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Abstract

Adaptive filtering for radar pulse compression has been shown to greatly
improve sidelobe suppression through the estimation of an appropriate pulse
compression filter for each individual range cell of interest. However, the
relatively high computational cost of full-dimension adaptive range processing
may limit practical implementation in many current real-time systems. In this
thesis, dimensionality reduction techniques are employed to approximate the
framework for pulse compression filter estimation. Two new algorithms denoted
as specific embodiments of the Fast Adaptive Pulse Compression (FAPC) method
are shown to maintain performance close to that of full-dimension adaptive
processing while significantly reducing computation cost.

Conversely, over-sampling the received radar return and transmit
waveform used for processing enables increased-dimensionality adaptive filtering
to achieve range super-resolution on a single pulse basis. This thesis analyzes the
effects of continuous and realistic discrete waveforms in the context of range

super-resolution.
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CHAPTER 1 INTRODUCTION

1.1 Radar Background

Pulsed radars are used for a wide variety of applications and typically emit
several short pulses of electromagnetic energy. The energy reflected back in the
direction of the system is gathered and processed to determine information such
as range and radar cross section (RCS) of the scatterers or targets illuminated by
the radar. Range and RCS can be easily determined by the round trip travel time
and energy of the received reflections, respectively. The received energy
determines the signal-to-noise ratio (SNR) characteristics of the system [1] which
is closely related to the system’s ability to detect low RCS targets. Range
resolution is defined as the minimum distance, with respect to a radial line
outward from the antenna, required between targets such that they are
distinguishable in range. The range resolution is inversely proportional to the
bandwidth of the transmitted signal i.e. increasing transmitted bandwidth
improves resolution [1]. The illuminated area can be separated into range cells
each of which has a length equal to the range resolution, i.e. point targets must
have at least one range cell between them to be separable. The collection of range
cells that are of interest will be referred to as the range profile in this thesis. In

practice, pulsed radars often utilize a technique called pulse compression to



achieve the desired range resolution and SNR performance. The next section will
provide a brief explanation of pulse compression and discuss some aspects of

pulse compression waveforms and filters

1.2  Pulse Compression

The energy and bandwidth of the transmitted pulse determines the SNR
and range resolution characteristics of the radar system, respectively. A short
pulse with high peak power can provide both adequate energy and bandwidth, but
is impractical and costly to implement because of the need for a high power
source and components which can tolerate a wide dynamic range of power. Pulse
compression is a widely known technique which is used to achieve the energy and
bandwidth characteristics of a short high power pulse with a longer low power
modulated waveform by appropriately filtering the received signal [1]. The
product of the power and pulse duration equates to the transmitted energy, i.e. a
low power waveform with relatively long duration can provide the same energy,
and thus SNR, found in a short higher power transmit signal. Also, the high
bandwidth of a temporally short pulse can be achieved by phase or amplitude
modulation of a longer pulse. Amplitude modulation is seldom used in practice
because it is less efficient, in terms of transmitted energy, than a constant modulus

waveform.



When a longer waveform is utilized a pulse compression filter is necessary
to obtain the enhanced SNR and range resolution discussed above. Fig 1.1
depicts a received radar signal before pulse compression and Fig 1.2 displays the
resulting profile estimate after pulse compression. Note that it is not evident in
Fig. 1.1 that two targets are present however, after a pulse compression filter is
applied the range resolution and SNR is improved and the two targets can easily
be resolved as seen in Fig. 1.2. Although pulse compression alleviates the need
for high power transmitters and components, waveform selection and processing
techniques become pertinent. The following two sections will provide a brief

background of pulse compression waveforms and filters.
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Figure 1.1 Received Radar Signal Before Pulse Compression
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Figure 1.2 Received Radar Signal After Pulse Compression

1.2.1 The Matched Filter

Pulse compression is often achieved by filtering the received signal with a
time-reversed conjugate of the transmitted waveform or equivalently correlating
the received signal and transmitted waveform. This widely used technique is
referred to as matched filtering because the filter is matched to the transmit
waveform. It is well known that the matched filter maximizes the SNR for a
single point target in white noise [2]. In the previous example a normalized
version of the matched filter was applied to the received signal in Fig. 1.1 to
produce the range profile seen in Fig. 1.2.

The matched filter transforms the received signal from delayed, attenuated

versions of the transmitted waveform to delayed, attenuated versions of the



autocorrelation of the waveform. Fig. 1.3 shows the normalized autocorrelation
of a length N =20 Lewis-Kretschmer P3 code [3], which is a discrete version of
a phase modulated waveform. Note that the autocorrelation contains sidelobes
which are approximately 20 dB below the peak. Hence when a large target is
present the autocorrelation sidelobes of the transmitted waveform may mask
smaller targets in the surrounding range cells. However, the digital matched filter
is computationally efficient enough to implement in real-time systems requiring
only O(N ) (where N is the discretized length of the transmitted waveform)
multiplies to compute the complex amplitude estimate at each range cell of

interest.
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Figure 1.3 Auto-Correlation of P3 Code



1.2.2 Waveform Design

There has been extensive research done in the field of waveform design to
determine those which exhibit low autocorrelation sidelobes. The most
commonly used pulse compression waveform is a linear frequency modulation
(LFM) waveform more often referred to as a chirp. Chirp waveforms usually
employ frequency modulation (as opposed to amplitude modulation) thus
maintaining a constant modulus throughout the duration of the pulse. Discrete
phase waveforms are gaining popularity as digital systems become more
prevalent. Binary phase-coded waveforms [2], which are limited to the discrete
phase values of 0 and 7, must be optimized for a given length discrete
waveform but can provide excellent sidelobe characteristics. Polyphase codes are
similar to binary phase-coded waveforms without the phase restrictions. The
Lewis-Kretschmer P3 code utilized in Fig. 1.3 is a polyphase code which
essentially approximates a sampled (at the Nyquist rate) version of a continuous
time LFM waveform. It should be noted that randomly generated binary phase
codes usually exhibit poor sidelobe characteristics whereas, random polyphase
codes generally yield low sidelobe levels. Other types of waveforms that have
been explored include non-linear frequency modulation waveforms [4]-[5],
Costas codes [6], complementary codes [7], and Frank codes [8]. While the
aforementioned waveforms reduce sidelobe levels each has its own advantages
and disadvantages. Waveforms with other advantageous properties such as low

probability of intercept (LPI) or Doppler tolerance may not necessarily have



desirable sidelobe characteristics. The transmit waveform is a vital component to

pulse compression processing even when the filter is not matched to it.

1.2.3 Other Filtering Techniques

Signal processing techniques have been utilized to develop pulse
compression filters that exhibit sidelobe mitigation. The Least-Squares approach
[9] de-correlates the waveform with delayed versions of itself and thus side lobe
interference from surrounding range cells. Inverse filters, which have a frequency
response that approximates the inverse response of the transmitted waveform,
have also been explored [10]. Optimum mismatched filters [11] have been
derived using a constrained Least-Squares approach. As mentioned earlier the
matched filter maximizes SNR, and thus detection, for a solitary point target in
noise hence one must consider this optimality when exploring new approaches to
pulse compression filtering.

Recently, a new adaptive approach to pulse compression was proposed
which, unlike the aforementioned deterministic receive techniques, determines the
particular receive filter to employ for each individual range cell thus greatly
suppressing sidelobe levels with little loss in SNR. Denoted as Adaptive Pulse
Compression (APC) [12] this approach is capable of adaptively suppressing range
sidelobes from large scatterers into the noise thus unmasking nearby small
scatterers.  The elimination of range sidelobes is achieved by adaptively

estimating the pulse compression filter to use for each range cell by employing



relative power estimates of the surrounding range cells that are obtained initially
from the output of the matched filter. For a given range cell the respective filter
places nulls at range offsets relative to nearby large scatterers thus suppressing the
range sidelobes that are induced by the large targets. Unlike the matched filter
some of the aforementioned digital processing techniques are capable of

achieving range super-resolution.

1.3 Range Super-Resolution

Super-resolution in this thesis refers to resolution enhancement achieved
through processing techniques that do not alter the resolution-determining
parameters of the system, e.g. enhancing radar range resolution without increasing
the bandwidth of the transmitted waveform. Super-resolution has been achieved
in the spatial and spectral domains using eigen-decomposition subspace
approaches such as MUSIC and ESPIRIT [13]. In the spatial/spectral domains
the signals which are being discerned are assumed to be at different
angles/frequencies whereas super-resolution in the range domain involves
discerning between two identical signals albeit at different delays and magnitudes.
Thus the aforementioned spatial/spectral super-resolution techniques have not
been applied to achieve range super-resolution. However, the methods proposed
by Gabriel in [14]-[15] show that range super-resolution can be achieved by
employing a Weiner based solution wherein a sample covariance matrix from

several pulses is utilized to perform interference cancellation. The Least-Squares



algorithm has also been utilized to achieve range super-resolution [16] using only
a single pulse. Later it will be shown that an over-sampled version APC is

capable of super-resolution on a single pulse basis.

1.4 Motivation

The APC algorithm has been shown [12] to be superior to both standard
matched filtering and Least-Squares based mismatched filtering as well as
potentially enabling the use of waveforms which provide sub-optimum sidelobe
level performance yet possess other desirable characteristics such as LPI. Of
course, the sidelobe suppression capability of APC is commensurate with the
sidelobe properties of a given waveform and thus there remains a benefit to
employing waveforms with inherently low sidelobes and Doppler tolerance. The
APC algorithm also enables range super-resolution when the transmit waveform
and received signal are over-sampled.

The performance benefit of full-dimension adaptive processing
approaches such as the APC algorithm is obtained at the cost of higher
computational complexity. For example, given a transmit waveform with a
discretized length of N samples, the computational cost of standard matched
filtering is O(N), while for APC it is O(N °) (when the efficient implementation
from [12] is employed). As a result, the use of APC is limited in current real-time

systems.



The enhanced sensitivity provided by the computationally burdensome
APC algorithm is desirable in many real-time applications. In this thesis reduced-
dimensionality techniques have been utilized to decompose the full-dimension
APC signal model thus enabling adaptivity to be performed on a smaller space.
From a conceptual standpoint, similar endeavors have been considered for Space-
Time Adaptive Processing (STAP) which must also contend with the cost of
adapting on a high dimensionality space [17]. By applying dimensionality
reduction via a segmented approximation to the original MMSE cost function a
new algorithm entitled Fast Adaptive Pulse Compression (FAPC) will be
developed. While numerous possible variations of Fast APC exist, this thesis
shall consider the two particular embodiments formed using decimation and
contiguous blocking techniques. The resulting algorithm maintains enhanced
sensitivity over the matched filter and other pulse compression filters with a

significantly lower computational cost than full-dimension APC.

The range super-resolution capability of APC offers several distinct
advantages to pulsed radar systems. Enhanced resolution techniques offer a
solution to limited bandwidth components and the decreasing availability of
spectrum by maintaining a desired resolution without high bandwidth
requirements. Super-resolution processing algorithms can also be utilized in a
multi-mode scenario where the enhanced resolution mode does not impose
extraneous bandwidth requirements on the system. Range super-resolution

algorithms can be employed to update existing systems as well.

10



Over-sampling the transmitted waveform used for processing and received
signal enables range super-resolution to be achieved when Least-Squares is
applied as seen in [16]. The APC algorithm is also capable of achieving super-
resolution when over-sampling is utilized. This thesis will analyze the super-
resolution capabilities of APC and Least-Squares when the transmitted signal is
modeled as either an over-sampled continuous or realistic discrete waveform.
Also, diagonal loading will be utilized to alleviate ill-conditioning effects

stemming from the over-sampled version of the waveform used for processing.

1.5 Organization of Thesis

The rest of this thesis is organized in the following manner. The
remainder of Chapter 1 will present the matched filter, APC, and Least-Squares
signal models and filter formulations. The following chapter contains a
description of the over-sampled versions of APC and Least-Squares as well as the
derivation and analysis of the new Fast APC (FAPC) algorithm. Chapter 3
discusses implementation concerns for the increased and reduced dimensionality
algorithms discussed in Chapter 2. Simulation results are presented in Chapter 4

and conclusions and future work are highlighted in Chapter 5.

11



1.6 Background

This section will provide a brief overview of the matched filter, Adaptive
Pulse Compression (APC), and Least-Squares approaches. The first step in
constructing a robust signal processing algorithm is obtaining an accurate
mathematical interpretation of physical phenomena referred to as the radar return
model in this context. The pulsed radar return model is often approximated as a

discrete convolution of the transmitted waveform with the range profile. Thus,

the received radar return, from a single pulse, at the ¢” range cell can be

approximated as

y(0)=x"(0)s+v(1) (1.1)
for £=0,---,L+N-2, where s=fs, s, - SN_I]T is the length N transmit
waveform, x(é) = [x(f) x(0—-1) - x({—-N+ 1)]T is the portion of the range

profile that the transmitted waveform s convolves with at delay ¢, v(¢) is additive

noise, (¢)”is the transpose operation, and L is the number of range cells of

interest.

1.6.1 Matched Filter and APC Signal Model

The original APC algorithm utilizes the same signal model as the matched
filter which is formed by collecting N consecutive samples of the received radar

return signal from (1.1), expressed as

12



y(0)=X"(¢)s +v(¢) (1.2)
where v(¢)=[v(¢) v(£+1) -+ v({+N-1)]" and

X(0)=[x(¢) x(¢+1) - x(¢+N-1)]

x(?) x(0+1) - x(¢+N-1)
_ x(0-1) x(?) o x(eeN=2). (1.3)
x(é—.N+1) x(é;l) x(.ﬁ)

This full-dimension signal model will be referred to when deriving the over-

sampled and reduced-dimensionality models.

1.6.2 Matched Filter Formulation

The normalized matched filter estimate of the complex amplitude at the

/™ range cell in the discrete domain is computed as the inner product
. 1
Surl0)=5s"y(0) (1.4)

for ¢=0,,---,L—1, where (O)H is the complex conjugate transpose (or
Hermitian) operation. Matched filtering, which is currently employed in real-time
systems, will be utilized as a computational cost and performance comparison
metric when discussing the new algorithm, Fast APC, presented in this thesis.

The matched filter is computationally efficient but exhibits poor sensitivity in

13



profiles which contain large targets i.e. targets with a SNR above the sidelobe

levels of the transmitted waveform.

1.6.3 APC Filter Formulation

The full-dimension APC algorithm from [12] utilizes a reiterative
minimum mean squared error (MMSE) framework. The APC cost function in

standard MMSE form is given as
2
Ae):zsﬂx(e)_wﬁ(z)y(gﬂ (15)

where w(¢) is the unique pulse compression filter, which is used to estimate the
complex amplitude at the ¢t range cell x(¢), y(¢) is the received signal, and
E [0] is the expectation operator. The cost function is minimized in a typical

fashion by differentiating with respect to w*(ﬁ) and setting the result equal to

zero. The resulting pulse compression filter at the / th range cell takes the form

w(0)=(Ely(ey"(0)])" Ely(e)x ()] (L6)
Inserting the full-dimension signal model from (1.2) into (1.6) above and

assuming the range cells are uncorrelated with the noise and with each other the

filter is denoted

w(l)=p(rXC()+R) s (1.7)

14



for /=0,,---,L—1, where p(ﬁ):E“x(E)ﬂ is the expected power of x(/),

R=E [V (e)v (¢ )] is the full-dimension noise covariance matrix, and the

full-dimension signal correlation matrix C(¢) is expressed

c(t)= 3 p(c+n)ss” (18)

n=-N+1

where s, represents a delay-shifted version of the waveform with the remainder

zero-filled, e.g. s, = [0 Syttt Sy_a ]T and s_, = [sl SN O]T . The
derivation of the APC filter will be referred to when the new work is presented.
The APC algorithm exhibits almost complete sidelobe suppression but is
computationally expensive in terms of current processing power. This algorithm

will be used as a computational cost and performance comparison metric for Fast

APC.

1.6.5 Least-Squares Signal Model and Filter
The Least-Squares system response model approximates the convolution of
the range profile with the transmitted waveform as a matrix multiply resulting in

the length-(L + N —1) vector y, denoted as

Vis = AX; g+ Vg (1.9)

15



where x,; =[x(0) x(1) -+ x(Z-1)]" isa Lx1 vector containing the complex
amplitudes over the entire range profile, v, =[v(0) v(1) - w(L+N-2)]" is

a (L+ N —1)x1 vector of noise samples, and the matrix

s, 0 0]
DS
s 0
A="" (1.10)
0 sy S
10 - 0 sy

contains delay-shifted versions of the transmitted waveform. The Least-Squares

estimate 1s formulated as
~ —1
%5 =(A"A) Ay, (1.11)

where X, is a Lx1 vector containing the complex amplitude estimates of the

entire range profile. The Least-Squares formulation will be referred to when
presenting an over-sampled Least-Squares approach capable of super-resolution.
Note the Least-Squares signal model in (1.9) does not account for scatterers just
outside the processing window thus the estimate degrades significantly when a

sizeable target is present within N —1 range cells of the processing window.

16



CHAPTER 2 DIMENSIONALITY ASPECTS OF

ADAPTIVE PULSE COMPRESSION

2.1 Increased-Dimensionality APC and Least-Squares

2.1.1 Over-Sampled APC Signal Model and Filter

Increasing the dimensionality of the original APC algorithm, by over-
sampling the received signal and transmitted waveform used for processing,
yields an improvement in range resolution without increasing the bandwidth of
the radar system. The received signal model is constructed by over-sampling, by

a factor A, to obtain a super-resolved received signal model. Thus the received

radar return at the ¢” range cell of a length- LA over-sampled range profile can

be defined as

() =X"(¢)s+v(0) (2.1)
for /=0,---, LA+ NA-2, where X(¢)=[x(¢) x(¢-1) - x({—=NA+1)]" is
the over-sampled portion of the range profile x(f) from (1.3), that the over-
sampled waveform s = [SO RS sN/H]T convolves with at delay /¢, and v(/)

is again a sample of additive noise. Collecting NA samples of the over-sampled

received radar return signal, the system response model can be expressed as

y(0)=X"(¢)s +v(¢) (2.2)

17



where i(ﬁ): [)7(6) ylr+1) - )7(€+NA—1)]Tis NA contiguous samples of
the received signal y(ﬁ) from (1.2) (at the higher sampling rate), the noise vector
v(0)=[v(t) v(t+1) -+ v(¢+NA-1)]", and the matrix

X(0)=[x(¢) x(¢+1) --- x(¢+NA-1)]

[0 ) o el e
W-NA+D) (D) ()

This signal model will be utilized in minimizing the over-sampled APC cost
function.
The over-sampled APC filter is obtained by minimizing a cost function

that has the same form as the APC cost function, restated here for convenience
J(f)= EUx(f)— w(0) y(z)ﬂ . 2.4)

However, the over-sampled APC cost function contains over-sampled versions of

the APC filter w(¢) and full-dimension signal model y(¢). Thus, the over-

sampled APC cost function is denoted

_ o 2

J()= EUx(E)— w'(0)y(¢) } (2.5)
where y(ﬁ) is the over-sampled (by A) system response model from (2.2) and

w(t)=[w, w - wyy,]" is the over-sampled pulse compression filter. The

cost function from (2.5) is minimized in a manner identical to the APC cost

function resulting in an over-sampled version of the APC filter expressed as
w(0)=p(¢)(C()+R) s (2.6)

18



for /=0,1,---,LA -1, where p(ﬁ):E[|x(£)|2] is the expected power of x(/),

R=E [V(E)VH(E)] is an over-sampled noise covariance matrix, § represents the

over-sampled waveform, and the over-sampled signal correlation matrix 6(@) is

NA-1

C(t)= > plt+n)s,s) (2.7)

n=—NA+l

where s, represents a delay-shifted version of the over-sampled waveform with

the remainder zero-filled, eg. s :[0 So  t Sya—n ]T and

§71:[51 SN O]T-

2.1.2 Over-Sampled Least-Squares Signal Model and Filter
The Least-Squares algorithm can also be used to achieve super-resolution
[16] when the received signal and transmitted waveform are over-sampled. Over-

sampling the Least-Squares model in (1.9) yields

Yis = AX g +Vg (2.8)
where X;s=[x(0) x(1) -~ x(LA-1)]" is a LAxl vector containing the
complex amplitudes over the entire range profile, the over-sampled noise vector
Vs =[(0) V(1) - V(LA+NA—2)]T is now (LA+ NA-1)x1, and the over-

sampled matrix

19



s, 0 0 |
S
A= 0 sy 5 (2.9)
| 0 0 sya

contains delay-shifted versions of the over-sampled transmit waveform .
The over-sampled Least-Squares formulation used in this thesis based on

the over-sampled signal model above is denoted

% =(A"A) Ay (2.10)

where §LS isnow a LA x1 vector containing the complex amplitude estimates of

the entire over-sampled range profile.

2.2 Reduced-Dimensionality Signal Models

Reducing the dimensionality of APC yields a new algorithm which can be
utilized to lower computational complexity without sacrificing significant
performance. The reduced-dimension signal models are formed by subdividing
the full-dimension APC signal model in (1.1). This is accomplished by
segregating the N received signal samples of y(ﬁ) into M segments of length
N/M = K using either contiguous blocking or decimation. The following details

the particular form of the reduced-dimension signal models for the two

embodiments of Fast APC.

20



The decimated model of the received signal is constructed by decimating

the full-dimension received signal from (1.3) as
iD’m(f)z [y(£+m) y(£+M+m) y(€+N—2M+m) y(£+N—M+m)]T
(2.11)

for m=0,1,---,M —1. Thus, the matrix X(f) from (3) is partitioned into M sub-

matrices of dimension N x K as

X, O)=[x(t+m) x(t+M+m) - x((+N-2M+m) x((+N-M+m)]
(2.13)

for m=0,1,---,M —1. The noise vector V(ﬁ) is likewise segmented as
Vo, O)=[(t+m) v(t+M+m) - v(l+N-2M+m) v({+N-M+m)|
(2.14)

thus producing the decimated received signal model

In a similar manner the contiguous blocking model of the received signal

is constructed by segmenting the full-dimension received signal from (1.1) as

Ve ()=t +Km) y(t+Km+1) - y(t+Km+K-2) y({+Km+K-1)]
(2.16)

for m=0,1,---,M —1. As such, the matrix X(f) from (1.3) is partitioned into M

sub-matrices of dimension N x K as
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X (O)=[x(t+Km) x(0+Km+1) - x(¢+Km+K-2) x({+Km+K-1)]
(2.17)

for m=0,1,---,M —1. The contiguously blocked noise vector is similarly

segmented as
Ve ()= +Km) v(t+Km+1) - v(l+Km+K-2) v((+Km+K-1)]
(2.18)

thereby yielding the contiguously blocked received signal model

iC,m (f): )N(gm(g)s_'_va (E) (219)

The two reduced-dimension received signal models of (2.15) and (2.19) will be
employed to derive two particular embodiments of the Fast Adaptive Pulse

Compression (FAPC) algorithm.

2.3 Derivation of Fast APC

The Fast APC cost function is formed by approximating the APC cost

function in (1.5) as the summation of M segments denoted

;(@:gfﬁﬁx@_wg <f>ym<zﬂ .20

m=1

where W (/) is the m™ K-length segment (according to either decimation or
contiguous blocking) of the N-length piecewise MMSE filter, denoted va(E), and

¥, () is the m” K-length segment of the N-length y(¢) also according to either

22



decimation or contiguous blocking. Minimization of the piecewise MMSE cost

function of (2.20) yields the piecewise MMSE pulse compression filter VNV(f),
which approximates the filter formed using the full-dimension algorithm. The

m" K-length segment of W(¢) is denoted as
W O=(E 0 710 5 Lnox @] e

for m=0,1,---,M —1, where (0) is the complex conjugate operation. The

following details the particular form realized by (2.21) when employing

decimation and contiguous blocking, respectively.

2.3.1 Decimation FAPC

For the decimation embodiment of Fast APC the m" filter segment

W, (ﬂ) from (2.21) is given by
‘TVD,m(E) = [Wm Witim ™ Wartem 7 Wassaiem Waomtm WN7M+m:|T' (2.22)

For example, with N =12 and M =3 so that K = % =4 , the Fast APC filter is
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Figure 2.1 Example Showing Decimation FAPC Coefficient Allocation

where W, (¢) is the m" decimated segment of the filter. This filter is found by
substituting the decimated received signal model Yy, , (() from (2.15) into (2.21)

and assuming that the range cells are, in general, uncorrelated with one another

and also uncorrelated with the noise, the decimated filter segments are obtained as

~ 1 ~ i~
Wom (Z):Hp(f) (CD,m (()"'RD,m) 1dm,o (2.23)
where p(¢)=E [ |x(€)|2] is the expected power of x(/), l?lD)m = VD,m(E)ng(f)]

is the K x K decimated noise covariance matrix based on (2.14), and ﬁm,o is the

K x1 decimated waveform vector

~

dm,Oz[Sm Savtem Somam 7 SN—M+m]T‘ (2.24)

The K x K decimated signal correlation matrix C Dom (¢) is constructed as

M-1 K-1

Cp, (=D D plt+Mk—i+m)d,, df (2.25)

i=0 k=—K+1
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where H,.,k is the vector ﬁ,,o shifted by & samples and the remainder zero-filled.

Thus, for £ >0

~

dm,k = [lek Sm SM+m .“ SN—M(k+l)+m]T (226)

and for k<0

~

T
d,,= [SkM+m SN OMam SN-Mam 01><|k\] : (2.27)
Fig. 2.2 illustrates a simple example, with N =4 and M =2, that
displays how utilization of the decimated signal model results in a sampling of the

full-dimension signal correlation matrix C(/ ) from (1.8) to form the decimation-
based reduced-dimension signal correlation matrices GD’O(E) and EDJ(K) from
(2.25). In Fig.2.2, the terms in the ovals, namely cm(f), c3’1(€), cm(é), and
c3,3(£), are the elements of C(¢) that constitute C D,O(ﬁ), while the terms czﬁz(ﬁ),
c4’2(€), c2’4(€), and c4’4(£) in the boxes comprise (NTD’I(K). Also, note that upon
incrementing the range index from /¢ to ¢+1, the matrix E‘DJ(K) becomes

C Do (Z + 1). In general, this means that only one new reduced-dimension signal

correlation matrix needs to be determined for the (¢+1)" range cell index as the

other M —1 matrices are already available at the ¢ range cell. This property of
the decimated filter will be exploited to obtain an efficient implementation

structure.
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Figure 2.2 Comparison of Full-Dimension and Reduced-Dimension Signal
Correlation Matrices (Decimation FAPC)

2.3.2 Contiguous FAPC
The second embodiment of FAPC uses contiguous blocking in place of
decimation. For the blocking approach, the segments of the piecewise MMSE

filter from (2.21) are given by
~ T
Wom (O = [WKm Wgmit  Wkm2 " Wkmik—3  Wkmk—=2 WKWK—I] (2.28)
) 12
for m=0,1,---,M —1. For example, given N =12, M =3 so that K:?:4

yields
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Figure 2.1 Example Showing Contiguous FAPC Coefficient Allocation

where W, (/) is the m™ blocked segment of the filter W(¢). The filter segments
are obtained by inserting the contiguously blocked received signal model y. , (E) ,

from (2.19), into (2.21). The blocked filter segments can be obtained in a similar
manner as the decimation embodiment of Fast APC by again assuming that the
range cells are, in general, uncorrelated with one another and also uncorrelated
with the noise. For this case, we express the K -length shifted versions of the

transmit waveform segments using the column vectors of the K x(N +K —1)

matrix
Sy Sy S, 0O - 0 0]
0 syq s So
0 2 S 0 2.29
: s 0 (2.29)
Y 0 Sk-1 Sk—2 0 St S|
:[B—NH szvu B0 Sl SK—Z SKfll
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Thus, the contiguous FAPC filter is denoted

~

~ 1 ~ i~
for m=0,1,---,M —1, where p(é):E“x(f)H is the expected power of x(/),

R cm=E [Vc,m (K)Vg ” (f)] is the K x K blocked noise covariance matrix based on

(2.18), and the K x K blocked signal correlation matrix (N:C,m (¢) is expressed as

K-1
Cen()= > p(t+k+Km)b,by . (2.31)

k=—N+1
In equation (2.30) the subscript ﬁ'(m):—Km such that Eﬁ(m) is the (m+1)[h

length- K contiguous segment of the transmit waveform s.
Fig. 2.4 illustrates the simple example with N =4 and M =2 in which
the contiguous signal model results in a sampling of the full-dimension matrix

C(ﬁ) from (1.8) to form the contiguous-based reduced-dimension signal

correlation matrices (N?C,O(é) and (N?C’l(f) from (2.31). In Fig. 2.4, the terms in the
upper-left box, namely cl,l(f), cl,z(ﬁ), czyl(f), and cz,z(ﬁ), constitute (N?C,O(ﬁ),
while the terms c3’3(£), c3,4(€), c4’3(€), and c4’4(€) in the lower-right box
comprise Ec’l(é). Incrementing the range index by 1 results in the upper-left

octagon containing E‘C,O(z +1) and the lower-right octagon containing éc,l (0+1).

Furthermore, note that if the range index were incremented from ¢ to /+ K,
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where K = % (K =2 in this example), then éc’l(ﬁ) becomes 60,0(5 +K). In

general, this means that the reduced-dimension signal correlation matrices can be
stored in memory to be reused after a shift of K range cell indices. This property
of the contiguously-blocked filter will be utilized to obtain an efficient

implementation structure.

C(f) (Full Dimension)

€1(9) | :‘-'2,2(5):‘-'1,1(3“) 6, () =c,(£+]) l‘-'2,4(g):‘-'13(g+1) € 4(+1)

: 1
: (8 Ve (D=6 (l+]) | es()=co(l+])

1
1
: | | : )
e31(€) :03,2(5’):02,1(3 +) | ea@)=c (0+]) e y(D=c €+ ]) 64(E+1) :
: : 1
1

cuO=c, {2+ §c14(3+1)

Figure 2.4 Comparison of Full-Dimension and Reduced-Dimension Signal
Correlation Matrices (Contiguous FAPC)
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2.4  Analysis of Fast APC Filter

The APC filter has been shown to reduce to an approximation of the
normalized matched filter when a solitary point target in white noise is present
[12]. This chapter will explore an analytical approximation of the contiguous
FAPC pulse compression filter for the same scenario. The goal here is to
analytically examine the mismatch loss characteristics of the Fast APC filter when
a single small target is present.

First, examine the m"™ signal correlation matrix from (2.31) for a range cell

containing a single point target in white noise approximated by

where y is the maximum a priori power estimate in the surrounding range cells
and ﬂ(m): —Km . The filter segments can then be found by inserting (2.32) into

(2.30) resulting in

-1

< p(f) h wWH & ~H S ~
WC,m(K):_M P(f)bﬂ(m)bﬁ(m)""//k ZNl:kbk +Re | Sp(m) - (2.33)
=N+
k:t,B(m)

The reduced-dimension correlation matrix from (2.32) can be rewritten in matrix

form as
SAsH ~ o~y &~y
BQB" = p(0)bs,b i+ D bib; (2.34)
k=—N+1
k#pB(m)
where
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0 sy, s Sy
0 S, s 0
: so O
0 0 Sk-1 Sk S1 %o
:T}:[ﬁf]vu S—N+2 S0 Bl BK—Z BK—I]
(2.35)
and Q is the diagonal matrix
diaglQi=ly -~ v plt) v - v] (236)

~

with p(ﬁ) corresponding to the column b p(m) In B.

The following shows how the inverted term in (2.33) can be found using

the matrix inversion lemma [18]. Utilizing the lemma along with (2.34) the

inverse at the /™ range cell (containing the point target) can be denoted

-1
(051+1§Q§H)‘1=L1—L2§[Q‘1+ ! Eﬂﬁj L g 2.37)

2 2 2
o, o, o, o,

where ¢ is the noise power. Assuming the waveform is orthogonal to sample-

shifted versions of itself, i.e. approximating a waveform with low autocorrelation
sidelobes, the term to be inverted on the right side of (2.37) can be expressed as a

diagonal matrix with

1l ~p~
diag{Q_l + 23”3} ~
O

v

y+o, 2y+o.  Ky+o, = Ky+o, (2.38)
yo,  yoy yo, yo,
_ Kplt)+o; (K-ly+o, (K-2)+0,  y+o,

plt)o; yo, vo, vo, |
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Combining (2.37) and (2.38) yields

I 55y 239
—I- )+ b.b
7ol k) iﬂzﬁa e )"

where f (k) is a function containing values between 1 and K corresponding to
the elements shown in (2.38).
Inserting the result from (2.39) into the filter equation in (2.33) results in

the Fast APC filter segments

N p(f) $  weplt) -
Wenll)= :Z+1af(af+f(k)w)bk (2.40)

k2 f(m)
where @p () is the maximum sidelobe level in the surrounding range cells.

Assuming the sidelobe level and power estimates in surrounding range cells are
relatively small the second term in (2.40) can be neglected thus the pulse
compression filter for the range cell containing the large target can be

approximated as

Upon inspection of (2.41) it is evident that the N -length piecewise contiguous

FAPC filter W(¢) can be expressed as
bho b7 Cym 2.42
APee) Lo Pounl - (2.42)
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Examining (2.42) yields a simplified version of the filter denoted

1
— ple)
w)s—M__— (2.43)

> N
o,+—pl/
PPl
Thus, the contiguous Fast APC filter for a single point target in noise is

approximately equal to a scaled version of the normalized matched filter. When

compared to the analytical approximation of the APC filter from [12] given as

_pl)
(s AL s (2.44)

the Fast APC filter in (2.43) is less sensitive to the power estimate i.e. the FAPC
filter requires higher SNR to approximate the normalized matched filter than the
APC version in (2.44). For this reason, it is suspected and has been observed that
the contiguous Fast APC exhibits mismatch loss, especially in the case of a
solitary small RCS scatterer. To alleviate this loss the piecewise contiguous filter
can be normalized such that practically no mismatch loss is present in the case of
a solitary point scatterer. This is achieved by dividing the filter at each range cell

by the inner product of the filter and waveform as

Ww(r)= (t) . (2.45)

The technique in (2.45) almost completely mitigates mismatch loss for the case of
a single small target and has been observed to improve estimation error in sparse
channels. The scaled filter in (2.45) exhibits degraded sidelobe suppression in

dense channels but is much more robust to small scatterers than the unaltered Fast
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APC filter which tends to over-suppress as the segmentation factor M becomes
large, resulting in suppression of small targets. The analysis of constraints such

as that in (2.45) has been left as future work.
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CHAPTER 3 IMPLEMENTATION ISSUES

3.1 General Implementation

FAPC and over-sampled APC utilize the reiterative MMSE structure seen
in [12] whereby the range cell estimates are employed to determine the adaptive
filter for each individual range delay which then yields an updated estimate for
the particular range cell. The normalized matched filter can be used as the first
stage to obtain an initial range profile estimate, which is required in order to
compute the pulse compression filter for each range cell. The matched filter is
then replaced at the second stage by the unique length-N adaptive filter for each
individual range cell. At each successive stage the range profile estimate from the
previous stage is employed as a priori information to determine power estimates
required to obtain the current adaptive filters.

It has been observed in [12] that when the squared magnitude of the
complex amplitude estimate p(€)=|x(£]2 is used the APC algorithm may not

always converge to a solution. Thus, the strategy employed in [12] has been
utilized in this thesis to compute the power estimates for over-sampled APC and

Fast APC as

ple)=|x(e) (3.1)
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where ©=1.7, 1.3, 1.1 for the first three adaptive stages, respectively. Based on

simulations, two to three adaptive stages have been found to sufficiently suppress

the range sidelobes into the noise.

3.2 Increased Dimensionality Issues

The over-sampled versions of Least-Squares and APC yield matrices that
contain elements from the over-sampled transmit waveform. Over-sampling the
transmitted waveform yields less delay between successive samples thus
consecutive samples may become similar, especially when a discrete time
waveform is used. The similarity between samples in the over-sampled APC and
Least-Squares filter matrices may lead to moderate ill-conditioning. This effect is
evident in Figs. 3.1 and 3.2 which compare the Eigenvalues of the matrix products
A”A and A"A found in the nominal and over-sampled Least-Squares
formulations, respectively. The transmit waveform, a P3 code [3] with a nominal
length of N =20, was over-sampled by 5 to produce the values in Fig. 3.2.
Adaptive diagonal loading was used in [16] to alleviate ill-conditioning for an
over-sampled version of Least-Squares. In this thesis traditional diagonal loading
will be utilized to reduce the effects and is applied to the APC and Least-Square

filters from (2.6) and (2.10), respectively, by adding a weighted identity matrix as
— — —=\-1_
w(t)=p(¢YC()+7R) s (32)

s = (ATA+5T) Ay (3.3)
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where y and ¢ are the loading factors for the over-sampled versions of APC and
Least-Squares, respectively. In (3.2) the over-sampled APC noise covariance
matrix R is assumed to be a weighted identity matrix, i.e. the noise is white. In

the general case of colored noise the loading can be employed as

w(0)=p(t\C())+R+y1) 5. (3.4)

AD T T T T T T T T T

Figure 3.1 Eigenvalues for Least-Squares at Nominal Sampling Rate with length
N =20 Waveform (length L =100 Range Profile)
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Figure 3.2 Eigenvalues for Least-Squares at 5X the Nominal Sampling Rate with
length N =20x5=100 Waveform (length L =100x5 =500 Range Profile)

3.3 Reduced Dimensionality Issues

3.3.1 Efficient Implementation of APC
The full-dimension APC algorithm requires computing a N x N (where N

is the length of the transmit waveform) matrix inverse at each range cell which

results in a relatively high computational complexity, on the order of N° complex
multiplies per range cell. However, the structure of the signal correlation matrices
at successive range cells allows a fast update technique [12], based on the matrix

inversion lemma [18], to be used reducing the computational cost of the inverse to
O(N 2). Note that the matrix inversion lemma will be used here to determine a

rank-3 matrix update as opposed to the previous chapter where the lemma was
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used to compute a full-rank update for analysis purposes. The following
describes the procedure used in [12] to perform the fast matrix update.

The full-dimension APC signal correlation matrices are structured such

that the signal correlation matrix at the (¢+1)" range cell is related to the signal

correlation matrix at the ¢ range cell as follows

a 7 Z h
C(€)+R=L Z} C(€+1)+R:LH C} (3.5)

where a and care scalars, f and hare (N—l)xl vectors, Z is a (N—l)x(N—l)

matrix, and, assuming white noise, R = O'VZI. This structure allows the matrix

inversion lemma to be utilized after applying a permutation resulting in
(C(e+1)+R)" =F "' —F'u[r" +v/F U] VIF! (3.6)

~

where F:{fi cj, U:[(H—f) ey eN], V:[eN (ﬁ—f) eN], and

r=diag{l 1 (c-a)}, in which hi=[n’ o], F=[f" o], and the Nx1
elementary vector e, =[0 - 0 1]'. Note F™' can easily be obtained by
applying a permutation matrix to the inverse at the current range cell

(C(f )+ R)_1 . Thus, the inverse correlation matrix at the current range cell can be

efficiently computed when the previous correlation matrix inverse is available.

However, at the initial range cell the standard inverse must be computed with a

computational cost on the order of N° complex multiplies. Hence, as stated in

[12], if the range profile is long enough (L >> N ), such that the computation of
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the initial inverse does not overwhelm the computational cost of the remaining

range cells, the complexity of the algorithm can be reduced by an order of
magnitude from O(N 3 ) to O(N 2) per range cell. This fast update technique will

be referred to when discussing the implementation and computational complexity

of Fast APC.

3.3.1 Efficient Implementation of Fast APC

For the two embodiments of the Fast APC algorithm the adaptive filters
for each successive range cell only necessitate the update of a single K xK
matrix with the other M —1 matrices having already been determined at a
previous range delay. The remaining reduced-dimension signal correlation matrix
can be computed efficiently via the fast matrix update discussed in the previous
section. However, the particular structure of the update for Fast APC is
dependent on the segmenting scheme. The following details the particular
implementation for the decimation and contiguous embodiments of Fast APC.

Decimation FAPC can be implemented such that M —1 of the reduced-
dimension signal correlation matrices needed to compute the unique pulse
compression filter at each range can be replaced by matrices available from the

determination of the previous range cell estimate. Also, the M"™ matrix

C D’M_1(€+l) can be obtained by applying the fast matrix update to éD,o(f)-

Consider the matrices for the estimation of the /™ range cell from (2.25), given as
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M-1 K-l

Cp,,(0)=>" > plt+Mk—i+m)d, d/} (3.7)

i=0 k=—K+1

and the (¢ +1)" range cell, denoted as

M-1 K-1
Cp,(t+1)=> > p(t+1+Mk—i+m)d,,d} (3.8)

i=0 k=—K+1

for m=0,1,---,M —1. Upon direct inspection of (3.7) and (3.8), it is evident that

Cpn(t+1)=Cp (1) (3.9
for m=0,1,---,M —2 thus, M —1 of the signal correlation matrix inverses do not
need to be computed for any range cell after the initial cell.

Referring to Fig. 2.2, where N =4 and M =2, recall that the elements

within ovals and squares represent the terms of the full-dimension matrix

C(¢)that constitute C D,O(E)and C Dﬂl(ﬁ), respectively. Also, note that relative to
the full-dimension matrix C(¢+1), the elements within squares also represent

C D (¢+1) and thus the inverse of this matrix need not to be recomputed. The
terms within octagons represent ﬁD’l(€+1), which upon referring to (3.5), is
related to C D’O(ﬁ) in a similar manner as the full-dimension signal correlation
matrices C(¢+1) and C(¢). Thus, C D,I(ﬂ +1) can be obtained via a fast matrix

update applied to the permutation of C D,O(E). Figure 3.3 is a block diagram

illustrating how the M reduced-dimension signal correlation matrix inverses for

the next successive range cell are obtained from the M reduced-dimension signal

41



correlation matrices at the current range cell. The last M —1 matrices at the
current range cell are immediately reused as the first M —1 correlation matrix
inverses at the next cell. The final inverse used to compute the M™ decimated

filter segment at the new cell is found by applying the fast matrix update in to the

first reduced-dimension inverse from the last cell, denoted C,'(¢) in Fig. 3.3.

Range Cell Index

4 €' || €' Y ¢! () c () :
CHe+1) E;l[f+1; e Cl {e+]) C! (e+1) -

Figure 3.3 Reduced-Dimension Signal Correlation Matrix Update for Successive
Range Cell Indices (Decimation FAPC)

For the contiguous FAPC implementation M —1 of the inverses required
at the /™ range cell can be stored in memory and re-used at the (K + K )th range
cell. Thus, only a single reduced-dimension update is required to obtain the pulse
compression filter for any range delay after the (K —l)th. Examine the signal

correlation matrices from (2.31) at the /" range cell

K-1
Cc,(0)= > p(t+k+Km)b, b (3.10)

k=—N+1

and at the (7 + K)" range cell
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K-1
Cen()= > plt+K+k+Km)b,b/ (3.11)

k=—N+1

for m=0,1,---,M —1. Upon inspection it is observed that
Cen(t+K)=Cc () (3.12)
for m=0,1,---,M —2 . Therefore at the (6 +K )th range cell, M —1 of the inverse

signal correlation matrices which were employed for the estimation of the /"
range cell can be recalled from memory without re-computing. The remaining
matrix can be computed using the fast matrix update.

Recall Figure 2.4, which depicts the full-dimension signal correlation
matrices at the /" and (¢+1)" range cells, and the outlined sub-matrices (boxes
and octagons) represent the reduced dimension signal correlation matrices. For

this example, K =2 and thus the sub-matrix EC’I(E) two range cells later, will

also be GD’0(£+2). Furthermore, the remaining matrix 6D71(€+2) has a

structure such that it can be efficiently computed by a rank-3 update of
ED’1(€+1). Generally speaking, Figure 3.4 depicts a block diagram of the
progression of the stored matrices as the filter is computed for each range cell. It
is illustrated in Fig. 3.4, that (M —1)(K —1)) of the previously used inverses must

be stored in memory so that they can be re-used at a later range cell. In Fig. 3.4

each new inverse is introduced as a fast-update of the reduced-dimension

correlation matrix used to determine the M™ filter segment at the previous range

cell. After, being used the new inverse progresses through memory as indicated
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until finally it is discarded after having been used to compute each of the M filter

segments once (at different range cells).

Cllerx-1) Clle+k-1) Ciiale+k-1) \ Mempry
=Ci'le-1) [ | =Ce-1) [y ey | =Chale-1) M
: : l
i : -
C;le+1) Clle+1) i, {e+1)
:EI_I[E_K"'I] :CEI[’E—K*'I] :cﬁ-l[’f—K'ﬂ Matrices for
Current Filter

Figure 3.4 Reduced-Dimension Signal Correlation Matrix Update for Successive
Range Cell Indices (Contiguous FAPC)

3.3.2 Computational Cost of Fast APC

Computational cost will be couched in terms of the approximate number
of complex multiplies necessary to obtain the unique Fast APC filter at a single
range cell. The computationally efficient matched filter requires N complex
multiplies to determine the estimate for each range cell. First, the computational
cost of full-dimension APC will be determined. Secondly, the computational
complexity of Fast APC will be obtained and compared to the matched filter and

APC.
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Re-examine the full-dimension matrix update equation from (3.6)
(c(e+1)+R)" =F"' —F'u[r" + vV/F ') 'V F (3.13)

where F~' is NxN, T is 3x3, U:[(H—f) ey eN] and

V=ley (ﬁ—f) eN] are N x3 (recall eN=[O - 0 I]T). F' is already
known and the computation of T'"' is negligible. It can be shown that finding h

and requires N (N —1) complex multiplies. The matrix F'U requires only

N? complex multiplies to determine because the product of the elementary vector
e, with a matrix does not require any additional operations. The product V/F~'
can be found directly from F'U and thus requires no additional operations.

However, determining the product V7F'U requires 3N multiplies. The 3x3

inverse (I“’1 +V"7 F*IU)f1 requires approximately 27 multiplies and is therefore
considered negligible. The only remaining product required to compute

(C(¢+1)+R)" from (3.13) is
[Fu] ., % [(r‘1 + VHF‘IU)_IJ < [VF], (3.14)
3x3

which requires 3N’ +9N complex multiplies. Thus determining the signal

correlation matrix inverse incurs a computational cost of approximately

4N?+12N multiplies at each range cell (not including computation of h and ).
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After obtaining the signal correlation matrix inverse the filter weights are

obtained from

w(0)=p(r)C(t)+R) s (3.15)
which necessitates N>+ N complex multiplies. The filter must then be applied
to the length-N received signal vector y(é) which requires N complex multiplies.
Computing and applying the APC filter yields a cost of N°+2N multiplies.

Thus the total cost of the APC algorithm is 6 N* +13N complex multiplies per
range cell at each adaptive stage.
The Fast APC algorithm requires updating only a single K x K reduced-

dimension correlation matrix inverse at each range cell. The computation

required to determine the K x K matrix ((ij (f + 1)+ ﬁm )_l is analogous to that

required by the full-dimension version (C(¢+1)+R)™ with N =K = % yielding

2
a cost of 4%+ 12% multiplies. However, it can be shown that only a portion

of the vectors f and h (from the full-dimension case) need to be determined

N*> N?
reducing their computation to 2———
M M

—-2N +% multiplies. The filter

weights are then determined as

(3.16)
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for m=0,1,---,M —1, where , represents d,, or Bﬂ(m) for decimation or

contiguous FAPC, respectively. The computation required to obtain all of the

2
segments given in (3.16) is M (%+%} complex multiplies. The filter is
finally applied requiring N complex multiplies. The total resulting cost of Fast

APCis N? [% + %) + BVN multiplies per range cell per adaptive stage.

Parallel processing can be used to further reduce the computational cost of
the Fast APC algorithm. The needed portions of f and h can be determined
utilizing parallel multiplication reducing their computational cost to 2N

multiplies. The M filter segments from (3.16) can also be computed in parallel

2

incurring a reduced cost of (%4‘%} multiplies. Thus, parallelized Fast APC

2

yields a total computational cost of +N(3+%) at each range cell per

M2
adaptive stage.

The computational cost (per range cell) of the matched filter, APC, and
parallelized Fast APC vs. the length of the transmit waveform, A, is illustrated in
Fig. 3.5 on a log N scale. The matched filter incurs a cost of N multiplies per
range cell and is thus is a flat line in Fig 3.5. The APC and Fast APC curves
include the matched filter followed by one adaptive stage. It is evident that as the

segmenting factor is increased the computational cost of Fast APC is reduced but
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as M is increased the performance of the algorithm degrades which will be shown

in the next chapter.
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Figure 3.5 Computational Cost (per range cell) of Parallelized Fast APC
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CHAPTER 4 SIMULATION RESULTS

Simulations were performed using a Lewis-Kretschmer P3 code [3] given

as

s(n)= e'N' 4.1)
for n=0,1,---N—1, where N corresponds to the length of the transmitted

waveform. Scatterers are represented as point targets in additive white Gaussian
noise (AWGN) and stated SNR values are post pulse-compression.
Increased-dimensionality results will be presented for the over-sampled
versions of APC and Least-Squares. The effects of straddling loss as well as
continuous and realistic discrete time waveforms will be examined. The reduced-
dimensionality results will then be presented for several scenarios. The new Fast
APC algorithm will be compared to the computationally efficient matched filter
and the APC algorithm which provides an exceptionally accurate estimate of the

range profile.

4.1 Increased-Dimensionality Results

Results presented here will compare the performance of over-sampled
APC and Least-Squares to each other and to the matched filter. First the

modeling of over-sampled transmit waveforms will be discussed. Next,
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straddling loss at nominal resolution will be examined. Third, the super-
resolution capabilities of the over-sampled (by A =5) versions of APC and
Least-Squares will be explored for cases with and without diagonal loading.
Finally, probability of separation results will be presented for the cases with

super-resolution factors of A=2 and A=3.

4.1.1 Waveform Modeling

The over-sampled filter representations for APC and Least-Squares in
(2.6) and (2.10), respectively, require over-sampling the transmitted waveform.
For a continuous waveform, over-sampling is straightforward and is currently
common for systems employing digital pulse compression. However, ideal
discrete waveforms such as polyphase codes are constant over discrete phase
values, often referred to as chip intervals, (which determines the range resolution)
and possess a discontinuity between each chip. In reality, these waveforms are
implemented with a finite transition between successive chips that determines the
effective overall bandwidth of the waveform. As an example, a close-up
comparison of a segment of a sampled linear frequency modulation (LFM)
waveform and both an ideal and realistic discrete waveform is depicted in Fig.
4.1. While the continuous waveform exhibits smooth phase transitions, the ideal
discrete waveform, and to a lesser degree the realistic discrete waveform,
demonstrate much sharper phase transitions. It is these sharp transitions that

determine the actual bandwidth of the discrete waveform.
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Figure 4.1 Close-Up of Over-Sampled Waveform Models

Since the bandwidth directly determines the range resolution for
continuous waveforms, discrete waveforms therefore require greater bandwidth to
achieve the same nominal resolution (dependent on the chip width for discrete
waveforms). However, due to the presence of the extraneous bandwidth
corresponding to the transition regions, discrete waveforms can be expected to
provide better super-resolution performance than their continuous counterparts.
In order to maintain a fair comparison in terms of resolution, the continuous and
discrete waveforms employed in the increased-dimensionality results will possess

the same nominal range resolution as provided by the matched filter.
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Both the continuous and discrete waveforms are derived from the same
original waveform, a length N = 20 P3 code which is known to be a sampled
version of an LFM waveform. The continuous waveform is modeled by over-
sampling the P3 function in (4.1) by 10 and interpolating such that the resultant
waveform is as shown in Fig. 4.1 with smooth phase transitions. In contrast the
discrete waveform utilizes the N discrete phases of the P3 code repeated 10 times
to produce the ideal discrete over-sampled waveform. Then, the samples
constituting the final sample of a given chip and the first sample of the following
chip are phase interpolated as depicted in Fig. 4.1 to generate the transition
regions between successive chips thus producing the realistic discrete over-
sampled waveform. Note that by phase interpolating the constant modulus nature

of the waveform is preserved.

4.1.2 Straddling Loss

Straddling loss occurs when the received signal is sampled such that a
reflected version of the transmitted waveform coinciding with a target aligns with
the transition regions of the over-sampled discrete waveform. To first establish a
benchmark for performance at nominal resolution, the realistic discrete over-
sampled waveform is convolved with a range profile containing two targets. The
received signal is down-sampled by 10 such that processing will be performed at
the nominal resolution. In Figure 4.2, the scatterer at range index 575 occurs in

sync with the flat portion of the chip while the scatterer at range index 510 aligns
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with the transition region and thus will result in a straddling loss. Figure 4.2
illustrates the range profile estimates for the normalized matched filter, Least-
Squares, and the APC algorithm each using the nominal P3 code and compared to
the true range profile. It is observed from Fig. 4.2 that both APC and Least-
Squares exhibit lower range sidelobes than the matched filter, with APC slightly

outperforming Least-Squares.
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Figure 4.2 Straddling Loss at Nominal Resolution
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4.1.3 Un-Loaded Super-Resolution

The APC and Least-Squares algorithms are capable of achieving range
super-resolution for both continuous and discrete waveforms when they are
appropriately over-sampled. As mentioned earlier, the waveforms are over-
sampled by a factor of 10 when convolved with the true range profile followed by
down-sampling by 2 to model the received signal with the possibility for
straddling losses between samples. The resulting received signal and waveform
used for processing are over-sampled by A =5. Figures 4.3 and 4.4 display the
results for the over-sampled continuous and realistic discrete over-sampled
waveforms, respectively, when employing the unloaded versions of Least-Squares
from (3) and APC from (5). The true range profile consists of two scatterers at
range indices 543 and 549 that are in sync with the receive sampling (i.e. no
straddling losses) and two scatterers at range indices 485 and 491 that are delay
shifted thus resulting in straddling losses. Note that each pair of scatterers, which
are spaced by two super-resolved range cells, reside in the same nominal range

cell and thus cannot be resolved by the matched filter.

For the over-sampled continuous waveform, the results are shown in Fig.
4.3 where it is observed that, in terms of depicting the locations of the scatterers
and otherwise suppressing sidelobes, poor performance is obtained for the
unloaded Least-Squares while better performance is achieved for the unloaded
APC algorithm. APC is able to resolve both pairs of scatterers yet Least-Squares

is only able to resolve the second pair. Furthermore, due to ill-conditioning
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Least-Squares exhibits rather high sidelobe levels, in some places even higher

than the matched filter.

For the realistic discrete over-sampled waveform, Fig. 4.4 illustrates the
super-resolution performance for APC and Least-Squares.  First, note that the
matched filter performance for both the continuous and discrete waveforms is
virtually identical as these two waveforms provide the same nominal resolution.
However, unlike for the over-sampled continuous waveform, both APC and
Least-Squares now resolve both sets of scatterers with the sidelobe levels for
Least-Squares undergoing the most noticeable reduction relative to Fig. 4.3
(though the effects of ill-conditioning can still be observed). This improvement is
not surprising because as discussed earlier the realistic discrete waveform
possesses a higher bandwidth than its continuous counterpart thus enabling
greater range diversity when super-resolution methods are employed. In addition,
the effects of straddling have been reduced as seen in Fig. 4.4 when compared to
the nominal resolution case in Fig. 4.2. This improvement can be attributed to the
over-sampled realistic discrete waveform used for processing providing a more

accurate representation of the transmit waveform.
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Figure 4.4 Super-Resolution, Realistic Discrete Waveform, No Diagonal Loading
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4.1.4 Loaded Super-Resolution

The super-resolution estimates for the APC and Least-Squares algorithms
can be improved by employing the diagonally loaded versions in (3.2) and (3.3),
respectively, to reduce the noise enhancement effects of moderate matrix ill-
conditioning. This improvement is illustrated in Figs. 4.5 and 4.6 for the same
range profile as considered previously using the over-sampled continuous

waveform and the realistic discrete over-sampled waveform, respectively.

For the over-sampled continuous waveform, the loading factors for Least-

Squares and APC were set as 6 =0.5 and y =5, respectively. These values were

found to work well and no claim is made to their optimality. The results for this
case are shown in Fig. 4.5 where considerable improvement is observed relative
to the unloaded case of Fig. 4.3. Now the loaded versions of Least-Squares and
APC resolve both pairs of scatterers with the sidelobe levels for loaded APC
found to be dramatically lower than loaded Least-Squares and the unloaded

version of APC.

When the realistic discrete over-sampled waveform is employed, the

loading factors for Least-Squares and APC were set as 0 =2 and y =20,

respectively. As with the continuous case, these values were found to work well
and are not necessarily optimal. Figure 5.6 depicts the results for this case in
which it is found that loaded Least-Squares shows a marked improvement over
when the continuous waveform was employed. Loaded APC yields more modest

improvement for the discrete waveform relative to the continuous evidenced by
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the deeper nulls between each pair of scatterers. Although, compared to the
unloaded and loaded versions of Least-Squares and unloaded APC, the

performance improvement for loaded APC is substantial.
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Figure 4.5 Super-Resolution, Continuous Waveform, with Diagonal Loading
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4.1.5 Probability of Separation

Probability of separation was determined for APC and Least-Squares (LS)
when the received signal and transmit waveform were over-sampled by factors of
A =2 and A=3. The simulation scenario contained two targets of equal SNR
separated by a single range cell (at the over-sampled resolution). The transmitted
waveform was a P3 code with a nominal length of N =60 which was then over-
sampled by 12, convolved with the range profile, and along with the received
signal, down-sampled by 6 and 4 resulting in super-resolution factors of A =2

and A =3, respectively. The scatterers, which were in sync with the receive
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sampling (i.e. no straddling loss), were said to be resolved if the power estimate in
the empty range cell between them was at least 3 dB below the lower of the two
power estimates in the surrounding range cells containing the targets. The SNR
was varied and the results were averaged over 100 runs to determine the
probability of resolution curves shown in Figs. 4.7 and 4.8 for over-sampling
factors of A=2 and A =3, respectively. Note that detectability was not taken
into consideration as the SNR of the scatterers was eventually reduced to 0 dB.

In Fig. 4.7 when the nominal resolution is enhanced by a factor of A =2
the realistic discrete waveform provides a slight improvement over the continuous
waveform for both algorithms. The performance of the continuous waveform
degrades significantly when the resolution is enhanced by a factor of A=3 as
seen in Fig. 4.8. In both cases the over-sampled version of APC marginally
outperforms the over-sampled Least-Squares approach. However, one might
surmise that Adaptive Pulse Compression will provide a superior estimate in a
dense channel given the sidelobe levels of the Least-Squares algorithm in Figs.

4.4 and 4.6.
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4.2 Reduced-Dimensionality Results

Simulation results will demonstrate the performance of the two
embodiments of Fast APC compared to the original APC method and the
normalized matched filter. The first scenario consists of a large scatterer within
close proximity of a small scatterer where the range sidelobes of the match filter
are known to mask the small target. Next, the Doppler mismatch characteristics
of Fast APC will be examined in a similar scenario where the large scatterer is
moving radially outward from the radar. The third and fourth simulations contain
a randomly populated range profile and a random range profile with scatterer
motion, respectively. Finally, probability of detection results for the masking
scenario will be presented. The waveform used for all reduced-dimensionality

results was a length N =60 P3 code.

4.2.1 Masking Scenario

The first scenario consists of two point scatterers, one large (SNR of 60
dB) and one small (SNR of 20 dB). The scatterers are separated by three range
cells. The normalized matched filter provides the initial range profile estimate for
both embodiments of Fast APC as well as APC, each of which performs two
adaptive stages. Figures 4.9 and 4.10 show the results of the decimation and
contiguous FAPC algorithms, respectively. Here the number of blocks used is M
= 4 with a block size of K = 15. Both embodiments of Fast APC achieve

performance on the level of the original APC algorithm, suppressing the sidelobes
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into the noise such that the small target is detectable, where as the matched filter’s
range sidelobes prevent detection of this scatterer as expected. As in [12] a
heuristic floor has been placed on the power estimates to avoid ill-conditioning of
the signal correlation matrices at the following stage. The flat-lining effect seen
in Figs. 4.9 and 4.10 is a result of this floor, which has been placed 3 dB below
the noise as Fast APC tends to suppress the interference below the noise floor.
However, this increased suppression does not result in enhanced sensitivity and
the analysis of this effect has been left as future work.

The performance of the Fast APC algorithm in the masking scenario
degrades as M becomes large (or conversely K becomes small) this is shown in
Figures 4.11 and 4.12 where the above scenario is duplicated for decimation and
contiguous FAPC, respectively, with M = 10 (K = 6). Decimation FAPC suffers a
5 dB loss for the small scatterer and contiguous FAPC now actually suppresses
the small scatterer. This effect has been regularly observed and is more
pronounced as M increases or as the power of the masked scatterer approaches the
noise floor. It is believed to be an effect of the reduced-dimension approximation
as the full-dimension APC yields no such effects. Mean Squared Error (MSE)

results for this scenario can be found in Table 1.

Table I MSE Results in dB, Masking Scenario

M=4 M=10
Matched Filter -33 -33
APC -60 -60
Decimation FAPC -60 -58
Contiguous FAPC -59 -56
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4.2.2 Masking Scenario with Doppler

For the second case the large scatterer is traveling radially away from the
radar such that a Doppler shift is induced analogous to a Mach 2 scatterer
illuminated by a 1 pus pulse at S-band. Figs. 4.13 and 4.14 depict the results when
3 adaptive stages are performed for M = 4 and K = 15. As before, the matched
filter’s range sidlobes prevent detection of the smaller scatterer, but now the APC
and decimation FAPC algorithms exhibit some range sidelobes caused by Doppler
mismatch greatly decreasing the detectability of the small target. However,
contiguous FAPC is found to be more tolerant to Doppler mismatch and thus the
small scatterer remains easily detectable, as seen in Figure 4.14.

The improved robustness to Doppler mismatch by contiguous FAPC is
due to the smaller overall Doppler shift over the reduced-dimension filter (K
range cells instead of K = NM for APC) thus resulting in less mismatch.
Alternatively, one could view this as the contiguous FAPC placing wider nulls in
Doppler as a result of its shorter temporal extent relative to either APC or
decimation FAPC. Fig 4.15 displays a cut from an ambiguity diagram showing
the interference cancelling nulls of APC and the two embodiments of Fast APC
versus Doppler shift. The scenario used to produce Fig. 4.15 is similar to that
depicted in Figs. 4.13 and 4.14 and contained a large moving target three range
cells away from a small scatterer. The MSE results for this case are displayed in

Table I1.
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Table II MSE Results in dB, Masking Scenario with Doppler
M=4
Matched Filter -33
APC -46
Decimation FAPC -46

Contiguous FAPC -47

4.2.3 Dense Scenario

A range profile with several randomly distributed scatterers with varying
powers will now be considered. Figure 4.16 displays the results for decimation
FAPC when 3 adaptive stages are performed with M = 4. The decimation FAPC

embodiment performs rather poorly suppressing some of the smaller scattereres
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into the noise. Figure 4.17 shows the results for 3 adaptive stages of contiguous
FAPC with M = 4. The performance of the contiguous FAPC embodiment is
comparable to APC, unmasking several scatterers that reside below the matched
filter’s sidelobe level.

The performance of both algorithms degrade significantly, as expected, in
a dense environment as block size decreases, which can be seen in Figures 4.18
and 4.19 for decimation and contiguous FAPC, respectively. It has been observed
that contiguous FAPC generally outperforms the decimation embodiment in a

dense environment. The resulting MSE for each algorithm is shown in Table III.
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Figure 4.16 Dense Scenario, Decimation FAPC, M = 4
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Table III MSE Results in dB, Dense Scenario

M=4 | M=10
Matched Filter -32 -32
APC -61 -58
Decimation FAPC -55 -36
Contiguous FAPC -56 -42

4.2.4 Dense Scenario with Doppler
Finally, the result for a dense environment with randomly distributed
Doppler shifts is considered. The largest Doppler shift is equivalent to that

induced by a Mach 6 scatterer illuminated by a 1 us pulse at S band. Figures 4.20
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and 4.21 illustrate the results when M =4 (K = 15) for decimation and contiguous
FAPC, respectively, when 3 adaptive stages are performed. The decimation
FAPC and APC algorithms suffer from Doppler mismatch and thus exhibit some
Doppler induced range sidelobes. However, contiguous FAPC exhibits almost no
Doppler-induced range sidelobes and accurately estimates all scatterers. Note that
contiguous FAPC may exhibit some small spurious peaks, which have been
observed to follow the envelope of APC’s Doppler induced sidelobes, as seen in
Figure 4.21 range index 63. The MSE results for this case can be seen in Table

IV.
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Figure 4.20 Dense Scenario with Doppler, Decimation FAPC, M = 4
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Figure 4.21 Dense Scenario with Doppler, Contiguous FAPC, M = 4

Table IV MSE Results in dB, Dense Scenario with Doppler

M=4

Matched Filter -28

APC -36

Decimation FAPC -36

Contiguous FAPC -37

4.2.5 Probability of Detection

The results shown above for Fast APC are anecdotal and do not fully

characterize the performance of the algorithm. To provide a more concrete

analysis of the new algorithm probability of detection results were obtained for

APC, the normalized matched filter, and both versions of Fast APC by averaging
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results over 1,000 trials for a range profile containing a sidelobe-masked target.
The range profile contains a single large target with an SNR of 60 dB and a
smaller masked target that, for each trial, is randomly assigned to a nearby range
cell masked by the sidelobes of the large target. The SNR of the small target was
varied to obtain the probability of detection curves shown in Figs. 4.22 and 4.23
for decimation and contiguous FAPC, respectively. A Cell-Averaging Constant

False Alarm Rate (CA-CFAR) detector [19] was used with a probability of false

alarm of 10°. The range cells included in the determination of the CA-CFAR
threshold are the 2N —2 range cells that coincide with the sidelobes of the large
target excluding the range cell in which the small masked target resides.

The matched filter performs poorly when the signal power of the small
target is not sufficiently higher than the sidelobes induced by the large target. The
sidelobe suppression capability of the APC algorithm uncovers the masked
scatterer and yields more than a 30 dB improvement over the matched filter for a
probability of detection of 50% . Both versions of the Fast APC algorithm are
found to degrade gracefully as M increases with M = 10, for example, still
yielding a 15 dB improvement for decimation FAPC and a 17 dB improvement
for contiguous FAPC relative to the matched filter for a probability of detection of
50% . The probability of detection results combined with the computational cost
plot in Fig. 3.5 offer an accurate illustration of the performance/computation

trade-off achieved with Fast APC.
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Figure 4.22 Probability of Detection Results, Decimation FAPC
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Figure 4.23 Probability of Detection Results, Contiguous FAPC
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

The motivation for the work done in this thesis was to explore the
increased and reduced dimensionality aspects of the Adaptive Pulse Compression
(APC) algorithm. Over-sampling the transmitted waveform and received signal
results in an increased-dimensionality form of APC capable of achieving range
super-resolution on a single pulse basis. Conversely, segmenting the APC cost
function resulted in a new algorithm, namely Fast APC, capable of range sidelobe
suppression at a significantly lower computational cost.

The over-sampled APC algorithm and Least-Squares approach are capable
of achieving range super-resolution which offers many benefits to pulsed radar
systems. Continuous and realistic discrete waveforms were examined and it was
determined that the extraneous bandwidth possessed by the transition regions of
the discrete phase waveform provided superior performance to the continuous
waveform. Straddling loss was shown to be improved by over-sampling and
diagonal loading was successfully utilized to alleviate ill-conditioning effects
created by over-sampling the transmit waveform used for processing.

Much work has been done in the field of pulse compression to design
waveforms and filters which possess desirable sidelobe characteristics. The

previously developed APC algorithm [12] is capable of almost complete range
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sidelobe suppression by employing a unique pulse compression filter at each

range cell of interest. However, APC incurs a high computational cost in terms of

current processing power. Fast Adaptive Pulse Compression was derived by

applying decimation and contiguous blocking techniques to the full-dimension

MMSE structure. The new algorithm is computationally efficient and provides

sensitivity on the level of APC when the segmenting factor is not extreme. In

addition, the contiguous embodiment of Fast APC exhibits improved Doppler

tolerance compared to the decimation FAPC and APC algorithms.

5.2

Future Work

The work done in this thesis has generated several new research
opportunities:

Application of over-sampled APC and Fast APC to real data which
perhaps may lead to exploring implementation of the Fast APC algorithm
in a real-time system

Combining Fast APC and over-sampled APC, i.e. achieving range super-
resolution at a reduced computational cost

Examining other embodiments of Fast APC, i.e. different segmenting
methods or combinations of segmentation schemes

Enhancing robustness of Fast APC to limit over-suppression and

mismatch loss
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