x 2
 of the filter 

W2 for the second re-iteration stage in the same manner as Equation (3.7), which is 

mathematically equivalent to computing the Hadamard product (element-by-element 

multiplication, denoted as {  o}) of the outer-product of )(~
1 nx  and a N×N identity 

matrix. The corresponding filter W2 then multiplies the original received data y(n) to 

produce the signal strength estimate ˜ x 2(n).  The process repeats until the estimate 

converges, which usually takes less than 10 re-iterations. Convergence of estimates is 

satisfied when the mean square difference between consecutive estimates is small 

than an acceptable value ε, i.e. ε<− +
2

1 )(~)(~ nn kk xx . Figure 3-1 demonstrates the 

general signal flow in the RISR algorithm. 

 
Figure 3-1. Block diagram of the RISR operation 

 To summarize, the core portion of the RISR algorithm are listed below:  
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Implementation of the basic RISR algorithm  

Initialization:    

i) Compute estimate of noise covariance matrix over the interval of Nnoise time 

samples that contains purely noise: 

∑
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nn
N 1

)( )(1ˆ vvR v  

ii) Compute the initial estimate with the pseudo-inverse of steering-vector 

matrix S: 
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Recursive stages: 

For k = 1, 2, …, K iterations, compute: 
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Termination: 

)(~ nkx  vector converges. 

3.3 SPECTRAL OVER-SAMPLING 

As the name of the algorithm indicates, RISR is capable of achieving 

super-resolution under over-sampling. Super-resolution is defined as the ability to 

resolve two sources separated by less than the nominal resolution angle of 2π/N in 

electrical degrees under the nominal sampling of π/N. To incorporate spectral 
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over-sampling into the algorithm, the steering vector angle spectrum in the signal 

model can be over-sampled by a factor P and the angular spacing between the closest 

samples becomes: 

PN
1

⋅=Δ
πω        (3.8) 

where P is the oversampling factor and P = 1 is equivalent to the nominal sampling. 

Signal vector x then becomes length 2P*N and S becomes a collection of 2P*N 

column steering vectors of length N.  

The ability of the estimator to super-resolve signal sources is not a result of 

the over-sampling in signal angles. If an estimator cannot resolve angles at the 

nominal resolution, its performance remains the same even when the source angle 

space is over-sampled in the signal model.  

The super-resolution probability as a function of the signal to noise ratio 

(SNR) with different values for over-sampling factor P are plotted for both 

uncorrelated and correlated signals in Chapter 5 under the RISR section. The results 

are also compared with the super-resolution performance of MUSIC. 

3.4 MULTIPLE-TIME PROCESSING 

The ability to estimate the DOA with only one snapshot signal sample is a 

major advantage that enables RISR to handle temporally correlated signals. 

Nevertheless, RISR can also be generalized to handle multiple snapshot data so that 

all the information contained in the collected data set can be extracted. Several 

multiple-snapshot processing schemes for increasing the SNR to boost the estimator 

performance were developed and are introduced in this chapter. To incorporate these 

schemes into the estimator, the underlying signals are assumed to be stationary within 

the time span of the received data.  
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3.4.1 INCOHERENT INTEGRATION 

The first scheme, denoted as I2-RISR, incoherently integrates the estimates at 

the end of each stage in the algorithm. The main idea is to average the signal power 

estimates of each data snapshot at the end of the re-iteration stage before feeding it 

into the filter update for the next stage. Since the power of the estimates are averaged, 

phase information is lost and hence the term “incoherent” integration.  

For the initialization stage and the first reiteration, each of the K snapshots 

(column vector) in the N×K matrix Y is processed independently the same way 

single-snapshot data is processed. Each column in Y is match-filtered with the 

steering vector S to create a vector of initial estimates. This is equivalent to the 

following matrix operation for the initialization stage: 

YSX H=0
~      (3.9) 

For each column in 0
~X , denoted as a i

0
~X , a first-stage RMMSE filter W1

i  is 

created through the update of the structured covariance matrix R ˜ X 0
i . The received data 

corresponding to that column is then filtered to form a vector of first-stage estimate 
˜ X 1

i . Before the second reiteration stage, the power of the K estimate ˜ X 1
i’s are 

averaged in time to form the power estimates for the first stage: 
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The estimate x 1(n)  is then used to form the structured covariance matrix Rx 2
 

needed to construct the second-stage I2-RISR filter: 
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Notice only one filter is formed at the second stage. The multiple-snapshot 

data Y is then filtered by W2 through matrix multiplication to form the second-stage 

estimates which undergoes a incoherent integration to form the vector of estimates 

x 2(n) as the final output for the second reiteration: 
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The process repeats Equations (3.11) and (3.12) for subsequence stages until 

the solution x k (n) converges. Figure 3-2 demonstrates the block diagram of the 

overall operation: 

 
Figure 3-2. Block diagram of I2-RISR operation 

Note that the phase information of the estimate is lost due to the averaging of 

the power estimate at the end of each stage. However, it is not a concern since the 

goal is to determine the DOA and often times the magnitude of the signal component 

is sufficient for the signal estimation. 
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3.4.2 EIGEN DECOMPOSITION 

The second scheme, denoted as e-RISR, has a much simpler formulation than 

the I2-RISR because it only differs from the original RISR by a pre-processing step 

which involves a transformation of the N×K multiple-snapshot data matrix into a 

N×1 data vector with single dimensional. This vector is then treated the same way as 

the observed input data vector y(n) in the original RISR for the rest of the processing. 

Assuming the data is stationary throughout the K snapshots, this scheme 

pre-combines the spatio-temporal data matrix Y into a spatial data vector by using the 

eigen decomposition to extract the spatial information common to all the data 

snapshots.  

Let Y be the matrix containing K snapshots of signal samples of length N. The 

dimension-reduced signal sample is obtained first by time-averaging the 

outer-products of each of the K snapshots: 
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where the N×N matrix C is an approximation of the received signal covariance 

matrix. The C matrix is then eigen-decomposed to obtain a set of N length-N linearly 

independent eigenvectors V and a diagonal matrix D along which diagonal N 

corresponding eigen values are stored. They are then recombined to form a single 

data vector as shown in (17) below. 
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The pre-processed vector ˜ y  is a linear combination of the eigenvectors Vi 

weighted by the corresponding square-rooted eigen values ˜ d i. This scheme is similar 

to time averaging the received signals except the outer products of snapshots are 

averaged to avoid signal cancellation due to phase differences over time. The vectors 
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in CN representing the dominating signal energy direction is enhanced because of the 

increase in SNR through the summation. 

3.4.3 ADDITIONAL METHODS 

A number of other approaches for incorporating multiple-snapshot data into 

RISR were also investigated; nonetheless the last scheme presented in this section is 

more meaningful. All methods were developed as an attempt to find the best 

representation of the original data matrix to maximize data extraction in the RISR 

algorithm. However, after comparing their performances from the Monte Carlo 

simulation results, which will be presented in Chapter 5, I2-RISR is chosen for RISR 

implementation throughout the rest of this thesis due to its consistency in 

performance under different underlying signal scenarios. I2-RISR is also simple to 

implement and analyze.  

Integration with Auto-correlation Matrix as Filter Input  

The operation of this approach differs from I2-RISR only in the input data 

matrix. Instead of the multiple-snapshot N×K received data matrix Y, the N×N 

autocorrelation matrix C is used for filtering. The initialization becomes: 
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 The pre-averaged matrix at the kth stage is then: 

CWX H
kk =~         (3.16) 

To understand the matrix operation of this scheme more clearly, note that the 

ith column of C, denoted as Ci, is the linear combination of the K data snapshots 

weighted by the ith element of the corresponding snapshot, as shown in Equation 

(3.15). Therefore, the autocorrelation matrix C still contains all the spatio-temporal 

information in Y. 
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The rest of the algorithm for this scheme is identical to that of I2-RISR in 

Equations (3.11) and (3.12). Note that when the number of data snapshots K is 

greater than the size of antenna array, this scheme reduces the amount of the data 

RISR is fed to process. 
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CHAPTER 4: SOURCE AFFINE IMAGE RECONSTRUCTION 

4.1 SAFFIRE ALGORITHM 

4.1.1BASIC ALGORITHM 

 
Source AFFine Image REconstruction (SAFFIRE) is based on the framework 

of the RMMSE approach developed in Section 3.1. The MEG dipole signal model 

presented in Chapter 2 is repeated here for convenience. Let N and M be the number 

of sensors and dipole grid, respectively. Equation (4.1) below shows the MEG dipole 

forward model: 

vxBy +=        (4.1) 

where B is the N×2M leadfield matrix, x is the 2M×1 dipole component strength 

vector, v is the N×1 additive noise vector and y is the N×1 vector of the MEG sensor 

signal corresponding to a single snapshot. 

The derivation of the basic SAFFIRE algorithm is similar to that of RISR, 

which begins by substituting the MEG dipole model into the RMMSE filter 

formulation from Equation (4.2). 
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R ˜ x (k ) is the diagonal matrix of the signal power estimates from the previous 

iteration and ˜ x i(k)  is the ith element of the estimated signal ˜ x (k) . Zero values off 
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diagonal in R ˜ x (k ) are from the assumption that signals from different directions are 

temporally uncorrelated. Therefore, the signal estimates at the kth stage is computed 

as: 

( ) yRBBRBRyWx vxx
1

)(~)(~)(~ −
+== H

k
H

k
H

kk        (4.3) 

Equations (4.2) and (4.3) serve as the core of the SAFFIRE algorithm with 

convergence generally attained within 10–15 iterations. However, because the 

forward model in Equation (4.1) is greatly underdetermined as discussed in Chapter 2 

and the ill condition of the leadfield matrix B due to disparate attenuation effects 

resulting from different dipole depths relative to the brain surface, biasing effects 

would occur unless a proper initialization and solution scaling is used. To combat 

these biasing effects, the SAFFIRE algorithm operates in an affine transformed space 

and utilizes an initial estimate that is much less ambitious than the minimum-norm 

solution so as to avoid local minima.  These specific characteristics of the SAFFIRE 

algorithm are described in the following sections. 

4.1.2 AFFINE TRANSFORMATION OF SOLUTION SPACE 

The   l2-norm of the individual leadfield vectors in B may vary considerably 

because the leadfield matrix incorporates the effects of attenuation induced by the 

source-to-sensors distance.  As a result, minimum-norm initializations (such as used 

by FOCUSS) tend to produce initial estimates that are biased towards superficial 

dipole sources. To ameliorate this biasing problem the SAFFIRE algorithm utilizes 

an affine transformation of the solution space to remove the norm variations.  The 

initial estimate of the dipole component strengths is then determined within this 

affine-transformed space. 

The affine transformation is based on the equalization of the   l2-norms over 

the leadfield matrix.  The transformation matrix D is formulated as 
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which is a diagonal matrix comprised of bi , the  l
2-norms of the individual columns 

of the leadfield matrix B. It is mathematically equivalent to the Hadamard product of 

(BHB)1/2 and the 2M×2M identity matrix and hence it is invertible. Thus the affine 

transformation of the solution space is accomplished by re-expressing the forward 

model in Equation (4.1) as: 
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The affine-transformed leadfield matrix Ba has unit column norms, and xa 

contains the dipole component strengths scaled by the associated column norms of B. 

Within the affine transformed space, the iterative estimation procedure of 

Equations (4.2) and (4.3) for the kth stage can be applied by replacing B and ˜ x (k)  

with Ba and ˜ x a (k)  in the formulation, respectively. After the terminal Kth iteration, 

the true estimate of the dipole component strengths in the original space can then be 

inversely transformed back from the transformed space by: 

  )(~ )(~ 1 KK axDx −=      (4.6) 

4.1.3 MATCHED FILTER BANK INITIALIZATION 

A good initial estimate is necessary for any recursive algorithms. For dipole 

localization problems, previous iterative approaches such as the FOCUSS algorithm 
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have employed the Moore-Penrose pseudo-inverse to obtain an initial estimate of the 

dipole component strengths as ( ) yBBBx 1 )0(~ −
= H

aa
H
aa , with the assumption of the 

affine-transformed space filter operation. However, due to severe ill-condition of the 

leadfield matrix B, the pseudo-inverse can bias the iterative solution to a basin of 

attraction for solutions closer to the MEG sensors as discussed in Chapter 2, thereby 

yielding estimates that are substantially different from the true solution. Once the 

recursive stage of the algorithm begins within the incorrect basin of attraction, the 

solution subsequently never converges to the true solution.  

In contrast, the SAFFIRE algorithm utilizes a less ambitious approach to 

obtain the initial solution by employing a matched filter bank in the 

affine-transformed space to guarantee initial estimate in the correct basin of 

attraction: 

yBx  )0(~ H
aa =       (4.7) 

Because the forward model is greatly underdetermined, the matched filter 

bank initialization provides rather poor spatial resolution due to the correlation 

between leadfield vectors that are in close spatial proximity.  

The key to the effective SAFFIRE initialization method is that it utilizes 

1) the affine-transformed Ba instead of the filter containing ill-conditioned matrix 

( )H
aa BB   and 2) the matched filter bank to obtain an initial estimate. Without either of 

them, the initial solution would be biased towards incorrect basin of attraction. Note 

that a regularized version of the pseudo-inverse may also be used to initialize 

SAFFIRE as long as the regularization term λ is very large (often > 104) to offset the 

ill-conditioning effects of ( )H
aa BB  : 
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Of course, as λ increases, the regularized pseudo-inverse converges to a 

scaled version of the matched filter. Thus, the preferred embodiment for SAFFIRE 

initialization is to employ the matched filter as in Equation (4.7).  

The subsequent application of the iterative estimation process in Equations 

(4.2) and (4.3) of the SAFFIRE algorithm converges the solution to the individual 

active dipole components through concentrating the signal energy onto a particular 

subset of dipole components.  

Despite of the low resolution of the initial estimate, the overall speed of 

convergence is only affected very slightly since from the second stage on, the 

algorithm is operated in affine-transformed space where the true solution can be 

quickly estimated by the SAFFIRE algorithm. 

4.1.4 ENERGY NORMALIZATION 

Recursive algorithms for any ill-conditioned system matrices requires special 

care for handling the energy or norm of the estimate signal vector at each stage due to 

the possibility of erroneous scale propagation and magnification through the 

recursive process, which, for SAFFIRE, could lead to zero value for all dipole 

strength estimates or even worse, filter operation instability. 

Before any energy scaling was implemented, two problems were revealed 

during the analysis of the SAFFIRE algorithm because of the unreasonable dipole 

strength values. The first one was due to the matched filter bank estimate, which 

caused the norm of the initial estimate vector too large. This can be explained by the 

matched-filter-bank energy spread over a wide extent in the initial estimate solution 

space, as a result of the correlation between leadfield vectors in the sample space. 

The low resolution of the matched filter estimates visually shows this problem in 

Chapter 5. 

The second energy-scaling problem originates from the recursive filter update 

formula in Equation (4.2). Substituting the affine-transformation space equation in 

(4.3) into the filter update equation we can obtain 
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where D is the affine-transform matrix and R ˜ x (k ) is the Hadamard product of 

˜ x (k) ˜ x H (k) and the identity matrix. 

Manipulating the equation gives 
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In order to understand the scaling problem, we first define the “estimated” 

sensor signal as the MEG data calculated using the forward model in Equation (4.1) 

by substituting in ˜ x a (k) for the ˜ x (k)  

)(~)(~ kk aa xBy =      (4.11) 

Substituting in Equation (4.10) yields 
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  (4.12) 

The equation above indicates that a good dipole estimate ˜ x a (k) should lead to 

very similar energy levels or norms between ˜ y (k)  and y. Observing Equation (4.12), 

if the column norms of BR ˜ x (k )B
H  are larger enough to dominate the inverse term, the 

product of the terms to the left of y would become an identity matrix so that ˜ y (k)  

would approach y. However, for reasons that will be discussed later, the norms of 

BR ˜ x (k )B
H  at the first few stages are a lot smaller than that of Rv, hence 

pre-multiplying y by a matrix with small norms results in ˜ y (k)  with smaller norm 
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than y. The recursive nature of the algorithm drives the estimate ˜ x a (k) to zero 

because of the diminishing energy level of the forward model estimate ˜ y (k)  through 

the iterations.  

To alleviate the energy scaling problems, SAFFIRE utilizes energy 

normalization at the end of each iteration.  The energy normalization ensures that the 

dipole component estimate at a given iteration, when employed in the forward model 

(exclusive of noise), would yield a received signal estimate ˜ y (k)  that possesses the 

same energy as the actual received signal y. As a result, with an estimate of the 

received signal given ˜ x a (k), the current estimate of the underlying dipole component 

strengths defined in Equation (4.9), the resulting energy estimate is determined as 

)(~ )(~)(~ kkk H yy=ξ       (4.13) 

Given the energy of the measured received signal as 

yyy
H=ξ        (4.14) 

The energy-normalized dipole component strength estimate is thus 

)(~ 
)(~)(~

, k
k

k anorma xx y

ξ
ξ

=      (4.15) 

The energy normalization procedure as presented in Equations (4.13-15) is 

employed to the dipole component strength estimate at the end of each iteration of 

SAFFIRE. 

Note that since leadfield vectors in B are highly correlated, the energy level of 

the matched filter or the low-resolution response is normalized to distribute the 

energy produced by a few true active dipoles among all the dipoles whose vectors are 

correlated with the true dipoles. Therefore, the elements in the dipole strength 

estimates are smaller than the actual underlying dipole strength. This is the reason 

that the energy level of H
k BBR x )(~  is a lot less than that of Rv at the matched-filter 

initialization as well as the first few stages. 
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4.1.5 NOISE COVARIANCE ESTIMATION 

Unlike the FOCUSS algorithm, which requires the determination of a proper 

regularization term in the matrix inverse to accommodate the presence of additive 

noise in the forward model, SAFFIRE naturally incorporates that function into its 

algorithm through the signal model subsumed in the RMMSE formulation. The noise 

covariance matrix { }HE vvRv  =  can be estimated directly as in Equation (4.16) 

below from the measured data over the interval of Nnoise time samples in which no 

induced response is present. In so doing, the background noise as well as the ambient 

electromagnetic activity is captured, allowing the desired stimulated neural response 

to be isolated from the background activity.  

∑
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nn
N 1

)( )(1ˆ vvRv     (4.16) 

4.1.6 IMPLEMENTATION  

To summarize the SAFFIRE algorithm as discussed in previous subsections, 

the following outlines its principal components. 

Implementation of the basic SAFFIRE algorithm  

Initialization:    

i) Compute estimate of noise covariance matrix over the interval of Nnoise time 

samples that contains purely noise: 

∑
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N 1

)( )(1ˆ vvRv  

ii) Compute the measured received signal energy ξy = y H y  for the received 

signal y at the time sample of interest. 

iii) Compute the matched filter bank estimate of the affine-transformed dipole 

component strengths as  

1     )0(~ −== DBBwhereyBx a
H

aa  
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iv) Energy-normalize the matched filter bank estimate as 

˜ y (0) = Ba ˜ x a (0)  

˜ ξ (0) = ˜ y H (0) ˜ y (0) 

˜ x a,norm (0) =
ξy

˜ ξ (0)
 ˜ x a (0) 

Recursive stages: 

For k = 1, 2, …, K iterations, compute: 
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3)  ˜ x a (k) = Wk
H y   

4) ˜ y (k) = Ba  ˜ x a (k)  

5)  ˜ ξ (k) = ˜ y H (k) ˜ y (k) 
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Termination: 

As  ˜ x a,norm (k) vector converges at the Kth stage, compute dipole component 

strength estimate as  

)(~ ~ 1 KaxDx −=  

4.1.7 RECONSTRUCTION OF DIPOLE TIME COURSE 

Not only is SAFFIRE capable of estimating the location of activated dipole, 

the filter W as a result of the algorithm can also be used to reconstruct the underlying 

time-course of the estimated dipole for the sensor data outside of the processing time 

frame of the input data y, labeled as y(t), t = 1, …, T, as shown in Equation (4.17). 
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The equation is applied with the assumption that y(t) consists of neural activity of 

only the estimated dipole since the reconstructed time course does not account for 

interference activities from other dipoles. 

x j (t) =
wK , j

H

b j

y(t)            for t =1, ...,  T     (4.17) 

where j is the index of the estimated dipole, wK,j is the jth column in the SAFFIRE 

filter from the last recursive stage, K, of the algorithm, and xj(t) is the estimated 

dipole strength at time index t. For the case where y(t) contains neural activity due to 

dipoles other than the estimated dipole, the reconstructed time course can be obtained 

by applying a modified filter, which is generated by SAFFIRE using data containing 

dipole activities not necessarily corresponding to consecutive time index. This 

approach will be discussed in greater details in the upcoming section.  

4.2 MULTIPLE-TIME PROCESSING 

Despite of the high temporal resolution SAFFIRE can achieve with only 

single sensor data snapshot, SAFFIRE can be generalized to process multiple data 

snapshots to maximize SNR so that more information can be extracted from provided 

data and potentially improve dipole localization accuracy. Another purpose of 

multiple-time processing is to reconstruct an interferer-free time-course for a 

particular dipole location. The multiple-time processing ability of SAFFIRE 

presented in this section is developed through the use of incoherent integration on 

estimated dipole strengths at each iteration.  

For the purpose of increasing SNR, the underlying signals are assumed to be 

stationary within the time span of the received sensor data in order to enhance the 

underlying dipole component strength. However, the temporal resolution of the 

SAFFIRE algorithm is worsen as the time over which the data snapshot spans 

increases. Compared to other algorithms that require hundreds of sensor data snapshot 

to construct meaningful data covariance matrices, SAFFIRE can precisely localize an 
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active dipole with typically around 5 data snapshots and as a result, its temporal 

resolution is still a great advantage over other dipole localization approaches. 

The second way to make use of the multiple-time processing feature of 

SAFFIRE is to operate on sensor data snapshots corresponding to an underlying 

signal as well as on the snapshots containing other dipoles that are active at any time 

within the time-course of a dipole of interest. As such, the nature of the underlying 

signal responsible for the data snapshots is not restricted in terms of stationarity. Of 

course, the more stationary snapshots are processed, the better the ability of SAFFIRE 

is to localize the responsible active dipole. An example for the case involving 

interferer will be discussed at the end of the next chapter. 

Let Y be a N×L matrix containing a collection of N×1 received signal 

(column) vectors over an interval of L time samples denoted as  

[ ])()2()1( LyyyY L=     (4.18) 

Note that if the L time samples are consecutive, the incoherent integration in 

SAFFIRE algorithm results in SNR gain; while for the opposite case, SAFFIRE can 

be used as a tool for dipole time-course reconstruction. This latter implementation is 

useful for generating accurate EEG/MEG time courses that may consist of different 

spatial responses at different times. 

The incoherent integration procedure is incorporated into the SAFFIRE 

algorithm as outlined at the end of the previous section in a similar fashion as I2-

RISR. Steps ii), iii), and iv) of the SAFFIRE initialization are performed individually 

on each of the L time samples to obtain L initial matched filter bank estimates. These 

energy-normalized, affine-transformed dipole strength estimates are  denoted as 

 ˜ x a,norm,1(0),  ˜ x a,norm,2 (0), …, ˜ x a,norm,L (0) for the L time samples. The individual 

estimates are then combined incoherently in Step 1 of the first iteration (k = 1) as 
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It is subsequently used to determine the MMSE-based filter bank Wk in Step 

2. This filter bank is then applied to each of the L received signal vectors y(1), y(2), 

…, y(L) as in Step 3 followed by the L individual energy normalizations in Steps 4, 5, 

and 6.  In general, the L estimate vectors obtained in Step 6 of a given iteration are 

combined in Step 1 of the following iteration as 

( ){ }∑
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1

22,,,,~   )1(~ )1(~1
,,

IxxR
kx o        (4.20) 

4.3 MULTIPLE-STAGES FOR VOLUMETRIC CONSTRAINTS 

The SAFFIRE algorithm has been found to perform very well at accurately 

identifying the spatial locations of brain activity regions. This spatial accuracy may 

be exploited to facilitate even greater accuracy by using the processed results to 

determine the volumetric region(s) of the brain in which activity is present during the 

time interval of interest. In so doing, the size of the leadfield matrix may be 

significantly reduced so as to only encompass a constrained region around the 

previous dipole estimate locations. 

This matrix-size reduction is accomplished by replacing the leadfield 

matrix Ba in the SAFFIRE algorithm, which comprises the entire sample region, with 

a modified leadfield matrix Ba,r  that contains the subset of leadfield vectors 

corresponding to the constrained spatial region(s).  Subsequently re-processing the 

received data with the volume-constrained SAFFIRE algorithm allows for much less 

spatial ambiguity such that further image accuracy can be achieved.  Alternatively, 

the active spatial regions identified by SAFFIRE may be utilized as a priori 

knowledge for other EEG/MEG approaches that require such information [15, 40]. 
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CHAPTER 5: SIMULATION RESULTS AND DISCUSSION 

5.1 RISR 

5.1.1 PERFORMANCE METRICS 

The performance of RISR is demonstrated and analyzed for a number of 

simulation scenarios and is compared with MUSIC, SSMUSIC and FOCUSS in this 

section. The main metric used to evaluate algorithm performance is denoted as the 

probability of separation (POS), which is defined as follow: for the outcome of each 

trial of the Monte Carlo simulations, a value of “1” is assigned if (1) two individual 

peaks are identified within half the nominal resolution in both directions from the 

true null, which is defined as the mid-distance between the true sources; and (2) a 

3 dB-null exists between the 2 estimated peaks; a value of “0” is assigned if any of 

(1) and (2) is not satisfied. For consistency, the angular spectrum is over-sampled by 

a factor such that 3 samples are between the two separate sources. 

Although RISR is capable of estimating the source signal strength, the focus 

of application of this algorithm is to determine the direction from which signal 

arrives, and hence the mean square error (MSE) of the estimated signal strength, a 

common metric for estimator performance, does not serve as a metric in the scope of 

our discussion. This metric could also be somewhat misleading depending on what 

criteria the MSE calculation is based on.  

However, a metric denoted as angular root mean square error (ARMSE) is 

defined to measure the amount of error by which an estimated angle is deviated from 

the true location. This is analogous to the MSE metric commonly used in DOA 

literature except it is predicated upon successful separation of two sources due to the 

fact that a single estimated peak does not correspond to any of the two true sources. 

The ARMSE in degrees is calculated as the square root of the average of the angular 

difference between the estimated and the associated true signal sources for the 

simulation trials assigned with a POS of 1.  
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5.1.2 BASIC PERFORMANCE 

The performance of RISR algorithm with different processing schemes along 

with that of MUSIC and SS MUSIC algorithms are illustrated and compared in this 

section. Plots of RISR angular spectrum evolving over iterations, anecdotal results of 

a simple case setup, and several Monte Carlo simulation results are presented. The 

simulation setup of all cases consists of an uniform linear array (ULA) containing 

N = 10 antenna elements, each with half-wavelength spacing from adjacent elements, 

impringed by far-field signals. The nominal resolution and nominal sampling are 

hence 2π/N = 36º and π/N = 18º, respectively. The angular sample space is 

over-sampled by a factor of 4 to determine the probability of separation as well as for 

better visualization of resulting plots. Signals generated in all simulations are 

complex exponentials with unit magnitude and uncorrelated random phase uniformly 

distributed over 2π radians.  

It is assumed that MUSIC and SS-MUSIC have the exact prior knowledge of 

the number of signal sources Nsource and that SS-MUSIC divides the ULA into 5 

subarrays with size of Nsub = 6 so that it satisfies the Nsub >= 2*Nsource requirement. 

RISR is programmed to run K = 20 iterations after the matched-filter initialization to 

ensure convergence.  

For the plots shown in Figure 5-1, single snapshot (K = 1) is taken for 

incoherent sources at SNR = 35 dB from angular electrical angles of -90º, -72º and 0º. 

The plot titled as “0” on the top left corner is the low-resolution matched filter 

response with peak energy levels around 15 dB. As the RISR iteration progresses 

through the first 8 RISR re-iterative stages until the spectrum converges to the sparse 

solution, which are illustrated in plots titled from “1” to “8” in Figure 5-1, the 

spectral energy level at peak angles increases while the attenuation of estimates from 

other angles deepens to the noise floor. Note that as the angular resolution increases 

from plot titled as “2” to “3”, the sources with smaller angular distance are separated 

into two individual lobes with higher resolution. The trend in which the RISR 

angular spectrum converges to the true solution is similar for most cases of RISR 
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operation. Typically 10 iterations or less are necessary for RISR solution 

convergence.  

 

 
Figure 5-1. Angular spectrum (in electrical degrees) of RISR with K = 1 snapshot, 

N = 10, SNR = 35 dB and uncorrelated true sources at -90°, -72° and 0° over 
the first 8 iterations, including the initial solution titled as “0” on the top left 
corner 

For the second anecdotal simulations, the basic performance of I2-RISR, 

e-RISR, RISR with covariance matrix C as input, MUSIC and SS-MUSIC are 

studied and compared through simple DOA simulation which consists of incoherent 

signals at SNR = 20 dB from electrical angles of  -90º, -72º and 0º. A total of K = 20 

data snapshots were taken for the algorithms. The power spectrum of the signal 

estimates in dB are shown in Figure 5-2. Since the MUSIC and SS-MUSIC 

algorithms do not estimate underlying signal strength inherently, the scales used in 

the associated plots only reflect the presence of signal at the corresponding spectral 

location.  
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Figure 5-2. Angular spectrums of different algorithms with uncorrelated sources at 

-90°, -72° and 0°, K = 20 samples, SNR = 20 dB 

As the angular spectra in Figure 5-2 illustrate, while all estimators are able to 

identify the all three sources, the three schemes of RISR achieve higher sparseness in 

the solution with substantially deeper nulls between the two closely-spaced sources 

than MUSIC and SS-MUSIC. There is more energy spread over the neighbor angles 

in the angular spectrum of SS-MUSIC than MUSIC because the use of sub-arrays for 

spatially smoothed covariance reduces the resolution of SS-MUSIC. For the case of 

e-RISR and I2-RISR with the covariance matrix C as data input, the estimated source 

angles are slightly deviated from the truth by an acceptable amount. However, they 

are not included in the final RISR algorithm because of the consistent performance of 

I2-RISR under the most circumstances. Since the original RISR is only a special case 

of I2-RISR with K = 1, RISR from here on refers to I2-RISR for simplicity. 

Notice that the estimated values of the signal strengths for all three RISR 

estimators are very close to the actual signal strength of 1 (0 dB), demonstrating the 

accuracy of signal magnitude estimation the RISR can achieve. As for MUSIC and 
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SS-MUSIC, the spectral value in the spectrum has no indication of absolute or 

relative signal strength between signals from different angles. 

Figure 5-3 to 5-6 illustrate the performance of the different methods with 

regard to the probability of separation of the nearby sources and the associated 

angular root mean square error. A total of K = 20 data snapshots are taken from a 

signal that consists of three uncorrelated sources at -90°, -81° and 0° and with 500 

Monte Carlo runs are performed for each of the SNR value from 0 dB to 45 dB at 

3 dB increments. The possible variations in the receive angle and possibility of the 

inter-sample source angles are accounted by independently assigning a random angle 

deviation uniformly distributed on Δθ ∈ {−1°, 1°} for each of the three sources for 

each Monte Carlo run. For clearer comparison, I2-RISR is compared to other multiple 

snapshot processing methods for RISR in Figure 5-3 and 5-4 while its results are 

displayed with MUSIC and SS-MUSIC in Figure 5-5 and 5-6. 

 
 

Figure 5-3. Probability of separation of RISR, e-RISR and RISR with C as input 
versus SNR for uncorrelated sources at -90°, -81° and 0°, each with a random 
angle deviation Δθ ∈ {-1°, 1°}, K = 20 samples 

The superior performance of I2-RISR over other multiple snapshot processing 

schemes is demonstrated in Figure 5-3 above for uncorrelated sources. At an SNR of 

21 dB, I2-RISR achieves a POS of 1 while the POS for e-RISR and RISR with 
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covariance matrix C as input are significantly lower at around 0.65 and 0.02, 

respectively. In order for e-RISR and the RISR with C methods to reach a POS of 1, 

they require SNR of 33 dB and 39 dB, respectively, which are a lot greater than the 

21 dB for I2-RISR. 

 
Figure 5-4. Angular root mean square error of RISR, e-RISR and RISR with C as 

input versus SNR for uncorrelated sources at -90°, -81° and 0°, each with a 
random angle deviation Δθ ∈ {-1°, 1°}, K = 20 samples 

ARMSE is defined only when nearby sources are separated and hence the 

ARMSE of the three RISR schemes as a function of SNR does not start until their 

corresponding POS values become non-zero. At the SNR value of 18 dB, the 

ARMSE of e-RISR starts off with a value roughly 2.3° smaller than I2-RISR. 

However, at the same SNR value in Figure 5-4, the POS value of I2-RISR is around 

0.1 or 10% higher than e-RISR. At SNR value of 24 dB, the ARMSE of I2-RISR is at 

approximately 0.8°, significantly lower than that of the other 2 algorithms, which are 

1.7° and 2.3°. Compared to the other schemes, I2-RISR consistently achieves lower 

ARMSE and higher POS over most SNR range. 
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Figure 5-5. Probability of separation of RISR, MUSIC and SS-MUSIC versus SNR for 

uncorrelated sources at -90°, -81° and 0°, each with a random angle 
deviation Δθ ∈ {-1°, 1°}, K = 20 samples 

Figure 5-5 shows that for a signal with SNR of 21 dB, RISR can successfully 

separate two close-by sources with a probability of 1 while MUSIC and SS-MUSIC 

algorithms have nearly zero probability in the same regard. At a probability of 

separation of 0.8, the SS-MUSIC and MUSIC algorithms require approximately 7 dB 

and 12 dB higher SNR than RISR, respectively. The reason for the inferior 

performance of MUSIC as compared to SS-MUSIC is that with the same amount of 

temporal snapshots, SS-MUSIC sub-divides them into overlapping snapshots for 

spatial-smoothing to exploit more information than original MUSIC does.  

 



63 

 
Figure 5-6. Angular root mean square error of RISR, MUSIC and SS-MUSIC versus 

SNR for uncorrelated sources at -90°, -81° and 0°, each with a random angle 
deviation Δθ ∈ {-1°, 1°}, K = 20 samples 

The non-zero value of ARMSE for SS-MUSIC at SNR = 15 dB in Figure 5-6 

is only caused by the corresponding POS having a value slightly above zero as shown 

in Figure 5-5, and hence this is not taken into account when comparing the algorithm 

performances. The ARMSE of I2-RISR starts off at the SNR of 18 dB with a value 

around 0.6° smaller than that of SS-MUSIC and stays at a value smaller or equal to 

both MUSIC and SS-MUSIC algorithms over the entire SNR range. At SNR = 24 dB, 

ARMSE of I2-RISR is at around 0.5° while the other algorithms are at 1.1° and 1.2°. 

Compared to the other schemes, I2-RISR consistently achieves lower ARMSE and 

higher POS than MUSIC and SS-MUSIC algorithms over the SNR range in the 

simulation. In conclusion, from the discussion drawn from Figures 5-3 to 5-6, 

I2-RISR clearly out-performs all four other algorithms for uncorrelated signals. 

5.1.3 TEMPORAL ROBUSTNESS 

To demonstrate the signal correlation tolerance of RISR and the two 

algorithms under comparison, an anecdotal result and a Monte Carlo simulation 

results will be shown in this subsection. The anecdotal case carries the same setup as 

before except that the closely spaced signals from -90º and -81º are completely 
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correlated temporally. Signal correlation is modeled by restricting a phase difference 

between signals, where the phase difference is fixed for all K = 20 snapshots. 

 

 
Figure 5-7. Anecdotal results of RISR, MUSIC and SSMUSIC with sources at -90°, 

-72° (correlated with source at -90°) and 0°, K = 20 samples, SNR = 35 dB 

As shown in Figure 5-7, temporal correlation of underlying signals does not 

affect the performance of RISR. While RISR correctly estimates both the directions 

and the signal, MUSIC completely fails to detect the two coherent signals and 

provide a direction of estimated signal source midway between the two close-by 

underlying signals. SS-MUSIC detects the two coherent signals at the price of 

reduced angular resolution at the peaks in its angular spectrum because as explained 

in previous section, spatial-smoothing trades spatial resolution for temporal 

robustness through the use of overlapping sub-arrays. Note again that SS-MUSIC 

does not provide any information about the signal strength. 

The temporal robustness of RISR is investigated through 500 Monte Carlo 

simulation run as illustrated in Figure 5-8 and 5-9. The simulation setup consists of 

three signals from electrical angles of -90°, -81° and 0, where the two near-by signals 
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are correlated in the same way as the previous anecdotal simulation except that the 

phase difference between them is randomized for each Monte Carlo run. Individual 

random angle deviation Δθ ∈ {-1°, 1°} is also assigned to each of the three sources 

for each Monte Carlo run. A total number of K = 20 snapshots are taken. The SNR 

for the simulation varies from 18 to 60 dB with an increment of 3 dB.  

 
Figure 5-8. Probability of separation of RISR, MUSIC and SS-MUSIC versus SNR for 

correlated sources at -90°, -81° and an uncorrelated at 0°, each with a 
random angle deviation Δθ ∈ {-1°, 1°}, K = 20 samples 

It can be observed from Figure 5-8 that MUSIC completely fails to separate 

signal sources as expected when correlation between signals is present. In order to 

achieve a POS of 0.8 or 80%, RISR requires a SNR value of approximately 30 dB, 

which is 13 dB lower than the 43 dB required for SS-MUSIC. At SNR = 30 dB, the 

POS of RISR reaches 75%, whereas that of SS-MUSIC is only 5%. Compared to the 

uncorrelated case shown in Figure 5-5, SS-MUSIC is affected more significantly by 

signal correlation than RISR. For instance, at POS of 80%, the SNR required for 

SS-MUSIC rises to 43 dB for correlated case from 28 dB for uncorrelated case while 

for RISR it only increases to 30 dB from 20 dB. The reason for the performance 

degradation for SS-MUSIC is that for uncorrelated case, spatial-smoothing increases 

the amount of data for constructing the data covariance matrix and thus it exploits 

more information about the signal sources; whereas for correlated signals, that 
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functionality of spatial-smoothing is replaced by making the data-covariance full-rank 

to break down the signal correlation.   

 

 
Figure 5-9. Angular root mean square error of RISR, MUSIC and SS-MUSIC versus 

SNR for correlated sources at -90°, -81° and 0°, each with a random angle 
deviation Δθ ∈ {-1°, 1°}, K = 20 samples 

 As shown in Figure 5-9, at SNR = 18 dB the ARMSE of SS-MUSIC and 

RISR are of 12° and 2.5°, respectively. As SNR increases, the ARMSE of RISR 

decreases very slightly and is at roughly 2° while that of SS-MUSIC converges to 

zero. The small non-zero ARMSE for RISR occurs only for a certain higher 

super-resolution factor values. This effect is a function of signal separation distance 

and is an estimate bias due to a certain range of phase difference between the two 

close-by sources, which causes signal cancellation in the matched filter estimate and 

biases the sparse source convergence in the RISR iterations.  

Although SS-MUSIC performs slightly better than RISR in terms of ARMSE, 

at a lower SNR values as shown in Figure 5-8, RISR achieves significantly higher 

POS, which is the more meaningful metric in the scope of DOA estimation. In 

addition, RISR is not sensitive to the number of sources whereas, assuming the 

knowledge of number of sources P, SS-MUSIC limits the number of subarray 

elements to be more or equal to 2P. With an antenna array size of N = 10, SS-MUSIC 

breaks down if the number of signal sources surpasses five.  
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5.1.4 SPECTRAL SUPER-RESOLUTION 

The nominal spectral resolution is conventionally defined as 2π/N, where N is 

the number of sensor elements. The ability of RISR to super-resolve spectral sources 

is presented and compared with SS-MUSIC algorithm, which is known to have 

super-resolution capability. Monte Carlo simulation with 500 runs is performed for a 

setup with N = 10, K = 40 data snapshots, and two uncorrelated sources at -90° and 

-90° + ΔθL, where ΔθL = 2π
N ⋅ L

, for a range of super-resolution factor L = {2, 4, 8, 6, 

8, 16}. The two source angles are assigned an independent random angle deviation 

uniformly distributed on Δθ ∈ {−1°, 1°} at each Monte Carlo run to account for 

angle deviation for the received signal. The results for POS and ARMSE are shown 

in Figure 5-10 and 5-11, respectively, for the two algorithms. 

 

 
Figure 5-10. Monte Carlo simulation result of POS for two uncorrelated signals over 

a range of super-resolution factor L versus SNR for RISR and SS-MUSIC 
algorithms  

 Observe in Figure 5-10 that when the sources separation is close to the 

nominal resolution with lower L values, RISR and SS-MUSIC have similar POS 

across all SNR. As the super-resolution factor L increases, which decreases the 

separation ΔθL between the source angles, the performance of SS-MUSIC degrades 

more significantly than RISR. More specifically, when L goes from a factor of 2 to 4, 

the SNR required for RISR to achieve a POS of 80% increases from 14 dB to 20 dB, 
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while that for SS-MUSIC increases from 14 dB to 25 dB. Observe from the figure 

that for L = 8 (black curves), the POS of RISR approaches 90% at around 

SNR = 26 dB, but for the same POS value SS-MUSIC requires 12 dB higher SNR 

than RISR. For the extreme case of L = 16 where the separation between the sources 

is only 2.25°, the POS of RISR and SS-MUSIC are 100% and 0%, respectively, at 

SNR value of 33 dB. This Monte Carlo simulation shows that RISR out-performs 

SS-MUSIC in super-resolution in all simulated cases except for low SNR and small 

super-resolution factors L, in which case SS-MUSIC requires a few dB less than 

RISR to achieve a low POS.  

 

 
Figure 5-11. Monte Carlo simulation result of ARMSE for two uncorrelated signals 

over a range of super-resolution factor L versus SNR for RISR and 
SS-MUSIC algorithms  

 Signal sources start to be resolved at various SNR for the different 

super-resolution factors L, hence the ARMSE curves do not begin at the same SNR 

value as shown in Figure 5-11. The overall pattern of the two plots suggests that for 

correlated sources estimates of RISR have less angular error than that of SS-MUSIC 

at lower SNR and similar angular error at higher SNR. For example for L = 4, the 

ARMSE of RISR at 18 dB SNR is 2.5°, almost 3° smaller than SS-MUSIC and the 

ARMSE values are very close at 42 dB for both algorithms. Similarly, at 

SNR = 30 dB, the ARMSE of RISR is roughly 1.2° lower than that of SS-MUSIC for 

L = 16 while at SNR = 42 dB, the ARMSE values are both about 0.4°.  
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5.1.5 DATA SAMPLE SUPPORT 

The goal of the next Monte Carlo simulation is to investigate how the amount 

of received data samples affects the performance of RISR. Similar to earlier sections, 

the simulation setup consists of three uncorrelated source from angular electrical 

angles of -90º, -81º and 0º with individual random angle deviation Δθ ∈ {-1°, 1°} 

assigned to each source for each Monte Carlo run. For each value of K, the number 

of data snapshots, 500 Monte Carlo runs are performed. The six K values simulated 

are 1, 2, 4, 8, 16 and 500. Note that RISR with K = 1 is equivalent to the original 

RISR with single data snapshot. The simulation results of RISR and SS-MUSIC are 

with regard to their probability of separation are shown in Figures 5-12 and 5-13. 

 
Figure 5-12. Probability of separation of RISR versus SNR for uncorrelated sources 

at -90°, -81° and 0° and K = 1, 2, 4, 8, 16 and 500 snapshots 
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Figure 5-13. Probability of separation of SS-MUSIC versus SNR for uncorrelated 

sources at -90°, -81° and 0° and K = 1, 2, 4, 8, 16 and 500 snapshots 

 With a large amount of data support where the number of data snapshots 

K = 500, SS-MUSIC out-performs RISR as indicated by the corresponding POS 

curves (in cyan) in Figure 5-12 and 5-13. SS-MUSIC reaches a POS of 80% at 

SNR = 17 dB but RISR requires 2 dB higher SNR to achieve the same POS. As the 

number of snapshots K is reduced to 16, the ability to separate sources for 

SS-MUSIC degrades significantly while the POS of RISR is only minimally affected. 

The POS of SS-MUSIC at SNR = 20 dB decreases from 95% to 5% for a sample 

support reduction from K = 500 to 16 snapshots, whereas the POS of RISR remains 

at 90% for both K values. The intolerance of low sample support for SS-MUSIC can 

be observed by further comparing the POS curves. In order to achieve a POS of 60%, 

SS-MUSIC requires SNR values of 26 dB, 28 dB, 33 dB and 40 dB for K = 16, 8, 4 

and 2 snapshots, respectively, which are a lot higher than the corresponding SNR 

values for RISR which are 18 dB, 18 dB, 18 dB and 20 dB, respectively. The 

insensitivity of the algorithm performance to sample support size K is an advantage 

of RISR over SS-MUSIC. 

For the extreme case with only one single data snapshot (K = 1), the POS of 

SS-MUSIC are roughly zero even at high SNR, indicating SS-MUSIC fails to 
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separate signal sources under very low data sample support. RISR, on the other hand, 

achieves over 90% of POS at SNR = 35 dB. The ability of estimating signal sources 

correctly with only one data snapshot is one of the major advantages of RISR over 

SS-MUSIC and can be very useful when estimation is performed in a fast changing 

environment where only small data support is available [41]. Note that despite RISR 

is inferior to SS-MUSIC for the case of large data support, the stationarity required 

by SS-MUSIC limits the amount of data collected in DOA estimation, and hence 

K = 500 snapshots is rarely possible in most scenario. 

5.1.6 CALIBRATION ERROR  

 An unavoidable error in real-world DOA applications created by physical 

antenna configuration is the calibration error, which refers to the discrepancy 

between the antenna characteristics accounted in the measurements and the actual 

values. The effects of calibration error on RISR and SS-MUSIC are investigated in 

this sub-section through Monte Carlo simulations for four cases: calibration 

error-free, 5% amplitude error only, 5% phase error only and both amplitude and 

phase errors. The signal consists of three uncorrelated sources from -90°, -81° and 0° 

and K = 40 snapshots are sampled. For each of the SNR values, 500 Monte Carlo 

runs are performed to obtain the plots in Figure 5-14 below. 

 
Figure 5-14. Effect of calibration error on RISR and SS-MUSIC at each antenna 

element for three uncorrelated sources at -90°, -81° and 0°, N = 10 and 
K = 40 snapshots for amplitude error of 5% and phase error of 5% 
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Comparing the plots for the two algorithms in Figure 5-14, the degradation of 

SS-MUSIC due to phase error (black and red curves) at antenna elements is more 

severe than that of RISR. Observe that the POS of SS-MUSIC never exceeds 0.2 

when phase error is present, whereas RISR achieves 80% of POS at SNR = 20 dB for 

both cases with phase error. As indicated by the green curves, SS-MUSIC also 

suffers more than RISR for signals with amplitude error. For example, at 

SNR = 21 dB, POS of RISR reaches 100%, about 70% more than the POS of 

SS-MUSIC. The inability of SS-MUSIC to separate nearby sources can be explained 

by the eigen method that MUSIC is based on. As a result of the small variation of the 

signal at each antenna element, the dominant eigenvectors of the original error-free 

data covariance matrix is represented as the combination of two eigenvectors, one 

with higher energy level than the other, in the new data covariance matrix. Although 

information of the underlying signal is contained in both eigenvectors, MUSIC 

includes the eigenvector with less energy or eigenvalue in the noise space, through 

which part of the signal is projected out from the solution. Therefore, SS-MUSIC 

breaks down when calibration error is present. 

Note that for the cases containing phase errors at antenna sensors, the 

degradation of RISR at SNR above 33 dB is due to line-splitting. The two signals at 

-90° and -81° are estimated as three peaks in close angular proximity in the angular 

spectrum. The reason for this phenomenon is that at lower SNR, RISR considers the 

small variation/error on antenna elements as noise, whereas at higher SNR, the phase 

error of the antenna elements is more "noticeable" and thus causes the line-splitting 

of RISR to account for the error.  

The amount by which POS is influenced by calibration error at antenna 

elements for each algorithm can be observed from the Monte Carlo simulation results 

shown in Figure 5-15 below. The simulation setup involves K = 40 snapshots 

sampled from a signal containing three uncorrelated sources from -90°, -81° and 0° at 

SNR = 25 dB. For each of the amplitude error varying from 0% to 10% of the 

unit-magnitude signal, 500 Monte Carlo runs are performed for each of the 1% 
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interval. Monte Carlo simulation is also performed for phase error in the same range 

of error percentage values where the phase error is uniformly distributed within the 

percentage of the 2π interval centered around 0 radian.  

 
Figure 5-15. Probability of separation versus percentage calibration error in 

amplitude (left) and in phase (right) for RISR and SS-MUSIC with three 
uncorrelated sources at SNR = 25 dB and K = 40 snapshots 

Observe from Figure 5-15 that as the amplitude and phase calibration errors 

percentage increase, the probability of separation of SS-MUSIC worsens. The POS 

value of SS-MUSIC drops from 0.8 for the error-free case to 0.5 for a 6% amplitude 

error and to almost 0 for the same amount of phase error, which indicates that the 

performance of SS-MUSIC is more sensitive to phase error than amplitude error. 

SS-MUSIC algorithm starts to break down in the presence of even very small phase 

error. On the other hand, the POS of RISR stays around 1 for the range of error under 

test in both plots as shown in Figure 5-15, suggesting the robustness of RISR to both 

types of calibration error. 

5.1.7 COLORED ADDITIVE NOISE 

The additive noise buried in received signal is not always angularly uniform in 

all directions and hence its noise spectrum is not completely “white” [42, 43]. To 

demonstrate the effect of colored additive noise to RISR and two other algorithms, an 

anecdotal simulation result of this scenario is presented in Figure 5-16. The received 

signal at SNR = 15 dB consists of three uncorrelated signals from -90º, -72º and 0º. 
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The colored noise was generated by filtering a spatially “white” signal through a 

bandpass filter with the mainlobe centered at 45º. A number of K = 8 data snapshots 

are taken for processing and Knoise = 50 snapshots of the pure-noise signal are used to 

obtain the noise covariance matrix Rv.  

 
Figure 5-16. Angular spectrum of estimated signal strengths for different algorithms 

with 3 uncorrelated signals from -90º, -72º and 0º and addictive noise with 
mainlobe at around 45º 

As shown in the angular spectrum at the bottom left plot in Figure 5-16, 

SS-MUSIC estimates only the signal source at 0º correctly. As mentioned before, 

SS-MUSIC assumes a white noise spectrum as well as the knowledge of the number 

of signal sources, which is three in this simulation, and thus it merges the two sources 

at -90º and -72º together as one estimated signal in order to account for the dominant 

energy at 45º in the signal space of the covariance matrix. Although the formulation 

of FOCUSS resembles that of RISR, the Least Squares approach does not inherently 

incorporate the presence of noise into the system model. Without taking noise into 

account, the output of the FOCUSS estimator is corrupted by an estimate of the 
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source signal at a noise-concentrated angular direction. Since RISR assumes the 

presence of noise in its formulation, the knowledge of the additive noise can be built 

into the algorithm. As a result, RISR is able to detect the correct signal sources in the 

presence of colored noise with a higher success rate than SS-MUSIC and FOCUSS.  

5.1.8 OBSERVATION OF SPARSE SOLUTION CONVERGENCE 

The recursive, non-linear nature of RISR makes developing the convergence 

proof for the algorithm a challenging task, despite of the successful identification of 

signal sources by RISR in a large number of scenarios presented in the Monte Carlo 

simulation results in previous sections. However, sparse solution convergence of 

RISR can be demonstrated by observing the dominant energy spread in the eigen 

spectrum of the filter after the solution of RISR has converged. A few anecdotal 

cases are shown in this section to exemplify the convergence of the number of 

dominant eigenvalues to the number of signal sources. Since the filter from Equation 

(3.4) is not a square matrix, the signal model equation (3.1) is substituted into the 

formula for the kth estimate to obtain  
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P is the M×M modified filter matrix of which the eigen spectrum will be 

observed in this section. Observe that as k gets large, the eigen space of matrix P is 

expected to converge to the a sparse representation.  

The first anecdotal case involves a single signal at -90° with SNR = 20 dB and 

K = 20 snapshots of received data with the angular spectrum over-sampled by a 

factor of 10. The setup of the next two cases are identical to the first except two 

uncorrelated signals at -90° and -45° and three uncorrelated signals at -90°, -45° and 

0° are present for the second and third cases, respectively. Figure 5-17 below shows 

the 10 most dominant eigen values of P at the 15th iteration for all three cases. 



76 

 
 (a) (b) (c) 

Figure 5-17. Ten most dominant eigen values of matrix P at the 15th iteration for the 
estimation of (a) a single signal source at -90°; (b) two uncorrelated signals 
at -90° and -45°; (c) three uncorrelated signals at -90°, -45° and 0° with 
SNR = 20 dB and K = 20 

 Observe from Figure 5-17 that the number of dominant eigen values in the 

eigen spectrum of P for each of the three cases equals the corresponding number of 

underlying signal sources. This observation demonstrates that the eigen spectrum of 

the solution space of RISR algorithm converges to the most sparse representation, 

which is a function of the number of distinct signal sources. Though a proof is not 

available, the convergence for RISR is strongly suggested by the three anecdotal 

examples. 

5.2 SAFFIRE 

5.2.1EXPERIMENTAL SETUP AND MEG CONFIGURATIONS 

The performance of SAFFIRE is evaluated using computer simulations, 

which allow an objective assessment of the dipole localization accuracy for a number 

of dipole activation scenarios. Several examples of dipole source reconstruction are 

illustrated in the figures in this section to demonstrate the advantages of SAFFIRE 

compared to other schemes in terms of their performance. The simulation setup of 

dipole localization experiments is based on the physical setup of the MEG sensor 

equipments at the Hoglund Brain Imaging Center at the University of Kansas 

Medical Center. The human brain volume is evenly divided into 9014 sample grids 

for dipole localization. The MEG signals received at the 150 sensors of the 
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biomagnetometer system are simulated for different dipole activation scenarios at a 

sampling rate of 600 Hz. Figure 5-18 below illustrates the MEG sensor geometrical 

configuration with respect to a brain volume.  

 
Figure 5-18. Physical configuration of 150 MEG sensors relative to the brain. 

Sensors are axial gradiometers with 2 detector coils separated by 5 cm. For 
better visualization, only the lower coil of each sensor is shown. 

For each of the 9014 grids throughout the sample space, the leadfield vectors 

for only the phi and theta components (in spherical coordinates) of the associated unit 

dipole are computed due to the fact that the magnetic fields generated by the radial 

component are undetectable outside of the brain in the spherically-symmetric 

approximation of the volume conductor [21]. Hence, the size of leadfield matrix B 

responsible for dipole activity simulation is 150-by-18028. Each dipole is labeled a 

value from 1 to 9014 corresponding to the specific grid in the sample space. 

SAFFIRE algorithm used for all the simulation results incorporates 

second-stage volumetric constrained processing after the initial SAFFIRE algorithm 
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is performed. The volumetric constrain to the sample space is implemented by first 

selecting a group of “active” dipole with at least 30% of the maximum estimated 

strength from the original SAFFIRE, then the final set of dipoles is formed by 

keeping all dipoles within 2 cm proximity of each dipole from the group of active 

dipoles. The leadfield vectors corresponding to the dipoles in the final set is 

concatenated to construct Ba,r , the volumetrically constrained leadfield matrix. 

5.2.2 SINGLE DIPOLE ACTIVATION 

In this section, the performance of SAFFIRE for single dipole activations will 

be investigated for three dipoles of various depths in the sample space of the brain. 

For all three simulation cases, a dipole activation curve of 2-second duration peaks at 

t = 1 s of the activation with a peak dipole strength of 30 nAm and a pulse width of 

150 ms. The activation curve shown in Figure 5-19 below is sampled at 600 Hz 

which means a total of 1200 samples are collected with a peak at the 600th sample.  

 
Figure 5-19. Activation curve for single dipole activation 

The corresponding MEG sensor signal in matrix form of size 150×1200, Y, is 

generated using the forward model, which involves multiplying a dipole activation 

row vector x by the leadfield vector of the theta component of the activated dipole ri, 

b(ri,θ), where the product is then added to a noise vector v. The mathematical 

operation is presented in Equation (5.2).  
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vxrbY +=×  ),(1200150 θi     (5.2) 

where the sizes of x, b(ri,θ) and v vectors are 1×1200, 150×1 and 150×1, 

respectively. The additive noise magnitude is 10 femto-Tesla which, for example, 

results in a SNR of the MEG signal at the peak MGFP to be around 17.44 dB for the 

superficial dipole in the first single dipole simulation case. This SNR belongs to the 

lower end of the typical SNR range of neural signals.  

An example of the MEG sensor measurements at the 150 channels associated 

with single dipole activation is displayed in the lower plot of Figure 5-20 and the 

averaged power of the signals across sensors, also known as mean global field power 

(MGFP) is included in the upper plot of the same figure. The received data sample 

with maximum MGFP power is used as the input data for dipole localization of 

SAFFIRE algorithm. The criterion for SAFFIRE to estimate the active dipole is by 

selecting dipoles with 20% or more of the maximum estimated dipole power 

throughout the source space. It is observed that volumetric constrained reprocessing 

of SAFFIRE only improves the estimates for single dipole activation slightly. 

 
Figure 5-20. Mean Global Field Power (MGFP, at the top) and the sensors response 

of the simulated MEG measurements (at the bottom) corresponding to single 
dipole activation.  
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Single Dipole Activation, eccentricity of 6.1 cm 

 The first simulation is performed for a superficial dipole labeled as 8981, 

which is 6.1 cm from the center of the brain. Figure 5-21 shows the true dipole in red 

as well as the estimated active dipole (in blue) by different algorithms in the 3D brain 

map. The input data matrix Y is simulated using Equation (5.2) with the leadfield 

vector corresponding to the theta component of dipole 8981. The first algorithm of 

which the performance is evaluated is SAFFIRE with single snapshot (K = 1) at the 

600th sample of the simulated data. SAFFIRE is repeated to obtain the next set of 

results for multiple-time processing with K = 4 snapshots, which is associated with 

data from t = 995 ms to t = 1 s. Since FOCUSS and MNE algorithms were only 

developed for single snapshot data, only the 600th sample is used for the third and 

fourth set of results.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 5-21. The angled (right) and front/top (left) view of the location of the true 
active dipole 8981 (in red), which is 6.1 cm from the center of the brain, 
estimated (in blue) by (a) SAFFIRE using K = 1 snapshots at 600th sample; 
(b) SAFFIRE using K = 4 snapshots centered around 600th sample; (c) 
FOCUSS using the 600th sample; and (d) MNE (in blue) using the 600th 
sample with a threshold of 70% of maximum estimated dipole strength 

Comparing the results from (a) and (b) in Figure 5-21, both algorithms 

accurately estimate the location of the active dipole, indicating that SAFFIRE with 

single snapshot data is able to localize the superficial dipole as well as SAFFIRE with 

multiple-snapshot processing. FOCUSS in (c) also successfully estimate the 

superficial dipole correctly. However, determining the parameters for regularization 
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and norm un-biasing in the FOCUSS algorithm in Equation (2.29) require 

considerable amount of effort because they are functions of a number of factors such 

as the active dipole location and noise level. Due to the low-resolution nature of MNE 

algorithm, a threshold of 70% of maximum estimated dipole strength still results in a 

3D dipole estimation map with very poor spatial resolution. MNE is clearly inferior to 

other algorithms in terms of spatial precision of dipole localization and is hence not 

considered in further performance comparison for algorithms. MNE is also expected 

to fail for inner dipoles due to the lack of any scheme for norm-bias adjustment. 

 

 
Figure 5-22. Dipole strength estimated by SAFFIRE (top left), the neural activity 

index resulted from LCMV algorithm (top right), and the dipole strength 
estimated by MNE (bottom) for activated dipole 8981 
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 The plots in Figure 5-22 represent the relative dipole strengths estimated by 

different algorithms. Observe that MNE algorithm delivers a “spectrum” with the 

worst resolution compared to the other two algorithms as expected. LCMV requires 

400 snapshots, an equivalent of 0.667 s duration of data, to construct the data 

covariance matrix while only four snapshots, which translates to only 0.0067 s, are 

processed for the SAFFIRE algorithm, suggesting the higher temporal resolution 

capability of SAFFIRE in dipole localization. A norm-bias adjustment of each dipole 

for LCMV is achieved through the neural activity index (NAI), which is the ratio 

between the biased estimate of the variance (energy) of the dipole and the estimate of 

variance of the noise generated by the same dipole. As shown in Figure 5-22, the plot 

of dipole strength estimates by SAFFIRE achieves a remarkably higher level of 

sparseness than the NAI plot of LCMV, thus demonstrating the superior spatial 

resolution of SAFFIRE. In addition, the greater algorithm efficiency of SAFFIRE can 

be easily concluded from the fact that the computation time of LCMV was about 

4 minutes, which is 20 times of the 12 seconds required by SAFFIRE. 

 
     (a)      (b) 

Figure 5-23. True activation curve (in green) of dipole 8981 and reconstructed time 
course of dipole activity (in blue) by (a) SAFFIRE algorithm with 
K = 4 snapshots and (b) LCMV with 400 snapshots to construct the data 
covariance matrix  

 The reconstructed time course of dipole 8981 for SAFFIRE with K = 4 

snapshots and for LCMV algorithms are plotted in blue in Figure 5-23. Observe that 

compared to LCMV, the time course for SAFFIRE matches slightly better with the 
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true activation curve plotted in green and maintains a lower noise level throughout the 

entire time span, suggesting that SAFFIRE can reconstruct cleaner time courses. 

Single Dipole Activation, eccentricity of 4.4 cm 

 The second simulation is performed for a mid-depth dipole labeled as 7952, 

with a distance of 4.4 cm from the center of the brain. Figure 5-24 shows the true 

dipole in red as well as the estimated active dipole by different algorithms in the 3D 

brain map. Again, the MEG sensor data is simulated using Equation (5.2) with the 

corresponding data for dipole 7952. The algorithms of which results are shown in 

Figure 5-24 are SAFFIRE with single snapshot (K = 1), SAFFIRE with multiple-time 

processing (K = 4), and FOCUSS with single snapshot data and same algorithm 

parameters as the previous simulation. 

 
(a) 

 
(b) 
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(c) 

Figure 5-24. The angled (right) and front/top (left) view of the location of the true 
active dipole 7952 (in red), which is 4.4 cm from the center of the brain, 
estimated (in blue) by (a) SAFFIRE using K = 1 snapshots at 600th sample; 
(b) SAFFIRE using K = 4 snapshots centered around 600th sample; and (c) 
FOCUSS  using the 600th sample 

The depth of dipole 7952 creates greater attenuation of magnetic fields, which 

consequently worsens the SNR in MEG sensor signal Y than that of dipole 8981 in 

the previous simulation. The 3D plot shown in (a) and (b) of Figure 5-24 illustrates 

that the SNR gain due to multiple data snapshots enables SAFFIRE to accurately 

localize the mid-depth dipole when single-snapshot SAFFIRE can only estimates the 

rough location of the same dipole. On the other hand, FOCUSS completely fails to 

localize the active dipole and instead, only provide active dipole estimates at 

superficial locations as shown in (c). This can be explained by the lack of robust bias 

adjustment of the dipole norm and the need to “tune” the parameters of the FOCUSS 

algorithm to their optimal values depending on the characteristics of the underlying 

dipole. These factors limit the performance of FOCUSS whereas SAFFIRE is free of 

such constraints for estimation involving non-superficial dipoles because of the 

affine-domain operation and energy normalization at each iteration. 
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(a)                       (b) 

Figure 5-25. True activation curve (in green) of dipole 7952 and reconstructed time 
course of dipole activity (in blue) by (a) SAFFIRE algorithm with 
K = 4 snapshots and (b) LCMV with 400 snapshots to construct the data 
covariance matrix  

 The reconstructed time course by SAFFIRE shown in Figure 5-25(a) for 

dipole 7952 is more noisy than that shown in Figure 5-24(a) for dipole 8981. The 

same can also be observed for the time courses by LCMV in Figure 5-24(b) and 

Figure 5-25(b). The reason for that is, as mentioned previously, the attenuation of 

magnetic field as it travels through the brain increases with dipole depth which causes 

the MEG signal SNR to decrease. Compared to LCMV, SAFFIRE produces a 

reconstructed time course with a lower noise level over the entire duration as well as 

a better-matched pulse around t = 1s.  

Single Dipole Activation, eccentricity of 2.0 cm 

 The last single active dipole simulation is performed for a deep dipole labeled 

as 3310, which is 2.0 cm from the center of the brain. Figure 5-26 shows the true 

dipole in red as well as the estimated active dipole by different algorithms in the 3D 

brain map. Again, the MEG sensor data Y of size 150×1200 is simulated using 

Equation (5.2) with the corresponding data for dipole 3310. The algorithms of which 

results are shown in Figure 5-26 are SAFFIRE with single snapshot (K = 1) and 

SAFFIRE with multiple-time processing (K = 4). 
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(a) 

 
(b) 

Figure 5-26. The angled (right) and front/top (left) view of the location of the true 
active dipole 3310 (in red), which is 2.0 cm from the center of the brain, 
estimated (in blue) by (a) SAFFIRE using K = 1 snapshots at 600th sample; 
and (b) SAFFIRE using K = 4 snapshots centered around 600th sample 

 SAFFIRE with K = 4 snapshot is able to localize accurately an active dipole 

very deep in the brain as shown in Figure 5-26(b) whereas with only a single data 

vector, SAFFIRE can still estimate the approximate location of dipole 3310. 

Although SAFFIRE requires four snapshots to achieve high performance, the 

unprecedented temporal resolution of this algorithm demonstrated by accurate 

estimation using only an equivalence of 6.67 ms duration of data is a great advantage 

over other existing algorithms. 
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Figure 5-27. Dipole strength estimated by SAFFIRE on the left and the neural activity 

index resulted from LCMV algorithm on the right for activated dipole 3310 

 
     (a)        (b) 

Figure 5-28. True activation curve (in green) of dipole 3310 and reconstructed time 
course of dipole activity (in blue) by (a) SAFFIRE algorithm with 
K = 4 snapshots and (b) LCMV with 400 snapshots to construct the data 
covariance matrix  

 Performance degradation of LCMV is illustrated by comparing the NAI plot 

of LCMV for dipole 3310 in Figure 5-27 to that for dipole 8981 in Figure 5-22. The 

energy is spread out among wider range of dipoles for the deeper dipole, which 

effectively lower the spatial resolution of LCMV. SAFFIRE, however, maintains the 

sparseness in the solution and return a dominant energy estimate at the correct dipole 

location as shown in Figure 5-27, indicating that SNR of sensors signal only affects 

the performance of SAFFIRE minimally for single dipole activation. 
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 As expected, the reconstructed time courses of dipole 3310 shown in 

Figure 5-28 has higher noise level than the corresponding curves for dipole 7952 in 

Figure 5-25 for the respective algorithms due to SNR deterioration. Observe that 

SAFFIRE reconstructed a time course with significantly lower the noise level and a 

more defined pulse curve than the LCMV algorithm. From the comparisons drawn for 

the three single dipole activation simulations, SAFFIRE undoubtedly out-performs 

LCMV in dipole time course reconstruction. 

5.2.3 NEARBY DIPOLE PAIR 

 In this section, the performance of SAFFIRE is demonstrated for a dipole 

simulation of the theta components of a pair of superficial dipoles, which are 1.09 cm 

apart and are labeled as 8570 and 8629. Both dipoles have identical activation curve 

to the single dipole simulation case and MEG data matrix is simulated using 

Equation (5.2) with the data corresponding to the dipole pair. SAFFIRE is performed 

with K = 4 snapshots centered around the 603rd sample and volumetric constrained 

reprocessing. The sensor data is also processed by LCMV to yield a NAI plot for 

comparison with SAFFIRE.  

 
Figure 5-29. Dipole strength estimated by SAFFIRE on the left and the neural activity 

index resulted from LCMV algorithm on the right for the dipole pair 8570 and 
8629 
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Figure 5-30. Angled (left) and front (right) 3D-view of dipoles 8570 and 8629 (in 

red), which are 1.09 cm apart and about 5 cm from the center of the brain, 
and dipole estimated by SAFFIRE (in blue) using K = 4 snapshots centered 
around 603rd sample 

 
Figure 5-31. Reconstructed time course of dipole 8570 (left) and 8629 (right) using 

SAFFIRE (in blue) and the true dipole activation curve (in red) 

It can be observed in Figure 5-29 that the NAI values of the majority of the 

dipoles in the NAI plot of LCMV is around 16.5 and the dipoles associated with the 

peak NAI do not match with the correct values of 8570 and 8629, indicating that 

LCMV fails completely to localize two close-by fully-correlated sources.  

On the contrary, the plot of the dipole strength estimated by SAFFIRE shown 

in Figure 5-29 contains two peaks at the correct active dipole index of 8570 and 8629 

while displaying the high spatial resolution by maintaining the sparseness in the 
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solution “spectrum”. Moreover, the spatial resolution of active dipoles achieved by 

SAFFIRE is demonstrated in Figure 5-30, which illustrates accurate localization of 

the two close-by dipoles. SAFFIRE also successfully reconstructs the time courses for 

the two active dipoles with small noise energy as illustrated in Figure 5-31. The 

ability to correctly separate close-by dipole with high spatial resolution as well as to 

reconstruct time course proves the distinctly advanced performance of SAFFIRE over 

LCMV. 

5.2.4 MIRRORED DIPOLE-PAIR IN PRIMARY AUDITORY REGIONS 

LCMV is known to break down when spatial correlation or interference is 

present in the signal and although the modified version, known as MCMV-CSRS, 

can solve such problem, it requires prior knowledge of the location of the interferer. 

In this section, the ability of SAFFIRE to handle spatial correlation without any prior 

knowledge of the underlying dipole activity is evaluated through the simulation of a 

pair of spatially-mirrored dipole located in the primary auditory regions. The dipoles 

are labeled as 1088 and 7952 and are both roughly 4.5 cm from the center of the 

brain. The activation curve of both dipoles are identical to the single dipole 

simulation case and MEG data matrix Y is simulated using Equation (5.2) with the 

data corresponding to the dipoles. 

 
Figure 5-32. Angled (left) and front (right) 3D-view of the dipoles in the primary 

auditory regions (in red) and dipole estimated by SAFFIRE (in blue) using 
K = 4 snapshots centered around 600th sample 
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Figure 5-33. Reconstructed time course of dipole 1088 (left) and 7952 (right) in the 

auditory region using SAFFIRE (in blue) and the true dipole activation curve 
(in red) 

 The spatial correlation robustness of SAFFIRE algorithm is demonstrated 

through observations from Figure 5-32 and 5-33. As shown in Figure 5-32, the 

locations of both active dipoles are accurately estimated by SAFFIRE. The time 

course of the dipole in each primary auditory region reconstructed by SAFFIRE 

matches with the true underlying activation curve with small amount of noise as 

illustrated in Figure 5-33. The ability for SAFFIRE to handle the case with 

mirrored-dipoles in the primary auditory regions is the motivation for testing 

SAFFIRE for the ASSR simulation, of which the results are presented next. 

5.2.5 AUDITORY RESPONSE  

Auditory onset response is an evoked auditory response (EAR) in the primary 

and secondary cortex due to brief auditory stimuli presented at short intervals [15]. 

Studies suggest that EAR can be potentially used for hearing threshold or cognitive 

evaluation and measuring the consciousness level of patients undergoing anesthesia. 

Accurate reconstruction of the underlying spatio-temporal process of the primary and 

secondary cortex is essential to the studies of the neuromagnetic EAR and the effects 

induced by other factors. EAR involving short time delay of activation between 

dipole pairs in primary and secondary cortex requires very high level of 
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spatio-temporal resolution and as a result, the reconstruction of this type of response 

had been a challenging problem in the neuroimaging community with conflicting 

results due to the different source reconstruction strategies employed by different 

studies. 

The configuration of ASSR setup is shown in Figure 5-34 below with two 

dipole pairs, which are numbered as 1088, 7952, 613 and 8570, mirrored along the 

mid-sagital plane. One mirrored dipole pair is simulated in the regions of the primary 

auditory cortex and another in the secondary auditory cortex. The separations 

between dipoles 1088 and 613 in the left cerebral hemisphere and that between 

dipoles 7952 and 8570 in the right cerebral hemisphere are 1.52 cm and 1.65 cm, 

respectively. As illustrated in Figure 5-35, the dipole activation curves of all four 

dipoles are identical except that the peaks of activation curves for the secondary 

cortex are delayed by 50 ms, or 30 samples, from those in the primary cortex. Peak 

dipole strength is 30 nAm and the noise magnitude is 10-15 T.  

 
Figure 5-34. Locations of the dipole pairs in primary cortex (red) and secondary 

cortex (green) for the ASSR simulation 
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Figure 5-35. Activation curves of primary and secondary auditory regions with peaks 

at t = 1 and 1.05 s (top left), the mean global field power of the received 
signals (top right) and the MEG sensors response of all 150 channels (bottom 
left)  

Methods 

 The MEG sensor signals sampled at 600 Hz are generated by summing the 

MEG responses corresponding to the activation curve of each of the four dipoles 

computed using Equation (5.2). SAFFIRE algorithm is used in a manner similar to an 

overlapped sliding window for the data set of 78 samples from t = 962 ms (578th 

sample) to t = 1.09 s (655th sample). At each estimation interval, K = 4 consecutive 

data snapshots are processed to yield an estimate and hence producing 75 estimates. 

Besides the original SAFFIRE algorithm, SAFFIRE with volumetric-constrained 

reprocessing as well as 3-of-5 detection are also carried out at each estimation 

interval for performance comparison. For simplicity, SAFFIRE with 
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volumetric-constrained reprocessing is interchanged with SAFFIRE-2 in the rest of 

this section. 

In order to remove the few occurrences of improbable estimates such as split 

dipoles or active dipole that only occurs for 1 sample (1.7 ms), the 3-of-5 detection is 

applied, also as an overlapped sliding window, to the output of SAFFIRE-2 and is 

defined as follows: for each group of five consecutive estimates, if a dipole 

considered as active (with at least 30% of the maximum estimated strength) for three 

or more of those five estimates, the dipole is counted as active. Since for each group 

of five estimates, one 3-of-5 detector estimate is produced, the total number of 

estimates after applying 3-of-5 detection is 71, four less than that of the other two 

methods. 

Results 

 Three stages of estimated dipole activity are identified after observing the 

temporal progression of the dipole estimate locations for each of the three methods. 

The first and third stage corresponds to the period when the true dipole pair in the 

primary cortex and secondary cortex, respectively, is successfully localized. The 

second stage, which typically takes place between the peaks of the primary and 

secondary activation curves, is the transition interval where the dipoles estimated at 

locations between the primary and secondary cortices.  

It is found from the activation curves that the period over which the power of 

the dipole associated with the primary activation is at least 20% of its maximum is 

from t = 968 ms (582nd sample) to t = 1.032 s (620th sample), whereas the period 

corresponding to the secondary activation is from t = 1.018 ms (612rd sample) to 

t = 1.082 s (650th sample). In order to compare the performance of the three different 

reconstruction methods, the ideal values of time indices will be referred to, which are 

listed in Table 5-1 below. Note that the ideal time period for the second stage is when 

the primary and secondary activation curves overlap. 
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Table 5-1. Ideal time indices for the first to third stages of ASSR estimation. The 
bracket value is the sample index corresponding to the time 

 Ideal time 
First stage begins 968 ms (582) 
Second stage begins 1.018 s (612) 
Third stage begins 1.032 s (620) 
Third stage ends 1.082 s (650) 

 

The time index at which each stage occurs for the three methods are tabulated 

in Table 5-2. Since the estimates in the first or third stage might not be completely 

accurate or exact, a “soft” criterion is defined that the localization of a dipole is 

determined to be successful only when the estimated dipoles are exactly at or very 

close to the true dipole location with no ambiguity that it is in the correct location.  

Table 5-2. Estimated time of ASSR dipole localization for the three processing 
schemes where the bracket value is the sample index corresponding to the 
time 

 SAFFIRE SAFFIRE-2 3-of-5 detector 

First stage begins 980 ms (589) 968 ms (582) 968 ms (582) 
Second stage begins 997 ms (599) 1.002 s (602) 1.002 s (602) 
Third stage begins 1.045 s (628) 1.045 s (628) 1.043 s (627) 
Third stage ends 1.077 s (647) 1.088 s (654) 1.080 s (652) 

Observe from Table 5-2 that the time indices defining the boundary of the 

three stages matches better with the ideal case for SAFFIRE-2 than for the original 

SAFFIRE. The SAFFIRE-2 and ideal time index for the beginning of the first stage 

are both 582, which are 7 snapshots before the corresponding time index for 

SAFFIRE. Compared to the ideal duration of 8 snapshots for the second stage, 

SAFFIRE-2 with 26 snapshots is closer to ideal than SAFFIRE with 29 snapshots.  

Although 3-of-5 detector provides very little improvement over SAFFIRE-2 

in terms of the time indices for defining the stages, it delivers cleaner 3D dipole 

localization images during the second stage where the dipoles “migrate” from 

primary to secondary cortex and during the time period outside of any of the three 

stages due to low SNR. Three example sets of the dipole localization 3D plots 
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corresponding to each of the three stages are demonstrated in Figures 5-36, 5-37 and 

5-38 below along with the MGFP plots for results of which 3-of-5 detector is applied. 

 

 
Figure 5-36. An example of the first stage. Top: true dipoles (in red) and the dipole 

locations estimated by SAFFIRE-2 with 3-of-5 detector (in blue) in 3D plot 
for data at around t = 972 ms (584th sample); bottom: MGFP plot from t = 
968 ms to t = 1.085 with primary and secondary activation curves which are 
out of scale. The black vertical line indicates t = 972 ms on the time axis 
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Figure 5-37. An example of the second stage. Top: true dipoles (in red) and the 

dipole locations estimated by SAFFIRE-2 with 3-of-5 detector (in blue) in 3D 
plot for data at around t = 1.025s (616th sample); bottom: MGFP plot from 
t = 968 ms to t = 1.085 with primary and secondary activation curves which 
are out of scale. The black vertical line indicates t = 1.025 s on the time axis 
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Figure 5-38. An example of the third stage. Top: true dipoles (in red) and the dipole 

locations estimated by SAFFIRE-2 with 3-of-5 detector (in blue) in 3D plot 
for data at around t = 1.052s (632rd sample); bottom: MGFP plot from t = 
968 ms to t = 1.085 with primary and secondary activation curves which are 
out of scale. The black vertical line indicates t = 1.052 s on the time axis 

 Observe the MGFP plot within the estimation period in Figure 5-38 that the 

power received at MEG sensors at the peak of the primary activation is less than that 

at the peak of the secondary activation. This is due to more attenuation associated 

with the greater depth of the dipole pair in the primary cortex and hence lower SNR 

for the primary activation. Therefore, even though primary and secondary activation 

curves are identical with small delay, the third stage is estimated with a longer 

duration than the first stage as illustrated in Table 5-2. For the same reason, the 

duration of the first stage corresponding to the estimated primary activation is 

slightly shorter than that that of the third stage. 
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Figure 5-36 and 5-38 illustrate the accurate dipole localization of the dipole 

pairs in the primary and secondary cortices, respectively by SAFFIRE-2 with 3-of-5 

detector. The transitional stage example shown in Figure 5-37 associated with data 

does not display correct localization of either dipole pairs, the estimates are still 

within the auditory cortex in the respective cerebral hemispheres. The temporal 

progression of the 3D plot during the transition stage shows the gradual migration of 

estimated active dipole from the primary cortex to secondary cortex. 

In conclusion, the high temporal and spatial resolution of SAFFIRE enable 

the successful reconstruction of the spatio-temporal signal for the ASSR, which can 

motivate further neural signal processing to observe other types of neural dynamic 

scenarios.  

Videos displaying the temporal progression of the dipole localization in 3D 

plots for ASSR as well as the three single dipole activation examples are created and 

can be requested through email. 

5.2.6 TIME-COURSE RECONSTRUCTION WITH INTERFERENCE 

 Interference, such as energy from other dipole sources, maybe present within 

the temporal window of the reconstructed time course, yet outside of the time range 

over which data snapshots are taken for constructing the dipole localization filter. 

The ability of SAFFIRE to remove such interference with an additional multiple-time 

processing is demonstrated through a simulation of two mirrored dipoles of which 

the pulses of the dipole activation curves are separated with no overlapping.  

The activation curves of the two dipoles in the primary auditory cortex, 

numbered as 1088 and 7952, and the MGFP of the MEG sensor signal are shown in 

Figure 5-39. The pulse of dipole 7952 is delayed by 500 ms, or 300 samples, from 

the pulse of dipole 1088 so that when K = 4 snapshots corresponding to the peak of 

MGFP at t = 1 s (601st sample) are processed by SAFFIRE, the activity of the 

interferer dipole (7952) does not contribute to dipole strengths estimation. The 

resulting 3D plot and the reconstructed time course of the estimated active dipole are 

shown in Figure 5-40.  
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Figure 5-39. Activation curves of dipoles 1088 and 7952 in the primary cortex with 

peak delay of 500 ms (left) and the MGFP plot of the MEG sensor signal 
(right) 

 
Figure 5-40 Angled (top left) and front (top right) 3D-view of dipoles 1088 and 7952 

in the primary cortex (red) with 500 ms peak delay and the dipole estimated 
by SAFFIRE (blue). The bottom plot is the reconstructed time course of the 
estimated dipole 1088 with a false peak at 1.5 s (blue) and the true activation 
curve (red) 
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 Since the data snapshots around t = 1 s consisting of only the activity of 

dipole 1088 is selected to construct the filter, SAFFIRE identifies active source at 

dipole 1088 though not dipole 7952 as shown in Figure 5-40. The reconstructed time 

course of dipole 1088 contains a large peak around t = 1 s as expected and a smaller 

peak at t = 1.5 s. If no prior knowledge of the underlying dipole activity is available, 

the smaller peak could be a correct dipole pulse but it could also be a false peak due 

to activation of other dipoles which are spatially correlated with dipole 1088. 

 

 

Figure 5-41. Angled (top left) and front (top right) 3D-view of dipoles 1088 and 7952 
in the primary cortex (red) with 500 ms peak delay and the dipoles estimated 
by SAFFIRE (blue). The bottom plots are the reconstructed time course of the 
dipoles 1088 and 7952 (blue) and the true activation curve (red) 
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 The multiple-time processing feature of SAFFIRE can be utilized in an 

alternative way to determine the true nature of the second peak. Four additional data 

snapshots around the time index associated with the second peak, i.e. t = 1.5 s 

(902nd sample), are concatenated with the original four snapshots around t = 1 s to 

form a new set of mixed input data for the SAFFIRE algorithm. The 3D plots of the 

estimated dipoles from the SAFFIRE reprocessing with mixed input are shown in 

Figure 5-41 along with the two reconstructed time courses. 

With the MEG data input containing activities of the two dipoles, SAFFIRE 

accurately localized the dipoles responsible for the mixed sensor signal as shown in 

the upper plots of Figure 5-41. The time courses of the estimated dipoles in the 

bottom plots match very well with the associated underlying activation curves. 

Observe that the second peak of the reconstructed time course at t = 1.5 s in 

Figure 5-40 does not appear in the corresponding plot in Figure 5-41, whereas the 

reconstructed time course of the dipole 7952 has a peak at t = 1.5 s. The observations 

imply that the second peak in Figure 5-40 was indeed a false peak containing dipole 

energy of dipole 7952 due to the spatial correlated of the two dipoles. SAFFIRE filter 

can reconstruct dipole time courses only with information embedded in the input data 

the filter is constructed with. Intuitively speaking, since the mixed data carries 

information of the interferer, SAFFIRE is able to project out the dipole energy 

leakage of dipole 7952 from the reconstructed time course of dipole 1088 while the 

first SAFFIRE fails in the same regard. The results of this simulation case 

demonstrate the ability of SAFFIRE to successfully reconstruct spatially uncorrelated 

time courses through a secondary processing with input data containing activities of 

potential interferers. 
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

The novel algorithm developed for direction of arrival estimation, denoted as 

Re-Iterative Super-Resolution (RISR), recursively update the filter through the power 

estimates in the formulation until the solution converges to a maximally sparse 

solution. The results in Chapter 5 shows that RISR out-performs the algorithms under 

comparison in both spatial and temporal resolution. Super temporal resolution 

enabled by the single-snapshot processing becomes a major advantage in the 

presence of fast-moving targets, whereas finer spatial resolution increases the success 

of distinguishing closely-separated sources by the ULA. The temporal correlation 

robustness of RISR is a useful property when multiple signal sources are 

synchronized. Calibration error at each of the antenna elements is inevitable in 

antenna arrays setup and therefore the tolerance of RISR toward such error 

demonstrated through simulations is extremely useful in DOA estimation with real 

data. The susceptibility to colored noise or interference as well as the ability to 

estimate signal strength in addition to the aforementioned advantages reflects the 

great potential of the RISR algorithm. 

Source AFFine Image REconstruction, an iterative approach based on the 

MMSE framework, is a powerful tool for functional neural imaging with 

magnetoencephalography signals as shown in the results of a number of dipole 

localization simulations. However, SAFFIRE can be applied to inverse modeling 

with other imaging techniques, such as magnetocardiography for the heart [44] and 

magnetogastrography [45] for the abdomen, provided that accurate forward models 

exist. Parametric neural dipole localization algorithms are known for heavy bias in 

favor of superficial dipoles. SAFFIRE was shown to produce bias-free estimates in 

simulations with activated dipoles of various depths without the need for parameter 

adjustment. The spatial resolution achieved by SAFFIRE due to solution sparseness 

confines the activate dipole region and, hence, is helpful for separating two close-by 
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dipoles. The exceptional temporal resolution is another advantage of SAFFIRE that 

allows the observation of neural evoked response dynamics in finer details. The 

unprecedented spatio-temporal resolution, temporal correlation robustness, 

independence of statistical prior knowledge and the effective dipole activity time 

course reconstruction of SAFFIRE together build the success in reconstructing the 

multiple sources of auditory evoked responses which is a difficult problem in the 

functional imaging community.  

In spite of the similarities between the algorithms, such as the framework on 

which they are based and their recursive natures, RISR and SAFFIRE are two 

distinct approaches with a few principal differences. First of all, SAFFIRE is specific 

for inverse modeling of the biological process while RISR is applied to the more 

general DOA estimation. The signal model of RISR assumes far-field signals 

impringing on the ULA whereas the conformed array antenna configuration of 

SAFFIRE does not make such assumption. Lastly, SAFFIRE incorporates energy 

normalization and affine-transformed space operation at each iteration into the 

algorithm to alleviate the effects of matrix ill-conditioning, which is not a problem 

with the DOA estimation for the RISR algorithm. 

6.2 Future Work 

The evaluation of RISR algorithm shown in Chapter 5 was based on the 

simulation of sources with equal signal strengths. Therefore, other aspects of the 

algorithm, such as the signal sources dynamic range, distributed sources scenarios 

and real data processing, can be the next steps of investigation. The RISR is built 

upon a MMSE framework with a two-dimensional signal model for the azimuth 

angle. An extension of RISR into three-dimensional DOA estimation can be explored 

by considering a signal model that incorporates azimuth and elevation of the source 

signals.  

The purpose of applying a 3-of-5 detector to a dipole activation response 

reconstructed by SAFFIRE is analogous to smoothing the spatial dipole estimates 
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across time in order to eliminate “short-lived” estimates, due to the low physical 

probability of such activation duration. This temporal averaging of spatial 

information is an example of space-time coupling processing, which enables 

information extraction from the relationship between the current and additional 

dimensions. Instead of post-processing, the first order information between space and 

time, such as the slope of activation curve of a detected dipole, might possibly be 

incorporated into the filter formulation to increase the accuracy of the overall 

reconstructed response.  

SAFFIRE was shown to accurately localize dipole activities and reconstruct 

time course of the dipole activities by the results of a limited number of scenarios. 

Therefore, other scenarios, such as dipole activation curve shape and distributed 

dipole activity, can be simulated to examine the performance of the algorithm. Also, 

SAFFIRE is still yet to be tested on real experimental MEG data of the auditory 

evoked responses.  

In spite of the disadvantages of other medical imaging techniques as 

discussed in the background section, some related research has been conducted for 

fMRI constrained MEG signal processing with other algorithms [46]. This approach 

should be investigated further since other imaging methods offer complementary 

information that will potentially increase the performance of SAFFIRE. 

The sensor signals in the forward model from which SAFFIRE is derived can 

be substituted with ones related to other physical phenomena, for example, 

electroencephalography, magnetocardiography and magnetogastrography. The 

unprecedented spatio-temporal resolution of SAFFIRE algorithm can benefit the 

estimation of the underlying activities with higher accuracy and precision. 

The applications of the recursive MMSE framework in radar adaptive pulse 

compression, direction of arrival estimation and functional neural imaging have been 

shown to achieve excellent performance. While the algorithms, depending on the 

application, might require different adjustment, the common formulation of the basic 

RMMSE filter should allow flexible application to other types of signal estimation.
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