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Abstract 

 

Waveform diversity may offer several benefits to radar systems though often at the cost of 

reduced sensitivity.  Multi-dimensional processing schemes are known to offer many degrees of 

freedom, which can be exploited to suppress the ambiguity inherent to pulse compression, array 

processing, and Doppler frequency estimation. 

Spatial waveform diversity can be achieved by transmitting different but correlated waveforms 

from each element of an antenna array.  A simple yet effective scheme is employed to transmit 

different waveforms in different spatial directions.  A new reiterative minimum mean squared 

error approach entitled Space-Range Adaptive Processing, which adapts simultaneously in range 

and angle, is derived and shown in simulation to offer enhanced performance when spatial 

waveform diversity is employed relative to both conventional matched filtering and sequentially 

adapting in angle and then range.  The same mathematical framework is utilized to develop Time-

Range Adaptive Processing (TRAP) algorithm which is capable of simultaneously adapting in 

Doppler frequency and range.  TRAP is useful when pulse-to-pulse changing of the center 

frequency or waveform coding is used to achieve enhanced range resolution or unambiguous 

ranging, respectively.   

The inherent computational complexity of the new multi-dimensional algorithms is addressed 

by segmenting the full-dimension cost functions, yielding a reduced-dimensional variants of each.  

Finally, a non-adaptive approach based on the multi-dimensional TRAP signal model is utilized to 

develop an efficient clutter cancellation technique capable of suppressing multiple range intervals 

of clutter when waveform diversity is applied to pulse-Doppler radar. 
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CHAPTER 1   INTRODUCTION 

Radar systems transmit electromagnetic energy to obtain information about the environment in 

which they are operated.  The majority of radar systems fall into the pulse-Doppler category.  

Pulsed radars transmit short high-power pulses of electromagnetic energy after which the antenna 

that was used to transmit is switched to a radar receiver that records the energy that is reflected 

from the environment.  The delay from the time the pulse is transmitted by the radar to the time 

that a particular echo is received is measured to determine what range the echo originated from. 

For a given delay τ the range can be computed as R=cτ/2 where c ≈ 3×108 m/s is the speed of light 

and the factor of 2 in the denominator accounts for the two way path from the radar to the target 

and then back to the radar.  The energy of the received echoes can also be used to determine the 

radar cross-section (RCS) of scatterers illuminated by the radar.  Ideally, the radar transmits an 

infinitely short, infinite energy signal however, practical limitations confine the timewidth 

(temporal duration), peak power, and bandwidth of the radar pulse.  The peak power is closely 

related to detection performance and the bandwidth is inversely proportional to the range 

resolution of the radar system.  The ratio of the received energy of a radar echo from a target to 

the noise energy of the radar receiver, commonly referred to as signal-to-noise ratio (SNR), 

determines if a target can be detected by the radar receiver.  The pre-processing SNR at the radar 

receiver is predicted by the radar range equation [1] that is expressed as  

 
( )

2 2

2 44
TP G

SNR
R kTBF

λ σ
π

= ,     (1.1) 
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where TP  is the peak transmitted power, G  is the antenna gain, λ  is the wavelength associated 

with the radar’s center frequency, σ  is the RCS of the target, R  is the range to the target, k  is 

Boltzmann’s constant, T  is the absolute temperature of the radar receiver in Kelvin, B  is the 

noise bandwidth, and F  is the receiver noise figure.  The SNR in (1.1) can benefit from 

transmitting modulated waveforms and performing pulse compression receiver processing.   

The received echoes can also be used to measure the radial velocity (with respect to the radar) 

of targets.  This measurement typically requires that the radar examine the change in phase of a 

particular echo over time, hence multiple pulses are used to provide a well resolved estimate of 

the pulse to pulse phase change of a particular received echo.  The rate of the phase change with 

respect to time is referred to as the Doppler frequency and is denoted as fd =2v/λ, where v is the 

radial velocity of the target and λ is the wavelength associated with the carrier frequency of the 

radar [1].  The radar is also required to isolate returns from different spatial locations, this is 

achieved by utilizing an antenna with a narrow beamwidth such that only a small angular sector is 

illuminated on transmit and processed on receive.  The antenna can be mechanically or 

electronically scanned to cover a desired volume.  Electronic scanning requires an antenna array 

with phase shifting capability on each element.  The next three sections will discuss pulse 

compression, Doppler processing, and array processing concepts in more detail. 

1.1 PULSE COMPRESSION 

Pulse compression waveforms or modulated pulses are used to exploit the statistical properties 

of uncorrelated receiver noise and modulation bandwidth by employing signal processing 

techniques to allow a relatively long modulated waveform to achieve the SNR and range 

resolution commensurate with a short high power pulse.  This gain is achieved by correlating a 
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digital version of the transmitted waveform with the digitally recorded radar echoes and is 

referred to as matched filtering or pulse compression [2].  Pulse compression transforms the 

delayed, scaled pulses in the received signal to delayed and scaled versions of the auto-correlation 

of the transmitted waveform.  Figure 1.1 displays the auto-correlation of a typical radar waveform 

and Figure 1.2 illustrates an example of received radar data before and after pulse compression.  

The time bandwidth product (TB) of a radar pulse indicates the SNR improvement that can be 

achieved when matched filtering is employed.  Unfortunately, the matched filter exhibits range 

sidelobes, evidenced by the auto-correlation function in Fig. 1.1, that can mask surrounding 

scatterers.   

 
Figure 1.1 Auto-correlation of a typical radar waveform 

Range Sidelobes 
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Figure 1.2 Example of radar data before (top) and                                          

after (bottom) pulse compression 

The structure of the matched filter sidelobes is dependent upon the choice of transmitted 

waveform, as a result much work has been done on radar waveform design.  Radar waveform 

design is usually limited to constant modulus waveforms to allow the transmit power amplifiers to 

be operated in saturation for efficiency.  The most popular continuous phase pulse compression 

waveform is the linear frequency modulation or “chirp” waveform.  Binary phase-coded 

waveforms, such as Barker codes [3], have also been shown to possess low sidelobe levels.  Other 

types of waveforms that have been explored include non-linear frequency modulation waveforms 

[4], Costas codes [5], Frank codes [6], and complementary codes [7]. The waveform used in the 

example shown in Figs. 1.1 and 1.2 is a P3 polyphase code [8], which is a sampled (at the Nyquist 

rate) version of a chirp.  Alternative pulse compression filters, that do not match the transmitted 

waveform, can be employed to suppress range sidelobes, however the transmitted waveform still 

plays an important role.   
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1.2 DOPPLER PROCESSING 

The pulse to pulse phase shift caused by moving targets can be used to resolve targets that 

exhibit different radial velocities.  The duration between transmitted pulses, or pulse repetition 

interval (PRI), determines the maximum unambiguous range and velocity.  The number of pulses 

used is referred to the coherent processing interval (CPI).  Doppler processing is achieved by 

applying a digital filter bank across the pulses in the CPI for each range cell.  When the target 

motion is linear throughout the CPI, the pulsed radar returns possess a tone-like structure 

associated with the Doppler frequency.  Hence, the fast Fourier transform (FFT) can be used to 

realize a bank of frequency filters that separate returns with different velocities.  Due to the finite 

duration of the pulsed-radar measurement the frequency response of targets exhibit Doppler 

sidelobes that can obscure small targets at different speeds in the same range cell.  Windowing 

can be applied to suppress these sidelobes at the cost of reduced frequency resolution.   

The properties of the aforementioned phase shift induced by a moving target can be 

determined by analyzing a simple case.  Consider a pulsed carrier radar waveform denoted as 

 ( ) ( ) ( )ccos 2s t p t f tπ= ,    (1.2) 

where cf  is the carrier frequency and  

 ( ) ( ) ( )pp t U t U t T= − − ,                    (1.3) 

in which ( )U t  is the unit step function and pT  is the pulsewidth of the transmitted waveform.  

Under the typical assumption that the fast-time Doppler shift is negligible, the received echo for 

the mth pulse in a CPI from a moving target with an initial range of R can be expressed as 
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( ) c

2 2 2 2
cos 2m

R vmT R vmT
y t p t f t

c c
π−  −    = − −        

,            (1.4) 

where v is the radial component (towards the radar) of the target velocity, c is the speed of light, 

and T is the PRI.  Rearranging the terms and substituting c

c

1 f

cλ
=   into (1.4) yields 

( ) c
c c

2 2 2 2
cos 2 2 2m

R vmT R v
y t p t f t mT

c
π π π

λ λ
 − = − − +  

   
.     (1.5) 

Observe that the term mT in (1.5) represents a discrete time progression with a sampling rate of 

1PRF T=  thus the term associated with the slow-time pulse to pulse phase change can be 

expressed as 

 
c

2
2

v m

PRF
φ π

λ
= .    (1.6) 

The normalized Doppler frequency associated with this term is  

 d
c

2 1v
k

PRFλ
= .    (1.7) 

The principles of sampling theory dictate that in order to avoid aliasing kd must satisfy 

d
1 1

2 2k− −< < .  Consequently, if c

2 2

PRF
v

λ≥  the velocity measurement will be aliased; the 

quantity c

2 2

PRF λ
 is referred to as the ambiguous velocity and can be controlled by adjusting the 

radar PRF. 

Doppler processing is implemented using the discrete Fourier transform (DFT) of the digitized 

echoes recorded in a CPI.  The DFT of an input signal x(n) is defined as 
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 ( ) ( ) 2

1

, 0,1, , 1
kN j n
N

n

X k x n e k N
π−

=

= = −  ,    (1.8) 

where k is normalized frequency.  Figure 1.3 shows the Doppler frequency response for a range 

cell containing a target traveling towards an X-band (10 GHz) radar at 200 m/s.  For this example 

the PRF is 40 kHz and there are 20 pulses in the CPI.  

 
Figure 1.3 Doppler frequency response for a 200 m/s target                     

measured with a 40 kHz PRF at X-band 

1.3 ARRAY PROCESSING 

Antenna arrays are widely used in radar systems to facilitate electronic scanning and spatial 

discrimination.  Typically the same waveform is transmitted on each element with an elemental 

phase shift to focus energy in a desired direction.  A number of pulses are processed before 

steering the beam to a different spatial direction.   

Doppler Sidelobes
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The notional array geometry used throughout this report is defined as follows.  Figure 1.4 

depicts a linear array in which the blue line represents a phase front of a far field plane wave 

traveling in the theta direction (relative to boresight) and d is the element spacing.  Note that the 

convention used here is that the array element indices are increasing from left to right and the 

spatial angle theta is referenced from boresight that is indicated by the dashed line.  Throughout 

this document it is assumed that signals being transmitted from the array have a relatively narrow 

bandwidth when compared to their center frequency.  As illustrated in Fig. 1.4, the physical path 

length difference from two adjacent elements to a phase front in the far field plane wave is given 

by the relationship sind θ .  Under the narrowband assumption the electrical angle associated with 

this distance is approximately 
2

sind
π θ
λ

 where λ  is the wavelength associated with the radar 

carrier frequency.   

 

Figure 1.4 Linear array illustration 

The phase shift between the signals received at adjacent elements is analogous to that derived 

for moving targets in the previous section.  Consider a sinusoidal source ( ) ( )ccos 2s t f tπ=  in the 

θ

d0 1 2 3 

θ 

dsin(θ) 
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far field of the array at angle θ and range R (from element 0).  The received signal at the mth 

element can be expressed as  

 ( ) ( )
c

sin
cos 2m

R md
y t f t

c

θ
π

 − 
= −     

,    (1.9) 

where ( )sinmd θ  is the path length distance between adjacent elements.  Substituting c

c

1 f

cλ
=  

into (1.9) and rearranging results in 

 ( ) ( )
c

c c

sin
cos 2 2 2m

mdR
y t f t

θ
π π π

λ λ
 

= − + 
 

.            (1.10) 

The element to element phase progression is likewise similar to the pulse-to-pulse phase 

progression in (1.6) for moving targets where here md give the location of the spatial samples, the 

spatial frequency is given by the expression 

 ( )S
c

sin
d

k θ
λ

= ,    (1.11) 

which, to avoid aliasing, is bounded as ( )
c

1 1
sin

2 2

d θ
λ

< < .  Hence, d is typically chosen to be c

2

λ
 

(half-wave spacing) such that signals between ±90° of boresight will not be aliased.  Unlike the 

relationship between radial velocity and Doppler frequency, the mapping from spatial angle to 

spatial frequency is non-linear as a result of the geometric relationship between the angle of 

incidence and the path length difference between array elements.  This relationship developed for 

sinusoidal sources applies to received radar echoes as well (under the assumption that the received 

signal are sufficiently narrowband).  Additionally, due to antenna reciprocity [9] the phase 

progression associated with the spatial frequency in (1.11) can be used to electronically steer 
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transmitted radar pulses to different spatial angles.  Beamforming can be achieved using phase 

shifters on each element after which the channels can be combined into a single channel digitizer.  

However, many advanced array processing techniques require that multiple channels are 

digitized. The DFT can be used to perform digital beamforming when the data received by each 

element of a linear array with half-wave spacing is digitized.  The normalized response received 

at a 20 element linear array (with half-wave spacing) for a target at ‒20° is displayed in Fig. 1.5. 

 
Figure 1.5 Spatial frequency response from a 20 element linear array           

with half-wave spacing for a target at ‒20° 

1.4 MOTIVATION 

Historically pulse-Doppler radar systems have been carefully designed to transmit the same 

waveform from each element of an antenna array and minimize pulse to pulse changes in the 

transmitted waveform.  Advances in computing power and hardware design will potentially allow 

more complex transmission schemes to be employed at a reasonable cost.  For example, 

Spatial Sidelobes 
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transmitting different waveforms from different elements of a radar array has been proposed as a 

means to achieve transmit beampattern flexibility [10-12].  These waveforms are often referred to 

as multiple input multiple output (MIMO) waveforms.  Additionally, transmitting different 

waveforms on a pulse to pulse basis can also have benefits. However, altering the transmit 

framework of radar waveforms comes at the cost of reduced matched filter sensitivity and greater 

calibration requirements.   

MIMO radar waveforms can be used to control the spatial distribution of the energy 

transmitted from an antenna array.  This concept allows a great deal of flexibility in the transmit 

beampattern as well as the ability to transmit different waveforms to different spatial directions 

within a single transmit pulse.  Advantages of this architecture include shorter search times, 

longer dwell times, reduced sensitivity to passive exploitation, and potentially simultaneous multi-

mode capability.  Short search times are valuable when close-in threats are lost and need to be re-

acquired, whereas long dwell times can be used to provide increased Doppler resolution.  A major 

disadvantage of beamspoiling is the reduction in power delivered to any particular spatial angle; 

this loss in power can be overcome by increasing the dwell time (as long as the radar remains 

coherent).  Additionally, applications exist that do not require the same amount of power be 

delivered to all angles, for example, consider the elevation coverage pattern depicted in Fig. 1.6 

for a ship-based radar.  Note that at high elevations the detection range is shorter than near the 

horizon, hence beamspoiling is tolerable as the radar scans away from the horizon.   



12 

 

  
Figure 1.6 Example of ship-based radar elevation coverage pattern        

(graphic courtesy of James Alter, Naval Research Laboratory)  

Diversity benefits have also been suggested for changing the radar waveform on a pulse to 

pulse basis, albeit this has a significant impact on clutter cancellation.  Pulse to pulse waveform 

diversity can be used to mitigate range ambiguities, facilitate radar embedded communications, 

and enhanced range resolution.  Ambiguity resolution and radar-embedded communications 

employ different coding on each pulse while enhanced range resolution is achieved by changing 

the center frequency of each waveform.      

This report will examine the effect of the aforementioned waveform diversity techniques on 

radar operations.  Transmitting different waveforms from an array and pulse to pulse waveform 

changes have deleterious effects on radar sensitivity because conventional processing techniques 

exhibit sidelobes that obscure nearby targets.  Numerous pulse compression techniques that 

reduce range sidelobes have been presented [13-16] and array and Doppler processing techniques 

typically employ windowing to reduce sidelobes.  It is determined later that adapting 

independently does not yield the degrees of freedom required to suppress sidelobes for some 

waveform diversity techniques.  A vast amount of work has been done regarding Space-Time 

Adaptive Processing (STAP) [17] however, aside from [18-20], very little work has been done on 
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adapting simultaneously in space and range or time and range.  In [18-20] a data-weighted Least-

Squares based approach entitled Iterative Adaptive Approach (IAA) is used to adaptively perform 

beamforming, fast-time Doppler processing, and pulse compression simultaneously.  However, 

the dimensionality of the matrix inverse required by this approach is extremely large resulting in a 

per-iteration computational complexity that is related to the number of range cells processed by 

the radar, cubed.  Furthermore, it is not readily apparent that the underlying signal model used for 

IAA can be augmented to account for eclipsed targets without becoming ill-conditioned; as such, 

this approach will not be considered.  In this document, a re-iterative minimum mean square error 

framework is used to develop adaptive space-range and time-range coupled processing techniques 

denoted as Space-Range Adaptive Processing (SRAP) and Time-Range Adaptive Processing 

(TRAP).  The new algorithms are shown to offer enhanced sensitivity at a modest increase in 

computation relative to adapting in each domain independently.  Additionally, a deterministic 

approach entitled Non-Identical Multiple Pulse Compression (NIMPC) for cancelling range 

ambiguous pulse-agile clutter is presented.  All approaches presented here can be augmented to 

account for eclipsed targets. 

1.5 ORGANIZATION OF DOCUMENT 

The rest of this document is organized in the following manner.  The remainder of this chapter 

presents the Adaptive Pulse Compression (APC) [13] and Re-Iterative Super Resolution (RISR) 

[21] algorithms as background.  The following chapter details the inclusion of a gain constraint to 

the APC and Fast APC (FAPC) [22] algorithms via a minimum variance distortionless response 

(MVDR) framework.  Chapter 3 discusses partially correlated MIMO transmit strategies for 

beamspoiling.  Next, Space-Range Adaptive Processing (SRAP) is presented and compared to 

sequential adaptation in the spatial and range domains using APC and RISR.  The Time Range 
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Adaptive Processing (TRAP) and Non-Identical Multiple Pulse Compression (NIMPC) 

algorithms are highlighted in Chapters 5 and 6, respectively.  Conclusions and proposed future 

work are stated in the final chapter. 

1.6 ADAPTIVE SIGNAL PROCESSING BACKGROUND 

In the context of radar, adaptive signal processing refers to any technique that utilizes 

information that is obtained from a measurement of the environment to improve performance. 

Much of the work in this dissertation is based on adaptivity of range, spatial, and temporal 

receiver filter structures.  In particular, the following chapters will discuss approaches that are 

capable of adapting in multiple dimensions simultaneously within a re-iterative minimum mean 

squared error (RMMSE) framework.  RMMSE approaches that independently address pulse 

compression and array processing have been considered. 

Adaptive Pulse Compression (APC) is an RMMSE approach to pulse compression that 

produces a unique pulse compression filter for each range cell of interest and has been shown to 

suppress range sidelobes into the noise floor [13].  The RMMSE framework has also been applied 

to the direction of arrival problem; this approach entitled Re-Iterative Super Resolution (RISR) 

[21] can be formulated in the context of radar array or Doppler processing.  

The new work in this dissertation is closely related to these algorithms and can be viewed as a 

combination of the independent approaches into coupled-domain processing architectures that 

exhibit a large number of degrees of freedom.  The remainder of this chapter lays out the 

previously conceived algorithms as background. 
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1.6.1 ADAPTIVE PULSE COMPRESSION 

Much work has been done to develop pulse compression methods that alleviate the effects of 

range sidelobes, though pulse compression filters that deviate from the matched filter 

consequently suffer from varying degrees of mismatch loss.  The Minimum Mean-Square Error 

(MMSE) based Adaptive Pulse Compression (APC) algorithm is capable of suppressing range 

sidelobes into the noise by employing a unique pulse compression filter for each range cell.  The 

radar return signal can be modeled as a discrete convolution of the transmitted waveform with the 

illuminated range profile.  The return from the th  range cell can thus be denoted as 

 ( ) ( ) ( ) ,Ty v= +x s           (1.12) 

where   is the range cell index, ( )T• is the transpose operator, [ ]0 1 1

T

Ns s s −=s   is the length-

N  sampled version of the transmit waveform, ( ) ( ) ( ) ( )1 1
T

x x x N= − − +  x       is a 

collection of complex amplitudes corresponding to the scatterers in the range profile that the 

waveform convolves with at delay  , and ( )v   is a sample of additive noise.  The assumed 

received signal model for APC [13] is formed by grouping N  contiguous samples of the radar 

receive model in (1.12) and is expressed as 

  ( ) ( ) ( ) ( ) ( ) ( )1 1 T Ty y y N= + + − = +  y X s v       ,   (1.13) 

where ( )v   is an 1N × vector of additive noise samples, and ( )X   is the N N×  matrix  

( ) ( ) ( ) ( )

( ) ( 1) ( 1)

( 1) ( ) ( 2)
1 1

( 1) ( 2) ( )

x x x N

x x x N
N

x N x N x

+ + − 
 − + − = + + − =    
 − + − + 

X x x x

   
   

    
   

   

, (1.14) 
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containing the 2 1N −  complex amplitude range cells surrounding (and including) the range cell 

of interest.  

The MMSE cost function for the complex amplitude of the th  range cell is  

 ( ) ( ) ( ) ( ) 2
,HJ E x = −  

w y         (1.15) 

where ( )w   is the adaptive pulse compression filter for the th  range cell, ( )H•  is the complex-

conjugate transpose (or Hermitian) operator, and [ ]E •  is expectation.  Minimizing (1.15) with 

respect to the conjugate (denoted by ( )*• ) of the adaptive filter ( )*w   yields 

( ) ( ) ( )( ) ( ) ( )( )1
* .HE E x

−
   =    w y y y        (1.16) 

By assuming the range cells are uncorrelated with one another and with the noise, the filter can be 

expressed as 

 ( ) ( ) ( )1 ,ρ −=w R s        (1.17) 

where ( ) ( ) 2
E xρ  =
 

   is the expected power at the th  range cell and ( ) ( )S NSE= +R R R   is 

the sum of the structured signal covariance matrix  

 ( ) ( )
1

S
1

,
N

H
n n

n N

nρ
−

=− +

= +R s s      (1.18) 

based upon the signal model (1.13) in which  

[ ]
1 1

1 0 1

for 0
,

for 0

T

Nn n
n

T

n N n

s s n

s s n

− ×

× − −

   ≤  =  
 > 

0
s

0




    (1.19) 
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and the noise covariance matrix 2
NSE NSE N Nσ ×=R I  under the assumption of white noise (where 

2
NSEσ  is the noise power) [13]. 

The signal covariance matrix used to form the pulse compression filters in (1.17) requires a 

priori knowledge of the target powers (denoted as ( )ρ   in (1.18)).  These powers can be 

estimated by first applying the matched filter, then using this estimate to form a unique pulse 

compression filter for each range cell of interest.  Applying the new filters yields an improved 

estimate of the scattering coefficients in the illuminated scene.  The improved estimates are then 

used to construct a new set of pulse compression filters.  This process of alternating estimation 

and filter formulation has been found to converge in 2-3 adaptive stages.  The RISR algorithm, 

that is presented in the next section, utilizes this same re-iterative structure.  

1.6.2 RE-ITERATIVE SUPER RESOLUTION 

Re-Iterative Super Resoluiton (RISR) was developed as a direction of arrival algorithm [21] 

but can be applied in the context of radar to array beamforming or Doppler processing.  RISR is 

implemented as follows, let the output at the th  time sample of an M element array be denoted as   

 ( ) ( ) ( ) ( )0 1 1

T

My y y −=   y          (1.20) 

and  

         

( )

( ) ( )( )

2 12

2 12
1 1

1 1 1

1

1

K
j j

K K

K
j M j M

K K

e e

e e

ππ

ππ

−

−
− −

 
 
 
 =
 
 
 
 

V




   



    (1.21) 

be a bank of K  spatial steering vectors.  The resulting RISR adaptive filter bank is computed as 
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 ( ) ( )( ) ( )1H −
= +W VP V R VP   ,    (1.22) 

where  

        ( )

( )

( )

,0 0 0

0 0

2 1
0 0 ,

K

K

ρ

π
ρ

 
 
 
 
 =
 
 

−  
  
  

P



 



,    (1.23) 

is a diagonal matrix containing the estimated signal power in each spatial bin at the th  time 

sample and 2
NSE M Mσ ×=R I  is the noise covariance matrix (assuming white noise).   

RISR is applied in the same fashion as APC by first obtaining the spatial estimates with the 

deterministic filter bank in (1.21).  Using these estimates the RISR filter bank is computed and 

applied as 

 ( ) ( ) ( )RISRˆ ,
H

x θ = W y   .    (1.24) 

RISR is iterated up to 15 times to obtain a good estimate [21].  It should be noted that the RISR 

algorithm requires over-sampling of the spatial angles to account for steering vector mismatch.  

This over-sampling affects the performance of the algorithm and can over-suppress the noise, 

yielding similar results to that of the reduced-dimensionality approach to APC entitled Fast APC 

[22].  The detrimental effects of limited degrees of freedom can be alleviated by adding a unity 

gain constraint to the MMSE cost function.  

In the next chapter the Adaptive Pulse Compression and Fast Adaptive Pulse Compression cost 

functions will be augmented with a unity gain constraint via a Minimum Variance Distortionless 
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Response (MVDR) framework.  Later, the MVDR result derived for APC and FAPC will be 

applied to RISR and developed for the new coupled-domain approaches presented in this paper.
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CHAPTER 2 GAIN-CONSTRAINED ADAPTIVE PULSE COMPRESSION AND 

FAST ADAPTIVE PULSE COMPRESSION 

This chapter details the application of an MVDR framework to facilitate inclusion of a unity 

gain constraint within the previously developed APC [13] and Fast APC (FAPC) [22] cost 

functions in an effort to mitigate mismatch loss.  The APC algorithm exhibits almost no mismatch 

loss [13] and, as such, the full-dimension algorithm benefits little from the gain constraint.  

However, FAPC occasionally suppresses small targets in dense scattering environments due to 

fewer degrees of freedom inherent to reduced-dimensionality processing [22]. The constrained 

FAPC algorithm preserves gain on small targets consequently improving detection performance.  

The matched filter maximizes the signal-to-noise ratio (SNR) for a solitary point target in 

white noise [1] and is consequently optimal for this scenario.  However, the matched filter 

exhibits range sidelobes, that in the presence of a large scatterer, can mask smaller targets in 

surrounding range cells.  Several estimation techniques such as Least-Squares [14] and mismatch 

filtering [15] have been developed that reduce range sidelobes, thereby enhancing the ability to 

recover small masked targets.  Although these algorithms mitigate the effect of range sidelobes, 

they also induce some mismatch loss relative to the matched filter (albeit this loss may be quite 

small for some methods/waveforms).   

The Adaptive Pulse Compression (APC) algorithm has been shown to suppress range sidelobes 

into the noise by adaptively estimating a unique pulse compression filter for every range cell of 

interest [13].  These Minimum Mean-Square Error (MMSE) adaptive filters exhibit very little 

mismatch loss.  However, the computational cost of APC limits its use in current real-time 
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systems.  Recently, the Fast Adaptive Pulse Compression (FAPC) algorithm has been shown to 

reduce the computational cost of APC significantly while maintaining enhanced sensitivity [22].  

The FAPC algorithm approximates the full-dimension APC adaptive filter at each range cell via 

reduced-dimensionality techniques that consequently induce a slightly increased mismatch loss.   

The minimum variance distortionless response (MVDR) [23] technique is widely employed in 

the array processing literature to yield a constrained MMSE solution that preserves unity gain in 

the direction of interest and suppresses interference elsewhere.  In this paper, the MVDR 

framework will be applied to obtain an APC-like structure with unity gain (i.e. no mismatch loss) 

for the range cell of interest.  However, the real benefit of such a formulation is actually realized 

for the reduced-dimension FAPC algorithm, where the constrained solution provides additional 

robustness for small masked scatterers. 

2.1 GAIN-CONSTRAINED APC COST FUNCTION 

The APC MMSE cost function in (1.15) is now cast into the MVDR framework [23] by 

including the linear constraint 

 ( ) 1H =w s .                          (2.1) 

The resulting constrained cost function is denoted 

( ) ( ) ( ) ( ) ( )( ){ }2
1 ,H HJ E x Re λ = − + −  

w y w s    
     

 (2.2) 

in which λ  is a Lagrange multiplier and { }Re •  is the real part of the argument.  Minimizing (2.2) 

with respect to the adaptive filter ( )*w   yields 
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( ) ( ) ( )( ) ( ) ( )
1

* .
2

HE E x
λ−     = −     

w y y y s           (2.3) 

By assuming the range cells are uncorrelated with one another and with the noise, the filter can 

be expressed as 

 ( ) ( ) ( )1 ,
2

λρ − = − 
 

w R s            (2.4) 

where ( ) ( ) 2
E xρ  =
 

   is the expected power at the th  range cell and ( ) ( )S NSE= +R R R   is 

the sum of the structured signal covariance matrix  

 ( ) ( )
1

S
1

,
N

H
n n

n N

nρ
−

=− +

= +R s s              (2.5) 

based upon the signal model from (1.13) in which  

[ ]
1 1

1 0 1

for 0
,

for 0

T

Nn n
n

T

n N n

s s n

s s n

− ×

× − −

   ≤  =  
 > 

0
s

0




   (2.6) 

and the noise covariance matrix 2
NSE NSE N Nσ ×=R I  under the assumption of white noise (where 

2
NSEσ  is the noise power) [13]. 

The constraint for unity gain can now be included by evaluating the inner product 

 ( ) ( ) ( )1 ,
2

H Hλρ − = − 
 

w s s R s       (2.7) 

that, in combination with (2.1), yields 

 ( ) ( )1

1

2 H

λ ρ −= −
s R s




.     (2.8) 
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Note that this result for the Lagrange multiplier is slightly different than is normally obtained 

[23] due to the presence of the ( )ρ   term.  However, substitution of (2.8) into (2.4) yields the 

familiar MVDR form  

 ( ) ( )
( )

1

1
,

H

−

−=
R s

w
s R s




     (2.9)
 

thus facilitating a gain-constrained implementation of adaptive pulse compression. 

2.2 FAST APC SIGNAL MODEL AND COST FUNCTION 

The contiguously blocked version of Fast APC (FAPC) [22] utilizes an assumed received 

signal model formed by segmenting the full-dimension model of (1.13) into M  segments of 

length K N M=  as shown in Fig. 2.1.  The segments of the received signal model are expressed 

as  

 ( ) ( ) ( )T
m m m= +y X s v         (2.10) 

for 0,1, , 1m M= − , where ( )mX   is the N K× matrix 

( ) ( ) ( ) ( )1 1m mK mK mK K= + + + + + −  X x x x     
  (2.11)

 

and ( )mv   is the 1K × vector 

    ( ) ( ) ( ) ( )1 1
T

m v mK v mK v mK K= + + + + + −  v         (2.12) 

formed by contiguously blocking the elements of ( )X   and ( )v   from (1.13), respectively.   
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Figure 2.1 Contiguous blocks of the FAPC signal model 

The contiguous FAPC cost function for the complex amplitude of the th  range cell is an 

approximation of the full-dimension cost function in (1.15) formulated as  

 ( ) ( ) ( ) ( )
21

0

1
,

M
H
m m

m

J E x
M

−

=

 
= − 

  
 w y          (2.13) 

in which ( )mw   is the thm  length- K  segment of the N-length FAPC filter ( )w   that 

approximates the full-dimension APC filter in (1.17) . 

2.3 GAIN-CONSTRAINED FAST APC 

As with the full-dimension case, adding the linear constraint 

 ( ) 1H =w s      (2.14) 

to the reduced-dimensionality cost function in (2.13) produces the gain-constrained FAPC cost 

function  
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( ) ( ) ( ) ( ) ( )( ){ }
21

0

1
1 .

M
H H
m m

m

J E x Re
M

λ
−

=

  
= − + −  

    
 w y w s          (2.15) 

Minimizing the MVDR cost function of (2.15) with respect to the adaptive filter segment ( )mw   

yields 

( ) ( ) ( )( ) ( ) ( ) ( )
1

*
1

1
.

2
H

m m m m M mK K K M N m KE E x
M

λ−

× × × − +
     = −       

w y y y 0 I 0 s        (2.16) 

Again assuming the range cells are uncorrelated with each other and with the noise the FAPC 

filter segment can be written as 

( ) ( ) ( )1 ,
2m m mM

ρ λ − 
= − 
 

w R s
       (2.17) 

where ( )1 1 1

T

m mK mK m Ks s s+ + −
 =  s   is the thm  segment of the contiguously blocked waveform 

and ( ) ( )S, NSEm m= +R R R     is the sum of the reduced-dimension structured signal covariance 

matrix 

 ( ) ( )
1

S,
1

,
K

H
m k k

k N

k mKρ
−

= −

= + +R s s       (2.18) 

in which  
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1 0 1

       for
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      for 0
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T
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s s k N K

s s s N K k

s s k

− ×

+ + −

× − −

   < − +  
   = − + ≤ ≤  
 
 >
  

0
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

   (2.19) 
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and the reduced-dimension noise covariance matrix 2
NSE NSE K Kσ ×=R I  (again assuming white 

noise) [22].  The full length-N filter is constructed by concatenating the M  filter segments given 

by (2.17) and is expressed as 

 ( ) ( ) 1

2M

ρ λ − 
= − 
 

w R s
       (2.20) 

where 

( )

( )
( )

( )

1
0

1
11

1
1

0 0

0 0
.

0 0 M

−

−
−

−
−

 
 
 =  
 
  

R

R
R

R

  
   

   
 

   (2.21) 

The Lagrange multiplier is found as before resulting in 

 
( )

1

1
,

2 HM

ρλ
−= −

s R s


     (2.22) 

that when substituted into (2.20) yields the familiar gain-constrained form for the FAPC filter as 

 ( ) ( )
( )

1

1
.

H

−

−=
R s

w
s R s

 
   

    (2.23) 

The factor of 1 M  used to appropriately normalize the M segments of the approximated cost 

function in (2.13) does not appear in (2.23) since the MVDR formulation intrinsically provides 

the necessary normalization factor.  In the next section the application of the APC and FAPC 

filters will be discussed followed by simulation results.  It will be shown that the MVDR 

formulation of the reduced-dimension algorithm achieves superior detection performance when 

compared to the original MMSE-based FAPC. 
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2.4 IMPLEMENTATION 

Both of the constrained filters utilize a re-iterative MMSE structure that relies on prior 

information obtained from an initial estimate of the complex amplitudes or the estimate from a 

previous stage.  Figure 2.2 illustrates the re-iterative process, described below, used to obtain the 

gain-constrained APC and FAPC range profile estimates.  Initially, the power estimates 

( ) ( ) ( )1 , 2 , , 1N N Nρ ρ ρ− + − + + −     required to form ( )SR   and ( )S,mR   from (2.5) and 

(2.18), respectively, are estimated by applying the matched filter.  Next, an adaptive filter for each 

range cell is formed based on (2.9) for Gain-Constrained APC or (2.23) for Gain-Constrained 

FAPC.  A new estimate of the amplitude at the th  range cell is obtained by applying the unique 

pulse compression filter for that range cell as 

 ( ) ( ) ( )ˆ .Hx = w y       (2.24) 

The new range cell estimates may be used to recalculate the adaptive filter weights, which are 

then applied to update each range cell estimate.  The algorithm typically converges in 2-3 stages 

beyond the matched filter initialization.  As in [13], a heuristic lower bound has been placed on 

the range cell estimates to prevent the covariance matrices (that rely on previous estimates) from 

becoming ill-conditioned.  Also, note that efficient implementation strategies were presented in 

[13] and [22] that are also applicable for the MVDR formulations.  
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Figure 2.2 Block diagram of adaptive filter implementation 

2.5 SIMULATION RESULTS 

Two cases are examined, 1) a large scatterer near a small scatterer and 2) a dense range profile.  

In both cases the transmit waveform is a length 64N =  Lewis-Kretschmer P3 code [8].  The 

gain-constrained MVDR formulations of APC and FAPC will be compared to the normalized 

matched filter and a length-256 Least-Squares based mismatch filter in addition to the 

unconstrained algorithms.  FAPC will utilize a segmentation factor of 4M =  which reduces the 

computational cost of the full-dimension algorithm by a factor of approximately ten in this 

scenario. 

First consider the case of a large scatterer (60 dB SNR after pulse compression) within close 

proximity to a smaller scatterer (15 dB SNR after pulse compression).  In this scenario the 

sidelobes of the matched filter and, to a lesser degree, the mismatch filter obstruct detection of the 

small scatterer as seen in Fig. 2.3.  In addition, Figure 2.3 compares APC and the gain-constrained 
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MVDR formulation, both of which suppress the range sidelobes into the noise.  Note that little 

improvement is achieved when the APC algorithm is constrained to unity gain at the match point.  

However, it is evident from Fig. 2.4 that the unity-gain constraint applied to the contiguous 

embodiment of the FAPC algorithm alleviates the 1.5 dB of mismatch loss present at the location 

of the small target (range cell 35).  In addition, the MVDR formulation of FAPC eliminates what 

is essentially an “over-suppression” characteristic (i.e. below the noise) of the unconstrained 

algorithm as observed in Fig. 2.4 and described in [22].  In fact, the MVDR FAPC results in Fig. 

2.4 look very much like the full-dimension APC (MMSE or MVDR) observed in Fig. 2.3. 

 

 

 
Figure 2.3 Comparison of APC and Gain-Constrained APC, masked scatter 

scenario 
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Figure 2.4 Comparison of FAPC and Gain-Constrained FAPC ( 4M = ), 

masked scatter scenario 

Next we consider the case of a large scatterer (60 dB SNR after pulse compression) surrounded 

by several smaller scatterers.  Figure 2.5 compares APC and the gain-constrained MVDR 

formulation.  Again, neither algorithm suffers from mismatch loss.  Fig. 2.6 illustrates the benefit 

of the Gain-Constrained FAPC algorithm in a dense scattering environment.  Here the FAPC 

algorithm utilizes a limited amount of degrees of freedom to cancel the sidelobes from large 

scatterers resulting in the suppression of small targets.  The addition of the gain-constraint reduces 

the "over-suppression" of sidelobes thereby enabling the small scatterers at, for example, range 

indices 4 and 18 to be more easily detected.  Note that for the unconstrained adaptive algorithms 

the severity of the mismatch loss for a particular range cell is dependent upon the relative powers 

of the scatterers in the surrounding cells. 



31 

 

 
Figure 2.5 Comparison of APC and Gain-Constrained APC, dense scenario 

 
Figure 2.6 Comparison of FAPC and Gain-Constrained FAPC ( 4M = ),      

dense scenario 
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2.6 CONCLUSIONS 

The Adaptive Pulse Compression (APC) algorithm is capable of suppressing the sidelobes into 

the noise by adaptively estimating a pulse compression filter for each range cell.  Currently, APC 

is limited in real-time applications due to the computational complexity of the algorithm.  The 

recently developed Fast APC (FAPC) algorithm exploits reduced-dimensionality techniques to 

reduce computational cost while maintaining much of the performance benefit.  However, the 

reduction in degrees of freedom intrinsic of the FAPC formulation introduces a small mismatch 

loss.  In this chapter Gain-Constrained APC and FAPC are constructed by casting the respective 

MMSE cost functions into an MVDR framework via inclusion of a unity gain-constraint.  It is 

observed that the full-dimension algorithm benefits little from the constraint. However, the 

reduced dimension algorithm exhibits improved detection performance especially when small 

scatterers are present. 

Re-iterative super resolution (RISR) can also suffer from insufficient degrees of freedom due 

to the oversampling of the Doppler or spatial frequency space.  Hence, RISR benefits from the 

application of a gain-constraint.  Later, the MVDR concept will be used to formulate gain-

constraints for multi-dimensional RMMSE algorithms.  In the next chapter range-angle coupled 

beamforming strategies will be examined. 
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CHAPTER 3 ANALYSIS OF RANGE-ANGLE COUPLED BEAMFORMING 

MIMO ARCHITECTURES 

Traditionally, electronically scanned radar systems apply a fixed (over the duration of a single 

pulse) inter-element phase shift to the waveforms transmitted from each element of an array.  

Transmitting different, albeit correlated, waveforms from the elements on an array has been 

proposed [10-12, 24-27] as a method to effectively broaden the transmit beamwidth, thus 

alleviating some of the requirements associated with multi-mode radar.  For example, surveillance 

radars may be responsible for searching a large volume thus limiting the duration of the CPI for a 

particular spatial direction whereas ISAR imaging requires a long CPI in a fixed spatial direction.  

Beam-spoiling offers the distinct benefit of allowing both long CPI’s and a large volume of 

coverage.  In addition to potentially enabling simultaneous multi-mode operation, waveform 

diversity enhances protection against passive exploitation. 

The remainder of this chapter will investigate, in detail, the concept of employing a time-

varying (within the duration of a single pulse) inter-element phase shift.  These waveforms are a 

subset of the more general multiple input multiple output (MIMO) radar waveform framework.  

First, the frequency diverse array (FDA) proposed in [24], which involves applying an 

incremental frequency shift to the waveforms on each element of the array, will be examined.  

Specifically, chirp waveforms with slightly different starting frequencies are used to characterize 

the associated range-dependent beampattern and determine the usefulness of the frequency 

diverse array architecture in the context of radar.  Initially, it is determined that by utilizing this 

particular waveform structure, the energy transmitted over a pulse duration can be spread in a 
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practically linear manner within the spatial extent specified by two angles, despite the non-linear 

relationship between spatial and electrical angles if the set of frequency-diverse chirps are 

appropriately parameterized.  Additionally, a time-varying beampattern, aggregate beampattern, 

and space-range ambiguity diagram is formulated.  The properties of the FDA are discussed 

relative to the traditional case.  Finally, a more flexible digital approach entitled the digital 

waveform diverse array (DWDA) is considered to allow additional freedom in waveform 

selection and provide greater control over the range-dependent beampattern.  Examples of the 

ambiguity for two different DWDA approaches will be compared to the FDA and traditional 

architectures.   

3.1 FREQUENCY DIVERSE ARRAY CHIRP STRUCTURE 

The frequency diverse array (FDA) approach involves modulating a single waveform to 

slightly different center frequencies for each transmit element of the array.  The time-varying 

elemental phase shift induced by the inter-element frequency difference creates a time-varying 

beampattern.  For an FDA the spatial extent of the range-dependent beampattern for a given 

frequency shift and pulse duration is dependent upon the fixed portion of the phase offset across 

the array (i.e. the “traditional” beamforming component) due to the non-linear relationship 

between the elemental phase shift and spatial angle.  A chirp structure is utilized to determine the 

proper frequency offset so as to provide the desired spatial extent of the beampattern given the 

fixed portion inter-element phase shift (that provides the coarse spatial steering).  Based on this 

structure it can be determined how much spatial spreading is possible, for a given coarse steering 

angle, in order to maintain an approximately linear distribution of energy in space. 
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Consider the case where the chirp waveform on the thm element of an M element linear array is 

given by 

( ) ( ) 2
0cos 2m

p

B
s t π f m f t π t mψ

T

 
= + Δ + −  

 
               (3.1) 

for 0, ..., 1m M= −  and 0 pt T≤ ≤  where 0f  is the start frequency, fΔ  is the elemental frequency 

shift, B  is the bandwidth, pT  is the pulse duration, and ψ  corresponds to a fixed elemental phase 

shift (i.e. between adjacent antenna elements).  The total phase difference between any two 

adjacent elements is denoted as 

( ) ( ) ( )1 2m mt t t f tφ φ φ π ψ−Δ = − = Δ − .               (3.2) 

Using the array geometry in Fig. 2.1, the following relationship can be determined:    

( )( ) ( )1

sin
m m

d t
t t

c

θ
φ φ−

 
− =  

 
                 (3.3) 

for 0 pt T≤ ≤  where ( )tθ  is the time-varying spatial steering angle corresponding to the angle at 

which the M far field phase fronts align at time t.  Substituting the argument of the cosine from 

(3.1) into (3.3) yields 

( )( ) ( )( ) ( )( ) ( )

( )

2

0

2
0

2 1 1

2 .

p

p

d sin t d sin tB
f m f t t m

c T c

B
f m f t t m

T

θ θ
π π ψ

π π ψ

   
+ − Δ − + − − −      

   

= + Δ + −

   (3.4) 

Rearranging (3.4) and substituting from (3.2) then produces 
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( ) ( )( ) ( )( ) ( )( )
0

sin sin sin
2 2

p

d θ t d θ t d θ tB
t π f π t

c T c c
φ

 
Δ = − − −  

 
,  (3.5) 

that upon setting min

max2 2

c
d

f

λ= = , becomes 

( ) ( )( ) ( )( ) ( )( )
0

max max max

sin sin sin

4p

t t tB
t f t

f T f f

θ θ θ
φ π π

 
Δ = − − −  

 
.  (3.6) 

Assuming maxB f<<  and max

1

p

f
T

<< , and then solving (3.6) for ( )tθ  results in 

( ) ( )max1

0

sin
f t

θ t
π f

φ− − Δ 
=  

 
,                   (3.7) 

which is similar to the relationship observed between electrical and physical angles for traditional 

beamforming. 

The utility of this relationship is that, for a given set of system parameters, i.e. 0f , B , M, and 

pT , a range-dependent beam pattern can be formed such that the energy from a single pulse is 

spread in a practically linear manner between two desired spatial angles.  Assuming max 0f f≈  in 

(3.7), the initial angle 1θ  over which the beam pattern spans is related to the elemental phase shift 

ψ  as 

( )1sinψ π θ=  ,                                 (3.8) 

which is equivalent to traditional beamforming.  The elemental frequency shift fΔ  is then 

determined by evaluating (3.7) at pt T=  (again assuming max 0f f≈ ) resulting in 
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( )2

1
sin

2 p

ψ
f θ

T π
 Δ = − 
 

,                     (3.9) 

where 2θ  is the terminal spatial angle.  

For example, given the system parameters 0 10f = GHz, 20B = MHz, 1 spT μ= , and 20M = , 

consider two scenarios.  In Case A let o
1 0θ = and o

2 20θ = −  and in Case B let o
1 40θ = −  and 

o
2 60θ = − .  Note that o

2 1 20θ θ− = change in spatial angle for both cases.  The chirp parameters 

given by (3.8) and (3.9) are found as o
A 0ψ = , A 171fΔ = kHz and o

B 115.7ψ = − , 

B 111.6fΔ = kHz. The spatial angle as a function of time for Case A is shown in Fig. 3.1 and 

appears to vary linearly with respect to time.  Figure 3.2 displays the resulting spatial angle for 

Case B as well as the case when fΔ  is not adjusted to incorporate the linear phase shift ψ , i.e. 

Af fΔ = Δ .  Both cases in Fig. 3.2 exhibit non-linear behavior when the spatial angle moves farther 

from boresight as expected from the relationship in (3.7).  However, it is evident that the 

frequency-diverse chirp structure of (3.1) allows for compensation of this non-linear mapping due 

to the freedom in selecting fΔ . 
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Figure 3.1 Spatial Angle vs Time for Case A 

 
Figure 3.2 Spatial Angle vs Time for Case B 

3.1.1 FDA BEAMPATTERN AND AMBIGUITY ANALYSIS 

Analysis of the FDA is performed by examining the time-varying beampattern (TVBP), 

aggregate beampattern, and a space-range ambiguity diagram (SRAD).  The definitions of these 
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three metrics are based on the normalized composite waveform transmitted in the direction 

specified by the spatial angle θ , given by  

( ) ( )
1

sin

0

1
,

M
jm

m
m

s t s t e
M

π θθ
−

=

=   ,                     (3.10) 

in which ( )ms t  is the waveform transmitted on the  thm  element of a linear array (with 
2

d
λ= ).  

The instantaneous features of the range-dependent beampattern created with the FDA can be 

examined using the normalized TVBP denoted as  

 ( ) ( ) 2
,TVB s tθ θ=      (3.11) 

Integrating over the temporal duration of (3.11) yields the aggregate beampattern denoted as 

 ( ) ( ) 2

0

1
,

pT

p

B s t dt
T

θ θ=   ,    (3.12) 

that is used to quantify the spatial distribution of energy within a single transmit pulse.  It should 

be noted that the aggregate beampattern is normalized to the standard case with no waveform 

diversity in which ( ) 2
,s t θ  is constant over the entire pulsewidth.  The SRAD is constructed as 

( )
( )

( ) ( )

2

1
ss in *

2 0

in

0

0

1 1
, ,,

,

p

p

T M
jm jm

T
m

A s t e e s t dt
M

s t dt

π θ π β
β θ βθ τ

β
τ

−
−

=

 = −  



 


 (3.13) 

where ( )*•  denotes the conjugate operation and τ  is a relative delay.  Note that in the SRAD 

formulation the term ( ) sin, jms t e π θθ  is representative of a target return from angle θ  and delay τ .  
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Additionally, the exponential term sinjme π β−  is associated with the spatial matched filter for angle 

β  and ( ) 2

0

,
pT

s t dtβ   is a normalization factor that accounts for transmit beamforming and pulse 

compression matched filtering gains.  Hence, the ambiguity diagram relates the received energy 

from angle θ  at 0t =  to the normalized matched filter for angle β  and delay τ .  Reorganizing 

(3.13), results in the simplified expression for the SRAD 

  ( ) ( ) ( ) ( )
( )

2
*

1

2
0

, ,1
,

,

M
jm sin sin

m

s t s t dt
A e

M s t dt

π θ β
β

τ
τ θ

β

θ β
∞

−
− −∞

∞
=

−∞

− =   




 


.  (3.14) 

  Consider three scenarios based upon the frequency diverse chirp structure in (1).  The system 

parameters for the three cases are 0 10f = GHz, 65B = MHz, 1 spT μ= , and 20M = .  The range-

dependent beampattern for each case is specified by the initial and final angles as, Case 1: 

o
1 0θ = , o

2 0θ =  (i.e. no frequency diversity), Case 2: o
1 10θ = − , o

2 10θ = , and Case 3: o
1 30θ = − , 

o
2 30θ = .  Figure 3.3 displays the TVBP and aggregate beampatterns for the three cases.  It is 

evident from Fig. 3.3 that the energy in Cases 2 and 3 is spread evenly over the desired spatial 

extent which is attributed to the method for selecting fΔ  defined in Section 3.1.  The aggregate 

beampattern illustrates the reduced maximum power that is delivered to a single angle which is a 

direct consequence of the beamspoiling induced by the FDA. 
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Figure 3.3 TVBP for FDA Cases 1-3 (in dB) and associated aggregate 

beampatterns (aggregate beampatterns are normalized to Case 1:                      
no frequency diversity) 

Figures 3.4, 3.5, and 3.6 illustrate the space-range ambiguity diagrams, formed by employing 

(13) with o0β =  for Cases 1, 2, and 3, respectively.  Note that the temporal, or range, sidelobes 

decrease as the transmit beampattern is widened.  Also, there is a strong space-range coupling 

present in Case 3 that can be expected given the TVBP for this case as shown in Fig. 3.3. The 

FDA technique redistributes the ambiguity such that the spatio-temporal extent of the central peak 

in the SRAD increases when the energy is distributed over a wider spatial extent as seen in Fig. 

3.7.  The impact of these properties is an effective loss in temporal resolution when the FDA 

technique is employed.   

The upper portion of Fig. 3.8 shows the o0θ =  cut of the normalized boresight ambiguity 

diagram versus delay for the three scenarios.  Notice Cases 2 and 3 exhibit degraded range 

(temporal) resolution but lower range sidelobes than Case 1.  The range-dependent beampatterns 
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of Cases 2 and 3 have effectively windowed (in time) the composite waveform transmitted in the 

boresight direction by electronically steering the mainlobe of the array past boresight as the pulse 

is transmitted.  The amplitude weighting imposed on the composite waveform is symmetric at 

boresight because it lies in the middle of the spatial extent of the beampattern in all cases.  Due to 

the structure of the chirp waveform this windowing effectively limits the bandwidth of the 

composite waveform transmitted in a particular spatial direction.  The degradation of the range 

resolution can also be associated with this reduction in bandwidth since range resolution and 

bandwidth are inversely proportional.  What was originally a good radar waveform has now been 

distributed spatially such that the composite waveform in an individual direction does not retain 

the desirable properties associated with the original waveform.  The lower plot in Fig. 3.8 displays 

the 0τ =  cut of the boresight ambiguity diagrams ( ( )0 ,A τ θ ) in Figs. 3.4-3.6 versus spatial angle 

θ  for the three cases.  Note Case 2 and Case 3 exhibit slightly lower spatial sidelobes than the 

traditional case.  Recall the spatial spreading of the central peak in the SRAD for Cases 2 and 3, 

and observe that the cut in Fig. 3.8 does not illustrate this feature.  This is because the spreading 

effect is caused by the change in the shape of the spatial component of the ambiguity as you 

progress through delay (range). 
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Figure 3.4 SRAD (in dB) for FDA Case 1 

 
Figure 3.5 SRAD (in dB) for FDA Case 2 
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Figure 3.6 SRAD (in dB) for FDA Case 3 
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Figure 3.7 Peak of SRAD (in dB) for FDA Cases 1-3 
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Figure 3.8 Temporal and spatial cuts of SRAD for FDA Cases 1-3 

Although the frequency diverse array offers the potential benefit of beamspoiling on transmit, 

other characteristics, specifically the degradation of range resolution and spatial spreading of the 

central peak of the SRAD, are not particularly well suited for radar operations.  Next, a more 

general framework for forming range-dependent beampatterns entitled the digital waveform 

diverse array is examined. 

3.2 DIGITAL WAVEFORM DIVERSE ARRAY 

The digital waveform diverse array (DWDA) concept employs a digital arbitrary waveform 

generator behind each element of an antenna array.  This independent element level waveform 

control can be utilized to embed an intra-pulse steering by creating a time varying phase shift 

between the waveforms transmitted from each element.  This allows a greater freedom in 
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waveform selection resulting in the ability to create numerous range-dependent beampatterns.  

Unlike the LFM waveforms employed in the previous section, the phase coded waveforms 

implemented within the DWDA use discrete phase values that are fixed for some duration before 

transitioning to the next value.  As a result, the instantaneous bandwidth of phase coded 

waveforms is dictated by the length (temporal duration) of each discrete phase value, or chip, as 

well as the slope of the transition region between chips.  This feature plays an important role on 

the shape of the central peak of the SRAD for the DWDA. 

Several techniques have been proposed for achieving a desired beampattern [10-12] using 

phase only coefficients across the elements of a digital array.  Here a simple yet effective 

approach is used to design the transmitted waveforms such that a desired beam pattern is realized.  

First, a set of Z  desired spatial angles 0 1 1, , , Zθ θ θ −  will be assigned Z  length- N
Z  discretized 

waveforms 0 1 1, , , Z −s s s .  These waveforms will be then be interleaved in a time-division 

multiple access (TDMA) fashion to create a single length-N waveform that is repeated for each 

array element expressed as 

[ ]
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1

1

vec 1 1 1
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T
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NZ Z
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×

− ×

   
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S

s

 


  (3.15) 

Finally, the spatial steering associated with each waveform will be applied by imposing the 

corresponding elemental phase shift to each of the interleaved pieces of the waveforms as 
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.  (3.16) 

This particular method produces a sawtooth raster scan but the order can be augmented by 

reorganizing the rows of S .  Note in (3.16) that each temporal sample of an underlying waveform 

zs  is transmitted in the same direction.  Traditionally the elemental phase shift is applied over the 

duration of an entire transmit pulse whereas in (3.16) the phase shift is altered several times 

within a pulse to steer different portions of the temporal waveform to different spatial locations.  

In addition to the added benefits of beamspoiling on transmit the DWDA enables the ability to 

transmit different waveforms, for example, search, track, and imaging waveforms, to different 

spatial locations within a single pulse duration.  As was shown for the FDA in the previous 

section, these advantages come at a significant cost in radar sensitivity.  The next section utilizes 

the SRAD to determine the effects of this transmit strategy on radar performance. 

3.2.1 DWDA BEAMPATTERN AND AMBIGUITY ANALYSIS 

As an example consider the three cases given in Table 3.1.  Note that pulse width, time-

bandwidth product, number of elements, spatial coverage used here are similar to those used in 

the FDA examples from Section 3.1.  The parameters in the table will be used for two different 

waveform configurations; in Scenario A all underlying waveforms ( zs ) are the same and in 

Scenario B all underlying waveforms are different.  First, Scenario A will be discussed in which a 

P3 polyphase coded [8] waveform is used as the underlying waveform. 
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Table 3.1 Parameters for WDA Cases 1-3 

 M N/Z Tp Z θ0, θ1 ,…, θz,…, θZ-1 

Case 1 20 65 1µs 1 0° 

Case 2 20 13 1µs 5 -10°, -5°, 0°, 5°, 10° 

Case 3 20 5 1µs 13 -25°, -21°, -17°, -12.5°, -8°, -4°, 0°, 4°, 8°, 12.5°, 17°, 21°, 25° 

 

The TVBP and aggregate beampatterns associated with Scenario A are shown in Fig. 3.9.  

Note that in each desired spatial angle the associated waveform is transmitted with temporal gaps 

between the chips of the phase code corresponding to the interval assigned to another 

waveform/direction pair.  For Case 1 a 65-chip P3 code is transmitted to a single spatial direction 

but for Cases 2 and 3 shorter P3 codes are transmitted to multiple different spatial angles.  The 

autocorrelation properties suffer as the number of the chips in the waveform is reduced, hence a 

degradation in the sidelobe levels for the shortened codes is expected.  The aggregate 

beampatterns for this scenario are similar to the previous examples (from Section 3.1). 
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Figure 3.9 TVBP and aggregate beampatterns (in dB) for the DWDA 

parameters in Table 4.1 

The SRAD diagrams for Scenario A are shown in Figs. 3.10-3.12.  It is immediately evident 

that the ambiguity created by the DWDA transmit construct differs greatly from that associated 

with the FDA.  The SRAD for Case 2, and to a greater extent Case 3, appear to be somewhat 

“spiky” in the range (time) dimension.  This structure is attributed to the particular scanning 

pattern chosen in (3.16).  Unlike the SRAD for the FDA (Figs. 3.4-3.6) the DWDA does not 

centralize the energy near the peak but distributes the spatio-temporal ambiguity throughout the 

surface.  Upon closer inspection of the peak of the SRAD (Fig. 3.13) for the three cases, the range 

resolution does not appear to degrade as before.  This preservation of resolution is expected due to 

the aforementioned bandwidth properties of phase coded waveforms.  However, the range 

sidelobe properties degrade as seen in the o0θ =  cut shown in the top portion of Fig. 3.14.   
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Figure 3.10 SRAD (in dB) for WDA Scenario A, Case 1 

 
Figure 3.11 SRAD (in dB) for WDA Scenario A, Case 2 
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Figure 3.12 SRAD (in dB) for WDA Scenario A, Case 3 
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Figure 3.13 SRAD Peak (in dB) for WDA Cases 1-3 (Scenario A) 
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Figure 3.14 Spatial and Temporal Cuts for WDA Scenario A 

Consider an alternative strategy where instead of transmitting the same underlying waveform 

to the discrete angles specified by 0 1, , Zθ θ −  a different waveform is transmitted to each desired 

spatial direction.  This strategy (Scenario B) employs random polyphase coded waveforms (PN 

codes) as the underlying waveforms.  In general, PN codes exhibit poor sidelobe levels but the 

ability to have different waveforms should reduce the spatial ambiguity peaks of the SRAD by a 

factor related to the cross-correlations of the underlying waveforms.  The SRAD for Cases 1-3 are 

shown in Figs. 3.15-3.17, a closer view of the peak of the SRAD is shown in Fig. 3.18, and the 

central cuts are shown in Fig. 3.19.  Relative to Scenario A, the range sidelobes have increased 

and the spatial sidelobes have decreased.  The increase in range sidelobe levels is attributed to the 
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poor autocorrelation properties of the PN codes and the spatial ambiguity has been reduced due to 

the reduced cross correlation between the waveforms transmitted in different spatial directions.  

Note that as the code length increases, the sidelobe and cross-correlation properties improve.  The 

PN coded waveforms used here are sub-optimal and the ambiguity diagram may improve 

dramatically when waveforms with better auto/cross-correlation properties (such as those in [36-

37]) are employed.   

 

 

 
Figure 3.15 SRAD (in dB) for WDA Scenario B, Case 1 
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Figure 3.16 SRAD (in dB) for WDA Scenario B, Case 2 

 
Figure 3.17 SRAD (in dB) for WDA Scenario B, Case 3 
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Figure 3.18 SRAD Peak (in dB) for DWDA Scenario B  
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Figure 3.19 Spatial and Temporal Cuts for Scenario B 

3.3 CONCLUSIONS 

The frequency diverse array (FDA) concept is summarized and discussed in the context of 

chirp radar waveforms.  Within this construct a method to compensate for the non-linear 

relationship between spatial and electrical angles is discussed such that a nearly linear distribution 

of energy can be achieved over a desired spatial extent regardless of the coarse steering angle.  A 

time-varying beampattern (TVBP), aggregate beampattern, and space-range ambiguity diagram 

(SRAD) are presented as useful tools to analyze range-dependent beamforming strategies.  The 

FDA is shown to exhibit reduced range sidelobes at the cost of degraded resolution.  Finally, a 

more flexible approach entitled the digital waveform diverse array (DWDA) is discussed.  The 

DWDA does not suffer from the loss in resolution associated with the FDA, however, the DWDA 
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approaches have high range sidelobes especially when the underlying waveforms are different.  

The next chapter will introduce a space-range coupled adaptive processing scheme that is capable 

of simultaneously suppressing spatial and range sidelobes thus enabling radar operations to be 

performed with the DWDA. 
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CHAPTER 4  SPACE-RANGE ADAPTIVE PROCESSING 

In the previous chapter, the concept of distributing energy from a single radar pulse over a 

desired spatial extent was shown to have significant effects on radar sensitivity.  In this chapter a 

new receiver design entitled Space-Range Adaptive Processing (SRAP) is formulated to achieve 

the necessary radar sensitivity when waveform diversity is employed.  SRAP extends the 

RMMSE methodology utilized by RISR and APC to a joint space-range framework in which a 

unique receive filter for each range-angle cell is adaptively formed.      

Space-range coupled processing for a MIMO imaging modality was considered in [18-20] by 

means of a weighted least-squares formulation, referred to as the IAA-R algorithm, for the 

purpose of achieving finer resolution in angle and fast-time Doppler.  The IAA-R approach 

performs quite well, albeit the computational cost of the algorithm in [18-20] is quite large 

making it difficult to simulate on current personal computing platforms.  The new SRAP 

algorithm developed in this chapter has a significantly lower computational cost than the IAA-R 

approach, thus offering a distinct benefit in reduced implementation complexity. 

First, a space-range coupled signal model is presented that addresses the degrees of freedom 

necessary to simultaneously adapt in the spatial and range dimensions.  This model is used as the 

basis for deriving a minimum mean-square error cost function.  Minimization of this cost function 

results in the SRAP receive filters.  Space-Range Adaptive Processing is initialized with the 

matched filter estimate followed by alternating profile and filter estimation.  An efficient 

implementation strategy is presented for which the computational complexity is discussed. 
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Adaptivity in the spatial and range domains independently has been conceived and was 

summarized in Section 1.6.  Later in this chapter the sequential application of these approaches is 

discussed for the DWDA.  Issues associated with sequential adaptation are discussed.  Analysis of 

the adaptive filters formed by different adaptive approaches for a given example is performed to 

assess the benefits of simultaneous multi-dimensional adaptive processing.  Finally, the 

robustness of SRAP is assessed via simulation of multiple scenarios.   

4.1 SPACE-RANGE SIGNAL MODEL 

The waveforms transmitted from an M element uniform linear array can be represented as the 

N M×  matrix S  of which the thm  column contains the length-N discretized waveform 

transmitted from the thm  element of the array.  Note that in the standard case the columns of S  

are identical aside from the traditional elemental phase shift used for pulse-to-pulse transmit 

beamforming.  

The discretized model for the received signal from the th  range cell and θ  direction (relative 

to boresight) on the M  elements of a waveform-diverse uniform linear array can be denoted as 

the length- M  vector 

( ) ( ) ( ),T T
θ θ

θ
θ = +  

y x Sv v n   ,   (4.1) 

in which ( )T•  is the transpose operator, ( ) ( ) ( ) ( ), , 1, 1,
T

x x x Nθ θ θ θ= − − +  x       is a 

collection of the complex scattering coefficients associated with the scatterers in the range profile 

corresponding to the angle θ , with which the M  waveforms convolve at delay  , 
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( )1 sinsin 2 sin1
Tj Mj je e e π θπ θ π θ

θ
− =  v   is the steering vector associated with the spatial angle θ , 

and ( )n   is 1 M×  a vector of additive noise samples.   

The collection of N  temporal snapshots of (4.1) can be expressed as 

  

( ) ( ) ( ), T
θ θ

θ
θ = +  

Y X Sv v N   ,               (4.2) 
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  (4.3) 

is a matrix containing the complex amplitudes within 2 1N −  range cells of ( ),x θ .  The matched 

filter and SRAP signal model is a reorganized version of (4.2) and is expressed as the 1NM ×  

vector 

( ) ( ) ( ), θ θ
θ

θ = ⊗ +  
y X Sv v n    ,              (4.4) 

where ⊗  denotes the Kronecker product and ( ) ( )( )vec T=n N   .  A normalized matched filter 

can be applied to (4.4) as  

( ) ( )
( ) ( )

( )NMFˆ ,
H

Hx θ θ

θ θ θ θ

θ
⊗

=
⊗ ⊗

Sv v
y

Sv v Sv v
 

, 
   (4.5) 
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in which ( )H•  denotes the complex-conjugate transpose (or Hermitian) operator.  Note that the 

value of the estimate in (4.5) is representative of the complex scattering coefficients resulting in 

an undesired weighting, with respect to spatial angle, of the output noise floor.  The range-angle 

estimates can be scaled such that the noise power is the same in each spatial bin by applying an 

angle-dependent weighting that is proportional to the aggregate beampattern in (3.12) as 

( ) ( )( ) ( ) ( )( ) ( )
( ) ( )

( )ˆ ˆ, ,
H

MF NMF Hx x
G G

θ θ

θ

θ θ θ θ

θ θ θ

θ θ
⊗

= =
⊗ ⊗

Sv Sv Sv Sv Sv v
y

Sv v Sv v
   ,    (4.6) 

where ( ) ( )max
H

G θ θ θ
 =  Sv Sv is chosen such that the areas of interest, corresponding to the 

maximums of the aggregate beampattern, have a unity weighting.  This weighting in (4.6) results 

in a uniform noise floor yielding an output that is amenable to a constant false alarm rate detection 

stage.  Likewise, the SRAP estimate is obtained as  

( ) ( )( ) ( ) ( )SRAPˆ , ,
H

x
G

θ θθ θ=
Sv Sv

w y  
,
   (4.7) 

where ( ),θw   is an adaptive filter that is derived in the following section. 

4.2 SPACE-RANGE ADAPTIVE PROCESSING 

The MMSE cost function for the complex amplitude in the range-angle cell corresponding to 

delay   and spatial angle θ  is given as 

 ( ) ( ) ( ) ( ) 2
, , ,HJ E xθ θ θ = −  

w y    ,    (4.8) 

where [ ]E •  is the expectation operator and ( ),θw   is the adaptive filter for the ( ),θ  range-

angle cell.  A unity gain constraint 
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 ( )( ), 1H
θ θθ ⊗ =w Sv v     (4.9) 

is enforced by adding a Lagrange multiplier to the cost function in (4.8) as 

( ) ( ) ( ) ( ) ( )( )( ){ }2
, , , 1, ReH HJ E x θ θλ θθ θ θ = − +  

⊗ −w Sw y v v          (4.10) 

where λ is the Lagrange multiplier and Re{ }•  denotes the real part of the argument.  

Minimization of (4.10) with respect to ( )* ,θw   yields  

( ) ( ) ( )( ) ( ) ( ) ( )
1

*, ,
2

HE E x θ θ
λθ θ

−     = − ⊗     
w y y y Sv v       ,  (4.11) 

in which ( )*•  denotes the complex conjugate.   

Assuming the range-angle cells are uncorrelated with each other and with the noise, the filter 

in (4.11) can be expressed as 

( ) ( )( ) ( ) ( ) ( )
1

NSE, , ,
2

H
φ φ θ θ

φ
θ φ θ λρ

−
   = ⊗ + − ⊗   

  
w T v v R Sv v     (4.12) 

where ( ) ( ) 2
, ,E xρ θ θ =

 
   is the power in the range-angle cell corresponding to delay   and 

spatial angle θ , ( ) 2
NSE NSE NM NMσ ×=R I  is the noise covariance matrix under the assumption of 

white noise (where 2
NSEσ  is the noise power), 

( ) ( )
1

, ,
1

, , ,
N

H
n n

n N

n φ φφ ρ φ
−

=− +

= +T t t     (4.13) 

where 
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( ) ( )

( ) ( )
1

,

1

1 for 0

0 1 for 0

T

n

n T

n

t n t N n

t t N n n

φ φ
φ

φ φ

×

×

  − ≤  =  
  − − >  

0
t

0




    (4.14) 

 

consists of shifted (and zero-padded) versions of the composite waveform transmitted in the φ  

direction given by the product φSv .  Note that due to the inherent transmit coupling of space and 

range when time-varying beampatterns are induced, the composite waveform (which possesses a 

temporal modulation structure) is different for different spatial transmit directions.  The Lagrange 

multiplier is found by evaluating the inner product 

( )( ) ( ) ( ) ( )( ) ( ) ( )
1

NSE, ,
2

HH H
θ θ θ θ φ φ θ θ

φ

λθ ρ θ
−

  ⊗ = ⊗ ⊗ + ⊗  
   

− w Sv v Sv v T v v R Sv v    (4.15) 

and solving for λ  resulting in 

( )
( ) ( )( ) ( ) ( )

1

NSE

1
,

,
2

H H
θ θ φ φ θ θ

φ

λ ρ θ
θ

−=
 

⊗ ⊗ + ⊗
 

−

Sv v T v v R Sv v



 

.            (4.16) 

The SRAP filter now takes the familiar MVDR-like form 

( )
( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

1

NSE

1

NSE

,

,

,

H

H H

φ φ θ θ
φ

θ θ φ φ θ θ
φ

θ
θ

θ

−

−

 
⊗ + ⊗ 

 =
 

⊗ ⊗ + ⊗ 
 





T v v R Sv v

w

Sv v T v v R Sv v

 


 

, (4.17) 

albeit with a structured covariance matrix instead of a sample covariance matrix [23]. 
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4.2.1 IMPLEMENTATION 

SRAP utilizes the reiterative MMSE structure to alternate between estimating range-angle 

specific filters and the range-angle scattering coefficients of the illuminated area.  A block 

diagram depicting the implementation of the SRAP algorithm is shown in Fig. 4.1.  The matched 

filter from (4.5) can be used to obtain an initial estimate of the scattering coefficients that are then 

used to construct the covariance matrix in (4.13) for each cell needed to form the corresponding 

adaptive filter.  The new estimates obtained by applying these unique range-angle filters can be 

utilized to update the signal covariance matrix after which a new set of filters can be computed 

and applied.  The algorithm generally converges after three or four adaptive stages. 

 
 

Figure 4.1 Block diagram of SRAP implementation 
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4.2.2 FAST MATRIX UPDATE 

The computational burden of inverting the NM NM×  matrix in (4.12) can be alleviated by 

employing a fast matrix update strategy based on the matrix inversion lemma [29].  The update 

formulation is analogous to that described for APC in [13].  It is evident upon examining (4.12) - 

(4.14) that a large portion of the covariance matrix  

 ( ) ( )( ) ( )NSE, H
φ φ

φ
φ= ⊗ +R T v v R       (4.18) 

required to form the MMSE filter at the th  range cell can be obtained from the covariance matrix 

at the previous range cell.  The elements of ( )1−R   and ( )R   can be divided into sub-matrices 

denoted as 

( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( )
1

H
NM M NM M NM M MM M M NM M

H
M MM NM MNM M M NM M NM M

− × − − ×× × −

×× −− × − × −

   
 − = =  
     

C DB A
R R

D HA C
      (4.19) 

where the ( ) ( )NM M NM M− × −  matrix C  represents the portion of the structured covariance 

matrix that is present in adjacent range cells.  The relationship in (4.19) allows the matrix 

inversion lemma [29] to be applied, significantly reducing the computational cost of SRAP.  The 

update equation is denoted as 

 ( ) ( ) 11 1 1 1 1 1−− − − − − −+ = − +R ULV R R U L VR U VR ,    (4.20) 

where  

 ( ) ( ) ( ) ( )

( )
1 ,

NM M NM M NM M MT
H

M MM NM M

− × − − ×

×× −

 
= − =  

  

C A
R P R P

A B
       (4.21)  
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is computed by applying a permutation matrix to ( )1−R  , U  and V  are expressed as 

( ) ( ) ( )

( )
, ,

M MM NM MNM M M NM M M

H
M MM NM MM M M M

×× −− × − ×

×× −× ×

  
= =   
      

0 IG 0
U V

G 0F I
  (4.22) 

in which 2 2M M×=L I  is an identity matrix, = −G D A , and = −F H B .  The sub-matrices B  and 

A  can be computed as  

 ( ) ( )( )1 1 1, H
φ φ

φ
φ φ 

= − ⊗ 
 


B

T ρ v v
A

 ,    (4.23) 

where 

( ) ( ) ( )

( )
( )

( )

*

*

1 ,0, 1 , 2

*

1 0 0

0 2 0

0 0

0 0 0

N N

t N

t N

t

φ

φ

φ

φ φ
φφ − − − −

 −
 −  =    
 
  

T t t t





 



  (4.24) 

and ( ) ( ) ( ) ( )1 , 1, 2, ,
T

N Nφ ρ φ ρ φ ρ φ= − + − +  ρ      .  In a similar fashion, the sub-

matrices D  and H  can be computed as 

 ( ) ( )( )2 2 , H
φ φ

φ
φ φ 

= ⊗ 
 


D

T ρ v v
H

 ,    (4.25) 

where 

( )

( )
( )

( )

*

*

2 ,0 ,1 , 1

*

1 0 0

0 2 0

0 0

0 0 0

N

t N

t N

t

φ φ

φ

φ
φ

φ

φ −

 −
 −  =    
 
  

T t t t





 



   (4.26) 
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and ( ) ( ) ( ) ( )2 , , 1, 1,
T

Nφ ρ φ ρ φ ρ φ= + + −  ρ      .  Note ( )1 φT , ( )2 φT , and H
φ φv v  are 

deterministic and can be computed offline. 

4.3 REDUCED DIMENSIONALITY SRAP 

SRAP employs a large number of degrees of freedom, perhaps more than are necessary for 

many applications.  In this section a reduced-dimensionality approach in the spirit of [22] is 

presented to further reduce computation.  This reduction is achieved by sub-dividing the array 

elements, corresponding to the receive steering vector, from the signal model in (4.2) into K  

contiguous blocks as 

 ( ) ( ) ( ),, T
k k kθ θ

θ
θ = +  

Y X Sv v N        (4.27) 

where ( ), 1 1 1
T

k

M M M
v k v k v k

K K Kθ θ θ θ
      = + + −            

v   is a vector containing M
K  

contiguous samples of the spatial steering vector θv  and ( )
( )1 1 1

T

k M M M
k k k

K K K
+ + −

 
=  
 

N n n n    is a 

matrix containing M
K  columns of ( )N  .  As before, the received signal model is reorganized 

and the reduced dimensionality SRAP (RD-SRAP) model is denoted as 

 ( ) ( ) ( ),,k k kθ θ
θ

θ = ⊗ +  
y X Sv v n    ,    (4.28) 

where the term in front of the Kronecker product is the same as the full-dimensional signal model 

in (4.4).  The reduced dimensionality cost function is expressed as  
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 ( ) ( ) ( ) ( ) ( )( )( ){ }
2

1
, , Re, , 1H

k k
H

k

J E x
K θ θθ λ θθ θ

  = − + 
  

⊗ − vy ww Sv      ,  (4.29) 

where ( )kw   is a length- NM
K  filter segment of the length-NM filter ( ),θw   that approximates 

the full-dimensional SRAP filter in (4.17), and λ  is a Lagrange multiplier.  It is more convenient 

to express (4.29) as  

( ) ( ) ( ) ( ) ( )( )
1

,
0

2
1

, , R ,e, 1H
k k

K
H
k k

kk

J E x
K θ θθ θ λ θθ

−

=

    = − +   
 

 ⊗ − 
   

 wy vw Sv        ,  (4.30) 

such that minimizing (4.30) yields 

( ) ( ) ( ){ }( ) ( ) ( ) ( )
1

*1
,

2
H

k k k k kE E x
K

λθ
−   = − ⊗    

w y y y Sv v         .       (4.31) 

Again, assuming the range-angle cells are uncorrelated with each other and with the noise, the 

RD-SRAP filter becomes 

( ) ( ) ( )( ) ( ) ( )
1

, , NSE, ,

,
, ,

2
H

k k k k kK φ φ θ θ
φ

λρ θ
θ φ

−
  

= − ⊗ + ⊗  
  

w T v v R Sv v
        (4.32) 

Note that in the presence of white noise the reduced dimensionality covariance matrices  

 ( ) ( )( ) ( ), , NSE,, H
k k k kφ φ

φ
φ= ⊗ +R T v v R         (4.33) 

are the same for all k , i.e.,  

( ) ( ), , , , 0 1 ,0 1H H
i i j j i K j Kφ φ φ φ= ∀ ≤ ≤ − ≤ ≤ −v v v v    .  (4.34) 

Hence, only a single reduced dimensionality covariance matrix must be computed for each range 

cell.  Combining the filter segments from (4.32) appropriately yields 
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( )

( ) ( ) ( )

0,0 1,0 1,0
0, 1 1, 1 1, 1

2 2 2
0, 0, 1 1, 1, 1 1, 1, 1

1 1 10, 1 1, 1 1, 10, 1, 1,

ve, c

T

M M K M
K

K K K

M M M M M M
K K

K K K K K K

NM NM NMN M N M N M KK
K K KK K K

w w w w w w

w w w w w w

w w w w w w

θ

−− − − −

− − − − −

− − −− − − −−

 
 
 
 =  
 
 
  

w

        

        


         
  



     

 
 
 
 
 
 
 
  
 

, (4.35) 

where ( )vec •  is the vectorization operation, ,k iw  is the ith element of the vector ( ),k θw  , and the 

partition lines indicate the portions of the larger matrix that contain elements from an individual 

filter segment.  To determine the Lagrange multiplier, the term 
( ),

2K

λρ θ 
− 

 


 is factored out of 

(4.35) resulting in  

 ( ) ( ) ( ),
,

2
,

K

λρ
θ θ

θ 
= − 
 

w w 


,    (4.36) 

in which 

( )

( ) ( ) ( )

0,0 1,0 1,0
0, 1 1, 1 1, 1

2 2 2
0, 0, 1 1, 1, 1 1, 1, 1

1 1 10, 1 1, 1 1, 10, 1, 1,

vec,

T

M M K M
K

K K K

M M M M M M
K K

K K K K K K

NM NM NMN M N M N M KK
K K KK K K

w w w w w w

w w w w w w

w w w w w w

θ

−− − − −

− − − − −

− − −− − − −−

  
  
  
  =   
  
  
     

w

   

   

         
   





, (4.37) 

where ,k iw  is now the ith element of the filter segment given by 

 ( ) ( )( ) ( )1

,,k k kθ θθ
−

= ⊗w R Sv v   .    (4.38) 

The Lagrange multiplier can now be found by taking the conjugate transpose of (4.36) and post-

multiplying both sides by ( )θ θ⊗Sv v  resulting in 
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( )( ) ( ) ( )( ), ,
,

2
H H

Kθ θ θ θ
λρ θ

θ θ
 

⊗ = − ⊗ 
 

w Sv v w Sv v 


 .  (4.39) 

To enforce the unity gain constraint the left hand side of (4.39) is set to unity yielding 

 
( )

( )( )
,

2 ,

1
HK θ θ

ρ θλ
θ

= −
⊗w Sv v




.    (4.40) 

Combining (4.36) and (4.40) we arrive at the RD-SRAP filter for the ( ),θ  range-angle cell 

 ( ) ( )
( )( )

,
,

,H
θ θ

θ
θ

θ
=

⊗
w

w
w Sv v

 
 ,    (4.41) 

which is applied to the full-dimensional data vector ( )y   from (4.4) to obtain an estimate. 

4.3.1 FAST MATRIX UPDATE FOR RD-SRAP 

The fast update strategy can also be used to compute the reduced dimension inverse.  The 

reduced dimensionality covariance matrix from (4.32) for adjacent range cells can be expressed as  

( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )

( )
1

H
M M NM M NM M NM M NM MM M
K K K K K K K K

k k H
M MNM M NM M NM M NM MM M
K KK K K K K K

− − − −× × × ×

− − − − ×× × ×

   
   

− = =   
   
   

B A C D

R R
A C D H

  
      . (4.42) 

The reduced-dimensionality update equation is denoted as 

 ( ) ( )1 11 1 1 1 1− −− − − − −+ = − +R ULV R R U L VR U VR             ,    (4.43) 

where  
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( )
( ) ( ) ( )

( )
1 ,

NM M NM M NM M M
T K K K K

k H
M MNM MM
K KK K

− − −
× ×

− ××

 
 

= − =  
 
 

C A

R P R P
A B

 
            (4.44)  

is a permutation of ( )1k −R  , U  and V  are expressed as 

( ) ( ) ( )

( )
, ,

M MNM MMNM M NM MM M
K KK KK K K K

H
M MNM MMM M M M
K KK KK K K K

−− − ××× ×

− ××× ×

   
   = =   
   

  

0 IG 0

U V
G 0F I


 

       (4.45) 

in which 2 2M M

K K
×

=L I  is an identity matrix, = −G D A  , and = −F H B   .  The reduced-

dimensionality sub-matrices B , A , D , and H  can computed as 

 ( ) ( )( )1 1 , ,1, H
k kφ φ

φ
φ φ

 
= − ⊗ 

 
B

T ρ v v
A


      (4.46) 

and 

 ( ) ( )( )2 2 , ,, H
k kφ φ

φ
φ φ

 
= ⊗ 

 
D

T ρ v v
H


  .           (4.47) 

4.4 COMPUTATIONAL COMPLEXITY 

The Adaptive Pulse Compression (APC) [13] and Re-Iterative Super-Resolution (RISR) [21] 

algorithms were realizations of the RMMSE approach applied to radar pulse compression and 

adaptive beamforming, respectively.  As such, they provide a convenient benchmark to assess the 

computational complexity of the joint range-angle approach developed here.  

The computational cost of APC in terms of complex multiplies (per range cell, per iteration) 

was previously shown to be approximately CAPC=6N2+13N+27 (where N is the length of the radar 
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waveform) .  RISR incurs a (per range cell, per iteration) cost of approximately CRISR=M 3+2QM 

2+3QM  complex multiplies where M is the number of antenna elements and Q is the number of 

spatial bins used for processing.  Thus, the combined cost of sequential RISR-APC per range cell 

is CRA=IRISRCRISR+ QIAPCCAPC, where IRISR and IAPC are the number of iterations employed by 

RISR and APC, respectively. 

The computational complexity of SRAP is determined by assessing the number of complex 

multiplies required to compute the filter for a single range-angle cell for a single iteration when 

the fast matrix update derived in the previous section is employed.  First consider the components 

of the update equation from (4.20), restated here with matrix dimensionalities included:  

( ) ( ) 11 1 1 1 1 1

2 22 2
NM NM NM M M NMM M

−− − − − − −
× × ××

    + = − +     
R ULV R R U L VR U VR . (4.48) 

For this analysis, multiplication by a “1” or “0” is not counted, thus the product 1−R U  requires 

M(NM)2 multiplies.  The computation of 1−VR U  only requires 2M 2(NM−M) since 1−R U  has 

already been computed.  The component 1−VR  requires NM2(NM−M).  Inversion of 

( ) 11 1 −− −+L VR U  requires (2M)3 multiplies. The final product needed to compute (4.48) is 

( ) 11 1 1 1

2 22 2NM M M NMM M

−− − − −

× ××

    +     
R U L VR U VR  which incurs a cost of 4NM 3+2M(NM)2 

complex multiplies.  It is evident from (4.23) and (4.25) that the computation of [ ]T
B A  and 

[ ]T
D H  requires QN2+QN(M)2 multiplies where Q is the number of spatial bins used for 

processing.  Constructing and applying the filters requires Q(NM)2+2QNM.  Thus, the total 

computational cost of SRAP per range cell, per iteration is 
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( )2 2 2 2 2 3
SRAP 2 4 5 6C Q NM NM NM N NM NM M M   = + + + + + +   .         (4.49) 

Figure 4.2 displays the computational cost of SRAP and sequential RISR-APC as well as the 

ratio of computations for different values of N and M.  In this case, the number of spatial bins 

used for processing was chosen to be 5M, APC and SRAP employ 3 adaptive iterations, and RISR 

performs 5 adaptive iterations.  Notice that when N and M are large the additional cost of SRAP, 

relative to independent adaptation, can be significant.    

 
Figure 4.2 Computational complexity of SRAP and Sequential RISR-APC (per 

range cell) 

In a similar fashion, the computational complexity of the RD-SRAP algorithm is found to be 
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2 2 3
2 2 2

RD-SRAP 3
2 4 5 6

M M NM M
C Q K N N NM N NM M

K K K K

       = + + + + + +              
.     (4.50) 

Figure 4.3 shows the computational cost of RD-SRAP compared to independent adaptations 

under the same assumptions used to generate Fig. 4.2.  In this case, the blocking factor is set to 

K=5.  The computation of the reduced dimensionality SRAP algorithm is now less severe relative 

to separate adaptation in range and angle.  The following sections will compare the performance 

of SRAP, RD-SRAP, and RISR-APC. 

 
Figure 4.3 Computational complexity of RD-SRAP (with K=5) and Sequential 

RISR-APC (per range cell) 
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4.5 ASSESSMENT OF JOINT ADAPTIVE PROCESSING  

The "one size fits all" approach of deterministic filtering attempts to construct a filter that is 

appropriate for all scenarios, typically by minimizing the peak or average sidelobe level.  In 

contrast, adaptive filter structures allow a unique filter to be designed for each signal of interest 

based upon estimation of the environment, thereby making the most out of the available filter 

degrees of freedom.  This approach alleviates the constraints on the filter by requiring only 

enhanced performance for the particular scenario corresponding to each filter's location.  The 

adaptive filter typically achieves superior performance by constructing a weight vector that is 

orthogonal only to undesired signals that are present in the subset of the received data used to 

estimate the desired quantity. 

To ascertain the benefit of applying adaptive processing jointly in range and angle, it is 

instructive to first assess the performance of adaptive processing in the range and angle domains 

separately.  Consider the application of both adaptive spatial processing and adaptive range 

processing to perform spatial beamforming and pulse compression, respectively, for DWDA 

emissions.  The proposed DWDA transmit strategy results in a transmitted waveform that 

possesses a different temporal modulation in each direction.  Hence, in the following analysis 

adaptive spatial processing is applied first to separate the angle-dependent waveforms into their 

respective spatial bins.  Consequently, pulse compression within each spatial bin must only 

consider an individual angle-dependent waveform. 

Consider the sequential application of RISR and APC to perform spatial beamforming and 

pulse compression, respectively.  If RISR is applied to the received data before pulse 

compression, it will be subject to multiple overlapped pulses from different spatial angles (targets 
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separated by less than a pulse width in range, regardless of angle, will have temporally 

overlapping returns).  However, if it is possible to perform APC first the pulses would ideally be 

localized to individual range cells, thus reducing the extent of the overlap.  Albeit, without the 

spatial isolation provided by RISR, the degrees of freedom inherent to APC can become 

overwhelmed by returns from spatially distributed targets.  Hence, from a theoretical standpoint it 

is unclear in which order the independent approaches should be applied.  Note that whichever 

algorithm is applied first does not account for the processing gain that will be achieved in the 

second stage.  When the same waveform is transmitted from each element of an array either 

algorithm can be applied first, but for the case of the DWDA, in which different waveforms are 

transmitted to different spatial angles, spatial processing should be performed first.    

4.5.1 SEQUENTIAL ANGLE-RANGE ADAPTIVE PROCESSING 

The implementation of independent adaptation in angle and range is, in general, executed as 

follows.  The data received on an array is down-converted, digitized, converted to the complex 

analytical representation, and collected into a matrix denoted as 

 [ ]0 1 1M −=Y y y y ,    (4.51) 

where the mth column ( ) ( ) ( )0 1 1
T

m m m my y y L= −  y   contains L complex samples from the 

mth antenna element.  First, an adaptive spatial weight vector of the form ( ) ( )1, θθ μ −
∠ ∠∠ =w R v    

is constructed, where μ∠  is a scale factor based on the particular choice of adaptive beamformer, 

( )∠R   is an M M×  spatial covariance matrix for the th  range cell, and θv  is a spatial steering 

vector.  The adaptive filters are applied to the data matrix from (4.51) as 
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 ( ) ( ) ( ) ( ) ( )0 1 1ˆ , ,
TH

Mx y y yθ θ∠ ∠ −=   w      .    (4.52) 

The output of (4.52) is organized into the matrix 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

0 1 1

0 1 1

0 1 1

ˆ ˆ ˆ0, 0, 0,

ˆ ˆ ˆ1, 1, 1,ˆ

ˆ ˆ ˆ1, 1, ,

,

1

Q

Q

Q

x x x

x x x

x L x L x L

θ θ θ

θ θ θ
θ

θ θ θ

∠ ∠ ∠

∠ ∠ ∠
∠

−

−

−∠ ∠ ∠

 
 
 

=  
 
 

− − −  

X





   



 ,   (4.53) 

where Q is the number of spatial bins and each column contains the fast time data for an 

individual spatial bin.  Finally, adaptive range processing is applied to each column of ( )ˆ ,θ∠X  .   

The range-adaptive weight vector for spatial angle θ  and range cell   is chosen to be the 

length of the discretized transmit waveform and takes the form ( ) ( )RR
1

R, , θθ μ θ−= R sw   , where 

Rμ  is again a scale factor based on the choice of processing scheme, ( )R ,θR   is an N N×  

covariance matrix, and θs  is a steering vector based on the transmitted waveform and spatial 

angle θ .  The space-range estimates are obtained by applying the range-adaptive filter to the 

adaptive beamformer outputs as  

( ) ( ) ( ) ( ) ( )SEQ Rˆ ˆ ˆ ˆ, , , 1, 1,
THx x x x Nθ θ θ θ θ∠ ∠ ∠= + + −  w      .  (4.54) 

The methodology discussed above is now used to formulate a filter response for each 

component of independent adaptation as well as a sequential filter response. 

4.5.2 FILTER RESPONSE 

In this section general filter responses for adaptivity in angle, range, sequential angle-range, 

and joint angle-range are assessed.  These responses are used to evaluate how the available 
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adaptive degrees of freedom  impact performance within this paradigm of range-angle coupled 

emissions.  Specifically, the filter response illustrates the effect that surrounding scatterers will 

have upon the estimation of a particular range-angle cell.   

The filter response for adaptation in the angle domain is computed as  

 ( ) ( ),, Hφ
θχ θ φ∠ ∠= w v ,    (4.55) 

where ( ),φ∠w   is the filter formed within an adaptive beamforming algorithm for spatial angle 

φ  at the th  range cell of ( )Y   and θv  is a spatial steering vector.  The range-adaptive filter 

response is denoted as 

 ( ) ( )R R ,, ,H
nnφ

θθχ φ=+ w t ,    (4.56) 

for 1, , 1n N N= − + − , in which ( )R ,φw   is the range-adaptive filter for the th  range cell in 

the spatial bin corresponding to angle φ  and ,nθt  is given by (4.14).  The combined space-range 

filter response for sequential adaptive processing is expressed as 

( ) ( )

( )
( )

( )
SEQ R ,

,

1,
, ,

1,

H

H
H

n

H

n

N

φ
θ θ

φ
φ

χ θ φ

φ

∠

∠

∠

   
   +   =    
    + −     

+



w

w
w v t

w




 




.   (4.57) 

Finally, the SRAP filter response is obtained as 

 ( ) ( )( )SRAP SRAP ,, ,H
nnφ

θ θχ θ φ+ = ⊗w t v     (4.58) 

for 1, , 1n N N= − + − , where ,nθt  is given in (4.14). 
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4.5.3 SEQUENTIAL RISR-APC 

The filter responses described in the previous section can be used to assess the performance of 

independent adaptation in angle and range.  In the next section, the RISR and APC algorithms are 

chosen as the specific realizations of independent sequential adaptive processing techniques.  

RISR can be employed initially to isolate the returns from different spatial angles thus separating 

the different waveforms associated with different directions.  After the RISR estimate is obtained 

APC is applied to the output of each of the spatial filter banks.  A different waveform is used 

within the APC framework for each spatial bin.  The following details the sequential application 

of RISR and APC.    

The data received on the array is down-converted, digitized, converted to the complex 

analytical representation, and collected into a matrix denoted as 

 ( ) ( ) ( ) ( )0 1 1M −=   Y y y y     ,    (4.59) 

where the mth column contains the complex samples from the mth antenna element.  First, the 

RISR filter (derived in Section 1.6.2) is computed and applied to the data received on the array as 

 ( ) ( ) ( )RISR RISRˆ H T=x W y   .    (4.60) 

The data in ( )RISRx̂   contains an estimate for each spatial bin at the th  time sample.  Next, the 

output after 3-10 iterations of RISR is organized into a matrix 

 ( ) ( ) ( )RISR RISR RISR RISR
ˆ ˆ ˆ ˆ0 1 1

TT T T L N = + − X x x x ,    (4.61) 
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where each column contains the fast time data for an individual spatial bin.  Finally, APC (derived 

in Section 1.6.1) is applied to each column of RISRX̂ .  The APC estimate output for a particular 

spatial bin is obtained as 

 ( ) ( )( ) 1

S NSERISR-APC
ˆ , ,x θθ θ −

= +R R s  ,    (4.62) 

where θ θ=s Sv  is the product of the waveform matrix and spatial steering vector associated with 

the particular spatial bin and the signal covariance matrix 

 ( ) ( )
1

S , ,
1

,
N

H
n n

n N

n θ θθ ρ
−

=− +

= +R s s  ,    (4.63) 

in which 

 
, 1, 1

,

1 ,0 , 1

for 0

for 0

T

Nn n

n
T

n N n

s s n

s s n

θθ
θ

θ θ

− ×

× − −

   ≤  =  
   >  

0
s

0




.    (4.64) 

and the noise covariance matrix 2
NSE NSE N Nσ ×=R I  under the assumption of white noise (where 

2
NSEσ  is the noise power).  The output of the filter in (4.62) is used to construct the estimate of the 

illuminated scene.  Note that the spatial weighting developed in (4.6) for the space-range matched 

filter is also applied to the sequential estimate as well. 

4.5.4 FILTER RESPONSE SIMULATION ANALYSIS 

The properties of the receive filter structure for SRAP, RISR, and APC will be examined by 

simulating a digital waveform diverse array (DWDA) radar scenario and then examining the 

space-range responses for each particular filter.  The DWDA parameters used for this analysis are: 

M=10 antenna elements, N=100 samples in the transmitted pulse, and Z=5 sub-waveforms 
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transmitted to 5 distinct spatial angles.  The underlying waveforms are chosen to be random 

polyphase codes of the form  

 2 zj
z e π= ηs     (4.65) 

where zη  is a N/Z-length vector of independent samples drawn from a uniform distribution 

(between 0 and 1).  The time-varying and aggregate beampatterns are shown in Fig. 4.4 and 4.5, 

respectively, and the space-range ambiguity diagram (SRAD) is displayed in Fig. 4.6. 

 

 
Figure 4.4 Time-varying beampattern for filter analysis case 
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Figure 4.5 Aggregate beampattern for filter analysis case 

 
Figure 4.6 SRAD for filter analysis case 
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The ground truth for this simplified example (Fig. 4.7) consists of a central point scatterer 

surrounded by 4 clusters of large point scatterers in the absence of clutter and with very low noise. 

For reference the central target is located at range cell 200 but in Fig. 4.7 the y-axis is relative to 

the central target.  This example is only used to assess the filter responses and not receiver 

performance.  For the remainder of this chapter the illuminated scenes are constructed using 181 

spatial bins distributed evenly between ±90o relative to boresight.  For this case the matched filter, 

RISR, and SRAP will use 51 spatial bins for processing and RISR, APC, and SRAP employ 7, 2, 

and 3 iterations, respectively.  

   

Figure 4.7 Ground truth for filter analysis simulation 

The results after the matched filter, sequential RISR-APC, and SRAP are applied are shown in 

Figs. 4.8-4.10.  The matched filter result is plagued with spatial and range sidelobes as suggested 
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by the SRAD in Fig. 4.6.  Sequential RISR-APC suppresses some of the spatial and range 

sidelobes and SRAP suppresses nearly all of the range sidelobes and most of the spatial sidelobes. 

 

 
Figure 4.8 Matched filter output for the filter analysis case 
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Figure 4.9 Sequential RISR-APC output for the filter analysis case 

 
Figure 4.10 SRAP output for the filter analysis case 
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The attributes of RISR, APC, and SRAP are examined by investigating the filter response for 

the adaptive filters associated with the central target (located at range cell 200, spatial angle 0°) in 

Fig. 4.7.  The filter response for RISR given by (4.55) is displayed in Fig. 4.11 wherein the white 

boxes denote the nulls created by the adaptive RISR filter structure to mitigate the spatial 

interference from the target groups at +/- 18° degrees.  Note the depth of the indicated nulls only 

account for the array processing gain and not the pulse compression gain that will be achieved 

when RISR is followed by APC.  The APC filter response for the adaptive filters from the 

boresight spatial bin for range cells 100 to 300 is shown in Fig. 4.12.  For a given filter range cell 

index deep nulls appear at the range offset corresponding to the target clusters seen in Fig.4.13 at 

ranges 175-184 and 215-224 in the boresight spatial bin.  The APC filter response does not 

indicate the error that is caused by residual spatial sidelobes that spread into the boresight spatial 

bin.  The sequential RISR-APC filter response (Fig. 4.13) incorporates the effects of both 

algorithms.  In Fig. 4.13 the black boxes indicate the locations of the nulls formed by both RISR 

and APC; note the nulls in range are isolated to the range cells that contain targets but the spatial 

nulls extend beyond the locations of the off-boresight target groups.  Conversely, the SRAP filter 

response exhibits very precise space-range nulls indicated by the black boxes in Fig. 4.14, which 

appear at spatial and range offsets corresponding to the surrounding target groups, thus 

demonstrating the ability of SRAP to manipulate the available degrees of freedom to reduce 

contributions from range/spatial sidelobes where appropriate.  Note that the filter response still 

contains sidelobe levels near that of the matched filter response.  However, the SRAP filter's 

sidelobes reside in locations that correspond to regions of the scene that do not contain any large 

scatterers and thus do not impact performance. 
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Figure 4.11 RISR filter response 

 
Figure 4.12 APC filter response 
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Figure 4.13 Sequential RISR-APC filter response 

 
Figure 4.14 SRAP filter response 
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4.6 SIMULATION RESULTS 

The performance of SRAP in three different scenarios will be assessed via simulation.  First an 

imaging scenario will be examined followed by a surveillance example and finally this section 

will conclude with a moving target indication (MTI) simulation.  Each simulation consists of 

point targets in complex additive white Gaussian noise.  The performance of SRAP will be 

compared to standard matched filtering in range and angle as well as sequential adaptive 

processing achieved by first applying the RISR algorithm followed by APC. 

4.6.1 IMAGING SCENARIO 

The following simulation assumes an 20M =  element uniform linear array with half-

wavelength spacing.  In this scenario, the transmitted waveform parameters are N=200 and Z=10, 

where the underlying waveforms are again composed of random polyphase codes.  The time-

varying beampattern, aggregate beampattern, and SRAD for the waveforms used in this section 

are shown in Figs. 4.15, 4.16, and 4.17, respectively.  This particular mode enables wide area 

coverage for a sustained period of time, thus allowing for inverse synthetic aperture imaging to be 

accomplished at the same time as detection and tracking operations.  It should be also noted that 

different types of waveforms, e.g., track, search, and imaging, can be transmitted simultaneously 

using the transmission scheme presented in Chapter 3.  In the following, 101 spatial bins are used 

for processing and RISR, APC, SRAP, and RD-SRAP employ 5, 3, 3, and 3 adaptive iterations, 

respectively. 

 



92 

 

 
Figure 4.15 Time-varying beampattern for simulation results 

 
Figure 4.16 Aggregate beampattern for imaging scenario 
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Figure 4.17 SRAD (in dB) for imaging scenario 

Figure 4.18 displays the ground truth for the imaging case which consists of several closely 

spaced shapes.  Before processing the SNR of the shapes range from 12−  dB to 0 dB where the 

total processing gain is 26 dB.  The matched filter output in Fig. 4.19 is plagued with space-range 

sidelobes, as expected, resulting in a very poor image.  Sequential RISR-APC outperforms the 

matched filter as evidenced by Fig. 4.20, albeit some sidelobes remain.  Fig. 4.21 displays the 

SRAP output that has suppressed nearly all of the space-range sidelobes to the level of the noise 

and Fig. 4.22 illustrates that RD-SRAP with K=4 has performed nearly as well as the full 

dimension version.  
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Figure 4.18 Ground truth (in dB) for imaging scenario  

   
   Figure 4.19 Matched filter estimate (in dB) for imaging scenario 



95 

 

 
Figure 4.20 Sequential RISR-APC estimate (in dB) for imaging scenario 

      Figure 4.21 SRAP estimate (in dB) for imaging scenario 
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      Figure 4.22 RD-SRAP (K=4) estimate (in dB) for imaging scenario 

4.6.2 SURVEILLANCE SCENARIO 

The radar parameters for the second scenario are the same as Section 4.5.4 (N=100, Z=5, and 

M=10) and the illuminated scene now contains 12 distributed targets between range cells 183 and 

225 and angles –12o and +15o as described in Table 1 (stated SNR values are before processing).  

The SNR of the largest target is 40 dB after a processing gain of 23.6 dB.  Similar to the previous 

case the matched filter results in limited sensitivity as illustrated in Fig. 4.23, in which it is 

difficult to separate the targets, whose locations are denoted by the white circles, from the 

sidelobes.  In this case, sequential adaptation (Fig. 4.24) exhibits some improvement.  Figure 4.25 

displays the result after two adaptive stages of SRAP resulting in complete sidelobe mitigation 

thus revealing all 12 targets.  Fig. 4.26 depicts the output of RD-SRAP with K=5, in which the 

reduced dimensionality version has performed nearly as well as SRAP. 
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Table 4.2 Target Description for Surveillance Scenario 

Range Cell   Angle θ  SNR (dB) 

183 10° 11.4 

190 ‒10° 16.4 

191 5° 6.4 

197 15° ‒8.6 

201 ‒6° ‒9.6 

203 ‒12° ‒2.6 

205 ‒5° ‒8.6 

208 ‒9° ‒5.6 

210 ‒10° 16.4 

222 0° ‒3.6 

224 14° 9.4 

225 8° ‒10.6 

 

    
   Figure 4.23 Matched filter estimate (in dB) for surveillance scenario 
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Figure 4.24 Sequential RISR-APC estimate (in dB) for surveillance scenario 

   

 Figure 4.25 SRAP estimate (in dB) for surveillance scenario 
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Figure 4.26 RD-SRAP (K=5) estimate (in dB) for surveillance scenario 

4.6.3  MTI SCENARIO 

A moving target indication scenario (MTI) will be simulated to assess the performance of 

SRAP when proceeding clutter cancellation.  In this case the radar is located on a stationary 

platform such that low velocity ground clutter is present.  The moving targets are modeled as 

point targets in additive white Gaussian noise.  The clutter is independent and identically 

distributed in range and angle where the real and imaginary components are zero mean Gaussian 

random variables each with a variance of half the clutter power.   The clutter Doppler phase is 

distributed uniformly between o2−  and o2  and the average clutter to noise ratio 70 dB (after 

coherent processing gain).  An 10M =  element uniform linear array with half-wavelength 

spacing is used.  The transmitted waveform parameters are again identical to those in Section 
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4.5.4.  The radar CPI consists of 64 pulses and Doppler processing is performed using a 128-point 

FFT in conjunction with a Chebychev window.   

In the following, RD-SRAP is used with a blocking factor of 5K = , 51 spatial bins are used 

for processing, and SRAP employs 3 adaptive iterations.  Note that the RD-SRAP algorithm is 

applied only to the first pulse of the received data to determine each range-angle filter, after which 

the filters are stored and used to process the remainder of pulses in the CPI.  The illuminated 

scene contains 10 distributed targets between range cells 176 and 223 and angles –7o and +16o as 

described in Table 2 (stated SNR values are before a coherent processing gain of 41 dB).  

For each processing methodology, the received data is first processed by applying clutter 

cancellation via the projection 

 ( ) 1

cc
H δ

−
= +W CC I ,    (4.66) 

where 

 [ ]0 1 1P−=C c c c     (4.67) 

is composed of a set of Doppler steering vectors 

 
( )

PRF PRF

2 2
1

1
p p

T
j j M

f

f

p

f

fe e
π π

− 
 =
  

c      (4.68) 

parameterized by the Doppler frequencies pf  at which a notch in the Doppler spectrum is desired 

and the radar PRF PRFf .  Furthermore, the term δ  is a diagonal loading term to prevent the matrix 

in (4.66) from becoming ill-conditioned; for the following simulation 810δ −= . The clutter 

cancellation filter is applied to the pulses received at each element and range sample. 
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Table 2 Target Description for Surveillance Scenario 

Target Number Range Cell   Angle θ  
Doppler 
Phase 

SNR (dB) 

1 176 10° 90° 1 

2 193 ‒4° 45° 2 

3 195 13° ‒90° ‒1 

4 213 ‒7° ‒45° 4 

5 198 16° 30° 3 

6 181 ‒3° ‒30° ‒6 

7 202 13° 135° ‒11 

8 187 ‒1° ‒135° ‒16 

9 223 4° 150° ‒11 

10 208 12° ‒150° ‒16 

 

 

Figure 4.27 displays the matched filtering results (simple coherent integration in range and 

angle) when the scattering estimates are compressed (summed incoherently) in Doppler (top plot) 

and spatial angle (bottom plot).  Figures 4.28-4.30 depict the compressed estimates for sequential 

adaptive processing, SRAP, and RD-SRAP (with K=5), respectively.  It is evident that SRAP  and 

RD-SRAP have suppressed most of the range and spatial sidelobes such that the targets are 

readily identifiable.  In contrast, sequential adaptive processing and to a greater degree the 

matched filter outputs possess sidelobes, making it difficult to identify the moving targets.  

Figures 4.31-4.36 show various range cuts in which SRAP and RD-SRAP outperform the 

matched filter and sequential adaptation. 
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Figure 4.27 Matched filter output (in dB) compressed in Doppler (top) and 

spatial angle (bottom) 
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Figure 4.28 Sequential adaptive processing output (in dB) compressed in 

Doppler (top) and spatial angle (bottom) 
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Figure 4.29 SRAP output (in dB) compressed in Doppler (top) and spatial 

angle (bottom) 
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Figure 4.30 RD-SRAP (K=5) output (in dB) compressed in Doppler (top) and 

spatial angle (bottom) 
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Figure 4.31 Sequential adaptive processing (top) and matched filter (bottom) 

outputs in dB for range cell 193, Target 2 is denoted by the white circle 
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Figure 4.32 SRAP (top) and RD-SRAP (bottom) outputs in dB for range cell 

193, Target 2 is denoted by the white circle 
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Figure 4.33 Sequential adaptive processing (top) and matched filter (bottom) 

outputs in dB for range cell 213, Target 4 is denoted by the white circle 
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Figure 4.34 SRAP (top) and RD-SRAP (bottom) outputs in dB for range cell 

213, Target 4 is denoted by the white circle 
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Figure 4.35 Sequential adaptive processing (top) and matched filter (bottom) 

outputs in dB for range cell 187, Target 8 is denoted by the white circle 
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Figure 4.36 SRAP (top) and RD-SRAP (bottom) outputs in dB for range cell 

187, Target 8 is denoted by the white circle 

4.7 CONCLUSIONS 

Range-angle coupled radar emissions have a dramatic impact on radar sensitivity.  A simple 

strategy for designing practical range-angle coupled waveforms is to select a set of waveforms to 

be transmitted to a corresponding set of desired spatial angles, then transmit the waveforms via 

time-multiplexing.  The resulting angle-range matched filter sidelobes are significantly degraded 
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relative to those associated with a traditional radar waveform (with the same time-bandwidth 

product).  A new minimum mean squared error (MMSE) based technique, Space-Range Adaptive 

Processing (SRAP), is proposed that is capable of mitigating the joint space-range sidelobes 

inherent to waveform-diverse arrays.  In the spirit of the well known STAP formulation, SRAP 

utilizes a range-angle coupled signal model allowing for simultaneous adaptation in the spatial 

and range dimensions.  SRAP is shown to exhibit enhanced sensitivity when compared to the 

matched filter and adaptation in angle and range separately.  Simulation results of a moving target 

indication radar illustrate that the digital waveform diverse array transmit strategy can be effective 

when SRAP is employed in conjunction with clutter cancellation.  In combination with the 

transmission scheme presented here, SRAP facilitates the potential realization of some forms of 

simultaneous multi-mode operation.  The reduced dimensionality SRAP (RD-SRAP) algorithm 

performs nearly as well as its full dimensional counterpart but with a significant reduction in 

computational cost. 

In the next chapter the coupled-domain RMMSE framework will be extended to the analogous 

case of slow-time (Doppler) and range.  It is important to understand that in this chapter the 

transmitted waveforms combine to form composite waveforms for each spatial angle while in the 

next chapter each waveform will be truly independent as it is transmitted at a different time.  
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CHAPTER 5  TIME-RANGE ADAPTIVE PROCESSING 

Traditionally, pulse Doppler radar systems repeat the same waveform to allow efficient pulse 

compression and Doppler processing techniques to be used.  However, some radars transmit 

waveforms that change on a pulse-to-pulse basis; in this context the vast amount of degrees of 

freedom provided by coupled domain processing may be useful.  The SRAP algorithm can be 

augmented by replacing spatial frequency with Doppler frequency such that a new algorithm 

denoted Time-Range Adaptive Processing (TRAP), that adapts simultaneously in slow-time and 

range, can be formulated.   

Low cost, high speed radio frequency circuitry will enable future radar systems to change 

waveforms in real-time; this technique is referred to as pulse agility in the remainder of this 

document.  Pulse-to-pulse waveform changes can facilitate range disambiguation with a single 

PRF [30], radar-embedded communications [31], and high range resolution (HRR) imaging [32-

33].  However, waveform and frequency agility requires more complex processing on receive to 

achieve the sensitivity of traditional pulse-Doppler radar.  In particular, pulse agility greatly 

complicates clutter cancellation, especially when multiple range intervals of clutter are present.  In 

the next chapter a deterministic technique for clutter cancellation based on the following is 

presented.    

In this chapter, a new method is proposed that simultaneously estimates the range and Doppler 

of illuminated scatterers.  This approach, entitled Time-Range Adaptive Processing (TRAP), 

employs a minimum mean-squared error (MMSE) framework and is capable of suppressing range 

and Doppler sidelobes in a pulse agile regime, thus achieving the sensitivity associated with 
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standard pulse-Doppler radar.  TRAP is particularly useful when range-Doppler coupling is 

inherent to the transmitted pulse train, such as with stepped frequency waveforms [33].   

The pulse compression matched filter in conjunction with traditional Doppler processing 

performs poorly when pulse agility is employed, due to the pulse-to-pulse variations of each 

waveforms pulse compression output.  Hence, a cascaded approach of APC and RISR will be 

used as an additional metric for comparison.  This approach adapts separately in range and 

Doppler while TRAP offers a simultaneous approach.  TRAP, APC, and RISR are all formed 

using the same mathematical framework, thus the comparison between TRAP and the APC-RISR 

combination should highlight the benefits of the coupled domain approach. 

5.1 TIME-RANGE SIGNAL MODEL 

Typically a medium to high PRF radar will transmit a number of fill pulses, or pulses 

transmitted before the receiver begins to record the received data, to ensure that the clutter from 

all range intervals is present in each of the recorded pulses that will be used for processing.  Fill 

pulses are beneficial because clutter cancellation techniques are greatly simplified when the 

clutter from each range interval is present in each received pulse.  Fill pulses are used in the 

following derivation without loss of generality.  The radar will transmit 1M R+ −  pulses where R 

is the number of range intervals (including the first range unambiguous interval) and M is the 

number of pulses recorded in a single coherent processing interval (CPI).  The transmitted 

waveforms can be represented as the 1N M R× + −  matrix S  where the thm  column contains the 

thm  length-N discretized waveform.  The waveforms in S  may have a different coding, center 

frequency, or both.  The received signal from the th  range cell in the rth range interval and 

( )th
1R r m− − +  modulated pulse 1R r m− − +s  can be denoted as 
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 ( ) ( ) ( )
1

1
0

,
R

T jm
m r R r m

r

y e nθ

θ
θ

−

− − +
=

 = +  
x s   ,    (5.1) 

for 0,1, , 1m M= − , in which  ( ) ( ) ( ) ( ), , 1, 1,
T

r r r rx x x Nθ θ θ θ= − − +  x       is a 

collection of the complex scattering coefficients associated with the scatterers in the range profile 

of the rth interval corresponding to Doppler phase shift θ  with which 1R r m− − +s  convolves at delay 

 , ( )n   is a sample of additive noise, and ( )T•  is the transpose operator.   

The collection of N  fast-time (range) snapshots for the M pulses described by (5.1) can be 

expressed as 

 ( ) ( ) ( ) ( )
1

0

,
R

r
r

θ
θ

θ
−

=

 = +  
Y X S V N    ,                (5.2) 

where 

 ( 1)

1

1
1

1

j j Me eθ θ
θ

−

 
 
   =   
 
 

V 


     (5.3) 

is N M× , 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

, 1, 1,

1, , 2,
,

1, 2, ,

r r r

r r r
r

r r r

x x x N

x x x N

x N x N x

θ θ θ
θ θ θ

θ

θ θ θ

− − + 
 + − + =
 
 

+ − + −  

X

   
   


   

   

  (5.4) 

is an N N×  matrix containing the scatterer complex amplitudes within 2 1N −  range cells of 

( ),rx θ ,  
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 [ ]1 1 1 1 1r R r R r R r M− − − − + − − + −=S s s s ,    (5.5) 

and   denotes the Hadamard product.  The matched filter and TRAP signal model is a 

reorganized version of (5.2) and is expressed as the 1NM ×  vector 

( ) ( )( ) ( ) ( )
1

0

vec vec , ,
TR

T
r r

r
θ

θ
θ

−

=

  = = +     
y Y X S V n        (5.6) 

where ( ) ( )( )vec T=n N   .  A joint range-Doppler normalized matched filter can be applied to 

(5.6) as  

 ( ) [ ]( ) ( )NMF

1
ˆ , , vec

H
T

rx r
NM θθ  =

 
S V y   ,    (5.7) 

in which ( )H•  denotes the complex-conjugate transpose (or Hermitian) operator.  The TRAP 

estimate is obtained as  

 ( ) ( ) ( )TRAPˆ , , , ,Hx r rθ θ= w y   ,    (5.8) 

where ( ), , rθw   is an adaptive filter that is derived in the following section. 

5.2 TIME-RANGE ADAPTIVE PROCESSING 

The MVDR cost function, which includes the unity gain constraint analogous to that used in 

Section 4.2, for the complex amplitude ( ),rx θ  in the range-Doppler cell corresponding to delay 

  and Doppler shift θ  in the rth interval is given as 

( ) ( ) ( ) ( ) ( ) [ ]( )( ){ }2
, , , , , Re , , vec 1

THH
rJ r E x r r θθ θ θ λ θ = − + 

−


w S Vw y      ,     (5.9) 
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where [ ]E •  is the expectation operator, ( ), , rθw   is the adaptive filter for the ( ),θ  range-

Doppler cell in the rth interval, and λ  is a Lagrange multiplier.  Minimization of (5.9) with 

respect to ( )* , , rθw   yields the standard MVDR solution 

( ) ( ) ( )( ) ( ) ( ) [ ]( )1
*, , , vec

2

TH
rr E E x θ

λθ θ
−     = −     

w y y y S V        ,      (5.10) 

in which ( )*•  denotes complex conjugation.   

Assuming the range-angle cells are uncorrelated with one another and with the noise, the filter 

in (5.10) can be expressed as 

( ) ( )( ) ( ) ( ) [ ]( )
1

NSE, , , , vec
2

T

r r r
r

r θ
φ

θ φ ρ λθ
−

    = + −         
w R R S V     ,           (5.11) 

where ( ) ( ) 2
, ,r rE xρ θ θ =

 
   is the power for the rth interval in the range-Doppler cell at delay 

  and Doppler shift θ , ( ) 2
NSE NSE NM NMσ ×=R I  is the range-Doppler noise covariance matrix 

assuming white noise with noise power 2
NSEσ , and 

 ( ) ( )
1

, , , ,
1

, , ,
N

H
r r r nM r nM

n N

n φ φφ ρ φ
−

=− +

= +R t t      (5.12) 

where 

( ) ( )

( ) ( )
, , 1

, ,

1 , ,

1 for 0

0 1 for 0

T

r r nM

r nM T

nM r r

t nM t NM n

t t NM nM n

φ φ
φ

φ φ

×

×

  − ≤  =  
  − − >  

0
t

0




   (5.13) 

consists of Doppler shifted versions of the vectorized transmit matrix rS  expressed as 
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( ) ( ) ( ) [ ]( ), , , ,0 1 1 vec
T T

r r r r rt t t NMφ φ φ φ θ = − = t S V  ,         (5.14) 

which corresponds to , , Mr nφt  with 0n = .  The Lagrange multiplier is found to be  

( )
[ ]( ) ( )( ) ( ) [ ]( )

1

NSE

1

2
vec , v c

,

e
H

T T

r r r

r

r φ
θ θ

λ ρ θ

φ
−=

    +      

−


S V R R S V   

 ,    (5.15) 

resulting in the MVDR filter 

( )
( )( ) ( ) [ ]( )

[ ]( ) ( )( ) ( ) [ ]( )

1

NSE

1

NSE
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r r
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    +       
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

R R S V

S R S

w

V R V

  

   

 .  (5.16) 

5.2.1 IMPLEMENTATION 

TRAP recursively alternates between estimation of the illuminated scene and estimation of the 

range-Doppler specific adaptive filters in (5.16).  The implementation of TRAP is analogous to 

that of SRAP discussed in Section 4.2.2.  The power estimates in (5.12) required to compute the 

adaptive filter weights can be estimated by first applying the matched filter from (5.7).  After 

constructing an adaptive filter for each range-Doppler cell the filters are applied to the received 

signal to obtain an enhanced estimate of the scene.  A new set of adaptive filters can be computed 

based on the enhanced estimate.  TRAP alternates between filter and scene estimation until the 

spectral and range sidelobes are suppressed.  The algorithm generally converges after three or four 

adaptive stages.   
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5.2.2 FAST MATRIX UPDATE 

The computational complexity of TRAP can be alleviated by applying the fast matrix update 

used for SRAP in Section 4.2.2 with covariance update matrices based on (5.12)-(5.14).  The 

details of the fast update matrix for TRAP are provided below for completeness.   

  The TRAP covariance matrices  

 ( ) ( )
1

, , , ,
1

, ,
N

H
r r nM r nM

r n N

n φ φ
φ

ρ φ
−

=− +

= + R t t       (5.17) 

required to form the MVDR filter at the th  range cell are related to the covariance matrix at the 

previous range cell.  The elements of ( )1−R   and ( )R   can be divided into sub-matrices 

denoted as 

( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( )
1 , ,

H
NM M NM M NM M MM M M NM M

H
M MM NM MNM M M NM M NM M

− × − − ×× × −

×× −− × − × −

   
 − = =  
     

C DB A
R R

D HA C
       (5.18) 

where the ( ) ( )NM M NM M− × − matrix C  represents the portion of the structured covariance 

matrix that is present in adjacent range cells.  The relationship in (5.18) allows the matrix 

inversion lemma [29] to be applied significantly reducing the computational cost of TRAP.  The 

update equation is denoted as 

 ( ) ( ) 11 1 1 1 1 1−− − − − − −+ = − +R ULV R R U L VR U VR ,    (5.19) 

where  

 ( ) ( ) ( ) ( )

( )
1 ,

NM M NM M NM M MT
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M MM NM M

− × − − ×

×× −

 
= − =  

  

C A
R P R P

A B
        (5.20)  
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is computed by applying a permutation matrix to ( )1−R  , U  and V  are expressed as 

( ) ( ) ( )

( )
, ,

M MM NM MNM M M NM M M

H
M MM NM MM M M M

×× −− × − ×

×× −× ×

  
= =   
      

0 IG 0
U V

G 0F I
  (5.21) 

in which 2 2M M×=L I  is an identity matrix, = −G D A , and = −F H B .  The sub-matrices B  and 

A  can be computed as  

 ( )
0

, , , ,
1

1, ,H
r r nM r nM

r n N

n φ φ
φ

ρ φ
=− +
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t t
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     (5.22) 

where 

 ( ) ( ), , , , 1
T

r nM r rt nM t nM Mφ φ φ = + − t  ,    (5.23) 

and , ,r nMφt  and ,r φt  are defined in (5.13) and (5.14), respectively.  In a similar fashion, the sub-

matrices D  and H  can be computed as 
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, , , ,
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H
r r nM r nM

r n

n φ φ
φ

ρ φ
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where 

( ) ( ), , , , 1
T

r nM r rt NM nM M t NM nMφ φ φ = − − − − t  .   (5.25) 

Note the products , , , ,
H

r nM r nMφ φt t  and , , , ,
H

r nM r nMφ φt t  are deterministic and can be computed offline.  

This formulation differs from the SRAP fast matrix update (Section 4.2.2) in that (5.22) and 

(5.24) consider multiple range intervals. Additionally, Kronecker products are not used to allow 

for independent waveform selection on each transmitted pulse. 
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5.3 REDUCED DIMENSIONALITY TRAP 

The computational burden of TRAP can be reduced using the same methodology that led to 

RD-SRAP in the previous chapter.  The pulses from the signal model in (5.2) are sub-divided into 

K contiguous blocks as 

 ( ) ( ) ( ) ( )
1

, ,
0

,
R

k r k r k k
r

θ
θ

θ
−

=
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The RD-TRAP signal model is formed by vectorizing (5.26) as 

( ) ( )( ) ( ) ( ) ( )
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where ( ) ( )( )vec T
k k=n N  .  The MVDR cost function for RD-TRAP is denoted as 
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− Vw w Sy         ,  (5.29) 

where ( ), ,k rθw   is a length- NM
K  filter segment of the length-NM filter ( ), , rθw   that 

approximates the full-dimensional TRAP filter in (5.10) and λ  is a Lagrange multiplier.  Note 

that (5.29) can be rewritten in the form 
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(5.30) 

The cost function in (5.30) is minimized to determine the filter segments as 
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As before, assuming the range-Doppler cells are uncorrelated with each other as well as with the 

noise, the filter segment is denoted 
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in which 
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 (5.34) 

consists of Doppler shifted versions of the vectorized block of transmit waveforms ,k rS  denoted 

as 
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( ) ( ) ( ), , , , , , , , , ,0 1 1 vec
T

T

k r k r k r k r k r k

NM
t t t

Kφ φ φ φ φ
    = − =      

t S V      , (5.35) 

where , ,k r φt  corresponds to 
, , ,

n

K
r

M
k φ

t  with 0n = .  The matrix ( )NSE,kR   in (5.33) is the reduced 

dimensionality noise covariance matrix 2
NSE NM NM

K K

σ
×

I , under the assumption of white noise.  The 

filter segments from (5.32) can be combined to form the length-NM filter ( ), , rθw   in (5.29) 

expressed as 

( )

( ) ( ) ( )
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0, 1 1, 1 1, 1

2 2 2
0, 0, 1 1, 1, 1 1, 1, 1
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K

K K K

M M M M M M
K K

K K K K K K

NM NM NMN M N M N M KK
K K KK K K

w w w w w w

w w w w w w

w w w

r

w w w

θ

−− − − −

− − − − −

− − −− − − −−

 
 
 
 =  
 
 
 

w

        

        


         
        

 ,

T 
 
 
 
 
 
 
  
 

(5.36) 

where ,k iw  is the ith element of ( ), ,k rθw   and the partition lines indicate the portions of the 

larger matrix that contain elements from an individual filter segment.  The term 
( ),

2
r

K

ρ θ λ−
 
 
 


 is 

common to all filter segments allowing the full-dimension filter formed from the segments to be 

written as 

 ( ) ( ) ( ), ,
,

, , ,
2

rr r
K

ρ θ λθ θ
 
 =


−


w w


      (5.37) 

 in which  
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( ) ( ) ( )
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K K K K K K

NM NM NMN M N M N M KK
K K KK K K

w w w w w w
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 ,




(5.38) 

where ,k iw  is the ith element of the modified filter segment 

 ( ) ( ) ( )1
, ,, vec,k k k r kr θθ −=w R S V   .    (5.39) 

The unity gain constraint can now be applied to (5.37) resulting in 

 
( ) ( ) ( ),

, , vec
2

1 H
r

r r
K θ

ρ θ λ θ
 
 = −
 

S Vw


  ,    (5.40) 

which after rearranging yields 

 
( )

( ) ( )
1,

2 , , vecH
r

rK r θ

ρ θλ
θ

= −
S Vw


 

.     (5.41) 

Finally, using (5.37) and (5.41), the RD-SRAP filter for a given range cell, Doppler phase, and 

interval can be written as 

 ( ) ( )
( ) ( ), ,

, ,
, ,

, , vec

H

H
k r k

r
r

r θ

θ
θ

θ
=

w

S Vw
w


  

 .     (5.42) 

The estimates are obtained by applying the filters to the blocks of received data as 

 ( ) ( ) ( )RD-TRAPˆ , , , ,Hx r rθ θ= w y    ,    (5.43) 

where ( )y   is given by (5.6). 
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5.3.1 FAST MATRIX UPDATE FOR RD-TRAP 

The structure of the fast matrix update for the RD-TRAP algorithm is similar to that for RD-

SRAP in Section 4.3.1, much of which is repeated here for completeness.  Begin by examining 

the relationship between the reduced dimensionality covariance matrices from (5.33) for adjacent 

range cells  

( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )

( )
1

H
M M NM M NM M NM M NM MM M
K K K K K K K K

k k H
M MNM M NM M NM M NM MM M
K KK K K K K K

− − − −× × × ×

− − − − ×× × ×

   
   

− = =   
   
   

B A C D

R R
A C D H

  
      . (5.44) 

The reduced-dimensionality update equation, based on the matrix inversion lemma [29], is 

denoted as 

 ( ) ( )1 11 1 1 1 1− −− − − − −+ = − +R ULV R R U L VR U VR             ,    (5.45) 

where  

( )
( ) ( ) ( )

( )
1 ,

NM M NM M NM M M
T K K K K

k H
M MNM MM
K KK K

− − −
× ×

− ××

 
 

= − =  
 
 

C A

R P R P
A B

 
            (5.46)  

is a permutation of ( )1k −R  , U  and V  are expressed as 

( ) ( ) ( )

( )
, ,

M MNM MMNM M NM MM M
K KK KK K K K
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M MNM MMM M M M
K KK KK K K K

−− − ××× ×

− ××× ×

   
   = =   
   

  

0 IG 0

U V
G 0F I


 

       (5.47) 

in which 2 2M M

K K
×

=L I  is an identity matrix, = −G D A  , and = −F H B   .  The reduced-

dimensionality sub-matrices B , A , D , and H  can computed as 
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where 
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and 
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where 

, , , ,
,, ,

1

TT

k r k r
k

M

K
r

n

NM nM M NM nM
t t

K K K K Kφ φφ

     = − − − −           
t  . (5.51) 

5.4 ECLIPSING REPAIR 

In practice, many pulse-Doppler radar systems employ a technique referred to as blanking to 

protect sensitive electronics in the radar receiver from the high power transmitter when a common 

antenna is used for both transmitting and receiving signals.  Blanking is implemented with a high 

speed switch that connects the antenna to either the radar transmitter or receiver, depending upon 

the state of the switch.  When the radar is transmitting, the receiver is disconnected from the 

antenna and does not receive any reflected echoes throughout the transmit pulse duration.  After 

transmission of the radar pulse, the switch is flipped and the receiver is able to capture target 

returns until the next pulse is transmitted.  Blanking results in some target echoes being only 

partially captured by the receiver as depicted in Fig. 5.1.  When only a partial return is captured 
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the target is said to be eclipsed and the portions of the range profile that contain these targets is 

referred to as the eclipsed region.   

 

 
Figure 5.1 Illustration of eclipsed targets due to receiver blanking 

In the context of the TRAP algorithm, assume the received data for a given pulse ( )my   has 

length L, i.e., 0,1, , 1L= −  .  Then the covariance matrix ( ),r θR   in (5.12) can only be 

computed for 1, ,N N L N= − −   due to the dependence of ( ),r θR   on 

( ) ( )1 , , 1r rN Nρ ρ− + + −   .   However, the methodology used to extend the adaptive pulse 

compression estimate into the eclipsed region of the range profile [35] can be applied to TRAP as 

well.  The resulting filter used to estimate the eclipsed region at the beginning of the range profile 

corresponding to 0,1, , 2N= −   is denoted as 
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where  

( ) ( )( ) ( ) ( ), 1 , ,, 11
11N M N

T

r rr M
t M tN NMθ θθ −×− + +
 = −− + t 0  .  (5.53) 

Note that in (5.52) the covariance matrix ( )( ) ( )NSE1, 1r
r

N N
φ

φ
 

− + − 
 
 R R  from the 1N= −  

range cell is used to compute all the filters for the eclipsed region at the beginning of the range 

profile.  In a similar fashion, the adaptive filters for the eclipsed region at the end of the range 

profile ( 1, 2, , 1L N L N L= − + − + −  ) are expressed as  
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where 

( ) ( ) ( ) ( )( ), ,, 1, 0 1L N M

T

r rr ML N t t NM L N Mθ θθ ×− + − +
 = − − − + t 0   . (5.55) 

Similarly note that in (5.54) the covariance matrix ( )( ) ( )NSE,r
r

L N L N
φ

φ
 

− + − 
 
 R R  from 

the L N= −  range cell is used to compute all the filters for the eclipsed region at the end of the 

range profile. Eclipsing repair can be applied to RD-TRAP by modifying (5.39) and (5.42) as 
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respectively, for first eclipsed region corresponding to 0,1, , 2N= −   where 
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For the latter eclipsed region corresponding to 1, 2, , 1L N L N L= − + − + −   the RD-TRAP 

filter is based on 
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The Space-Range Adaptive Processing (SRAP) algorithm in the previous chapter can be extended 

in a similar fashion to account for targets in the eclipsed region. 
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5.5 SEQUENTIAL APC-RISR 

Adaptive Pulse Compression (APC) [13], detailed in Section 1.6.1, for range sidelobe 

suppression and the Re-Iterative Super Resolution (RISR) algorithm [21] for spectral sidelobe 

suppression are implemented sequentially for comparison to TRAP.  RISR was originally 

conceived as a means to perform direction of arrival estimation (see Section 1.6.2).  Interestingly, 

in the digital waveform diverse array scenario RISR was performed first followed by APC but in 

this scenario pulse compression must be performed before Doppler processing. APC is valid for 

the range unambiguous case however, the multistatic APC (MAPC) [28] can be employed to 

account for multiple waveforms in a single pulse of received data. The application of MAPC to 

extend sequential adaptation to multiple range intervals is left as future work. The application of 

RISR for velocity estimation in a pulse-Doppler regime is outlined below.   

The pulse compressed output at the th  range cell of M pulses, after employing APC, can be 

denoted as   

 ( ) ( ) ( ) ( )0 1 1

T

Mx x x −=   x      .    (5.61) 
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

    (5.62) 

be a bank of K  Doppler steering vectors, as opposed to spatial steering vectors.  The resulting 

RISR adaptive filter bank is computed as 
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 ( ) ( )( ) ( )1−
= +W VP V R VP   ,    (5.63) 

where  

        ( )
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      (5.64) 

is a diagonal matrix containing the expected target power in each Doppler bin at the th  range cell 

and 2
NSE M Mσ ×=R I  is the noise covariance matrix again assuming white noise.  A normalization 

is applied to the adaptive filters as 

 ( ) ( )
( )
q

q H
q q

=
w

w
w v

 


,    (5.65) 

where ( )qw   and qv  are the thq  columns of ( )W   and V , respectively.  Thus, the final range-

Doppler estimate is obtained as 

 ( ) ( ) ( )APC-RISRˆ ,
H

q qx θ = w x   .    (5.66) 

In the same fashion as TRAP, the initial power estimates in (5.64) can be obtained using the 

Doppler filter bank in (5.62), after which 3-10 adaptive iterations are performed.   

The combination of APC and RISR is expected to perform well when APC is capable of 

completely mitigating range sidelobes and RISR is only responsible for reducing the Doppler 

sidelobes associated with the targets.  However, when APC is overwhelmed with a large number 
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of targets at different velocities, the performance will suffer, resulting in some residual range 

sidelobes.  This range sidelobe residue will not be suppressed by the RISR algorithm, which will 

attempt to suppress the Doppler sidelobes of the targets as well as the Doppler sidelobes of the 

residue.  This lack of degrees of freedom is particularly problematic when pulse agility is 

employed on transmit due to the resultant range-Doppler coupling. 

5.6 SIMULATION RESULTS 

Simulation results will be presented to illustrate the benefit of coupled processing using TRAP 

for pulse agile radar systems.  TRAP will be compared to standard matched filtering in range and 

Doppler and, in the first scenario, to the sequential APC-RISR approach described above.  Targets 

are modeled as point scatterers embedded in additive white Gaussian noise.  The first simulation 

considers moving targets without and with ground clutter and will be performed using a stepped-

frequency phase-coded waveform.  The second simulation consists of both eclipsed and non-

eclipsed moving targets throughout multiple range intervals and unambiguous ranging is achieved 

via transmission of a unique random polyphase code on each pulse. 

5.6.1 SYNTHETIC WIDEBAND SCENARIO 

Stepped-frequency waveforms offer the distinct benefit of providing enhanced range resolution 

by synthesizing a wide bandwidth using several frequency shifted narrowband waveforms.  

Coherent processing must be used to realize the range resolution improvement.  The stepped 

frequency pulse train consists of 30M =  pulses where the normalized center frequency of the 

thm  pulse is given by  

 
1 3

1
1 116m

m
f m

M G
 = − = −  

,    (5.67) 
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for 0, 1, , 1m M= − , where 4G =  is the ratio of the total pulse train bandwidth to the single 

pulse bandwidth.  The total bandwidth is 4 times greater than that of a single pulse, yielding a 

commensurate increase in range resolution when coherent processing is performed.  Each pulse 

consists of a 15 chip P4 code [8] that is oversampled by 4 for processing ( 60N = ).  Figure 5.2 

shows the spectrum of each pulse.  Observe that the bandwidth from pulse-to-pulse has 

approximately 90% overlap.  Additionally, the waveforms have been bandpass filtered to emulate 

the narrow instantaneous bandwidth associated with stepped-frequency radar systems.  If the 

waveforms are not bandlimited, the adaptive algorithms will take advantage of the extraneous 

bandwidth produced by the phase coded waveform, though this bandwidth is not available in 

reality.  Note the filtered waveforms are used as the reference waveforms for processing in all 

algorithms. 

 
Figure 5.2 Spectral content as a function of pulse number for                 

stepped-frequency waveforms 



134 

 

The simulation scenario consists of six moving targets for both clutter-free and ground clutter 

environments.  The location, Doppler phase, and SNR of the targets are provided in Table 5.1.  

Stated SNR values are before a coherent processing gain of 26.5 dB.  Both TRAP and RISR 

employ 91 Doppler bins distributed evenly between phase angles of ±180o for processing, 

resulting in some steering vector mismatch for the targets in Table 5.1. 

Table 5.1 Target Parameters for Synthetic Wideband Scenario 

Range Cell  Doppler Phase θ  SNR (dB)

177 ‒100° ‒6.5 

180 75° 3.5 

183 150° ‒3.5 

186 ‒130° ‒1.5 

189 50° ‒11.5 

192 ‒120° ‒8.5 

 

First, the clutter free scenario will be examined.  Figure 5.3 displays the standard matched filter 

(range and Doppler) result in which the target locations are denoted with white circles.  The 

range-Doppler coupling of the stepped-frequency waveform is evidenced by the spreading of the 

pulse compression mainlobe near the target locations.  Also, range sidelobes appear throughout 

the image and can be confused with target returns.  Figure 5.4 displays the sequential APC-RISR 

output that has suppressed the range and Doppler sidelobes and alleviated much of the coupling.  

Note that an oversampled version of APC [34] is employed here to enhance the range resolution, 

i.e., reduce the width of the pulse compression mainlobe, that is responsible for the reduction in 

range-Doppler coupling.  This approach performs well here due to the small number of degrees of 

freedom required to estimate the illuminated scene.  The result after TRAP is applied is shown in 
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Fig. 5.5.  TRAP marginally outperforms the sequential APC-RISR approach as evidenced by the 

reduction of the range-Doppler sidelobes into the noise floor.   

 

 

 

 
Figure 5.3 Matched filter range-Doppler map (in dB), moving targets are 

obscured by Doppler and range sidelobes 
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Figure 5.4 Sequential APC-RISR range-Doppler map (in dB), moving targets 

at locations indicated by the white circles 

 
Figure 5.5 TRAP range-Doppler map (in dB), moving targets at locations 

indicated by the white circles 
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Now consider the previous example with the addition of stationary ground clutter in range cells 

130 to 290 where the average clutter-to-noise ratio is 40 dB after processing.  Note that clutter 

cancellation, which would be complicated by the pulse-to-pulse frequency agility, is not 

performed here. The matched filter performs poorly in this scenario, as seen in Fig. 5.6 where 

none of the moving targets are visible.  The sequential APC-RISR approach (Fig. 5.7) suppresses 

some of the sidelobes, but even the largest target at range cell 180 and Doppler phase angle 75o is 

not readily identifiable.  This performance degradation is attributed to the limited number of 

degrees of freedom when adaptation is employed in range and Doppler separately.  In Figure 5.8, 

the TRAP algorithm uncovers all but one of the masked scatterers (at range cell 189 and Doppler 

phase angle 50o) by accurately estimating the range-Doppler scene, including the clutter.   

 

 
Figure 5.6 Matched filter range-Doppler map (in dB), moving targets are 

masked by Doppler and range sidelobes 
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Figure 5.7 Sequential APC-RISR range-Doppler map (in dB), moving targets 

are masked by Doppler and range sidelobes 

 
Figure 5.8 TRAP range-Doppler map (in dB), moving targets are revealed at 

locations indicated by the white circles 
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Observe the reduction in range-Doppler coupling, indicated by the narrower clutter returns in 

Figs. 5.7 and 5.8, that occurs when sequential APC-RISR and to a greater degree TRAP are 

employed.  This behavior is expected since the RISR algorithm is capable of achieving resolution 

enhancement depending on the available SNR [21].     

5.6.2 ECLIPSING REPAIR SCENARIO 

Next consider a scenario with three range intervals (R=3), each containing two targets.  For this 

case the transmitted waveforms are length  N=32 constant modulus random phase codes and  

M+R-1=22 pulses are employed, each with a unique phase code.  RD-TRAP (K=10) with 

eclipsing repair will be employed.  The location and Doppler phase of the six moving targets are 

provided in Table 5.2.  In each interval, Target 1 and Target 2 have an SNR of 20 dB and 40 dB, 

respectively, after a coherent processing gain of 28 dB.  At least one of the targets in each interval 

is eclipsed.  APC-RISR is not considered here due to the presence of multiple waveforms 

contained in each received pulses data.  RD-TRAP uses 51 Doppler bins distributed evenly 

between phase angles of ±180o for processing and 2 adaptive iterations. 

Table 5.2 Target Description for Pulse Agile Scenario 

Range 
Interval 

Range Cell   
for Target 1 

Doppler Phase 
θ  for Target 1 

Range Cell   
for Target 2 

Doppler Phase 
θ  for Target 2 

0 120 20° 100 ‒30° 

1 15 ‒70° 75 75 

2 45 70° 20 ‒75° 

 

When different random phase codes are transmitted on each pulse, the range sidelobes 

associated with each phase code are different and thus do not coherently integrate when Doppler 

processing is performed.  The pulse compression peak benefits from coherent integration gain 
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associated with Doppler processing although the uncorrelated range sidelobes spread throughout 

the Doppler spectrum.  As a result, the average range sidelobe level will be reduced by 

approximately 1/M, relative to before Doppler processing.  Pulse agility can be beneficial when 

the waveforms have sufficiently low range sidelobes and a large number of pulses are integrated.  

Similarly, the set of cross-correlations between each pair of waveforms in the pulse train 

associated with the range interval of interest and another interval will likewise be incoherent.      

Figures 5.9-5.11 display the results for the matched filter and RD-TRAP for the first, second, 

and third range intervals, respectively. Target locations are denoted by white circles and the 

eclipsed regions are shown in yellow boxes.  In each interval, the matched filter is capable of 

estimating the larger target, however, the small targets are masked by the aforementioned spectral 

spreading of range sidelobes or cross-correlation due to large targets in other intervals.  In 

contrast, TRAP-RD (K=10) with eclipsing repair is able to suppress range and Doppler sidelobes 

as well as the interference from targets in other intervals.  The TRAP-RD algorithm with eclipsing 

repair is able to estimate into the eclipsed regions, resulting in the mitigation of sidelobes and 

cross-correlations due to large targets in these regions.  Note that even when K is large with 

respect to M, RD-TRAP performs well due the presence of only a few large targets.  Often, pulse-

Doppler radars must contend with many range intervals of ground clutter, which will use many of 

TRAP’s degrees of freedom.  In the next chapter a non-adaptive algorithm to suppress clutter in a 

pulse agile regime is presented.  Hence, it may be necessary to combine the non-adaptive 

approach and TRAP to suppress ground clutter and the ambiguity from large moving targets, 

respectively.  
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Figure 5.9 Matched filter (top) and RD-TRAP with K=10 (bottom) output (in 
dB) for the first range interval, eclipsed regions are denoted by yellow boxes 
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Figure 5.10 Matched filter (top) and RD-TRAP with K=10 (bottom) output (in 
dB) for the second range interval, eclipsed regions are denoted by yellow boxes 
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Figure 5.11 Matched filter (top) and RD-TRAP with K=10 (bottom) output (in 
dB) for the third range interval, eclipsed regions are denoted by yellow boxes 
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5.7 CONCLUSIONS 

Waveform diversity via pulse-to-pulse waveform changes can offer a variety of benefits, e.g., 

enhanced range resolution or unambiguous ranging.  However, pulse-Doppler waveform diversity 

can have dramatic effects on radar sensitivity.  A new joint range-Doppler technique, Time Range 

Adaptive Processing (TRAP), is proposed that is capable of mitigating range and Doppler 

sidelobes inherent to pulse-agile radar systems.  To alleviate the computational burden of the 

multi-dimensional TRAP algorithm, a reduced-dimensionality technique is applied to the full-

dimension cost function resulting in a more efficient algorithm.  The full dimension and reduced-

dimension TRAP algorithms are augmented to estimate targets in the eclipsed regions.  The new 

algorithms are shown to exhibit enhanced sensitivity when compared to standard matched 

filtering (in range and Doppler) and offer more degrees of freedom than sequential adaptivity in 

range and Doppler.  In the next chapter, the time-range signal model presented in this chapter is 

used to develop a deterministic clutter cancellation technique for pulse agile regimes.   
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CHAPTER 6 NON-IDENTICAL MULTIPLE PULSE COMPRESSION AND 

CLUTTER CANCELLATION 

Pulse-Doppler radar systems typically employ pulse compression and Doppler processing to 

achieve sufficient SNR to detect, range, and determine the velocity of moving targets.  

Additionally, clutter cancellation is used to remove the returns from stationary or slow moving 

objects, e.g. land and sea clutter.  Transmitting an identical waveform on each pulse allows 

standard clutter cancellation implemented in the pulse or slow-time domain where the available 

degrees of freedom is dictated by the number of pulses within a coherent-processing interval 

(CPI).  Great care is taken to ensure that there is very little timing error from pulse-to-pulse as any 

jitter will limit the clutter cancellation ability of the radar system.  Note that in this scenario the 

transmit waveform may have some distortion relative to the ideal waveform, albeit this distortion 

is nearly identical for each of the transmitted pulses and thus does not affect clutter cancellation.  

In addition, fill pulses are used to ensure that returns from range ambiguous clutter or multiple 

time around clutter (MTAC) are present in each pulse and therefore possess the same slow-time 

structure as unambiguous clutter returns.   

Some radars transmit different waveforms on each pulse for various reasons, for example, to 

synthesize a wider bandwidth or resolve range ambiguities, thus preventing the use of standard 

non-adaptive clutter cancellation techniques.  In this chapter a framework entitled Non-Identical 

Multiple Pulse Compression (NIMPC) is presented for which the available degrees of freedom for 

clutter cancellation is significantly higher than traditional techniques.  A waveform based clutter 

cancellation technique is presented within the NIMPC framework and discussed.  Simulation 
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results are presented and discussed for the synthetic wideband scenario where each of the 

transmitted pulses has a slightly different center frequency.  Previously, pulse-to-pulse phase 

changes have been considered as a means to resolve range ambiguities.  In this scenario, clutter 

cancellation can be performed using a more traditional approach [30] applied in the slow-time 

(pulse-to-pulse) domain.  Both pulse-to-pulse waveform and center frequency changes are 

addressed herein by utilizing a filter construct that operates simultaneously in the slow and fast 

time dimensions.  A similar approach can be found in [38], which was published shortly after the 

work detailed in the following. 

6.1 NON-IDENTICAL MULTIPLE PULSE COMPRESSION 

The NIMPC signal model is similar to that for Time-Range Adaptive Processing (TRAP) 

presented in Chapter 5.  However, here we will consider the non-adaptive benefits of this 

structure, specifically, how it can be used to implement deterministic clutter cancellation 

techniques.   

The waveforms transmitted in a radar CPI can be represented by the N M×  matrix S  where 

the thm  column ms  is the thm  length-N transmitted waveform.  The waveforms in S  are arbitrary 

and may change coding, modulation, center frequency, etc., from pulse-to-pulse.  The received 

signal at the th  range cell (from all M pulses in the CPI) is expressed as the row vector 

 ( ) ( ) ( ) ( ) ( )0 1 1m My y y y −=   y            (6.1) 

in which the thm pulse is denoted as 

 ( ) ( ) ( )T jm
m my e nθ

θ
θ
 = +  x s   ,    (6.2) 
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where ( ) ( ) ( ) ( ), , 1, 1,
T

x x x Nθ θ θ θ= − − +  x       is a collection of the complex scattering 

coefficients associated with the scatterers in the range profile corresponding to Doppler phase 

shift θ , with which the thm  waveform convolves at delay  , and ( )n   is a sample of additive 

noise.  Collecting N fast-time (range) samples of the received signal model in (6.1) can be 

expressed as 

 ( ) ( )( ) ( )θ θ
θ

= +  Y X S V N    ,    (6.3) 

where 

 ( 1)

1

1
1

1

j j Me eθ θ
θ

−

 
 
   =   
 
 

V 


,    (6.4) 

and 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

, 1, 1,

1, , 2,
,

1, 2, ,

x x x N

x x x N

x N x N x

θ θ θ
θ θ θ

θ

θ θ θ

− − + 
 + − + =
 
 

+ − + −  

X

   
   


   

   

   (6.5) 

is an N N×  matrix containing the complex scattering amplitudes within 2 1N −  range cells of 

( ),x θ , and   denotes the Hadamard product.  As in the previous chapter, we reorganize the 

snapshots into a single length 1NM ×  vector 

( ) ( )( ) ( )( ) ( )vec vec , ,θ
θ

θ
  = = +    
y Y X S V n        (6.6) 
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in which ( ) ( )( )vec=n N   .  Based on (6.6), a (normalized) joint range-Doppler steering vector 

can be expressed as 

 ( )1
vec

NMθ θ=w S V ,    (6.7) 

which can subsequently be applied to obtain the normalized NIMPC estimate 

 ( ) ( )ˆ , H
NIMPCx θθ = w y  .    (6.8) 

It should be noted that applying the filter in (6.8) yields an identical result to standard range and 

Doppler processing which are computed separately.  However, in the next section the added 

degrees of freedom in the NIMPC framework will be exploited to achieve non-identical pulse 

clutter cancellation, which is not easily achieved using separate range and Doppler processing.  

To process multiple range intervals the matrix S in (6.7) can be replaced by Sr from (5.5). 

6.1.1 CLUTTER CANCELLATION 

When identical pulses are transmitted, the relative slow-time (pulse-to-pulse) change between 

clutter returns is constant throughout the entire pulse duration; however, in the non-identical case, 

the relative pulse-to-pulse phase difference between returns changes as a function of fast time.  

These waveform changes yield matched filter range sidelobes that are different for each 

waveform, which is referred to as range sidelobe modulation (RSM).  The RSM may be highly 

correlated, as in the case of synthetic wideband waveforms, or uncorrelated, for example, when 

random pulse-to-pulse coding is used [31].  Hence, standard clutter cancellation techniques, which 

are applied in the slow-time domain, do not typically possess the degrees of freedom necessary to 

cancel all of the different pulse-to-pulse phase progressions associated with RSM. 
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Clutter cancellation is achieved by deterministically modeling the clutter signal structure from 

an individual range cell as interference and applying the maximum signal-to-interference and 

noise ratio (SINR) solution. The interference covariance matrix for clutter at Doppler phase φ  is 

constructed as  

 ( )H
φ φ ε= +R P P I ,     (6.9) 

where  

 ( ) ( ) 0 2 11 1 1 N NN N
φ φ φ φ

φ
φ

− −− − − − +
 =  P c c c c c  ,    (6.10) 

 ( )vecn n
φ

φ=c S V ,    (6.11) 

 0 1 1
n n n

n M − =  S s s s ,    (6.12) 

and 

( ) ( )

( ) ( ) ( )

0 1 for 0 1

1 for 1 0

TT
n m m

n
m T

T
m m n

s s N n n N

s n s N N n

  − − ≤ ≤ −  =  
  − − − ≤ <  

0
s

0




  (6.13) 

in which ( )ms n  is the nth sample of the mth pulse and n0  is an 1n×  vector of zeros.  In (6.9) ε is a 

diagonal loading factor to prevent ill-conditioning. It has been observed that the receiver noise 

power is a suitable value for ε in most scenarios.  The middle column of Pø, 0
φc , corresponds to 

the contribution of clutter in the desired range cell and the other 2(N−1) columns correspond to 

contributions from clutter in the surrounding range cells, thus accounting for the RSM.  The 

resulting clutter-cancelled estimate is 

 ( ) ( )ˆ , H
NIMPC Cx θθ− = w y   ,    (6.14) 
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where 

 ( )1= vec
NMθ θ
μ −w R S V      (6.15) 

 is the clutter-whitened NIMPC filter, and μ  is an arbitrary scale factor.  For range ambiguous 

operation the matrix S in (6.15) is replaced by Sr from (5.5) to estimate the rth of R total range 

intervals.  When identical pulses are transmitted, the relative slow-time (pulse-to-pulse) change 

between clutter returns is constant throughout the entire pulse duration.  In the non-identical case, 

the relative slow-time difference between returns changes as a function of fast-time over the pulse 

duration.   

Extending the clutter notch to account for clutter Doppler-spread can be achieved by placing 

multiple closely-spaced notches.  This is implemented by replacing φP  in (6.9) by 

0 1 1Qφ φ φ −
 =  P P P P   where Q  is the total number of notches.  However, each notch requires 

2 1N −  degrees of freedom and may necessitate the use of additional pulses to increase the 

available degrees of freedom, which is given by the product NM .  Next, the clutter cancellation 

techniques in this section are extended to account for multiple time around clutter (MTAC). 

6.1.2 EXTENSION TO MULTIPLE TIME AROUND CLUTTER 

MTAC is present in medium and high PRF surveillance radar systems where the clutter 

response is measured from distances greater than the unambiguous range 

 
2PRFu

c
r =     (6.16) 

where c is the speed of light and PRF is pulse repetition frequency.  The returns from beyond ru 

will appear to originate from within the primary interval such that several different PRF values are 
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normally used to decipher the true range of ambiguous targets.  Typically, in the range-ambiguous 

case, the radar will transmit several pulses before the receiver is turned on to ensure that returns 

from each ambiguous clutter interval will be present when the receiver starts recording the first 

pulse used for processing.  The pulses that are transmitted before the receiver turns on are referred 

to as fill pulses.  When identical waveforms are used, a fill pulse is required for each expected 

range ambiguous interval, i.e., the number of fill pulses is equal to the number of ambiguous 

intervals (not counting the primary unambiguous interval). 

Although it is not necessary to transmit fill pulses when pulse agility is used since the clutter 

returns from each interval will inherently be different, the following analysis will consider fill 

pulses to ensure that the returns from each range interval have uniform energy.  For a given 

interval, targets and clutter from other intervals will not coherently integrate, thus producing 

interference in addition to the aforementioned effects of RSM.  Clutter residue from ambiguous 

intervals can be addressed by modifying the covariance matrix from (6.9) to include the clutter 

response from multiple intervals.  For K intervals (including the primary interval), the matrix Pø 

in (6.9) is replaced with 

 ,0 ,1 , 1K
K

φ φ φ φ − =  P P P P     (6.17) 

where 

 ( ) ( ) 0, 2, 1,1 ,, 1 1, k N k N kN k N kk
φ φ φ φ φ

φ − −− − − − +
 =  P c c c c c   ,   (6.18) 

 ( ), ,vecn k n k
φ

φ=c S V ,    (6.19) 

and 
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 , 1 1 1
n n n

n k K k K k K k M− − − − − + − =  S s s s .    (6.20) 

Note that in the range ambiguous case the transmit matrix S has dimensionality ( )1N M K× + −  

due to the use of fill pulses. 

To account for clutter Doppler spread, multiple notches can be added in the MTAC 

formulation as well via the same extension previously described, i.e., replacing φP  in (6.9) with 

0 1 1Q

K K K
φ φ φ −

 =  P P P P   (for Q notches).  Note that the DOF used for clutter cancellation is a 

function of the number of notches at each interval.  For K intervals and Q notches in each interval, 

the required DOF is bounded by the number of linearly independent columns in P , i.e., 

 ( )DOF 2 1KQ N≤ − ,    (6.21) 

which should not exceed the available DOF dictated by the product MN. 

6.1.3 FAST IMPLEMENTATION 

The NIMPC filter in (6.15) can be computationally expensive to apply due to the large 

dimensionality.  However, fast convolution (FFT processing) can be used to efficiently apply the 

whitened NIMPC filters, which may be computed offline.  First, examine the relationship between 

( )y   and ( )1+y  : 
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( )

( )

( )
( )

( )

( )

( )

( )

( )

( )
( )

( )

( )

( )

0 0

0 0

1 1
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1 1
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1
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1
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− −
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   
   + − + − +   

y y

 
 

 
 
 

  
 
 
 

 
 

.  (6.22) 

Note that the colored blocks in (6.22) represent the contributions of the individual pulses to the 

received signal vector.  Next, consider the whitened NIMPC filter that can be expressed in 

contiguously blocked form as 

 0, 1, 1,=
TT T T

Mθ θ θ θ−  w w w w    ,      (6.23) 

in which the filter has been segmented into M  separate N-length contiguous blocks.  The 

application of the NIMPC filter for a single Doppler bin can be can be represented as a 

convolution of the received signal blocks in (6.22) with the corresponding segment of the NIMPC 

filter from (6.23).  This convolutional implementation is expressed as 

( ) ( ) ( )
1 1

*
,

0 0

1
ˆ , 1 1

M N

NIMPC C m m
m n

x w N n y N n
NM θθ

− −

−
= =

 = − − + − −  
    ,  (6.24) 

for 0,1, , 1L= −   where 1L −  is the length of the range profile and ( )*•  denotes complex 

conjugation.  Equation (6.24) can be implemented efficiently using the fast Fourier transform 

(FFT) as 
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( ) { } { }
1

1 *
,

0

,
1

ˆ
M

NIMPC C m m
m

x F F F
NM θθ

−
−

−
=

  =    
 w y   ,   (6.25) 

in which my  is the received data from the mth pulse, *
,m θw  is the time-reversed complex conjugate 

of ,m θw  zero-padded to the length of my , and F  and 1F −  are the FFT and inverse FFT 

respectively.  Note that usually the received vector is padded with zeros before the FFT, however, 

the formulation in (6.24) does not include the convolutional tails that represent the eclipsed 

region, thus the additional zero-padding is unnecessary. In fact, the first N–1 samples of the 

output from (6.25) should be discarded to produce a result equivalent to that produced by (6.24).  

While the NIMPC formulation naturally accounts for the range sidelobes associated with clutter 

in the eclipsed region that extend into the leading and trailing edges of the range profile, it does 

not provide a clutter-free estimate in the eclipsed region.  Thus, the convolutional tails associated 

with the eclipsed regions are discarded.  

6.2  SIMULATION RESULTS 

The performance of NIMPC will be assessed by considering two different scenarios.  First, a 

synthetic wideband waveform, which offers the benefit of increased range resolution is employed 

in a range ambiguous simulation.  Next, pulse-to-pulse phase code changes, which are attractive 

because of their ability to perform unambiguous ranging with a single PRF, will be considered.  In 

both cases targets will be modeled as point scatterers in additive white Gaussian noise.  Ground 

clutter is modeled as point targets in each range cell with a pulse-to-pulse Doppler phase chosen 

from a uniform distribution between θσ  degrees.  
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6.2.1 SYNTHETIC WIDEBAND SCENARIO 

Consider the synthetic wideband scenario for which each column of the matrix S  is a 40 chip 

P3 phase-coded waveform [8] over-sampled by a factor of two (to support the total bandwidth of 

the pulse train) such that 80N =  and each waveform is at a slightly different center frequency 

[33].  The CPI contains 50M =  and two additional fill pulses, resulting in a total of 52 

transmitted waveforms for which the normalized center frequency of the mth pulse is given by 

 
( )2 2m

m
f

M K
=

+ −
    (6.26) 

for 0, 1, , 2m M K= + − , where K=3 is the number of range intervals (1 unambiguous and 2 

ambiguous).  The resulting bandwidth is twice as large as that of a single pulse and consequently, 

the range resolution twice as fine.  The simulated scene consists of four small moving targets in 

the fourth interval with the ranges (relative to the range interval that contains the target) and 

Doppler phases listed in Table 6.1.  For an X-band radar with a 10 kHz PRF, the Doppler phases 

in Table 6.1 are comparable to target velocities ranging from 37 to 65 mph.  The moving targets 

have a signal-to-noise ratio (SNR) of –13 dB, and the average clutter-to-noise ratio (CNR) is 47 

dB (stated values are pre-processing) such that the clutter power is 60 dB higher than that of the 

targets.  The clutter extends through the primary interval and two range ambiguous intervals and 

is present in all eclipsed regions.  Clutter Doppler spread is induced by selecting o1θσ = .  The 

coherent processing gain is 33 dB for the range and Doppler matched filter.  For the synthetic 

wideband waveform described above, the added benefit is enhanced range resolution, and 

ambiguous ranges will still have to be unwrapped using a multiple staggered PRF scheme. 
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Table 6.1 Target Description for Synthetic Wideband Scenario 

Range Interval 
Range 
Cell   

Doppler 
Phase θ  

1 270 65° 

2 220 40° 

3 170 70° 

 

Figure 6.1 displays the NIMPC estimate for the first (unambiguous) interval when no clutter 

cancellation is applied, which is equivalent to the standard range-Doppler processor output.  The 

clutter exhibits a range-Doppler coupling due to the structure of the transmitted waveforms and 

masks the moving targets.  In contrast, Figs. 6.2-6.4 shows the result when NIMPC, in 

conjunction with clutter cancellation, is used to estimate the first, second, and third intervals, 

respectively.  Here the moving targets are clearly visible as indicated by the white circles in Fig 

6.2.  Note the range cell indices in all figures are relative to the range interval they are displaying.  

The range ambiguous targets in each interval are also denoted in Figs. 6.2-6.4 which are visible 

due to the LFM-like ambiguity diagram of the P3 code [1].  The center frequency deviation of 

returns from surrounding intervals relative to a particular interval causes range ambiguous targets 

to appear as if they have a fast-time Doppler shift over the length of the received ambiguous 

return.  This frequency deviation results in a range shift of the matched filter peak according to 

the ambiguity diagram for the P3 code, which in conjunction with the coherent processing of the 

stepped-frequency transmit scheme results in a range and Doppler shift of the ambiguous targets 

from surrounding intervals. 
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Figure 6.1 NIMPC estimate (in dB) with no clutter cancellation for the first 

range interval when the P3 code is used 
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Figure 6.2 NIMPC estimate (in dB) with clutter cancellation for the first range 

interval when the P3 code is used 

Moving Target

Ambiguous 
Targets 
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Figure 6.3 NIMPC estimate (in dB) with clutter cancellation for the second 

range interval when the P3 code is used 

Moving Target 
Ambiguous
Targets 
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Figure 6.4 NIMPC estimate (in dB) with clutter cancellation for the third range 

interval when the P3 code is used 

The Doppler view of the range-Doppler map in Fig. 6.4 is displayed in Fig. 6.5, which is 

formed by taking the maximum value over all of the range cells in each Doppler bin. The clutter 

has been suppressed by approximately 80 dB.  Figure 6.6 shows the NIMPC filter response, 

defined as 

Moving Target

Ambiguous 
Targets 
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which compares the processing gain of the NIMPC filter with that of the optimal (for a point 

target in white noise) range-Doppler matched filter.  The filter response illustrates that for this 

scenario there is an SNR loss of 3 to 4 dB, outside of the clutter notch, which is an acceptable 

trade-off for 80 dB of range ambiguous pulse-agile clutter cancellation. 

 

 
Figure 6.5 Doppler view of NIMPC estimate with and without clutter 

cancellation for the third interval when the P3 code is used 

Moving Target

80 dB 
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Figure 6.6 NIMPC filter response for the first (red), second (green),              

and third (blue) intervals when the P3 code is used 

Observe that the clutter response in Fig. 6.1 and corresponding clutter notches in Figs. 6.2-6.4 

are offset from zero even though there is very little clutter–Doppler spread.  This unexpected 

spread may result in an undesired suppression of slow moving targets.  The asymmetry is caused 

by the Doppler tolerance of the P3 code in combination with the stepped-frequency waveform 

present in the ambiguous clutter from the other intervals.  The clutter returns from other intervals 

are composed of pulse trains that are higher or lower in frequency (depending on the interval) 

than the pulse train used for processing a particular interval.  This frequency shift results in either 

a positive or negative range shift of the matched filter peak (depending on the aforementioned 

frequency shift), which, in conjunction with the range-Doppler coupling of the stepped-frequency 

waveform, shifts the peak of the clutter response from the other intervals in the Doppler spectrum 

resulting in the wide notch seen in the simulation results. 
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To alleviate the effective Doppler spread associated with the range ambiguous clutter, the P3 

code from the previous example is replaced with a single random polyphase code of the same 

length (40 chips, over-sampled by 2).  Although the random phase code suffers from elevated 

range sidelobes, the Doppler intolerance of this waveform should alleviate the Doppler spreading 

of the clutter returns from other intervals when examining a particular interval.  Figures 6.7 and 

6.8 are the simulated outputs from the first interval for NIMPC without and with clutter 

cancellation, respectively.  The effect of the clutter-Doppler spread associated with the P3 code 

has been reduced to a width commensurate with a single unambiguous interval of clutter 

illuminated with a stepped-frequency waveform.  Also, the elevated range sidelobe levels of the 

random phase code result in an elevated clutter Doppler sidelobe level as seen in Fig. 6.7.  Figures 

6.9 and 6.10 display the clutter cancelled outputs for the second and third intervals, respectively.  

When the random phase code is employed the ambiguous targets are suppressed in the incorrect 

interval due to the thumbtack like ambiguity diagram of a random phase code.  Hence, it may be 

possible to perform unambiguous ranging with this type of synthetic wideband waveform. 



164 

 

 
Figure 6.7 NIMPC estimate (in dB) with no clutter cancellation for the first 

range interval when the random phase code is used 
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Figure 6.8 NIMPC estimate (in dB) with clutter cancellation for the first range 

interval when the random phase code is used 

Moving Target
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Figure 6.9 NIMPC estimate (in dB) with clutter cancellation for the second 

range interval when the random phase code is used 

Moving Target
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Figure 6.10 NIMPC estimate (in dB) with clutter cancellation for the third 

range interval when the random phase code is used 

The clutter notch in this case is much narrower as evidenced in the range-Doppler maps (Figs. 

6.8-6.10).  However, the clutter suppression performance is slightly degraded when compared to 

the P3 (see Fig. 6.11) and the loss indicated by the NIMPC filter response (Fig. 6.12) has 

worsened, especially as the magnitude of the Doppler phase increases. 

Moving Target
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Figure 6.11 Doppler view of NIMPC estimate with and without clutter 
cancellation for the third interval when the random phase code is used 

 
Figure 6.12 NIMPC filter response for the first (red), second (green),              

and third (blue) intervals when the random phase code is used 

Moving Target

75 dB 
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Both of the waveforms discussed above has desirable properties; the chirp-like P3 code yields 

lower range sidelobe levels and the random phase code results in a narrower Doppler clutter 

notch.  The choice of waveform should be determined by the goal and requirements of a particular 

radar system.  In the next section, the effect of changing the phase coding of the radar waveform 

on a pulse-to-pulse basis will be examined. 

6.2.2 PULSE AGILE SCENARIO 

As in the previous case, this scenario will consider moving targets in the presence of ground 

clutter.  However, each transmitted pulse is modulated by a unique random polyphase code (with 

a fixed center frequency).  Each waveform contains 32 chips and the CPI consists of 150 pulses 

(155 pulses are transmitted).  Six range intervals are simulated, each of which contains clutter in 

all range cells as well as the eclipsed regions.  The clutter spread factor is o2θσ =  and the average 

clutter to noise power is 33 dB before processing.  There are two moving targets in each interval 

with a SNR of 17−  dB (before a range and Doppler matched filter processing gain of 37 dB).  

Table 6.2 lists the target range and velocities for each interval (range cell indices are relative to 

each range interval). 

Table 6.2 Target Description for Pulse Agile Scenario 

Range 
Interval 

Range Cell   
for Target 1 

Doppler Phase 
θ  for Target 1 

Range Cell   
for Target 2 

Doppler Phase 
θ  for Target 2 

0 111 20° 221 ‒20° 

1 116 80° 216 ‒80° 

2 121 ‒40° 211 30° 

3 126 20° 206 ‒30° 

4 131 ‒70° 201 75° 

5 136 70° 196 ‒75° 
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The NIMPC estimate without clutter cancellation is displayed in Fig. 6.13; the detrimental 

effects of range sidelobe modulation when ground clutter is present are evident.  When clutter 

cancellation is employed the moving targets (denoted by white circles) are uncovered (Figs. 6.14-

6.19) for all six intervals.  The clutter is suppressed to near the noise floor in this case, however 

the SNR loss relative to the matched filter (in a clutter-free environment) is approximately 8 dB 

according to the NIMPC filter response in Fig. 6.20.  This mismatch loss is expected due to the 

challenging nature of suppressing range ambiguous clutter from multiple intervals when pulse 

agile waveforms are employed.  In each pulse of received data the target returns from different 

range intervals will consist of different waveforms.  Consider the first pulse of received data 

(recorded immediately after transmission of the sixth pulse), in which target returns from the first 

interval are delayed and attenuated versions of the sixth transmitted pulse whereas returns from 

the second interval will be composed of versions of the fifth transmitted pulse due to the round 

trip time it takes to travel the distance to the second interval and back to the receiver.   Hence, 

when the received data is processed with the pulse train corresponding to a particular interval, 

targets from other intervals will appear as the cross correlation between the waveform used to 

process each received pulse and the waveforms associated with returns from each of the other 

intervals.  Only the targets present in each interval are visible due to the low cross correlation 

(relative to the target SNR) between the random phase codes modulated on each pulse resulting in 

an unambiguous range estimate (as evidenced by Figs. 6.14-6.19), a distinct benefit of this 

transmission strategy.   
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Figure 6.13 NIMPC estimate (in dB) without clutter cancellation for the first 

range interval when a different random phase codes is transmitted on each pulse 
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Figure 6.14 NIMPC estimate (in dB) with clutter cancellation for the first range 

interval when a different random phase code is transmitted on each pulse  
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Figure 6.15 NIMPC estimate (in dB) with clutter cancellation for the second 

range interval when a different random phase code is transmitted on each pulse 
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Figure 6.16 NIMPC estimate (in dB) with clutter cancellation for the third 

range interval when a different random phase code is transmitted on each pulse 



175 

 

 
Figure 6.17 NIMPC estimate (in dB) with clutter cancellation for the fourth 

range interval when a different random phase code is transmitted on each pulse 
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Figure 6.18 NIMPC estimate (in dB) with clutter cancellation for the fifth 

range interval when a different random phase code is transmitted on each pulse 
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Figure 6.19 NIMPC estimate (in dB) with clutter cancellation for the sixth 

range interval when a different random phase code is transmitted on each pulse 
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Figure 6.20 NIMPC filter response when a different random phase code is 

transmitted on each pulse 

 

6.3 CONCLUSION 

A new non-adaptive framework, entitled Non-Identical Multiple Pulse Compression (NIMPC), 

is presented that allows clutter cancellation to be performed for scenarios when the radar 

waveforms within a CPI change from pulse to pulse.  A novel implementation is provided that 

enables a real-time realization of the NIMPC algorithm via fast convolution techniques. 

Simulation results for synthetic wideband waveforms in range ambiguous scenarios with 

multiple-time-around clutter (MTAC) are presented.  The effects of Doppler tolerance on MTAC 

for synthetic wideband waveforms are investigated and it is determined that range-ambiguous 

clutter from Doppler-tolerant synthetic wideband waveforms induces an artificial clutter-Doppler 

spread, which can be cancelled using NIMPC but may result in an undesired suppression of slow 
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moving targets.  When a Doppler intolerant waveform is used in the synthetic wideband regime, 

the artificial clutter-Doppler spread is alleviated and the minimum discernable velocity can be 

improved.  Additionally, NIMPC is shown via simulation to be capable of suppressing multiple 

intervals of clutter when pulse agile emissions are employed.   
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CHAPTER 7  CONCLUSIONS 

Advances in electronics technology will allow future generations of radar systems to employ 

enhanced flexibility and rapid reconfiguration of the waveforms transmitted on each element of an 

array or pulse within a coherent processing interval (CPI).  The benefits of waveform diversity 

come at a significant cost in sensitivity for radar systems with a modest time-bandwidth product.  

Multi-dimensional signal models are proposed and utilized to develop coupled-domain signal 

processing approaches that offer a greater number of degrees of freedom compared to 

independent adaptation.   

Waveform diversity across the elements of an antenna array facilitates broadening of the 

transmit beampattern to investigate large angular regions within a single CPI.  A technique is 

presented in Chapter 3 that allows a set of waveforms to be combined and transmitted to a 

corresponding set of particular spatial angles within a single pulse.  The space-range ambiguity 

diagram in (3.14) is used to illustrate the resulting matched filter performance for this 

transmission strategy.  In Chapter 4, a new reiterative minimum mean squared error (RMMSE) 

based algorithm entitled Space-Range Adaptive Processing (SRAP) is proposed that is capable of 

simultaneously adapting in space and range to produce a unique receive filter for each angle-range 

cell.  The increased computational complexity inherent to multi-dimensional adaptivity is 

alleviated through the development of a reduced-dimensionality version of SRAP (RD-SRAP).  

Filter responses for independent adaptation and joint adaptation are conceived and used to assess 

the multi-dimensional framework.  SRAP and RD-SRAP are shown to exhibit improved 

performance relative to both matched filtering and sequentially adapting in angle and range. 
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In Chapter 5, the multi-dimensional framework is augmented to incorporate waveform 

diversity in a pulse-Doppler regime, i.e., pulse-to-pulse waveform changes.  This genre of 

waveform diversity offers benefits such as unambiguous ranging and enhanced range resolution.  

The RMMSE framework is again employed yielding the Time-Range Adaptive Processing 

(TRAP) algorithm.  Akin to the the spatial variant, TRAP is capable of simultaneous adaptation in 

slow-time (Doppler) and range to enhance sensitivity by suppressing Doppler and range sidelobes 

of large targets.  Furthermore, TRAP is extended to estimate into the eclipsed regions associated 

with high-power radar systems that use blanking to safeguard the receiver.  The performance of 

TRAP and a reduced dimensionality variant are assessed via simulations utilizing synthetic 

wideband waveforms and pulse-to-pulse coding changes.  TRAP is able to suppress both Doppler 

and range sidelobes of targets, even when they are eclipsed.   

Waveform diversity in pulse-Doppler radars results in complex clutter returns, which cannot be 

suppressed using traditional clutter cancellation techniques.  In Chapter 6, the TRAP signal model 

is utilized to develop a non-adaptive pulse agile clutter cancellation algorithm, namely Non-

Identical Multiple Pulse Compression (NIMPC).  The NIMPC clutter suppression filters can be 

pre-computed offline and applied efficiently using fast-Fourier transforms, due to the non-

adaptive nature of the algorithm.  Simulations indicate the ability of NIMPC to suppress multiple 

range intervals of clutter when pulse-to-pulse waveform changes are employed. 
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