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Abstract

In uniform pulse-Doppler radar, there is a well known trade-off between unambigu-

ous Doppler and unambiguous range. Pulse repetition interval (PRI) staggering, a

technique that involves modulating the interpulse times, addresses this trade-space

allowing for expansion of the unambiguous Doppler domain with little range swath

incursion. Random PRI staggering provides additional diversity, but comes at the cost

of increased Doppler sidelobes. Thus, careful PRI sequence design is required to avoid

spurious sidelobe peaks that could result in false alarms.

In this thesis, two random PRI stagger models are defined and compared, and sidelobe

peak mitigation is discussed. First, the co-array concept (borrowed from the intuitively

related field of sparse array design in the spatial domain) is utilized to examine the

effect of redundancy on sidelobe peaks for random PRI sequences. Then, a sidelobe

peak suppression technique is introduced that involves a gradient-based optimization

of the random PRI sequences, producing pseudo-random sequences that are shown to

significantly reduce spurious Doppler sidelobes in both simulation and experimentally.
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Chapter 1

Introduction

1.1 Waveform Diversity (WD)

The term radar encompasses a wide range of techniques using radio waveforms to ascertain

aspects about an illuminated scene, including the range, radial velocity, direction, size, or material

of scatterers. Transmission (active or passive), subsequent scattering, reception, and processing of

radio waves are used to perform a plethora of tasks, including imaging, detection, and tracking,

based on attributes of the received signal like timing, phase, power, and polarization. Clearly

radar is a broad field with many features. This thesis focuses on a particular type of radar system

called Moving Target Indication (MTI) radar that uses pulsed waveform transmissions to recover

information about the velocity of illuminated scatterers.

Technology has advanced tremendously in the past 60 years, leading to the burgeoning research

and development area of Waveform Diversity (WD)[1, 2, 3, 4]. Different radar signal structures

possess different properties that can be utilized for various applications, and with hardware ad-

vancements the possibilities for physical realization of waveforms have grown. Thus modulation

of one/many attribute(s) of the radar signal (along with receive processing) can be the vehicle by

which to address many challenges in radar [5]. This thesis specifically contributes to the WD cate-

gory of waveform design and optimization by examining a pulse-by-pulse modulation strategy that

is used to shape the Doppler spectrum response. This is a transmission scheme referred to as ran-

dom PRI staggering (Section 1.6), where pulses are transmitted at non-uniform and random time

intervals, and is used to mitigate Doppler ambiguities (Section 1.5) at the cost of increased Doppler

sidelobes [6, 7]. The work presented in this thesis builds upon [7, 8, 9] and addresses this trade-

1



off. First, Chapter 1 provides context and background information for readers unfamiliar with MTI

radar. Next, two generation methods for random (PRI) staggering are presented and compared in

Chapter 2. Then Chapter 3 discusses the impact of redundancy in the interpulse times for both

models. Last, a gradient-based optimization of the interpulse times is performed, analyzed, and

experimentally demonstrated in Chapter 4.

1.2 Moving Target Indication (MTI) Radar

Radar waveforms are typically configured according to two classes: Continuous-wave (CW) or

pulsed. CW radar, aptly named, continuously transmits a waveform and often employs a bistatic

configuration (transmitter and receiver separated) to prevent receiver damage from high-powered

transmissions. On the other hand, a pulsed radar emits short bursts, with some amount of time

between pulses during which a collocated receiver can operate [10].

Pulsed radar offers isolation between a collocated transmitter and receiver, and an object’s

radial velocity relative to the radar (Section 1.3) and range (Section 1.4) can be determined simply,

though trade-offs do arise. The peak transmit power of a pulsed system must be higher to realize

sufficient energy-on-target [10, 11]. Additionally, while a pulse is transmitted, the receiver is

turned off to avoid damage, thus creating a blind range (shown in Fig. 1.6) within which returns

from objects cannot be received (therefore the objects remain undetected) [10, 12].

In a pulsed radar system, information obtained using a pulsed transmission scheme is exploited

to determine information about the radial velocity of scattering objects in the illuminated scene.

The pulsed data is used to eliminate returns from non-moving scatterers known as clutter (a mode

known as Moving Target Indication (MTI)), and/or to determine the specific radial velocity of mov-

ing objects (Pulse-Doppler) [10, 12, 13] . Since MTI can be done by dedicated spectral analysis

via a bank of Doppler filters, and both MTI and pulse-Doppler radar can consist of clutter rejection

and specific velocity analysis, the line between MTI and pulse-Doppler radar has become blurred

[12]. The following discussion will rely on the distinction in [12], where MTI is defined as those

radars which operate with pulse repetition intervals (PRIs) low enough to avoid range ambiguities
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(discussed in Section 1.5), and pulse-Doppler radars use high PRFs which incur range ambigui-

ties. In this thesis, PRIs are designed to avoid range ambiguities, so the following development

and analysis are in the context of an MTI mode radar.

The following sections in this chapter provide a basic overview of the theory of operation for

MTI radar (and radar in general) and introduce some important concepts that arise from a pulsed

system.

1.2.1 Signal-to-Noise Ratio (SNR) and Coherent Integration

Signal-to-Noise Ratio. SNR is a metric that describes the quality of a measured signal. Fig. 1.1

illustrates the importance of an adequate SNR by depicting a sinusoid in noise for varying degrees

of SNR. When the ratio is low, the signal is difficult (maybe impossible) to distinguish from the

noise. It is obvious then, why a high SNR is desireable.

Figure 1.1: Signal in noise for different SNR

The signal-to-noise ratio is [10, 11, 12]

SNR =
PtGtGrλ

2σ

(4π)3R4kT0FBr
(1.1)
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for Pt the transmitted power [W],

Gt the transmitter antenna gain,

Gr the receiver antenna gain,

λ the transmit wavelength [m],

σ the mean RCS of the scatterer in [m2],

R the range from the scatterer to the radar [m],

k Boltzmann’s constant (1.38×10−23 [W-s/K]),

T0 the standard temperature (290 [K]),

Br the receiver bandwidth [Hz],

and F the noise figure of the receiver. Only some of the variables found in Eq. 1.1 are within

the radar engineer’s control. One could improve SNR by increasing transmit power, transmit

and/or receive gain, transmit wavelength, or decreasing the receiver bandwidth (while maintaining

adequate bandwidth to capture the signal of interest), though tuning any of these variables has

associated costs that may not be acceptable for a given application.

Coherent Integration. SNR is often improved via coherent integration (or summing) of pulsed

data. This is done by adding associated complex data samples. Since noise is uncorrelated, sum-

ming the samples averages out noise while coherently combining signal components, thereby im-

proving the SNR by factor M, the number of pulses.

1.2.2 Radar Time Scales and the Data Matrix

1.2.2.1 Fast-Time/Slow-Time

In pulse-Doppler radar using a single transmitter and receiver, data is sampled in two different

time dimensions, delineated by their relative time scales. The first is the fast-time dimension,

which consists of the data points obtained by I/Q sampling and corresponds to time delay (a.k.a.

range, discussed in Section 1.4). The fast-time sampling rate (determined by the receiver analog-

to-digital converter (ADC)) must be greater than or equal to the transmit signal’s bandwidth per
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the Nyquist-Shannon sampling theorem (which describes the criterion for the interchangeability

of analog and digital signals) [14, 15]. The second dimension is referred to as slow-time, formed

by pulse-to-pulse sampling and used to determine Doppler shift information (Section 1.3). When

using a fixed time interval between pulses the slow-time sampling rate, more commonly referred to

as the pulse repetition frequency (PRF, the inverse of PRI), should exceed the Doppler bandwidth

to achieve Nyquist sampling and avoid ambiguities (more on this in Section 1.5). However, a non-

uniform slow-time sampling structure as imposed by PRI staggering can uncover such ambiguities

while maintaining the use of a low average PRF.

1.2.2.2 Reshaping the Data

The output of the receiver ADC is simply a stream of data samples. The data is reshaped

into a matrix by aligning the range samples of each pulse, so that processing can be performed

across the different dimensions. The data matrix is discussed in [10, 11] , which further extends

the concept to a data cube that considers multiple antenna elements with spatial separation. In

Fig. 1.2, a visualization of the reshaping process into a fast-time/slow-time data matrix for a

uniform PRI arrangement is shown, with the green cells denoting the first sample of a pulse. The

columns of this matrix are referred to as range bins, which are sampled returns from the same range

across the pulses. Performing Doppler processing (Section 1.3.3) for each range bin coherently

integrates the complex data and transforms the pulse dimension into a Doppler dimension. By

doing so, Doppler processing produces Doppler bins which contain the range response at each

bin’s respective discretized Doppler frequency.

The rows of this matrix correspond to the pulse number, and consist of returns across the entire

range swath, or sampled range extent. Pulse compression (Section 1.4.2.2) is performed in the

fast-time dimension for each pulse.
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Figure 1.2: Reshaping I/Q data stream into fast-time/slow-time radar data matrix

1.3 Doppler

1.3.1 The Doppler Effect and Doppler Shift

The Doppler effect refers to the phenomenon predicted by special relativity [16, 17, 18] where

the frequency of a wave is changed relative to an observer due to the motion of an object producing

the wave. This effect is familiar to many in the exemplary auditory pitch shift produced by a mov-

ing firetruck blaring its sirens, a visualization of which is shown in Fig. 1.3. As the firetruck moves

towards Observer 1, the wave is emitted from a progressively closer distance, thereby producing a

contraction of the wavelength (higher observed frequency). Inversely, as the firetruck moves away

from Observer 2, the wave is emitted at progressively further positions and the observed wave-

length is dilated (lower observed frequency). Only when the object’s radial velocity relative to

the observer is zero (as is the case for Observer 3) is the original frequency of the emitted wave

observed.
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Figure 1.3: Visualization for the Doppler effect

The Doppler effect is observed for all types of waves. In fact, the phenomenon was first pro-

posed by Austrian physicist Christian Doppler (Observer 3 from Fig. 1.3) in 1842 in the context of

electromagnetic waves emitted by stars [16] . Specifically in MTI radar, the received electromag-

netic wave’s frequency fr induced by the Doppler effect is exploited to cancel clutter and determine

the radial velocity of moving objects.

For a monostatic radar (transmitter and receiver are collocated), the received frequency is pre-

dicted as

fr =

(
1+ v/c
1− v/c

)
f (1.2)

for v the instantaneous radial velocity of the object relative to the radar, c the speed of light, and f

the transmit frequency [10, 11] . Due to this functional dependence, knowledge about the velocity

of an object can be obtained by analyzing the frequency of the received signal.

The difference between the transmitted frequency f and the received frequency fr is called the

Doppler shift, or the Doppler frequency. For radar applications, the velocity of an object is in all

likelihood only a small fraction of the speed of light, so the Doppler shift at a specific time instance
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can be approximated by [10, 11, 12, 13]

fd ≈ f − (1+2(v/c)) f (1.3)

=
2v
c

f (1.4)

=
2v
λ

(1.5)

for λ the transmit wavelength. A justification for this simplification relying on binomial expansion

can be found in [10] and [11].

1.3.2 The Stop-and-Hop Approximation and Doppler Signal Model

Since the instantaneous velocity of an object is almost always only a small fraction of the speed

of light, objects can be considered quasi-stationary [11] . In essence this means that the distance

an object moves during the time it takes for a waveform to travel from the transmitter to the object

is negligible. Under the quasi-stationary assumption, the "stop-and-hop" model offers a simplified

view of the received signal due to object movement [11] . Since movement is assumed to cease

while the transmitted pulse travels to the object (hence the term "stop"), the waveform envelope

is unchanged during transit, and motion is captured as a series of range-dependent phases at each

pulse (hence the term "hop"). Thus, velocity information is contained in the received slow-time

signal, which for uniform pulse intervals is given by

yst,u(m) = Aexp[− j
4π

λ
R(mT )] (1.6)

= Aexp[− j2πφ(mT )] (1.7)

where A is the amplitude, m = 0,1, ...M−1, T is the PRI, and the term φ(mT ) in the exponential

constitutes the phase-modulation due to the object’s range at time mT (R(mT )). Effectively this

presents a phase sampling at a rate equal to the pulse repetition frequency (PRF). The time rate of
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change of this phase signal

∆φ(mT )
∆mT

=
2
λ

∆R(mT )
∆mT

(1.8)

=
2
λ

v(mT ) (1.9)

is the approximate Doppler shift frequency from Eq. 1.5. Thus, the received slow-time data series

gives rise to a complex sinusoid at the Doppler frequency fd associated with the particular radial

velocity. Explicitly stating the dependence on Doppler frequency, the slow-time received signal in

Eq. 1.6 becomes

yst,u(m, fd) = Aexp[− j2π fdmT ]. (1.10)

1.3.3 Doppler Processing

Under the "stop-and-hop" model presented in the previous section, Doppler information is car-

ried in the slow-time-sampled phase signal. Thus the response obtained via Doppler processing is

waveform-agnostic. This section briefly discusses the theory behind traditional Doppler process-

ing, with specific details pertaining to the PRI staggering model (the topic of this thesis) divulged

in Section 2.2.

Doppler processing consists of a spectral analysis of the slow-time data at a specific range bin.

The Doppler response is traditionally obtained by evaluating the discrete Fourier transform (DFT)

of the slow-time phase signal [10, 11, 13, 19]. For a uniform PRI system, redundancies can be

exploited and the famous and efficient fast Fourier transform (FFT) algorithm [19] can be used.

The uniform DFT of the slow-time scattering at the ℓth range bin is

ust,u(ℓ, fd) =
M−1

∑
m=0

yst,u(ℓ,m) exp[− j2π fdmT ], (1.11)

for yst,u(ℓ,m) the slow-time received sample from Eq. 1.10 at the mth pulse, fd the Doppler fre-
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quency, and T the PRI. 20log10(| • |) of the Doppler spectrum from Eq 1.11 is shown in Fig. 1.4

for a scatterer at arbitrary range with Doppler shift fd =
PRF

5 . The uniform PRI Doppler spectrum

exhibits a familiar periodic-sinc structure.

Figure 1.4: Doppler response after Doppler processing for a scatterer with Doppler frequency
fd =

PRF
5

Doppler processing performs coherent integration and transforms the data matrix in Section

1.2 from an M×L matrix to an N ×L matrix, for N the number of Doppler bins.

1.3.4 Doppler Resolution and Coherent Processing Interval (CPI)

In a pulsed-radar system, the overall time extent of a pulse sequence transmission is called the

coherent processing interval:

TCPI = MT (1.12)

for M pulses and T the fixed PRI in seconds.

The term resolution refers to the ability to distinguish or resolve more than one object from

another in a given dimension. If no window is applied, the Rayleigh (peak-to-null) resolution in
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the Doppler dimension is [10]

∆ fd =
1

TCPI
=

1
MT

. (1.13)

The application of a window would have the effect of widening the mainlobe by a factor dependent

on the particular window used [10]. The concept of resolution in the Doppler context is illustrated

in Fig. 1.5, where it is shown that the Doppler response mainlobes from objects with Doppler

frequency spacing greater than or equal to the Doppler resolution are separable, but the returns

from objects with lesser spacing are overlapping and therefore difficult to parse.

Figure 1.5: Visualization for the concept of resolution in the Doppler context.

1.4 Range

1.4.1 Range Determination by Time-Delay

In a pulsed-Doppler radar system, range is determined by the time delay between the transmis-

sion and reception of the waveform [10, 11, 13]. An illustration of this concept is shown in Fig.

1.6. The time delay ∆T accounts for the two-way pulse transit which consists of both the time for

the pulse to reach an object plus the time for the pulse to return to the receiver (respectively labeled
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tt and tb for time there and back). Since tt = tb, the range of an object can be determined via

R =
c(tt + tb)

2
=

c∆T
2

, (1.14)

where c is the speed of light, and ∆T is the two-way time between the radar and the scatterer.

Figure 1.6: Visualization for range determination via time delay

The timing precision and thereby range precision is dependent on the receiver’s analog-to-

digital converter (ADC), which performs in-phase and quadrature (I/Q) sampling at a finite clock

rate [10]. These range samples are referred to as range bins.

1.4.2 Range Resolution and Pulse Compression

1.4.2.1 Simple Pulse

When the transmit waveform is a simple time-gated sinusoid, the range resolution is propor-

tional to the pulse width τ by [10]

∆R =
cτ

2
, (1.15)
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which is approximately the blind range [10]

Rblind =
c(τ + tswitch)

2
, (1.16)

for tswitch the Transmitter/Receiver switch time. The term pulse eclipsing refers to the scenario

when all or part of a pulse return occurs during a pulse transmission. During this time, the receiver

is turned off and the pulse return is not received. This phenomenon creates a blind zone, wherein

objects cannot be detected due to the effect of eclipsing.

1.4.2.2 Pulse Compression

Finer resolution requirements can be met by decreasing the pulse width per Eq. 1.15, though

shorter pulse times correspond to less transmitted power, leading to possible SNR issues. A com-

mon technique to address the SNR/range resolution trade-off is pulse compression, which intro-

duces intrapulse modulation to decouple the two, enabling the use of longer pulses to meet energy

requirements while improving the range resolution [10, 11]. With pulse compressed waveforms,

the range resolution is no longer dependent on the transmitted pulse width but rather the bandwidth

of the signal as

∆R =
c

2B
. (1.17)

Linear Frequency Modulated (LFM) Waveform. The most common pulse compression wave-

form used in radar is the linear frequency modulated (LFM) waveform, known for it’s Doppler

tolerance [20] and ease of generation. The baseband LFM pulse is defined as [10, 11, 12, 5]

sLFM(t) = Aexp
[
− j2π

(
B
τ

t2
)]

, −τ

2
≤ t ≤ τ

2
, (1.18)

for A the amplitude, B the bandwidth, and τ the pulsewidth. The baseband LFM’s frequency

function is simply a linear sweep from −B/2 to B/2.
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Matched Filter. Pulse compression is performed by filtering the received signal with an appro-

priate filter that is correlated with the transmit signal. The matched filter, which maximizes SNR,

is given by [5, 10, 11, 12]

hmf(t) = as∗(−t), (1.19)

where a is an arbitrary scalar, s(t) is the transmit waveform, and ∗ denotes complex conjugation.

In words, the matched filter is a (possibly scaled,) time-reversed and complex conjugated version

of the transmit waveform. While beyond the scope of this thesis, the derivation for the range reso-

lution for a pulse compression waveform in Eq. 1.17 (based on the Fourier uncertainty principle)

and matched filter in Eq. 1.19 (based on maximum SNR), and more pulse compression waveforms

can be found in [5, 10, 11, 12]. Discretizing Eq. 1.19 and allowing the scale factor to vary with

time yields

h[n] = a[n]s∗[−n]. (1.20)

When the weights a[n] are equal for all n= 0,1, ..,N−1, Eq. 1.20 becomes the discretized matched

filter. However a[n] can be chosen such that specific properties of the pulse compression response

x[n] = ∑
ℓ

h[n]y[n− ℓ] (1.21)

are achieved, an approach known as tapering. Here y[n] is the receive signal discretized via I/Q

sampling. 20log10(| • |) of the zero-delay referenced pulse compression response for an LFM

waveform with a matched filter and Hamming-weighted mismatched filter are compared in Fig.

1.7. The matched filter produces a response with a higher peak, which is unsurprising given that it

is derived to achieve maximum SNR. But the tapered mismatched filter exhibits dramatic sidelobe

reduction compared to the matched filter response. The cost of slight mismatch loss due to tapering

is overwhelmed by the sidelobe benefit. Because the focus of this thesis is the behavior of Doppler
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sidelobes, the mitigation of range sidelobes that could obscure Doppler sidelobe performance is

important, which justifies the use of a Hamming-weighted mismatched filter in Section 4.4.

Figure 1.7: Pulse compression response for matched filter and Hamming-weighted mismatched
filter.

Point Spread Function. When considering only the scattering from a point target at zero-delay

and zero-Doppler, the output of pulse compression and Doppler processing is the point spread

function (also referred to as the point spread response) [12, 21]. For M = 100 pulses of an LFM

of bandwidth B = 50 [MHz] and pulse width τ = 1 [µs], the point spread function is shown in Fig.

1.8. The zero-delay cut is a zero-referenced version of the Doppler response in Fig. 1.4, and the

zero-Doppler cut is the matched filter response from Fig. 1.7.
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Figure 1.8: Point spread function for M = 100 pulses of an LFM with bandwidth B = 50 [MHz]
and pulse width τ = 1 [µs]

1.5 Pulse Repetition Frequency (PRF), Interval (PRI), and Unambiguous

Measurement

1.5.1 Range ambiguities

In Section 1.4.1 it was discussed that an object’s range may be determined via the two-way

delay time from transmission to reception. Consider a case when the delay is longer than the

interpulse interval (∆T > T ). The reception of the pulse occurs after the transmission of the next

pulse, thereby rendering the measurement ambiguous, since the pulse from which the return came

cannot be discerned. Fig. 1.9 illustrates (for a uniform PRI) a received pulse from an object at an

unambiguous range (orange pulses), as well as one from an ambiguous range (blue pulses). The

ambiguous pulse return appears to occur at a closer range determined by ∆Tobs than in reality. In a

fixed PRI system, the ambiguous return appears at the same range for each pulse.
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Figure 1.9: Visualization for unambiguous (orange) and ambiguous (blue) returns

To avoid the need for more complicated processing to unwrap these range ambiguities, the PRI

can be designed to encompass the desired unambiguous range swath by

PRI = T ≥ 2Rmax

c
(1.22)

for Rmax the desired maximum unambiguous range and c the speed of light.

1.5.2 Doppler ambiguities

As discussed in the previous section, for a uniform PRI system the PRI is proportional to

the maximum unambiguous range. Thus mitigation of range ambiguities can be achieved via

longer PRI, corresponding to lower PRF. However, recall that the PRF is the slow-time (Doppler)

sampling rate, and by the Nyquist-Shannon sampling theorem for complex signals this rate is

proportional to the unambiguous signal bandwidth. Thus the maximum Doppler frequency that

can be unambiguously measured is

fd,max =±PRF
2

=± 1
2PRI

. (1.23)

When the PRF is not high enough to sufficiently capture the Doppler signal bandwidth of

interest, portions of this bandwidth are aliased. Fig 1.10 illustrates Doppler spectrum aliasing,

where the black trace is the true Doppler spectrum which is repeated at intervals of the slow-time

sampling frequency PRF. In this figure the Doppler spectrum bandwidth Bd > PRF , so portions

of the spectrum bleed into adjacent zones. The blue dashed trace describes the actual observed
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spectrum which is a combination of the overlapping repeated spectra, and the orange box denotes

the nominal unambiguous interval. Within this nominal interval, aliasing is observed, where the

edges of the true signal spectrum appear to wrap around to the other side of the interval.

Figure 1.10: Visualization of Doppler spectrum aliasing showing repeated and overlapping
Doppler spectrum (black trace), observed Doppler spectrum, which is the combination of the over-
lapping spectrum (blue trace), and the nominal unambiguous Doppler interval (orange box)

Thus a trade-off is introduced, where higher PRF allows for larger unaliased Doppler band-

width, but results in a shorter range ambiguity.

1.5.3 PRF Regimes

Uniform PRF pulse radars are classified according to their PRFs into the following three cate-

gories [10]:

1) Low PRF, which can achieve precise and fine-resolution range measurements at the cost of

ambiguous Doppler and higher peak power transmissions compared to the high PRF regime,

2) Medium PRF, which compromises on both range and Doppler ambiguities in an effort to

achieve accurate performance in both dimensions, and

3) High PRF, which has a high unambiguous Doppler frequency with the trade-off of shorter

range ambiguities and exacerbated pulse eclipsing effects.

In the next section a non-uniform Doppler sampling method is introduced which mitigates

Doppler ambiguities, thereby working around the range/Doppler ambiguity tradespace while in-

curring associated costs.
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1.6 PRI Staggering Motivation

Traditional MTI radar uses a uniform PRI, enabling the use of a uniform fast Fourier transform

(FFT) [5, 10, 11, 13] for Doppler processing. This form of processing results in a Doppler response

that repeats at intervals of the slow-time sampling frequency or PRF. To increase the unambiguous

Doppler frequency, one could employ the use of higher PRFs, though range ambiguities could

become problematic per the trade-space discussed in the previous section. An alternate solution

involving modulation of the interpulse period, a technique called PRI or PRF staggering, provides

an expansion of unambiguous Doppler space by reducing aliasing of the Doppler spectrum

[6, 7, 10, 11, 13, 22, 23, 24], and the ability to resolve range ambiguities [10, 12, 13, 25, 26, 27,

28, 29] (translating to range swath increase which could mean less data for synthetic aperture radar

(SAR) applications [10, 30]).

Staggering is a well known technique for achieving these goals, though usually in the context

of alternation between predetermined PRF values where the staggering is imposed from CPI to

CPI. This technique, commonly called PRF staggering is often used to resolve range ambiguities

via modulus-based methods such as the Chinese Remainder Theorem, Coincidence Algorithm, or

Clustering Algorithm [10, 12, 13, 25, 26, 27, 28, 29]. Variability is also imposed on a pulse-to-

pulse basis [6, 8, 12, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45] , such that the

benefits from staggering are observed from a single CPI, though with the trade-off of increased

processing complexity since the uniform FFT is no longer viable for Doppler processing. This

form of variation is referred to as PRI staggering and is illustrated in Fig. 1.11 for M pulses.
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Figure 1.11: Visualization for a coherent processing interval containing uniform PRIs and stag-
gered PRIs

Fig 1.12 shows the data matrix from Section 1.2.2.2 for PRI staggered data. After pulse-by-

pulse range alignment, the staggering of the pulse interval is visually evident, with the grayed

samples showing zero-padding to maintain L samples in each row. The green column denotes the

first sample of each pulse and the pink column corresponds to the maximum unambiguous range

for this staggering configuration. The unambiguous range swath is determined by the minimum

PRI when using a staggered pulse arrangement.

Figure 1.12: Staggered PRI data matrix
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1.6.1 Random Staggering

PRI staggering can be categorized into the three following forms: static, in which interpulse

times are taken from a finite set of values [12, 31, 32, 33], structured, for which PRIs exhibit a

functional dependence on slow-time [8, 34, 35, 36], and random, where PRIs are independently

and randomly selected [6, 37, 38, 39, 40, 41, 42, 43, 44, 45]. Using a staggered structure, the

maximum unambiguous Doppler frequency is expanded by a factor that is determined by the least

common multiple of the PRFs used [10]:

fD,max =
lcm

(
1
T1
, ..., 1

TM

)
2

, (1.24)

where lcm(•) denotes the least common multiple of the arguments, Tm is the mth PRI and recalling

that PRF is the inverse of PRI. Based on this relationship, random PRI staggering can clearly offer

additional benefits beyond those of static or structured forms due to the diversity inherent in the

randomness. Random PRI staggering does incur a higher sidelobe pedestal and may exhibit large

peaks that could mask lower power peaks from other moving objects, or result in false alarms. This

thesis addresses this undesired quality of PRI staggering.

The following chapter develops a PRI staggering Doppler response model for two different

random PRI sequence generation methods, and delves deeper into the behavior and characteris-

tics of random PRI staggering. Chapter 3 then introduces the concept of a PRI stagger co-array,

which is subsequently used to examine the effect of redundancy in the PRI sequence. Chapter

4 presents a gradient-based optimization to convert purely random PRI sequences into pseudo-

random optimized PRI sequences that demonstrate significant sidelobe performance improvement,

both in simulation and open-air experimental data. Chapter 5 concludes the thesis with prospects

for future work.
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Chapter 2

PRI Staggering Model

Two different methods of PRI generation/CPI construction based on random staggering of PRIs

are delineated here, which both consider two requirements:

1) Bounded staggering to account for minimum PRI and

2) Fixed CPI extent to maintain nominal Doppler resolution.

The particular construction method makes a great deal of difference in the Doppler response and

can affect design choices. This chapter first defines two different methods which will be called

cumulative staggering and grid staggering (Section 2.1). Development of a model for the random

PRI stagger receive signal and Doppler response is detailed, and the expected Doppler response

for both generation methods are compared in Section 2.3.2.

2.1 Random PRI Generation Methods

2.1.1 Cumulative Stagger

First, consider the approach in [7] when each PRI is independently instantiated according to

some distribution centered on an average value Tavg, then subsequently combined to form a full

CPI. The mth PRI is denoted as

Tc,m = Tavg +∆Tc,m (2.1)
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with the staggers ∆Tc,m for m = 1,2, ...,M drawn from a distribution bounded on [−δ ,+δ ], thereby

setting a limit on the minimum and maximum PRI. The subscript (•)c stands for "cumulative", and

will be used when the PRI generation method follows this model. For m = 0, the initial condition

∆Tc,0 = Tc,0 = 0 is applied to ensure the CPI starts at the time instance t0 = 0. A visualization of

this particular model for random stagger generation is shown in Fig. 2.1.

Figure 2.1: Visualization for generating random staggered PRI using the cumulative model where
staggers are applied to the interpulse times

The accumulated slow-time at the onset of each pulse is

Tc,acc(m) =
m−1

∑
q=0

Tc,q (2.2)

for m = 1,2, ...,M. The staggering is therefore also accumulated with the pulse progression, hence

the moniker "cumulative". The average PRI is

Tavg =
1
M

M

∑
m=1

Tc,m. (2.3)

This can also be thought of as the repeated PRI for the comparable uniform case. To enable

generalization of staggering behavior, the PRI values are normalized by this average value as

εc,m =
Tc,m

Tavg
(2.4)
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so the total normalized CPI extent equals the number of pulses M. We now define a new, normal-

ized staggering bound

δ̄ =
δ

Tavg
(2.5)

which is expressed in terms of percentage. Thus −δ̄ ≤ ∆εc,m ≤+δ̄ . Collecting the M PRI values

from m = 0,1, ...,M−1 into a vector, we have

εεεc = [0 1T
(M−1)×1]

T +[0 ∆εc,1 . . . ∆εc,M−1]
T (2.6)

= [0 1T
(M−1)×1]

T +∆∆∆εεεc (2.7)

where 1(M−1)×1 is a ones a vector. Note that if the vector collecting the stagger terms ∆∆∆εεεc is a

zeros vector, then εεεc becomes the uniform PRI case. ∆εεεc is now an optimizable parameter set. Let

the normalized accumulated slow time be denoted as

εc,acc(m) =
m−1

∑
q=0

εc,q, (2.8)

which can be written in vector notation as

εεεc,acc = Bεεεc, (2.9)

where B is a lower triangular matrix which performs a cumulative sum across εεεc.

2.1.1.1 CPI Scaling

At this point it is important to note that when generating the staggers in this manner, a fixed

CPI extent of M cannot be expected. This aspect is explored in [9]. In order to have an accurate

comparison between sequences, we must maintain a fixed CPI length (and thereby Doppler reso-

lution via Eq. 1.13). This can be done by scaling the PRIs (note that pulse width should remain
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unchanged), subsequently dilating or contracting the entire CPI to maintain a length of M. Thus

the PRIs cannot be expected to uphold the design boundary of εm ∈ [1− δ̄ ,1+ δ̄ ]. Two extreme

examples are presented to demonstrate the worst-case scenarios of dilation and contraction.

Consider the corner case where M − 1 of the PRIs are the maximum value εc,m = 1+ δ̄ and

the remaining PRI the minimum εc,m̄ = 1− δ̄ . This presents a scenario where upon CPI scaling,

the maximum contraction occurs while there exists a PRI already at the minimum design bound-

ary. This case results in the practical minimum bound on a single PRI that could arise from this

staggering formulation. An example is shown in Fig. 2.2. Conversely, consider the case where the

maximum degree of CPI dilation occurs, where all but one of the PRIs fall on εc,m = 1− δ̄ and

one has the maximum εc,m̄ = 1+ δ̄ . Dilation of this largest PRI results in the practical maximum

bound. For these two cases, the CPI would need to be scaled by factor

M(
(M−1)(1± δ̄ )+(1∓ δ̄ )

) = M(
M± (M−1)δ̄ ∓ δ̄

) ≈ 1
1± δ̄

(2.10)

when M is large. This produces the scaled bounds

εc,m̄,scale ≈
(1∓ δ̄ )

(1± δ̄ )
. (2.11)

These bounds are plotted as a function of δ̄ in Fig. 2.3 using solid lines. Also shown are the

design boundaries given by 1± δ̄ (long dashed lines) and the longest/shortest PRIs over a set of

1000 scaled random cumulative staggered PRIs for M = 100 pulses (short dashed lines). Observe

that while the practical boundaries due to the most extreme dilation/contraction is quite severe, in

actuality the worst case only violates the design boundaries by a small amount.
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Figure 2.2: Example of smallest possible PRI due to fixing CPI extent

Figure 2.3: Minimum/Maximum PRI over 1000 trials of M = 100 pulse CPIs after scaling, com-
pared with design per-PRI limit and minimum/maximum per-PRI boundary due to scaling

Fig. 2.4 further describes this effect via a histogram of 105 scaled cumulative staggered PRIs.

The dashed line denotes the distribution on which the PRIs lie before scaling. Only a small tail is

observed on each side, demonstrating that while the PRIs do happen to violate the design bound-

aries occasionally, it is rare and only by a small amount.
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Figure 2.4: Histogram of randomly generated and scaled PRIs for 1000 trials of M = 100 pulses
and δ̄ = 30%

Due to the shrunken PRIs, the contraction case could result in issues with blind ranges and

shorter range ambiguities that would need to be contended with using more sophisticated process-

ing. Based on the aggregate results in Figs. 2.3 and 2.4, contraction tends to produce minimum

PRIs similar to the design limit. Conversely, dilation of the CPI results in a contraction of the

Doppler response, which could be problematic in the optimization context in Chapter 4, by pulling

an unoptimized section of the Doppler response into the span of interest thereby impacting side-

lobe performance. This can be easily accounted for by including an additional optimized buffer

zone as is discussed later in Section 2.2.3.2.

The cumulative stagger model discussed in this section provides a high level of PRI diversity

since each PRI is independently generated, and the diversity has a cumulative effect. However a

potential pitfall is the violation of minimum PRI requirements due to contraction for preserving a

fixed CPI. This section demonstrated that such a pitfall is a rare occurrence.
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2.1.2 Grid Stagger

Now consider another stagger generation approach that naturally achieves a fixed CPI. Here it

is called the "grid stagger" model. With this approach staggering is performed after the PRIs are

already placed in a uniform CPI, where the staggers are then applied directly to the boundaries be-

tween PRIs. In short, it is the grid of uniform pulse onset times that is staggered. The accumulated

slow-time is

Tg,acc(m) = mTavg +∆Tg,m (2.12)

for m = 1,2, ...,M, the same Tavg as in Eq. 2.3, the endpoints ∆Tg,0 = ∆Tg,M = 0, and the rest of

the staggers ∆Tg,m for m = 1,2, ...,M − 1 drawn from a distribution on [−δ/2,+δ/2] so that the

stagger limit remains δ . Here the subscript (•)g is used to specify grid staggered PRIs. Fig 2.5

shows an example of this arrangement.

Figure 2.5: Visualization for generating random staggered PRI using the grid model where staggers
are applied to a uniform grid of pulses

Since the endpoints of the CPI are always fixed with this approach, CPI scaling is not necessary,

contrary to the cumulative model presented in the previous section. The design boundary on the

minimum PRI is therefore not violated.

The mth PRI is affected by two independent perturbations as

Tg,m = Tavg +∆Tg,m −∆Tg,m−1 (2.13)
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Again, division by Eq. 2.3 produces the time-normalized PRIs:

εg,m =
Tg,m

Tavg
, (2.14)

and the vector that collects the normalized PRIs is

εεεg = [εg,0 εg,1 . . . εg,M−1] (2.15)

= [0 1T
(M−1)×1]

T +[0 ∆εg,1 . . . ∆εg,M−1]
T (2.16)

− [0 ∆εg,0 . . . ∆εg,M−2]
T , (2.17)

recalling that ∆εg,0 = 0, and the normalized stagger values lie on [−δ̄/2,+δ̄/2] for δ̄ the normal-

ized stagger limit from Eq. 2.5. The normalized pulse onset times are then the same accumulated

slow-time as in Eq. 2.8, but are defined directly via the stagger values as

εεεg,acc = [0 1 . . . M−1]T +[∆εg,0 ∆εg,1 . . . ∆εg,M−1]
T (2.18)

= [0 1 . . . M−1]T +∆∆∆εεεg. (2.19)

Two different random stagger construction models have now been presented. Perfomance dif-

ferences between the two models are explored in Section 2.3.2. Because much of the subsequent

modelling of the Doppler response is the same for both, the discussion in the following few sec-

tions is agnostic to the particular construction method. For formulations that are specific to either

the cumulative or grid model, the respective labels (•)c and (•)g are used to denote this specificity.

2.2 Receive Signal Model and Non-uniform Discrete Fourier Transform (NUDFT)

2.2.1 Doppler-Dependent Phase Response

In Eq. 1.10, the slow-time receive signal for a uniform PRI system was given. Switching

consideration to a staggered PRI scheme, the phase (disregarding amplitude) at the mth slow-time
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instance due to a moving scatterer in the illuminated scene is

vm( fnD) = exp{ j2π fnDεacc(m)} (2.20)

= exp
{

j2π fnDbT
mεεε
}
, (2.21)

where exp{•} denotes elementwise exponentiation,

bm = [1T
(m)×1 0T

(M−m)×1] (2.22)

(the mth row of matrix B from Eq. 2.9) performs a sum over the 0 through (m− 1)th elements of

εεε , 0T
(M−m)×1 is vector of zeros, and fnD is the normalized Doppler frequency

fnD = 2Tavg
vrad

λ
(2.23)

for λ the operating wavelength and vrad the specific radial velocity of the mover relative to the

radar. Extending Eq. 2.20 to the full CPI, the phase progression across slow-time, which is equal

to the M×1 Doppler steering vector is

v( fnD) = exp{ j2πBεεε fnD} (2.24)

where again B is a lower triangular matrix which, when applied as Bεεε , produces the accumulated

time sequence εεεacc.
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2.2.2 Receive Signal Model

The receive signal model for Doppler processing comprised of beamforming, pulse compres-

sion, and in-phase/quadrature (I/Q) sampling is given in [7] as

z(ℓ) = ∑
fnD

x(ℓ; fnD)v( fnD)+n(ℓ) (2.25)

≈ Vx(ℓ)+n(ℓ), (2.26)

where x(ℓ; fnD) is the scattering in the ℓth range bin that corresponds to the normalized Doppler

shift fnD, and n(ℓ) is an M×1 noise vector. The approximation in the second line comes about due

to a discretization of the continuous model in the first line. V is a matrix containing the Doppler

steering vectors from Eq. 2.24, with Doppler frequency equally spaced on a prescribed interval.

2.2.3 Non-uniform Discrete Fourier Transform (NUDFT)

The matrix V is a non-uniform discrete Fourier transform (NUDFT) matrix containing the N

Doppler steering vectors from Eq. 2.24 and is compactly represented as

V = exp
{

j2πBεεεfT
nD
}
. (2.27)

with fnD containing the N normalized Doppler frequencies.

2.2.3.1 Discretization

The nominal discretization would be M equally spaced Doppler bins on the normalized interval

fnD ∈ [−1/2,+1/2]. Including oversampling by a factor K for visibility and extending to the full

desired Doppler span [−β/2,+β/2], the discretized Doppler axis contains N = ⌈βKM⌉ points for

⌈•⌉ the ceiling operation. If ⌈βKM⌉ is even, it is convenient to set N = ⌈βKM⌉+ 1 in order to

include zero-Doppler.
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2.2.3.2 Doppler Expansion Factor

The factor β , which describes the unambiguous Doppler interval that results from the least

common multiple of the normalized PRFs (i.e. a normalized version of Eq. 1.24), may be un-

necessarily large and could even exceed Doppler frequencies corresponding to speeds greater than

physically possible. It is therefore sufficient, as suggested in [7], to set a practical limit βmov that

encompasses the fastest radial movement expected, so that the Doppler interval of interest lies on

[−βmov/2,+βmov/2]. In the context of stagger sequence optimization, in order to provide a flat

sidelobe response over this entire interval the optimization in Chapter 4 must be performed over a

larger span, since a mover existing at the edge of this interval would have a sidelobe response at

the opposite edge. It is therefore necessary to achieve a desired sidelobe response for an expansion

factor of βopt = 2βmov. Furthermore, the Doppler response should be optimized for an additional

extent to compensate for a possible contraction after CPI-fixing (discussed in Section 2.1.1.1). To

account for the worst case scenario of CPI contraction, the optimization should be performed over

βopt(1+ δ̄ ).

2.3 Doppler Response

2.3.1 Zero-referenced Doppler Response Model

Since the Doppler response is shift-invariant, the zero-referenced response is generalizable to

non-zero Doppler shifts. Therefore consideration is limited to the N × 1 zero-referenced, dis-

cretized, and gain normalized Doppler response

u(εεε) =
1
M

VHv0 (2.28)

for v0 the zero-Doppler steering vector (from Eq. 2.24 when fnD = 0) which is equivalently an

M ×1 ones vector, and (•)H the Hermitian operation. The values εεε lie on a continuum, and each

element of u(εεε) is a continuous function of the given parameters, so a gradient may be determined
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for use in the optimization procedure detailed in Chapter 4.

2.3.2 Expected and Aggregate Doppler Response

2.3.2.1 Expectations

Expected Response for Cumulative Staggering The expectation of the magnitude-squared of

the Doppler response in Eq. 2.28 for the cumulative model described in Section 2.1.1 is derived in

[7] for ∆εεε on the uniform distribution [−δ̄ , δ̄ ]. The closed-form solution is:

E
[
|uc( fnD)|2

]
=

1
M

+
2

M2

M−1

∑
m=1

(
mcos(2π fnD(M−m))×

[
sinc(2π fnDδ̄ )

](M−m)
)
, (2.29)

which is a function of the number of pulses M and the stagger limit δ̄ . This functional relationship

of uc( fnD) on M is shown in Fig. 2.6. Note that here the mainlobe width decreases according

to the inverse relationship between Doppler resolution and CPI extent from Eq. 1.13, since here

responses are compared for the same average PRI. The expected sidelobe structures produced by

differing M possess the same general shape albeit with varying pedestal levels at −10log10(M) dB.

Figure 2.6: Expectation of Doppler response using cumulative staggering model for different num-
ber of pulses M and δ̄ =±30%
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The expected Doppler response exhibits a ripple about a value determined by M, but the nature

of this rippling varies with stagger limit δ̄ . As δ̄ is increased, the degree of ripple in the Doppler

response decreases, shown in Fig. 2.7. Larger staggers provide more variation thereby contributing

to a flattened Doppler response, the result of a phase-decoherence phenomenon that is explored

in Section 2.3.3. Since the traces for ±30% and ±40% staggering display a similar degree of

flatness, and because larger stagger limit δ̄ contributes to a shortened range ambiguity, the choice

of δ̄ = ±30% for the cumulative staggering method is adequate to achieve the available diversity

granted by random staggering.

Figure 2.7: Expectation of Doppler response for different limits δ̄ on random cumulative stagger-
ing and M = 100 pulses

Though the expected responses in Fig. 2.7 may suggest that simply increasing the stagger

limit yields a smooth and flat Doppler response, a single instance with δ̄ = 30% shown in Fig.

2.8 demonstrates the unpredictability of random staggering. The single instance (blue trace) does

indeed flatten the response compared to the uniform case, but sidelobe peaks are uncontrolled and

could result in false alarms in a subsequent detection stage of the radar. From this perspective of

unpredictability, it is clearly desirable to produce optimized sequences for which Doppler sidelobes

are flattened to reduce the probability of false alarms.
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Figure 2.8: Single instantiation of random cumulative staggering for δ̄ = ±30% limits and M =
100 pulses compared to expectation, illustrating Doppler sidelobe variation

Expected Response for Grid Staggering The expected Doppler response for the grid staggering

model is derived in Appendix A, leveraging the derivation for the cumulative staggering model

found in [7]. It is likewise a function of the number of pulses M and the stagger amount δ̄ as

E
[∣∣ug( fnD)

∣∣2]= 1
M

+2
(

sinc(π fnDδ̄ )

M

)2

×
M−1

∑
m=1

m cos(2π fnD(M−m)) . (2.30)

Similar to the expected response for cumulative staggering, the average sidelobe level is related

to the number of pulses M by −10log10(M) dB, a relationship shown in Fig 2.9.
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Figure 2.9: Expectation of Doppler response using grid staggering model for different number of
pulses M and δ̄ =±30%

The grid model produces an expected response that contains significantly less fluctuation com-

pared to the cumulative model, though at the cost of sharp peaks that resemble the uniform PRI

Doppler response. By increasing M, these peak levels are slightly decreased for fnD ≥ 2, though

the peak at fnD = 1 is not changed with varied M.

Figs. 2.10 and 2.11 shows increasing δ̄ results in decreasing peaks (this result was separated

into two figures for visibility). The responses for δ̄ ≤ 40% are large and would appear simi-

lar to the Doppler spectrum aliasing experienced by uniform PRI. Thus, for the grid staggering

model, δ̄ ≥ 40% should be used to mitigate repeated Doppler ambiguities, though two "quasi-

ambiguities" corresponding to the high peaks on either side of the mainlobe at fnD = ±1 remain.

Around δ̄ = 80%, ambiguity at fnD = ±1 becomes suppressed enough to be masked by random

sidelobe fluctuations, shown in Fig. 2.12. Due to the larger required stagger limit compared to

the cumulative model, grid staggering incurs heavier range swath loss compared to the cumulative

model.
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Figure 2.10: Expectation of Doppler response for stagger limits δ̄ from 0% to 40% on random grid
staggering and M = 100 pulses

Figure 2.11: Expectation of Doppler response for stagger limits δ̄ from 50% to 90% on random
grid staggering and M = 100 pulses
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Figure 2.12: Single instantiation of random grid staggering for δ̄ = ±80% limits and M = 100
compared to expectation

2.3.2.2 Aggregated Response Comparison

1000 trials of random PRI generation were performed according to the two models from Sec-

tion 2.1 using M = 100 pulses. The maximum across the trials at each Doppler frequency fnD, and

the root-mean-square (RMS) average of these trials are presented in Fig. 2.13 for varying degrees

of staggering. Fig. 2.13 demonstrates that higher available staggering diversity allows for better

mitigation of Doppler ambiguities. Larger δ̄ provide more diversity than smaller δ̄ , and the cumu-

lative staggering model provides more diversity over the grid staggering model. For δ̄ = 10%, the

sidelobe peak at fnD = 1 remains poorly suppressed for both random staggering models. However

as δ̄ increases, cumulative staggering clearly presents a dramatic maximum sidelobe suppression

benefit over the grid staggering model.
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Figure 2.13: Max and RMS Doppler response over 1000 random staggering trials comparing aver-
age performance between the cumulative and grid models for (a) δ̄ = ±10%, (b) δ̄ = ±20%, (c)
δ̄ =±30%, and (d) δ̄ =±40%,

The maximum curves are consistently about 7-8 dB higher than their associated average curves,

signifying that high sidelobe peaks always remain a possibility when using purely random instan-

tiations of PRI staggering. In the next chapters, design approaches for mitigating these sidelobe

peaks are presented.

2.3.3 Phase-Doppler Frequency Fan Plots

Discussed in Section 1.3.3, Doppler processing realizes a form of coherent integration across

the pulses, so it makes intuitive sense that phase-decoherence is the mechanism behind the flattened
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sidelobe response granted by staggering. In this section, the Doppler-phase "fan plot" from [7] is

used as a visual tool to help build intuition for the phase-decoherence phenomenon that results in

Doppler ambiguity suppression, and the two random staggering models from the previous section

are compared in this context. Recall the slow-time signal from Eq. 2.20

vm( fnD) = exp{ j2π fnDεacc(m)} ,

for fnD the normalized Doppler frequency and εacc(m) the accumulated normalized slow-time at

the mth pulse for m = 0,1, ...M−1. Thus the Doppler-rate-of-change of the phase progression for

the mth pulse is

∆φ(m, fnD)

∆ fnD
= 2πεacc(m). (2.31)

For the uniform case, the Doppler-phase slopes are simply 2πm for m = 0,1, ...M −1. The phase

φ( fnD) for the first 7 pulses of a uniform PRI arrangement are plotted in Fig. 2.14 as a function of

normalized Doppler frequency, resembling a fan shape. Vertical black lines are placed at integer

values of fnD, where it can be seen that all of the phases align with an integer multiple of 2π . The

coherence aspect is more visible in the provided wrapped phase plots. All of the pulses cohere at

these Doppler frequencies, corresponding to repeated Doppler response mainlobes, also shown in

the figure.
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Figure 2.14: Phase-Frequency fan plot of the first 7 pulses for uniform PRI, wrapped phase for
visibility, and associated Doppler response with M = 50 pulses

Now consider a static staggering formulation, where the PRI values alternate between the two

values εm = 1/3,1. According to Eq. 1.24, this results in a Doppler mainlobe repetition at fnD =

lcm( 1
1/3 ,1) = 3. Indeed, Fig. 2.15 shows that this is the case, but reveals more to the story. The

solid vertical lines indicate where perfect coherence across all M pulses occurs (shown by the exes),

but partial coherence may occur as well, denoted by the dashed vertical lines. At these frequencies,

the phase values remain close to integer multiples of 2π .
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Figure 2.15: Phase-Frequency fan plot of the first 7 pulses for static PRI (alternation between
T = 1/3 and 1), wrapped phase for visibility, and Doppler response with M = 50 pulses

Next, the effect of random staggering is explored through the lens of the fan plot. The concept

of "phase slope deflection" produced by staggering is represented in Figs. 2.16 and 2.17, where the

same stagger value ∆ε is applied to the m = 1,2,3 pulses using the cumulative model (Fig. 2.16)

and the grid model (Fig. 2.17), respectively. For the cumulative model, the phase slope deflections

are accumulated so that the slope for the mth pulse is given by

∆φc(m, fnD)

∆ fnD
= 2π(m+m∆ε). (2.32)

In contrast, the grid model applies staggering directly to these phase slope deflections and the slope
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for the mth pulse is

∆φg(m, fnD)

∆ fnD
= 2π(m+∆ε). (2.33)

Figure 2.16: Phase-Frequency slope deflection visualization for cumulative staggering

Figure 2.17: Phase-Frequency slope deflection visualization for grid staggering

Clearly as m increases, cumulative staggering can achieve higher degrees of phase slope devi-

ation from the uniform PRI structure than the grid model can grant.
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Now the intuition behind the greater diversity afforded by cumulative staggering compared to

grid staggering has been built. For completeness, fan plots for a low diversity case with δ̄ =±10%

as well as a high diversity case with δ̄ =±40% for cumulative staggering and δ̄ =±10%,±80%

for grid staggering are shown in Figs. 2.18-2.19. These plots demonstrate that higher diversity,

presented by either cumulative staggering or increased stagger limit, results in a flatter Doppler

sidelobe response, and that phase coherence or partial coherence depicted by the fan plot is the

mechanism behind Doppler sidelobe perfomance.

Figure 2.18: Phase-Frequency fan plot, wrapped phase, and Doppler response for cumulative stag-
gering with M = 50 pulses and (a) ±10% (b) ±40%
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Figure 2.19: Phase-Frequency fan plot, wrapped phase, and Doppler response for grid staggering
with M = 50 pulses and (a) ±10% (b) ±80%
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Chapter 3

Redundancy and the PRI Staggering Co-Array

3.1 The Sparse Array/PRI Staggering Analogy

There is a well-known structural similarity between the phase models for antenna arrays (spa-

tial) and a CPI of pulses (slow-time, Eq. 2.20). Non-uniformity in both domains achieves a similar

flattening of the power spectrum, though the purpose of the non-uniformity is different for the two

cases, leading to some key distinctions:

1. What is kept fixed: For PRI staggering, the overall dwell time is kept fixed, whereas for

sparse arrays it is the minimum spacing between elements (λ/2).

2. What is expanded: PRI staggering yields an expansion of the unambiguous Doppler span,

while staggering allows for an expanded antenna aperture, thereby granting better spatial

resolution for the same number of elements.

3. Observation limit: The physical observation angle for an antenna array spans [−90◦,+90◦],

which is hard limited by electromagnetic constraints. If power is pushed outside of this "real-

space" limit, it encroaches on the "invisible-space" [46] , which could result in transmitter

damage. In contrast, the observable Doppler frequency span is hard-limited by the speed

of light. Since realistically a radar system would not need to observe movers at that speed,

the Doppler frequency is more soft-limited by high radial speeds where the "stop-and-hop"

model (Section 1.3.2) for Doppler breaks down. Since appropriate compensation on receive

may be applied to address this, there is effectively no limit for Doppler frequency.
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Because of these distinctions, the solutions to non-uniform design tend to be different be-

tween the two domains, which is explored later in this chapter. Even so, the mathematical tools

used for analysis and design can be interchanged. Previous work exploring the analogy between

non-uniform time/spatial sampling includes [47] , which uses the sparse array design technique

Marginal Fisher’s Information (MFI) [48] to optimize fast-time sampling for signal reconstruc-

tion. In [49] , the co-prime antenna structure is used to produce a PRI staggering arrangement for

CPI combination in processing.

This chapter expands upon previous work in [8] , where the co-array concept widely used

in sparse array design [50] is leveraged to analyze staggered PRI sequence structure with the

goal of aiding PRI staggering design. The effect of redundancy in PRI staggering is explored, and

uniqueness between redundant sequences is analyzed.

3.2 PRI Staggering Co-array

In this section, the concept of the PRI staggering co-array is developed, which largely resembles

the co-array for antenna array design. First, consider the CPI containing staggered PRIs as a set of

impulses denoting the pulse onset locations on a temporal aperture, described by the accumulated

normalized slow-time in Eq. 2.8. This CPI containing impulses at the pulse onset times (and zero-

valued intervals in between) is denoted as w(εεεacc). An example of this arrangement is shown in

Fig. 3.1.

Figure 3.1: CPI translated into impulse train denoting pulse onset times

Denote the MK ×1 discretization of w(εεεacc) as w, where M is again the number of pulses and

K is an oversampling factor that sets the granularity of the discretized grid. K is also the number
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of samples corresponding to Tavg in the discretized CPI. The PRI staggering co-array is then

c(ℓ) = ∑
n

w(n)w(n− ℓ), (3.1)

which is an autocorrelation of the CPI containing the pulse onset locations. The co-array depicts

the degree of redundancy in the sequence. The staggered impulse train from Fig. 3.1 for a uniform

PRI sequence with M = 20 and K = 2000 is compared to a randomly staggered PRI sequence in

Fig. 3.2. The ensuing stagger co-arrays from Eq. 3.1 are shown in Fig. 3.3. Since it is symmetric,

only one side of the co-array is displayed.

Figure 3.2: Single random instantiation impulse train compared to uniform for M = 20 pulses

Figure 3.3: Coarray for random stagger using grid model achieves low redundancy compared to
uniform PRI case for M = 20 pulses
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The co-array displays the number of redundancies at each value of lag ℓ. For uniform PRI,

the co-array (blue) in Fig. 3.3 exhibits the familiar peak of M at ℓ = 0 and linear taper to 1 at

ℓ = M − 1. The grid staggered co-array (orange) demonstrates that the staggering shown in Fig.

3.2 corresponds to an almost complete elimination of redundancy in the PRI sequence, indicating

that the random stagger instantiation naturally realizes a minimally redundant co-array since K is

set sufficiently high for fine granularity. Note that for smaller K, the grid on which the PRIs are

discretized becomes coarser, thereby introducing more possibility for redundancy. Therefore the

factor K can be used as a "tuning knob" to control the level of redundancy in a generated random

PRI sequence.

Conveniently, the Doppler power spectrum in Eq. 2.28 is a Fourier transform (FT) pair with Eq.

3.1, so that a fast Fourier Transform (FFT) can be used to observe the Doppler response despite the

nonuniformity of the PRI sequence. The FFT is more computationally efficient than the Discrete

Fourier Transform (DFT) ( O(Nlog(N)) compared to O(N2) ). Fig. 3.4 shows the corresponding

Doppler response for the co-arrays in Fig. 3.3 to demonstrate the random PRIs’ realization of the

anticipated Doppler spectrum sidelobe flattening.

Figure 3.4: Doppler response for random stagger using grid model compared to uniform PRI.

Here the co-array does not consider the transmit waveform. Each pulse is depicted as an im-

pulse with no time extent, so a single sample of lag results in complete decoherence. Later, when

uniqueness between sequences is addressed in Section 3.4, the waveform is accounted for, result-
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ing in a co-array consisting of scaled pulse compression responses. As discussed in the mentioned

section, the pulse compression response mainlobe resolution is likely negligible compared to in-

terpulse times, so ignoring this aspect for now does not affect the ensuing analysis.

3.3 Redundancy and the Doppler Response

The PRI staggering co-array from [8] was defined in the previous section and was demonstrated

to be a useful tool for analyzing redundancy in PRI sequences. In this section the effect of redun-

dancy on the Doppler spectrum response, specifically on the peak Doppler sidelobe, is explored,

in the context of both cumulative and grid staggering.

The co-arrays for the same random grid stagger instantiation (δ̄ = 90%), discretized according

to two different redundancy factors K = 5 and K = 25 are shown in Fig. 3.5, as well as their

associated Doppler responses in Fig. 3.6. The same comparisons for the cumulative model (with

δ̄ = 30%) are made in Figs. 3.7 and 3.8.

A coarser grid corresponds to a raised co-array level and steeper roll-off, indicating higher

levels of redundancy. Clearly the different discretization granularities have affected the response

structure, with higher co-array redundancy likewise translating to more redundancy in the Doppler

response, displayed in the higher frequency of repeated mainlobes. The Doppler response repeats

at intervals of K. The required value for K is then dependent on the required maximum unambigu-

ous Doppler frequency as

Kreq = 2 fnD. (3.2)
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Figure 3.5: Coarray for random stagger using grid model with δ̄ = 90% for two different levels of
redundancy controlled by granularity factor K.

Figure 3.6: Doppler response for random stagger using grid model with δ̄ = 90% for two different
levels of redundancy controlled by granularity factor K.
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Figure 3.7: Coarray for random stagger using cumulative model with δ̄ = 30% for two different
levels of redundancy controlled by granularity factor K.

Figure 3.8: Doppler response for random stagger using cumulative model with δ̄ = 30% for two
different levels of redundancy controlled by granularity factor K.

3.3.1 Peak Doppler Sidelobe Level

The peak Doppler sidelobe level (PDSL) is a useful metric for the application of designing flat

PRI stagger Doppler spectrums. PDSL is formally defined in terms of a p-norm in Section 4.3.2.1

to analyze optimization performance. Here it is used in conjunction with the PRI staggering co-
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array to evaluate the effect of redundancy on the Doppler response. PDSL is defined as

PDSL =

max
fnD

|wsl ⊙u|2

max
fnD

|wml ⊙u|2
, (3.3)

where wsl and wml are vectors containing ones and zeros that select for the sidelobes and mainlobe

respectively, ⊙ denotes a Hadamard product, u is a discretized version of the Doppler response in

Eq. 2.28, and max
fnD

(•) denotes the maximum operation for all normalized Doppler.

3.3.2 Average PDSL Behavior with Stagger Limit

The effect of redundancy on the PDSL varies with stagger limit δ̄ . To demonstrate this rela-

tionship, 104 Monte Carlo trials were performed for varying δ̄ for both the grid staggering and

cumulative staggering models. The findings are detailed in the following sections.

3.3.2.1 Redundancy and Grid Staggering

104 grid stagger instantiations (M = 100) were discretized according to K = 5 and K = 25.

This was performed for various δ̄ , the PDSL was evaluated, and the aggregate results are shown in

Fig. 3.9. The interval [1/M,5− 1/M] was chosen for sidelobe selection because it encompasses

the full span of the unambiguous sidelobe region for the high redundancy case (K = 5). The

same interval was used to compute the PDSL for the fine grid (low redundancy) case. Thus the

following analysis considers whether high or low redundancy is beneficial for the design interval

[1/M,5−1/M], ignoring behavior outside this region.
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Figure 3.9: Average PDSL for 104 random trials of M = 100 pulse random grid staggered PRIs
with varying δ̄ compared for K = 5 (Coarse) and K = 25 (Fine)

Fig. 3.9 for grid staggering shows that coarse and fine sequences possess similar maximum

PDSL over the 104 trials, indicating that in this regard neither formulation presents a large ad-

vantage over the other, though for δ̄ > 85%, coarse grid staggering displays a slight decrease

in maximum PDSL. The average PDSL trend for coarse grid staggering displays a strange "scal-

loped" behavior, which intersects the coarse trend line for fine grid staggering (which is smoother).

This suggests that depending on the available staggering limit, one may choose either high or low

redundancy arrangements for purely random grid staggering to provide a better chance for lower

sidelobes. Histograms of 105 random trials are shown in Fig. 3.10 for both K = 5 and K = 25 at

δ̄ = 90% that provide a more detailed view.
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Figure 3.10: Histograms of peak Doppler sidelobe level for 105 random trials of M = 100 pulse
random grid staggered PRIs with δ̄ = 90%.

Coarse grid staggering at δ̄ = 90% was shown in Fig. 3.9 to provide improvement in both

average and maximum PDSL compared to the fine grid staggering case. The histograms in Fig.

3.10 confirm that coarse grid staggering does indeed produce a down-shifted PDSL distribution,

with the maximum PDSL improved by (−7.1)− (−7.3) = 0.2 dB, minimum PDSL improved by

(−13.3)− (−13.5) = 0.2 dB, and median improved by (−11.3)− (−11.9) = 0.6 dB. While the

range of PDSL values still overlap considerably, for δ̄ = 90%, coarser grid granularity appears to

improve PDSL performance somewhat. The minimum and maximum improvement are compara-

bly minor, possibly due to the staggering performance reaching a limit, which is visually suggested

by the flat left side of the coarse histogram. A similar analysis was performed for various δ̄ , the

results of which are compiled in Table 3.1. Recall that δ̄ < 40% did not provide adequate suppres-

sion at fnD = 2, so attention is paid to the cases where δ̄ ≥ 40%. The table tells a similar story as

Fig. 3.9, with the advantageous formulation (coarse or fine) varying with increasing δ̄ .

55



δ̄ Max. PDSL (dB) Min. PDSL (dB) Median. PDSL (dB)
Coarse Fine Diff. Coarse Fine Diff. Coarse Fine Diff.

40% -1.5 -1.6 0.1 -2 -3.6 1.6 -2 -2.5 0.5
50% -2.5 -2.3 -0.2 -6.5 -6 -0.5 -4.2 -3.9 -0.3
60% -3.3 -3.4 0.1 -7 -8.8 1.8 -5.3 -5.8 0.5
70% -4.7 -4.6 -0.1 -12 -11.9 -0.1 -8.5 -8.3 -0.2
80% -5.3 -5.8 0.5 -12 -13.1 1.1 -10.2 -10.6 0.4
90% -7.3 -7.1 -0.2 -13.5 -13.3 -0.2 -11.9 -11.3 -0.6

Table 3.1: Maximum, Minimum, and Median PDSL over 105 random trials of coarse (K = 5) and
fine (K = 25) grid staggering.

3.3.2.2 Redundancy and Cumulative Staggering

The aggregate PDSL for 104 grid stagger instantiations is shown in Fig. 3.11, as a function of

δ̄ . Again, the interval [1/M,5−1/M] was chosen for sidelobe selection.

Figure 3.11: Average PDSL for 104 random trials of M = 100 pulse random cumulative staggered
PRIs with varying δ̄ compared for K = 5,K = 25.

Contrary to the result for grid staggering in Fig. 3.9, one formulation demonstrates a consistent

benefit over another in the average. For cumulative staggering, coarse granularity (high redun-

dancy) clearly possesses a lower average PDSL than the fine granularity discretization, though the
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advantage is less present in the maximum PDSL. However, for cumulative staggering the PDSL

benefit is diminishing for δ̄ > 40%, so the PDSL behavior with δ̄ is less important beyond this

point. Similar to the analysis done for Table 3.1, 105 random generations of random cumulative

staggering with δ̄ = 30% was performed, distretized to both a coarse (K = 5) and fine (K = 25)

grid, and the difference between the maximum, minimum and median PDSLs are compiled and

shown in Table 3.2.

δ̄ Max. PDSL (dB) Min. PDSL (dB) Median. PDSL (dB)
Coarse Fine Diff. Coarse Fine Diff. Coarse Fine Diff.

30% -4.6 -4.1 -0.5 -13.2 -12.5 -0.7 -10 -9.7 -0.3
40% -6.2 -6.3 0.1 -13.6 -13.2 -0.4 -11.3 -10.9 -0.4
50% -6.7 -6.4 -0.3 -13.8 -13.2 -0.6 -11.6 -11.1 -0.5
60% -7.5 -6.6 -0.9 -14.1 -13.1 -1 -11.7 -11.2 -0.5
70% -7 -6.4 -0.6 -14.2 -13.6 -0.6 -11.8 -11.3 -0.5
80% -6.8 -6.7 -0.1 -14.3 -13.4 -0.9 -11.9 -11.3 -0.6
90% -7.1 -7.1 0 -14.3 -13.7 -0.6 -11.9 -11.4 -0.5

Table 3.2: Maximum, Minimum, and Median PDSL over 105 random trials of coarse (K = 5) and
fine (K = 25) cumulative staggering.

The table corroborates the trends shown in Fig. 3.11; for cumulative staggering, coarse granu-

larity is more likely to produce PRI sequences with lower peak sidelobes.

3.4 Uniqueness of Redundant Sequences

From the perspective of diversity, random PRI staggering is useful due to the uniqueness be-

tween sequences inherent in the randomness. When the staggers are independently drawn from

a continuous distribution, each sequence can be expected to be unique. By imposing redundancy

via grid discretization, sequence uniqueness may be degraded. In order to speak explicitly about

this aspect, a uniqueness metric µ developed in [9] based on the PRI stagger co-array is used to

analyze the uniqueness between PRI sequences.
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3.4.1 PRI Stagger Co-array Revisited

The co-array defined in Eq. 3.1 is further expanded to include the pulsed waveform structure

so that a more accurate degree of coherence span due to waveform bandwidth/range resolution

may be considered. For the case of repeated unit-energy waveform s(t), let s̃(t) be the total CPI

including all M repeated waveforms s(t) pulses placed at their respective staggered time instances,

and zero-valued intervals in between. Then the waveform-included stagger co-array becomes

cwfm(τ) =
∫

s̃(t)s̃∗(t − τ)dt (3.4)

which realizes an autocorrelation of the entire transmitted CPI, with the peaks in the standard co-

array replaced by scaled waveform autocorrelations. This can also be thought of as a Doppler cut

of the delay-Doppler ambiguity function for random staggering [6] , which exhibits the familiar

"bed-of-nails" structure for a uniform CPI arrangement [5] .

3.4.2 Uniqueness

A slight modification to Eq. 3.4 is introduced in [9] to perform cross-correlation between two

sequences. The resulting uniqueness metric is defined as

µ [s̃1(t), s̃2(t)] =
1
M

max
τ

∣∣∣∣∫ s̃1(t)s̃∗2(t − τ)dt
∣∣∣∣ , (3.5)

which can be thought of as a maximum of the "cross-co-array". This metric provides a normalized

measure of the two sequences’ PRI-dependent structural similarity. The uniqueness metric µ lies

on [1/M,1], with 1 resulting from identical sequences and 1/M due to a single correlation peak

being the lower bound, implying no commonality between PRIs in the two sequences. Therefore

lower µ correspond to more unique sequences.
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3.4.2.1 Uniqueness and Grid Staggering

The metric is now used on 1000 independently generated grid staggered sequence pairs dis-

cretized according to both K = 5 and K = 25 granularity. Fig. 3.12 shows the results for K = 5

and Fig. 3.13 shows the results for K = 25 as a function of δ̄ . Also shown is the metric applied to

the non-discretized versions of the 1000 sequence pairs in the set in Fig. 3.14.

Figure 3.12: Uniqueness metric applied pairwise to 1000 random coarse (K = 5) grid stagger
sequences of M = 100 pulses for different δ̄
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Figure 3.13: Uniqueness metric applied pairwise to 1000 random fine (K = 25) grid stagger se-
quences of M = 100 pulses for different δ̄

Figure 3.14: Uniqueness metric applied pairwise to 1000 random (no discretization) grid stagger
sequences of M = 100 pulses for different δ̄

Note that for K = 5 grid staggering in Fig. 3.12, the uniqueness between sequences is 0 dB

when δ̄ ≤ 20%. This is because the discretization process reverts the PRI sequence to the uniform
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PRI structure. The same trend is observed in Fig. 3.13 for K = 25 when δ̄ ≤ 4%. Thus it is required

that δ̄ ≥ 1/K in order to observe any benefit from grid staggering. Expectedly, for Figs. 3.12 - 3.14,

higher stagger deviation results in more unique sequences due to the higher available diversity,

shown by the decreasing trend. Also unsurprising is the fact that the undiscretized sequences in

Fig 3.14 exhibit higher degrees of uniqueness compared to the discretized versions, with the RMS

average approaching an asymptote of -15 dB for undiscretized sequence pairs compared to -9.7 dB

for K = 25 and -5 dB for K = 5. Higher levels of discretization result in sequences that are less

unique from one another.

3.4.2.2 Uniqueness and Cumulative Staggering

The same uniqueness simulation is performed for cumulative staggering, with 1000 generated

sequence pairs discretized according to K = 5 in Fig. 3.15, K = 25 in Fig. 3.16, and undiscretized

in Fig. 3.17.

Figure 3.15: Uniqueness metric applied pairwise to 1000 random coarse (K = 5) cumulative stag-
ger sequences of M = 100 pulses for different δ̄
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Figure 3.16: Uniqueness metric applied pairwise to 1000 random fine (K = 25) cumulative stagger
sequences of M = 100 pulses for different δ̄

Figure 3.17: Uniqueness metric applied pairwise to 1000 random (no discretization) cumulative
stagger sequences of M = 100 pulses for different δ̄

Since cumulative staggering can achieve a greater diversity of pulse locations, the same flat

trend for grid staggering does not exist for K = 5 in Fig. 3.15. The maximum uniqueness curve
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does, however, stay flat at 0 dB for δ̄ < 4%, likely due to a lack of suppression of the first Doppler

ambiguity. Cumulative staggering is able to construct more unique sequences compared to grid

staggering, for all levels of redundancy shown. Within the cumulative staggering set, more redun-

dancy results in less uniqueness between sequences, which makes intuitive sense and is consistent

with the grid staggering case.

This chapter explored the effect of redundancy in the PRI staggering co-array on the Doppler re-

sponse and on the degree of uniqueness between generated sequences. It was shown that the degree

of redundancy controls the unambiguous Doppler interval. When using cumulative staggering, it

was found that higher degrees of redundancy can contribute to lower peak sidelobe levels, and

less uniqueness between sequences. This chapter considered only purely random PRI sequences,

which still exhibit unpredictable behavior. The next chapter details design approach involving a

gradient-based optimization for low peak sidelobes.
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Chapter 4

Gradient-Based Optimization

This chapter reports on a gradient-based optimization procedure developed in [9] that is shown

to reduce peak Doppler sidelobes within a desired Doppler interval. First a cost function is de-

fined and posed as a continuous function of underlying continuous parameters, thereby facilitating

determination of the gradient. The gradient is provided and used to perform optimization, and

performance is assessed in simulation as well as using open-air experimental data.

4.1 Cost Function and Gradient

4.1.1 Cost Function: Generalized Integrated Sidelobe Level (GISL)

The PRI staggering formulation discussed previously is dependent on bounded deviations on

[−δ̄ ,+δ̄ ] from the uniform PRI arrangement. This bound may be preserved during optimization

by imposing constraints, but here a bounding function is used so that

εm = 1+∆εm
∆
= 1+ δ̄ sin(αm) (4.1)

for m = 1,2, ...,M − 1 produces a PRI bounded on
[
1− δ̄ ,1+ δ̄

]
for any real-valued αm. Note

that here the cumulative model is used to generate stagger sequences, since it affords more side-

lobe suppression with less range swath loss than the grid staggered model. The vector ααα =

[0α1 α2 . . . αM−1]
T collects these deeper parameters so that the Doppler response u(εεε(ααα)) from

Eq. 2.28 possesses a continued functional dependence.

The generalized integrated sidelobe level (GISL) metric was introduced in [51] as a cost func-
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tion for optimizing polyphase-coded frequency modulated (PCFM) waveforms for desired autocor-

relation sidelobe properties. The PCFM framework is parameterized according to a discrete set of

real, scalar parameters [52, 53], lending itself easily to optimization. In [54, 55], the GISL metric

is used in a gradient-based optimization to control autocorrelation sidelobes in PCFM waveforms.

Recently this optimization was extended to consider other "quasi-bases" [56] , and to design

Constant-Envelope Orthogonal Frequency Modulated (CE-OFDM) waveforms in [57] . Here the

cost function is applied to the Doppler response, giving

Jp(ααα) =
∥ wsl ⊙u(α) ∥2

p

∥ wml ⊙u(α) ∥2
p

(4.2)

for ⊙ denoting the Hadamard product, and wsl and wml being N × 1 vectors containing ones and

zeros that select for the sidelobes and mainlobe, respectively. The mainlobe selector wml has ones

on fnD ∈ [0,1/M]. Since the region near-in the mainlobe is low and is not greatly affected by

staggering [7], additional computational efficiency can be obtained by ignoring this region so that

the vector wsl selects fnD ∈ [0.5,0.5βopt]. For p = 2, the cost function in Eq. 4.2 becomes the

integrated Doppler sidelobe level (IDSL), which provides a metric for describing average sidelobe

level. For p → ∞, Eq. 4.2 becomes a peak Doppler sidelobe (PDSL) metric as the largest term

dominates the norm. Since a flat sidelobe response is desired, PDSL is more useful in this context

so that the maximum sidelobes are minimized. As p is increased, the computational complexity

quickly blows up, so here the value p = 10 is used as it is sufficient to achieve flat Doppler side-

lobes. The IDSL and PDSL metrics are used independently in Section 4.3.2 analyzed in the context

of optimized Doppler responses

One last note before the gradient is presented: Eq. 4.2 is a nonconvex function of α , and

therefore optimization will likely converge toward different solutions depending on the random

initialization. Thus, though optimized PRI sequences may obtain qualitatively similar Doppler

responses, the particular solutions will likely be distinct from each other. This uniqueness aspect

is explored in Section 4.3.3.
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4.1.2 Gradient

The derivation in the appendix of [55] is leveraged here to determine the gradient of Eq. 4.2. In

[55], the GISL cost function is used to optimize the underlying parameters for polyphase-coded FM

[52] waveforms, the autocorrelation of which is analogous to Eq. 2.28 in the Doppler context. Here

the functional dependence between the response in question (pulse compression for the waveform

case and Doppler spectrum for the PRI staggering case) and the underlying optimizable parameter

is changed. Appendix A of this thesis as well as [9] derives the gradient to be

∇αααJp =
4πδ̄

M
JpGT

[
wsl

wT
sl|u|p

− wml

wT
ml|u|p

]
, (4.3)

with the M×N matrix G = [0N×1 g1 . . . gM−1], where

gm = |u|(p−2)⊙ℑ

{((
VH ⊙

(
fnD (cos{ααα ⊙ em})T BT

))
v0

)
⊙u∗

}
(4.4)

where ℑ{•} takes the imaginary part of the argument, em is an M×1 elementary vector containing

all zeros save for a 1 at the mth element, and (•)∗ denotes complex conjugation. This gradient can

now be used in any gradient-based optimization framework to optimize the real, scalar parameters

in ααα for low sidelobes in the Doppler response.

4.2 Method

The optimization is performed here using the limited-memory Broyden–Fletcher–Goldfarb–Shanno

(BFGS) algorithm [58] , which is an unconstrained quasi-Newton method that requires only a gra-

dient calculation at each iteration, avoiding the costly Hessian calculation characteristic of the

Newton method. The algorithm is implemented using the function "minf_lbfgs" from the Ten-

sorlab toolbox [59] , with the objective function iterative difference tolerance set to 10−7 and the

step-size tolerance set to 10−8. The parameter values αm for m = 1,2, ...,M−1 are drawn from a

uniform distribution on [−π,+π] and used to produce a random stagger sequence via Eq. 4.1 for
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some chosen δ̄ . The PRIs thereby fall on a sine distribution, which tends to have a flatter Doppler

response than for uniformly distributed PRIs (due to the bimodal nature of the sine distribution

meaning higher probability for large stagger values), and thus requires fewer iterations to con-

verge. Additional computational efficiency is achieved by exploiting the symmetry of the Doppler

response and considering only the interval fnD ∈ [0,0.5βopt], plus the additional buffer discussed

in Section 2.2.3.2.

4.3 Assessment of PRI Stagger Optimization

In this section the results of the optimization method presented in the previous section are

shown and analyzed, including examples of the improved Doppler responses, a Monte Carlo nu-

merical analysis using the IDSL and PDSL metrics, and a uniqueness assessment between initial

and corresponding optimized sequences using the metric defined in Section 3.4.2.

4.3.1 Optimized Doppler Response

The benefit of optimization is demonstrated in the two examples of random initializations with

particularly high PDSL shown in Figs. 4.1 and 4.2. These were the worst cases observed in 1000

instantiations of random staggering formed according to Eq. 4.1, for M = 100, δ̄ = 30%, and

βopt = 4. Implemented as described in the previous section, gradient-based optimization achieves

a 9.8 dB PDSL improvement in Fig. 4.1, in which a large peak is observed at fnD = 1 where the

mainlobe would be repeated for the uniform PRI case. The optimization clearly works as intended,

flattening the entire sidelobe pedestal. Though the second example in Fig. 4.2 shows a smaller

PDSL improvement (8.8 dB), this particular random instantiation could be even more problematic,

as it contains multiple peaks that could result in false alarms. These two cases exemplify the need

for optimization, as random PRI staggering can exhibit very high sidelobes if they are not mitigated

via careful PRI design. Observe that the response over the interval [0,0.75] follows the uniform

PRI response closely.
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Figure 4.1: Single instantiation of random staggering for M = 100 and compared to gradient-based
optimization (9.8 dB PDSL improvement)

Figure 4.2: Single instantiation of random staggering for M = 100 and compared to gradient-based
optimization (8.8 dB PDSL improvement))

To observe the overall behavior of this optimization, now consider the Doppler response in

aggregate over the 1000 independent trials, shown in Fig. 4.3. Only examining the root-mean-
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square (RMS) curves, the advantage of the optimized over the initial responses is not evident, with

the former exhibiting a modest flattening of the latter. However, as was exemplified in Figs. 4.1

and 4.2, it is the peak sidelobe that may pose problems. The maximum at each fnD across the

1000 trials reveals that optimization does in fact reduce the peak level, by 2-10 dB over the entire

sidelobe extent. The maximum curves additionally show that optimization tends toward a more

consistent peak value across the entire Doppler span. The greatest degree of improvement occurs

at fnD = 1, which corresponds to the high sidelobe peaks in Figs. 4.1 and 4.2 and aligns with the

first ambiguity for the uniform PRI case, suggesting that some random instantiations retain a degree

of uniform structure. Further, notice that the optimized RMS and maximum curves are much closer

than those for the initialization, indicating that the optimization produces a more consistent result

with less variance. In short, optimization avoids the worst-case conditions that randomness may

induce.

Figure 4.3: Aggregate mean and maximum of random staggering for M = 100 and compared to
gradient-based optimization
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4.3.2 Numerical Analysis

The GISL cost function from Eq. 4.2 was described in terms of the integrated Doppler sidelobe

(IDSL) and peak Doppler sidelobe (PDSL). Here these metrics are formally defined and used to

analyze the impact of optimization.

4.3.2.1 Integrated Doppler Sidelobe Level (IDSL) and Peak Doppler Sidelobe Level (PDSL)

Definitions

First, the IDSL is

IDSL ∆
=

∥ wsl ⊙u ∥2
p=2

βopt ∥ wml ⊙u ∥2
p=2

, (4.5)

where βopt is the chosen Doppler span for optimization, wsl and wml select for the sidelobes ( fnD ∈

[0.5,0.5βopt]) and mainlobe (( fnD ∈ [0,1/M]), respectively, and u is the Doppler response from Eq.

2.28.

The PDSL was loosely defined in Eq. 3.3. Explicitly defined as a special case of the GISL cost

function, it is

PDSL ∆
=

∥ wsl ⊙u ∥2
p→∞

βopt ∥ wml ⊙u ∥2
p→∞

=

max
fnD

|wsl ⊙u|2

max
fnD

|wml ⊙u|2
, (4.6)

which simply measures the ratio of the highest Doppler sidelobe to the mainlobe peak (at fnD = 0)

over the same intervals as the IDSL metric.

4.3.2.2 IDSL and PDSL Histograms

Applying these metrics to the sets of 1000 independent random initial and optimized trials

(with δ̄ = 30%, M = 100, and βopt = 4), specific information about the optimization behavior is
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revealed.

When only considering the histogram of IDSL in Fig. 4.4, optimization does not appear to

improve the sidelobe response much, with the initial and optimized histograms centered around a

similar value. Indeed optimization for this particular M, δ̄ , βopt does not improve the IDSL much,

only slightly tightening the distribution indicating a more consistent average sidelobe behavior.

This behavior can be explained in Fig. 4.3 by the observation that the average curves are close and

would integrate to a similar value over the same extended Doppler interval.

Figure 4.4: Histogram of IDSL for 1000 independent initial and optimized random stagger se-
quences for M = 100, δ̄ = 30%, and βopt = 4

In contrast, observe the PDSL histogram in Fig. 4.5, in which the benefit of optimization is

immediately apparent. Indeed this metric is more telling, as the goal of optimization is to flatten

peak sidelobes and achieve a level closer to the theoretical limit of 10log10(1/M), which was the

reason for the choice of p = 10. Fig 4.5 reveals the PDSL is distinctly decreased via optimization,

and moreover the distribution possesses significantly less variance, indicating that PDSL is more

consistent among the optimized sequences. Specifically, 98.9% of trials lie between −17 and −16

dB centered on the median of −16.5 dB. By comparison, this same percent of trials for the initial

random stagger sequences lie between −13.5 and −8.4 dB centered on the median of −10.9 dB.
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Figure 4.5: Histogram of PDSL for 1000 independent initial and optimized random stagger se-
quences for M = 100, δ̄ = 30%, and βopt = 4

While the histogram in Fig. 4.5 clearly demonstrates a performance enhancement via opti-

mization, it is also worth examining the PDSL improvement on a case-by-case basis. A histogram

for the improvement in PDSL for each trial is shown in Fig. 4.6, wherein between 3 and 10 dB of

improvement is obtained over the 1000 trials, with a median around 5.6 dB. Based on the examples

in Section 4.3.1, it can be inferred that the most improvement is achieved when the PDSL for the

random initialization is particularly severe.
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Figure 4.6: Histogram of PDSL improvement between 1000 independent initial and optimized
random stagger sequences for M = 100, δ̄ = 30%, and βopt = 4

4.3.2.3 PDSL Behavior with Stagger Limit and Optimized Doppler Interval

The choice of stagger limit δ̄ and optimized Doppler interval βopt do affect the optimization

performance shown in the previous section. First, consider the impact on the PDSL as δ̄ is var-

ied. The RMS average over 1000 independent trials is evaluated for δ̄ from 0% to 50%, and the

10log10(•) of the average PDSL is plotted in Fig. 4.7. The initial PDSL curve clearly demonstrates

a downward trend, with a small bump around 40%. From Fig. 2.7, the same trend is portrayed:

a flattening of the expected Doppler response with increasing stagger limit.The optimized result

has a monotonically decreasing trend, suggesting that the available diversity from a greater stagger

limit allows for better optimization solutions to exist.

The difference between the initial and optimized responses is the largest at approximately 8

dB for around δ̄ = 5% and about 6 dB at the point of least difference, about δ̄ = 30%. Note that

this plot is intended to show optimized PDSL performance as a function of δ̄ to reveal trends, but

that realistically higher δ̄ should be avoided due to greater blind range swath and shorter range

ambiguities. Based on Fig. 4.7, the justification for the choice of δ̄ = 30% becomes clear, as
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staggering where δ̄ > 30% does not pose an additional advantage.

Figure 4.7: Mean PDSL as a function of δ̄ over 1000 independent initial and optimized random
stagger sequences for M = 100 and βopt = 4

Next, consider the same experiment but for fixed δ̄ = 30% and βopt varied from 1 to 20. One

can intuit that as PDSL is evaluated over an increasing Doppler interval, the initial random in-

stantiations have a higher likelihood of exhibiting a high peak in the extended sidelobe response.

Additionally the available degrees of freedom M must contend with a larger Doppler span over

which to optimize. Observe Fig. 4.8, which displays a monotonically increasing trend in PDSL

for both the initial and optimized sequences, albeit with a slightly different shape between the two

curves. An interesting inflection exists at βopt = 1.5 (or fnD ∈ [0,0.75]) for the initial sequence.

The reason for this inflection can be understood when noting that the extension of βopt from 1 to

1.5 extracts only the sidelobes from the low roll-off region near the mainlobe, where the phase

slope deflection from Section 2.3.3 is not great enough to provide the sidelobe flattening effect

seen for fnD > 0.75. For βopt > 1.5, the first Doppler ambiguity is subsumed, which tends to have

its largest value at/near fnD = 1. For higher βopt (> 6) the rate of increase reduces considerably

while still gradually trending upward, which makes sense when considering that PDSL is being

computed (or optimized for) over a progressively larger span. Still, PDSL is consistently improved
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by optimization for all βopt.

Figure 4.8: Mean PDSL as a function of Doppler span βopt over 1000 independent initial and
optimized random stagger sequences for M = 100 and δ̄ = 30%

4.3.3 Uniqueness Assessment

As discussed in Section 3.4, a prospective benefit of random PRI staggering is the unique nature

of each PRI sequence. The nonconvex nature of the cost function in Eq. 4.2 likely realizes op-

timized sequences that, when differently initialized, maintain their uniqueness from one another.

The effect of optimization on uniqueness is demonstrated using the uniqueness metric from [8]

used in Section 3.4. Examples of the waveform-dependent co-array from Eq. 3.4 are shown in Fig.

4.9 for the case of a uniform CPI, a random initialization, and an optimized version thereof, with

s(t) being an LFM with an oversampling factor of 5 relative to swept bandwidth. The uniform

co-array exhibits the familiar triangle shape characteristic of the maximally redundant array. The

random and optimized sequences produce co-arrays with significantly fewer redundancies as the

PRI intervals are no longer aligned. The random initialization realizes a nearly minimal redun-

dancy co-array, whereas the optimized co-array produces a slight increase near-in 0 lag. While the

co-array is shown in absolute scale, the cutaway in Fig. 4.9 shows a zoomed version of the final
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peak in the co-array in decibel scale, showing that the peaks are scaled versions of the waveform

autocorrelation.

Figure 4.9: Stagger co-array for M = 100 pulses in uniform, random, and optimized configurations

The metric from Eq. 3.5 is applied pairwise between sequences drawn from a set of 1000 inde-

pendent random sequences. The same sequences are optimized according to the method described

in Section 4.2 using the same function settings. The optimized sequences corresponding to the

same pairs used to evaluate the initial µ are then used to determine an optimized µ . In Fig. 4.10

and 4.11, histograms are shown for δ̄ = 5% and δ̄ = 20% to further analyze the trend with δ̄ .

For δ̄ = 5%, the initial and optimized median are similar: −11.4 dB and −11.6 dB respectively.

However the optimization clearly has an unpredictable effect on uniqueness, even greatly reducing

uniqueness with 28.8% of trials resulting in µ greater than −4 dB. This is likely because the

available solution space is smaller with the limited stagger boundary. For δ̄ = 20%, the initial and

optimized sequences have an equal median of −15.0 dB. However the optimization slightly widens

the distribution, with 91.5% of trials lying on the interval −15.5 dB to −14 dB, compared to 97.5%

of trials lying on this same interval for the initial sequences. The optimization may diminish the
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uniqueness afforded by the initial sequence, with 2.2% of trials lying on the interval from −14 dB

to −11.5 dB, and 7.4% on the same interval for the optimized case. This may be explained by the

increased redundancy in the optimized sequence as discussed in [8] and Chapter 3. Even so, for an

adequate stagger limit, a high degree of uniqueness is achieved between optimized sequences.

Figure 4.10: Histograms for uniqueness metric applied pairwise within the 1000 random stagger
sequences and (separately) within the 1000 optimized sequences for M = 100 pulses and δ̄ = 5%
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Figure 4.11: Histograms for uniqueness metric applied pairwise within the 1000 random stagger
sequences and (separately) within the 1000 optimized sequences for M = 100 pulses and δ̄ = 20%

4.3.3.1 Shuffled Sequences

The optimized sequences consistently have a flatter sidelobe performance than the initial se-

quences, for the same stagger limit δ̄ and over the same Doppler interval βopt. There must therefore

be a particular aspect of these optimized sequences that produces a flat Doppler response. Hypoth-

esizing that the structure/ordering of the PRI sequence is of special importance, an analysis of

optimized, then permuted PRI sequences follows.

First, consider the metric in Eq. 3.5 [9] applied to an optimized sequence paired with 1000

random permutations of the same sequence. Fig. 4.12 displays a histogram of the results. Random

shuffling of a single optimized sequence is seemingly able to generate endless unique sequences.
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Figure 4.12: Histogram for uniqueness metric applied between an optimized PRI sequence and
1000 random permutations of the same sequence for M = 100 pulses, βopt = 4, and δ̄ = 30%

A different perspective is gleaned by showing the PDSL histogram for 1000 optimized then

shuffled sequences, overlaid on the PDSL histograms from Fig. 4.5. Randomly shuffling the order

of the optimized sequence consequently degrades the Doppler response almost completely to the

sidelobe perfomance achieved by a random stagger generation. Thus it can be concluded that the

particular ordering is a significant feature of the optimized PRIs that produces sidelobe flattening.

This result can be intuitively understood by considering that the sidelobe cancellation effect is

achieved via a phase-decoherence that is determined by the cumulative PRI values per Eq. 2.20

and Eq. 2.28. A re-ordering of these PRIs would change the cumulative values and thus could not

guarantee the sidelobe flattening effect granted by optimization.
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Figure 4.13: Histograms of PDSL for M = 100, δ̄ = 30%, and βopt = 4 with each optimized
sequence having the order of its PRIs randomly shuffled

4.3.4 Effect of CPI Scaling

In Section 2.1.1.1, it was demonstrated that the cumulative model may produce PRIs that

slightly violate the per-PRI design boundary [1− δ̄ ,1+ δ̄ ] after scaling to maintain a fixed CPI

extent. Fig. 4.14 shows a similar histogram to Fig. 2.4 in the mentioned section, but for 1000 trials

of M = 100 pulse CPIs of random initializations according to Eq. 4.1 and their corresponding

optimized sequences, after scaling.

80



Figure 4.14: Histograms of initial and optimized PRIs post-scaling for 100 trials with M = 100,
δ̄ = 30%, and βopt = 4

Optimization exaggerates the bimodal distribution already present in the initialization due to

the sine bounding function, as more PRI diversity corresponds to flatter sidelobes. Thus a pro-

nounced number more PRIs fall outside of the upper per-PRI stagger limit, albeit only by a modest

amount. On the other side of the distribution, however, optimization has improved the number

of PRIs falling below the minimum limit. Since the contraction case is more problematic due

to the augmented effect of blind ranges, and dilation is not an issue so long as βopt is sufficient,

optimization has conveniently mitigated the minor disadvantages created by CPI scaling.

4.3.5 Timing Quantization

The optimization described in this Chapter is based on PRI values lying on a continuum to

enable determination of a gradient. However in real systems, where digital hardware is used,

timing is dictated by an internal clock. The PRI values must therefore by quantized according to a

radar system’s receiver digital-to-analog converter rate. Since the waveform realistically has some

bandwidth and the coherence span is ±1/B [7], any timing quantization that is sufficiently less

than 1/B would result in a negligible deviation from the optimized result.
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4.4 Experimental Validation

To confirm the applicability of optimized PRIs, open-air experimental data was collected. The

transmit and receive beams were pointed at the intersection of 23rd St. and Iowa St. in Lawrence,

KS, from the rooftop of Nichols hall at the University of Kansas at a distance of about 1.1 km. The

measurements were captured when North-South traffic accelerated after a stoplight change. Fig.

4.15 shows the geometry of the scene via Google Earth image.

Figure 4.15: Geometry of data collect

The waveforms were generated using a Tektronix 70002A arbitrary waveform generator with a

10 gigasamples/second sample rate and a center frequency of 3.45 GHz. The backscatter was cap-

tured using a Rohde & Schwarz real-time spectrum analyzer, and sampled at 200 megasamples/s

after the signal was down-converted to baseband.

4.4.1 Waveform

The transmitted waveform consisted of three concatenated 250 ms CPIs containing repeated

LFM chirp waveforms with 160 MHz swept bandwidth and 5 µs pulsewidth. The first two CPIs

were composed of M = 100 randomly staggered sub-CPIs with δ̄ and the optimized version using

βopt, in that order. The sub-CPIs contained 10 uniformly spaced pulses at a PRF of 40 kHz. Each of

these sub-CPIs was coherently integrated by presumming after pulse compression. The sub-CPIs

had an effective PRF of 400 Hz on average, corresponding to an unambiguous velocity of ±8.7 m/s
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for the uniform case. Thus a comparable uniform sub-CPI can be expected to alias in the context

of a 40 mph speed limit (17.9 m/s).

The third CPI contained 200 sub-CPIs with uniform arrangement and an 800 Hz effective PRF.

By processing all 200 sub-CPIs, a ground truth is established. By down-selecting every other pulse

in the uniform CPI, an M = 100, 400 Hz effective PRF case with uniform arrangement is able to

be compared to the first two CPIs.

Fig. 4.16 shows a simulation of the Doppler response for the initial and optimized sequences

that were transmitted. This pair realizes a 6.8 dB PDSL improvement in simulation. A Monte

Carlo analysis for βopt showed that the median improvement in 1000 trials was 4.4 dB.

Figure 4.16: Simulated Doppler response of hypothetical mover at the speed limit for random
instantiation and corresponding optimized staggering for M = 100, δ̄ = ±30%, and βopt = 8 (6.8
dB PDSL improvement)

4.4.2 Range-Doppler Maps

Each CPI is pulse compressed using a Hamming-weighted mismatched filter (using loopback

data) to reduce possible interference from range sidelobes on the ensuing analysis, so that focus

can be placed on Doppler sidelobe performance. The range-Doppler maps (RDMs) after pulse
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compression, presumming the first 10 pulses, clutter cancellation, and Doppler processing are

shown in Figs. 4.17-4.20.

Figure 4.17 shows the ground truth using a uniform sub-CPI of 800 Hz effective PRF to avoid

Doppler aliasing. In this figure three movers are pointed out for more detailed observation to fol-

low. The aliased case in Fig. 4.18, where sub-CPIs with an effective PRF of 400 Hz are processed,

shows many of the moving cars are ambiguous. If the operating scenario required this effective

PRF due to blind range constraints, the necessity for staggering becomes evident.

Figure 4.17: Range-Doppler Map of intersection 23rd and Iowa Streets in Lawrence, Kansas.
Uniform PRF at 800 Hz uncovers ground truth.
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Figure 4.18: Range-Doppler Map of intersection 23rd and Iowa Streets in Lawrence, Kansas.
Using uniform PRF at 400 Hz, scene is heavily aliased.

Now compare to the RDMs for the same scene using staggered sub-CPIs, shown in Figs. 4.19-

4.20 for purely random staggering and corresponding pseudo-random optimized staggering. As

expected, staggering avoids aliasing of the Doppler space seen by the uniform sub-CPI with the

same average effective PRF of 400 Hz. However staggering does incur random spurious sidelobes

that could appear as false alarms. The optimized case in Fig. 4.20 avoids the false peaks seen in

Fig. 4.19, though this particular data set appears to worsen the Doppler sidelobes upon a quick

glance, bearing closer examination in the following section.
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Figure 4.19: Range-Doppler Map of intersection 23rd and Iowa Streets in Lawrence, Kansas.
Random staggering uncovers aliased attributes at the cost of increased and random sidelobes that
could result in false alarms.

Figure 4.20: Range-Doppler Map of intersection 23rd and Iowa Streets in Lawrence, Kansas.
Pseudo-random optimized staggering flattens the peaks from the random case.
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4.4.3 Callouts

There are a few interesting comparisons between the random and the optimized cases. For the

movers 2 and 3 from Fig. 4.17, optimization appears to worsen the PDSL compared to the random

case. Doppler slices from the range bins corresponding to these movers are shown in Figs. 4.21

and 4.22, which reveal a 3 and 5 dB scintillation effect (resulting in a power discrepancy). Though

the received SNR has changed for these movers from the random staggering CPI to the subsequent

optimized CPI (consequently varying sidelobe level as well), the sidelobe response peak relative

to the mainlobe peak is in fact improved by optimization. Mover 2 sees a 4.9 dB relative PDSL

improvement while Mover 3 has a 3.9 dB improvement.

Figure 4.21: Doppler slice for range cell containing Mover 2 showing 4.9 dB PDSL improvement
via optimization
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Figure 4.22: Doppler slice for range cell containing Mover 3 showing 3.9 dB PDSL improvement
via optimization

Another comparison is shown by Figs. 4.23 and 4.24, which show Figs 4.19 and 4.20 zoomed

in around the sidelobes from mover 1 which has about a 15 m range extent and is likely a large

truck. The dynamic range depicted is reduced to enhance visibility. For random staggering (Fig.

4.23), large sidelobe peaks occur at Doppler coinciding with the expected peaks for this random

PRI sequence from Fig. 4.16. These peaks may be quite problematic, as they are difficult to

distinguish from the true scatterer nearby, identified in the figure. The optimized PRI sequence in

Fig. 4.24 mitigates this risk of false alarm by flattening the sidelobes, allowing the true target to

stand out.
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Figure 4.23: Zoomed range-Doppler response of sidelobes from Mover 1 for random staggering

Figure 4.24: Zoomed range-Doppler response of sidelobes from Mover 1 for pseudo-random opti-
mized staggering

The optimized average sidelobe level was limited by the number of pulses M = 100 used for

these particular open-air measurements. For larger M, the advantage of pseudo-random optimized

staggering over random staggering is expected to be even more significant.
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In this chapter, a cost function and gradient alongside an optimization procedure were pre-

sented for flattening Doppler sidelobes via PRI stagger sequence design. The optimization was

shown to improve peak Doppler sidelobe performance significantly in both simulated and open-air

measurements, while maintaining a degree of uniqueness between optimized sequences.
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Chapter 5

Conclusions and Future Work

This thesis addressed the issue of spurious Doppler sidelobes when using PRI staggering. Char-

acterization of random PRI staggering and redundancy was presented, as well as an optimization

method that was demonstrated in simulation and physical experimentation to significantly reduce

the peaks present within a prescribed span when using purely random staggering.

Two PRI generation methods were defined and compared. Cumulative staggering affords a

higher degree of diversity than grid staggering, enabling the suppression of Doppler sidelobe peaks

while using a limited amount of staggering to preserve unambiguous range requirements. By con-

trast, grid staggering requires much larger staggers to achieve the same level of sidelobe suppres-

sion. One potential drawback of cumulative staggering is the requirement of a PRI scaling stage to

maintain a fixed CPI extent, which may cause a violation of per-PRI design boundaries. However,

given that the amount of necessary staggering is small, and that design boundary violation is rare,

cumulative staggering appears to be a superior PRI generation method.

The effect of PRI redundancy on the associated Doppler response and uniqueness was explored

using the PRI staggering co-array concept. The degree of redundancy in the PRI sequence deter-

mines the unambiguous Doppler interval, and has some effect on peak sidelobe levels, especially

for cumulative staggering. It was shown that higher redundancy in a PRI sequence consistently re-

sults in a peak sidelobe improvement for cumulative staggering. It was also shown that redundancy

in two PRI sequences is negatively correlated with uniqueness between the two.

Though notions about redundancy and the PRI staggering co-array may aid purely random PRI

sequence generation, such sequences cannot be expected to tame peak sidelobes due to the inherent

randomness and unpredictability. Thus a dedicated sidelobe suppression technique via gradient-
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based optimization was demonstrated in this thesis as an effective method for notably improving

peak sidelobes. Experimental results corroborated the performance seen in simulation, suggesting

the validity of optimization as a method to address the spurious sidelobe problem in random PRI

staggering. The optimization was also shown to maintain uniqueness between pseudo-random

optimized sequences due to the highly nonconvex nature of the presented cost function.

The PRI staggering co-array detailed in this paper was borrowed from the similar field of sparse

array design. Thus it is reasonable to expect that the optimization reported on in this thesis could

be used to design sparse arrays for low spatial sidelobes. This is a topic that will be explored

in future work. Other future work includes extending the optimization to account for limits im-

posed by range requirements, multiple time around scattering, and multiple-input multiple-output

decoherence characterized in [7]. While Doppler sidelobe suppression imposes an upward design

pressure on staggering, these other three aspects present a downward design pressure which opti-

mization may be able to address. Finally, the adaptive receive processing demonstrated in [60] will

be performed in conjunction with the optimization presented in this thesis. By using an optimized

PRI sequence on transmit, fewer adaptive processing stages may then be required on receive to

suppress sidelobes, so the two techniques are expected to be a practical pairing.
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Appendix A

Derivation of Expected Doppler Response for Grid Stagger

Model

The following leverages the derivation in [7] to develop the expected Doppler response in Eq.

2.28 for the grid stagger model depicted in Eq. 2.30. First, the expectation can be written as

E
[
|u( fnD)|2

]
= E

∣∣∣∣∣ 1
M

M

∑
m=1

e− j2π fnDεacc(m)

∣∣∣∣∣
2
 (A.1)

= E

∣∣∣∣∣ 1
M

M

∑
m=1

e− j2π fnD[(m−1)+∆εm]

∣∣∣∣∣
2
 (A.2)

=
1

M2 E

[(
M

∑
m=1

e− j2π fnD[(m−1)+∆εm]

)
×

(
M

∑
m̃=1

e− j2π fnD[(m̃−1)+∆εm̃]

)]
. (A.3)

Combining the summations in Eq. A.3, we have

E
[
|u( fnD)|2

]
=

1
M2 E

[
M

∑
m=1

M

∑
m̃=1

e− j2π fnD[(m−m̃)+∆εm−∆εm̃]

]
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=
1
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M

∑
m=1

M

∑
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e− j2π fnD(m−m̃)E
[
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]
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=
1

M2

M

∑
m=1

[
1+

m−1

∑
m̃=1

e− j2π fnD(m−m̃)E
[
e− j2π fnD[∆εm−∆εm̃]

]
+

M

∑
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e− j2π fnD(m−m̃)E
[
e− j2π fnD[∆εm−∆εm̃]

]]
. (A.6)

Eq. A.5 exploits linearity, and Eq. A.6 splits the terms in the summation into components where

m̃ = m, m̃ < m, and m̃ > m for separate consideration, as per [7]. Now the expectation is evaluated
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for the component where m̃ < m as

E
[
e− j2π fnD[∆εm−∆εm̃]

]
= E

[
e− j2π fnD∆εm

]
×E
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=
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=
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]2

=
[
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]2
, (A.9)

and for m̃ > m the expectation is equivalently

E
[
e− j2π fnD[∆εm−∆εm̃]

]
=
[
sinc(π fnDδ̄ )

]2
. (A.10)

Substituting Eq. A.9 and A.10 into Eq. A.6 and simplifying yields
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94



Appendix B

Gradient Derivation

Here the gradient of Eq. 4.2 given in Eqs. 4.3 and 4.4 is derived. First, rewrite the Doppler

response as

u(ε) =
1
M

VHv0 (B.1)

=
1
M
(v0 ⊗ IN×N)vec{VH} (B.2)

=
1
M
(v0 ⊗ IN×N)v̄NM×1 (B.3)

exploiting the Kronecker identity of the vectorization operation vec{•}[61], with ⊗ the Kronecker

product, and I an identity matrix. The vectorized form of VH = v̄NM×1 from Eq. B.3 is

v̄NM×1 = vec{VH} (B.4)

= exp
{
− j2π vec{fnDε

T BT}
}

(B.5)

= exp{− j2π(B⊗ fnD)ε} , (B.6)

which relies on the identity vec{XYZ} = (ZT ⊗X)vec{Y}, and where exp{•} denotes element-

wise exponentiation. Group terms as

θNM×1 = (B⊗ fnD)ε (B.7)
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so that

v̄NM×1 = exp{− j2πθNM×1}. (B.8)

For compactness, the dependence on α is assumed and not written explicitly. Thus Eq. 4.2 is

written as

Jp =
∥ wsl ⊙u ∥2

p

∥ wml ⊙u ∥2
p
=

(
wT

sl|u|p

wT
ml|u|p

)(2/p)

. (B.9)

Leveraging the gradient derivation in the appendix of [55] and by the chain rule, the partial deriva-

tive of Eq. 4.2 with respect to parameter αm is

∂Jp

∂αm
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2
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)
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− 1
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∂ |u|p
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, (B.10)

in which

∂ |u|p

∂αm
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∂αm
u
)
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(B.11)

= p|u|(p−2)⊙ℜ

{(
∂ |u|p

∂αm
u
)
⊙u∗

}
(B.12)
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for ℜ{•} extracting the real part of the argument. By the chain rule, the partial derivative inside

Eq. B.12 is

∂

∂αm
u =

1
M

∂

∂αm

[
(vT

0 ⊗ IN×N)v̄
]

(B.13)

=
1
M
(vT

0 ⊗ IN×N)
∂

∂αm
[v̄] (B.14)

=
1
M
(vT

0 ⊗ IN×N)
∂

∂αm
[exp{− j2πθ}] (B.15)

=
− j2π

M
(vT

0 ⊗ IN×N)

[
exp{− j2πθ}⊙ ∂

∂αm
[θ]

]
(B.16)

=
− j2π

M
(vT

0 ⊗ IN×N)

[
v̄⊙ ∂

∂αm
[(B⊗ fnD)ε]

]
(B.17)

=
− j2π

M
(vT

0 ⊗ IN×N)

[
v̄⊙
[
(B⊗ fnD)

∂

∂αm
[ε]

]]
(B.18)

=
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M
(vT

0 ⊗ IN×N) [v̄⊙ [(B⊗ fnD)(cos{α}⊙ε)]] , (B.19)

where em is an M × 1 elementary vector with 1 in the mth element and zeros elsewhere. Because

Kronecker products are computationally expensive, it is convenient to undo the vectorization via

the identity above, leading to

∂

∂αm
u =

+ j2πδ̄

M
(vT

0 ⊗ IN×N) [v̄⊙ [(B⊗ fnD)(cos{α}⊙ε)]] (B.20)
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M
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=
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Substituting Eq. B.23 back into B.12 yields

∂ |u|p
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= p|u|(p−2)⊙ℜ
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∂
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u
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⊙u∗

}
(B.24)
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M
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where gm subsumes the terms inside the square brackets, containing the Hadamard product between

|u|(p−2) and the ℑ{•} term, which extracts the imaginary part of the argument. Substituting B.26

into B.10 gives
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which allows for the collection of terms for m = 1,2, . . . ,M−1 as

∇αJp =
4πδ̄

M
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[
wsl

wT
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− wml
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for

GN×M = [0N×1 g1 . . . gM−1] (B.30)
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