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Abstract

Recent advances in waveform generation and in computational power have enabled

the design and implementation of new complex radar waveforms. Still despite these

advances, in a waveform agile mode where the radar transmits unique waveforms for

every pulse or a nonrepeating signal continuously, effective operation can be diffi-

cult due the waveform design requirements. In general, for radar waveforms to be

both useful and physically robust they must achieve good autocorrelation sidelobes,

be spectrally contained, and possess a constant amplitude envelope for high power op-

eration. Meeting these design goals represents a tremendous computational overhead

that can easily impede real-time operation and the overall effectiveness of the radar.

This work addresses this concern in the context of random FM waveforms (RFM)

that have been demonstrated in recent years in both simulation and in experiments

to achieve low autocorrelation sidelobes through the high dimensionality of coherent

integration when operating in a waveform agile mode. However, while they are effec-

tive, the approaches to design these waveforms require optimization of each individual

waveform, making them subject to costly computational requirements.

This dissertation takes a different approach. Since RFM waveforms are meant to be

noise like in the first place, the waveforms here are instantiated as the sample functions

of an underlying stochastic process called a waveform generating function (WGF).

This approach enables the convenient generation of spectrally contained RFM wave-

forms for little more computational cost than pulling numbers from a random number

generator (RNG). To do so, this work translates the traditional mathematical treat-

ment of random variables and random processes to a more radar centric perspective
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such that the WGFs can be analytically evaluated as a function of the usefulness of

the radar waveforms that they produce via metrics such as the expected matched filter

response and the expected power spectral density (PSD). Further, two WGF models

denoted as pulsed stochastic waveform generation (Pulsed StoWGe) and continuous-

wave stochastic waveform generation (CW-StoWGe) are devised as means to opti-

mize WGFs to produce RFM waveform with good spectral containment and design

flexibility between the degree of spectral containment and autocorrelation sidelobe

levels for both pulsed and CW modes. This goal is achieved by leveraging gradi-

ent descent optimization methods to reduce the expected frequency template error

(EFTE) cost function. The EFTE optimization is shown analytically using the met-

rics above, as well as others defined in this work and through simulation, to produce

WGFs whose sample functions achieve these goals and thus produce useful random

FM waveforms. To complete the theory-modeling-experimentation design life cycle,

the resultant StoWGe waveforms are implemented in a loop-back configuration and

are shown to be amenable to physical implementation.
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Chapter 1

Introduction

Over the years the generation of radar waveforms has changed greatly from the simple spark-

gap generators in the early 20th century [1] to the high powered magnetrons [2] and the pulse

compression waveforms of the mid 20th century [2–5]. More recently the trend is towards so-

phisticated arbitrary waveform generators (AWG). High fidelity AWGs along with the incredible

computational abilities of modern computers have motivated a great deal of interest in the field of

waveform diversity and design [6–11]. The goals behind designing new waveforms is of course to

make a given radar system or radar mode more effective. What more effective means is application

specific; however, some generalizations can be made.

In general, radar waveforms should produce unambiguous responses. In the context of the

matched filter, a basic and effective processing tool, the autocorrelation sidelobes represent am-

biguities which can hide or mask targets of interest. Consequently, a great deal of radar wave-

form design focuses on minimizing these ambiguous responses in both the range and Doppler

domains [3, 5–7, 7–10].

Radar waveforms should be spectrally contained. The electromagnetic spectrum is a finite re-

source. If two users use the same bandwidth then they will interfere with each other and neither

will be able to operate effectively. Given the proliferation of spectrum usage especially for com-

mercial applications, it is more important than ever that systems operate in a bandwidth efficient

manner for their own sake and for the sake of other users [12–15].

Radar waveforms should be amenable to implementation on high powered equipment. Gener-

ally speaking, in order to combat the R4 power loss incurred by the two way spherical spreading

of the electromagnetic energy where R is the range to some object, radars often operate at very
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high power levels. High power operation necessitates high power amplifiers which operate in the

saturation region of the amplifier gain curve. If a radar signal or any signal for that matter with am-

plitude modulation (AM) is passed through an amplifier operating in saturation, it will invariably

endure non-linear distortion effects which degrade radar performance and expand the signal spec-

trum into adjacent bands diminishing spectral containment [6, 14, 16]. Though more sophisticated

techniques exist such as predistortion [17,18], the most straightforward way to mitigate this effect

is to design constant modulus (constant amplitude) waveforms.

Numerous waveform implementations and design schemes have been proposed over the years

to address these issues and others. This work however considers the design and implementation of

what are known as random frequency modulated (RFM) waveforms.

Random or noise-like waveforms in general take advantage of the high dimensionality of noise

and noise like signals to reduce ambiguous responses such as autocorrelation sidelobes [6,19–22].

To get an idea of how this works, consider an experiment. If the results are noisy one might run the

experiment again and again to mitigate the noise and get a clean result. This is akin to transmitting

the same pulse over and over again as with traditional linear frequency modulation (LFM) based

radar. While the noise is reduced, the autocorrelation sidelobes remain the same. With noise

or noise-like radar signals, where unique pulses are transmitted at every pulse repetition interval

(PRI), this is like doing an entirely new experiment every pulse. The results can still be combined

to lower the noise power, but since the sidelobe responses are different as well, they too decrease

when coherently combined. This diminishes the ambiguity due to the range sidelobes with more

and more unique pulses.

The difficulty with noise radar is a high peak to average power ratio (PAPR) or a lot of AM

which leads to the non-linear distortion discussed above. To mitigate this problem while retaining

the benefits of noise radar, random FM waveforms preserve the desirable high dimensionality side-

lobe reduction properties of noise radar while achieving a constant amplitude temporal envelope

(hence FM). The high dimensionality reduction of sidelobes and the constant amplitude character

of these waveforms address two of the aforementioned design goals. Often, the most difficult as-
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pect of random FM waveform design and constant amplitude waveform design in general is the

spectral containment aspect. For random FM waveforms this often entails an iterative, compu-

tationally expensive design process to make each individual random FM waveform which have

a desirable spectrum and good autocorrelation sidelobes [23–26]. Other random FM implemen-

tations are process based. Rather than optimizing each waveform, the phase of the waveform is

the sample function of a random process, though in their current formulations these methods lack

much design flexibility since the random process is based on Gaussian noise itself [27–30].

With this in mind, the goal of this work is to combine the optimization based and the pro-

cess based random FM radar implementations by defining a new class of random processes called

waveform generating functions (WGFs) whose sample functions are themselves either pulsed or

continuous wave (CW) radar waveforms. In this way, unique random FM radar waveforms can

be created by simply pulling numbers from a random number generator (RNG) followed by some

simple mathematical transformation. Compared to running a full-blown optimization on each and

every waveform, this implementation is extremely efficient from a computational standpoint. How-

ever, the overall challenge in this approach is guaranteeing that the randomly generated waveforms

are actually useful from a radar perspective. The waveforms need to be FM and they need to pos-

sess a desired spectrum with sufficient spectral containment while achieving a noise like reduction

in autocorrelation sidelobes with coherent integration. The structure of this work reflects a solution

to this challenge.

In an effort to provide context to the waveform design implementations in the later chapters,

Chapter 2 introduces various basic radar principles in the context of an admittedly simplistic but

representative radar scenario. To demonstrate the need and motivation for the design of radar

waveforms, the scene is interrogated with progressively more sophisticated radar signals and post-

processing. A particular emphasis is paid to the roll of the autocorrelation sidelobes in obscuring

and hiding targets of interest within the scene. Subsequent sections provide a brief overview of

current radar waveform models and design schemes especially as they relate to spectral and auto-

correlation performance. The Chapter concludes by examining some miscellaneous topics which
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are pertinent to this work.

Chapter 3 begins the process of framing noise and noise-like waveforms within the context

random variables and random processes. To do so, the first few sections provide the fundamentals

behind these topics. The next section goes into significant detail regarding the estimation of the

properties of random processes with a focus on the properties of stationarity and ergodicity as well

the autocorrelation function and the power spectral density (PSD). These estimation methods are

at the heart of what it means to define a WGF. Accordingly in the next sections, they are subtly

altered and redefined such that they describe not just the autocorrelation function of the process

but the expected matched filter response, not just the PSD of the random process but the expected

PSD of the WGF from a radar perspective. Such an analysis is performed for both pulsed and CW

WGFs which are shown to behave in profoundly different manners from a stochastic processes per-

spective. These properties and others defined in Chapter 3 describe how the waveforms produced

by the WGF can be expected to behave. In other words, these metrics can be used to evaluate

the usefulness of the waveforms of a particular WGF. The Chapter concludes by translating these

metrics into a discretized framework that is suitable evaluation and manipulation on a computer.

To put the tools of Chapter 3 to work, Chapters 4 and 5 define the pulsed stochastic waveform

generation (Pulsed StoWGe) and the CW stochastic waveform generation (CW-StoWGe) models

respectively. In either case, the models define a constant amplitude (FM) WGF whose phase is a

linear combination of stochastically weighted basis functions. These models posses two primary

advantages which make them suitable analysis, optimization, and physical implementation. First,

they have have been designed in such a way that evaluating their moments and subsequently their

characteristics as defined in Chapter 3 is mathematically tractable and computationally reasonable.

In other words for a WGF based on either model, it is practical to analytically determine the

usefulness of the radar waveforms that can be generated by the WGF. Second, the basis functions

consist of a finite number of adjustable parameters. Then, by tweaking these parameters, the

WGF can be tailored to produce radar waveforms with desirable characteristics. In order to take

advantage of this flexibility, both Chapters 4 and 5 define the expected frequency template error
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(EFTE) cost function which measures the mean squared error between the expected PSD of the

WGF and some desired PSD for their respective models. Using a gradient descent optimization

method [31], the EFTE cost functions are minimized for a multitude of WGFs corresponding to

unique desired spectra and numerous permutations of the parameters of either the Pulsed StoWGe

or the CW-StoWGe models. In either case, the resulting WGFs were analytically evaluated and

used to produce the individual radar waveforms. In simulation, these waveforms demonstrate the

veracity of the models and in experimental loopback measurements the waveforms are shown to

amenable to physical implementation.

Finally, Chapter 6 provides overall conclusions regarding the modeling and use of WGFs as

well as a discussion on possible future work. The appendices provide the derivation of numerous

equations relating to Pulsed StoWGe, CW-StoWGe, and their respective optimizations as well as

tabulated results of the optimizations performed in Chapters 4 and 5.
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Chapter 2

Background

The purpose of this chapter is not to provide a comprehensive overview of radar principles. Rather,

it is to provide a sufficient background to give context to the radar waveform design schemes

and objectives of later chapters. To do so, this chapter introduces numerous basic radar concepts

through the examination of an admittedly simplistic, but representative sensing scenario. Since this

dissertation is concerned with the design of radar waveforms, an emphasis is placed on the role of

the radar waveform in enabling the radar to do its job.

In Section 2.1, it is first shown how noise complicates the detection process before introducing

the matched filter as a means to maximize the signal to noise ratio (SNR) in the presence of additive

white Gaussian noise (AWGN). Then the linear frequency modulated (LFM) pulse is introduced

as a superior pulse compression waveform as compared to the simple unmodulated pulse in that it

leverages an expanded bandwidth to achieve a finer range resolution. Finally, pulse integration is

shown to improve SNR and tapering is shown to mitigate, to a degree, the deleterious autocorre-

lation sidelobes inherent to the LFM waveform. Section 2.2 introduces several waveform design

schemes and topologies for achieving such goals as sidelobe mitigation and spectral containment.

This section provides an introduction to random FM waveforms which are the primary focus of this

work. Section 2.3 introduces CW radar, Section 2.4 discusses the ambiguity function and doppler

processing, while Section 2.5 provides a brief overview of the gradient descent techniques used in

this work.
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2.1 Basic Radar Processing

2.1.1 The Unmodulated Pulse and Basic Radar Operation

The simplest form of electromagnetic energy a radar can transmit is the unmodulated pulse. This

signal has no amplitude modulation (AM) such that its amplitude is constant over the pulse dura-

tion. Additionally, it has no frequency modulation (FM) in that its frequency is constant over the

pulse duration. The unmodulated pulse is defined as

spb(t) =

 Acos(2π fct) 0 < t < T

0 otherwise
(2.1)

where fc is the carrier frequency of the pulse, A is the amplitude, and T is the duration. The

unmodulated pulse definition in (2.1) represents a passband signal as implied by the subscript

’pb’. Alternatively, it could be represented in complex-baseband. For this simple waveform, its

complex-baseband representation is simply a real-valued, time limited, DC pulse such that

sbb(t) =

 A 0 < t < T

0 otherwise
(2.2)

where the subscript ’bb’ denotes baseband. More generally, any constant amplitude, passband

signal is defined as

spb(t) = Acos(2π fc +φ(t)) (2.3)

where φ(t) is some phase function. Alternatively, any constant amplitude baseband signal is de-

fined as

sbb(t) = Aexp( jφ(t)). (2.4)

For the unmodulated pulse of (2.1), φ(t) is zero.

Physically speaking, the baseband signal is up-converted to the carrier frequency fc before be-

ing transmitted. On receive, the passband signal is down-converted to the baseband representation

7
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Objects

Figure 2.1: Ideal, simplistic radar data where the entire pulse envelopes are visible, undistorted,
and are free of noise. The leading edges clearly indicate the positions of six distinct objects.

for processing. For this work, the details of this process are only important inasmuch as the up-

conversion and down-conversion steps can be performed. For the purposes of design, analysis,

and processing it is more convenient to utilize the baseband representation. Consequently From

here on out, these tasks will be performed at complex-baseband. More information on the physical

hardware implementation of radar signals can be found in any radar textbook such as [32–36] to

name a few.

Consider a radar operating in some environment. At time t0 it transmits an unmodulated pulse

and then listens for the echoes. In this simplistic case, its goal is to simply determine the distance

to any objects in the scene. In an ideal world the received power envelopes may look like Fig.

2.1. where various, distinct reflections are clearly visible and their range can be easily evaluated

by identifying the time delay of the leading edge of the pulse. Their amplitudes vary based on

the distance to the objects, their particular reflectivity, and numerous other factors which are not

necessary to consider here. Even when the reflections fall on top of each other, their position in

Fig. 2.1 is obvious. Based on the propagation speed of electromagnetic radiation, the distance to
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each object is

R =
τc
2

(2.5)

where τ is the delay of the leading edge of the reflection, c is the speed of light in a vacuum, and

the factor of 2 indicates the delay to the object is doubled because the pulse has to travel to and

from the object.

Unfortunately, reality is never as simple as in Fig. 2.1. Without any kind of additional process-

ing a more reasonable range response is shown in Fig. 2.2. Filtering, distortion, and primarily the

presence of noise has completely obscured the positions of the objects which are plainly visible in

Fig. 2.1. The most straightforward solution to this problem would be to simply transmit as much

power as possible to raise the signal well above the noise, but this is not as simple as it sounds.

In (2.5) the factor of 1/2 accounts for the two way propagation of the radar waveform. This two

way propagation also results in a two way spherical spreading loss such that the power returned by

any given object is inversely proportional to the fourth power of its range. In other words, if two

objects would otherwise reflect the same amount of energy but one is twice as far away from the

radar, the further object will only return 1/16 the energy as the closer object. Transmitting more

and more energy is a losing battle with respect to range losses. Consequently, minimizing noise,

interference, and maximizing detectability through post-processing are essential to radar detection

as discussed in the next section.

2.1.2 Linear Frequency Modulation and Pulse Compression

In Fig. 2.1, the energy returned from each pulse is spread out over the entire pulse duration.

Previously, only the leading edge was considered. However, it is possible to realize a greater

response by "compressing" the returns from each object by using the matched filter to implement

pulse compression. To demonstrate this, consider the ideal response in Fig. 2.1. In this noise

free environment, the returned signal is a convolution of the time reversed transmit signal with the

9
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Figure 2.2: The same radar radar data as in Fig. 2.1, but with additive white Gaussian noise

impulse response of the environment such that

ys(t) =
ˆ

∞

−∞

s(τ− t)x(τ)dτ (2.6)

where s(t) is the transmit signal and x(t) is the channel’s impulse response. In this case, the

sequence of six objects can be described via a linear combination of delta functions such that

x(r) = an

6

∑
n=1

δ (r− rn) (2.7)

where r is range from the transceiver and an is some complex valued scaler which is proportional

to the objects reflectivity. r and t are related by (2.5). In Fig. 2.2, the returns are distorted by the

addition of white Gaussian noise (WGN) which is an excellent approximation for many natural

sources of noise like the thermal noise which is inherent to all electronic devices. The addition of

noise modifies (2.6) to

y(t) =
ˆ

∞

−∞

s(τ− t)x(τ)dτ + v(t) (2.8)
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where v(t) is the additive WGN. In Fig. 2.2, the noise power of v(t) is strong enough to completely

obscure the objects which were easily visible in Fig. 2.1. The relative power between the returned

signal and the noise is the signal to noise ratio (SNR). Unless other factors cause further interfer-

ence, SNR is an effective tool for determining whether something is detectable. In fact, the radar

range equation which typically measures the maximum range a radar can detect something, is a

function of SNR. A detailed discussion of the radar range equation is not needed here, but can be

found in [32–36].

The fact remains, that even without describing any specific values, some additional processing

is necessary to make the returns in Fig. 2.2 useful. To do so, linear filters can be applied. In the

time domain, this operation is mathematically described via a convolution. Thus the filtered data

becomes

yf(τ) =

ˆ
∞

−∞

f (τ− t)y(t)dt (2.9)

where f (t) is some filter function and yf(t) is the returned data under the filtering operation. For

the matched filter, f (t) becomes

f (t) = as∗(−t) (2.10)

which is the complex conjugated, time reversed version of the baseband signal s(t) with an arbitrary

scale factor a. By replacing f (t) with the matched filter and by replacing y(t) with its signal

component, ys(t), and its noise component, v(t), (2.9) becomes

ymf(τ) =

ˆ
∞

−∞

as∗(t− τ)(ys(t)+ v(t))dt (2.11)

where ymf(t) is the returned data under the matched filtering operation. Recall, that ys(t) as defined

in (2.6) is a linear combination of time shifted versions of the transmit signal. Under the matched

filtering operation ys(t) instead becomes a linear combination of time shifted autocorrelations.
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The autocorrelation is defined as

r(t) =
ˆ

∞

−∞

s∗(t− τ)s(t)dτ. (2.12)

The usefulness of the matched filter is described by the Schwartz inequality. For two arbitrary

functions, f1(x) and f2(x), a relationship exists such that [32]

ˆ b

a
f1(x) f2(x)dx≤

ˆ b

a
f1(x)dx

ˆ b

a
f2(x)dx (2.13)

which holds with equality iff f1(x) = a f2(x) where a is some constant. At t = 0 in (2.12), this

is precisely the case. Consequently, whenever t = t0 where t0 is the location of an object in x(t),

(2.11) becomes

y(t0) =
ˆ T

0
|s(t)|2dt +

ˆ T

0
s∗(t)v(t− t0)t. (2.14)

The first term in (2.14) is, by definition, the total energy of the transmit signal and also the form

of the Schwartz inequality that realizes the equality condition. If v(t) is exclusively WGN, the

matched filter maximizes the SNR, which is the most important aspect of the matched filter. A

more complete discussion of this can be found in [5, 7, 37, 38].

The autocorrelation of the baseband unmodulated pulse realizes a triangular function. This

triangular function becomes somewhat like a downward facing parabola as shown in Fig. 2.3

when it is plotted on a dB scale. Applying the matched filter to the data in Fig. 2.2 realizes Fig. 2.4

where several responses are clearly visible however there are still obvious issues. While object 1

is plainly visible, 2 and 3 are hard to tell apart, 4 looks like part of 2 and 3, while 5 and 6 look like

one return. For the most part, the problem here is resolution. There just is not enough separation

between many of the objects to reliably identify them given the wide autocorrelation response of

the unmodulated pulse. The resolution of the tone is usually defined as the Rayleigh resolution
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Figure 2.3: The autocorrelation response of a baseband tone

which is [32]

δR =
cT
2

(2.15)

From (2.15), one solution is to shorten the pulse. The time width of the autocorrelation response

is 2 times the temporal length of the signal so shortening the signal shortens the autocorrelation.

However, this means less energy on target leading to poorer SNRs. To compensate, the radar could

transmit at a higher power, but this leads to a vicious cycle of transmitting ever shorter pulses at

ever higher powers. Due to hardware constraints, there are practical limits to both.

To address the resolution problem, we can transmit a pulse with a more advantageous auto-

correlation. For decades the linear frequency modulated (LFM) pulse has been the prototypical

modulated radar waveform. As the name implies, the frequency function of an LFM is a linear

function of time such that at passband the LFM is defined [7, 32, 37, 39]

sLFM(t) =

 Acos(2π fct +π
B
T t2) −T/2 < t < T/2

0 otherwise
(2.16)

which has been centered at t = 0 for convenience. As described by (2.3), the phase function of
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Figure 2.4: The noisy radar data from Fig. 2.2 after being matched filtered with a baseband tone

(2.16) is

φ(t) = 2π fct +π
B
T

t2 −T/2 < t < T/2 (2.17)

and the radial frequency function is the derivative of the phase function yielding

dφ(t)
dt

= 2π fc +2π
B
T

t −T/2 < t < T/2 (2.18)

such that the frequency function in Hz is

f (t) = fc +
B
T

t −T/2 < t < T/2 (2.19)

which is a linear function of time. Over the course of the pulse, the signal ’chirps’ through B Hz

in T seconds. To understand what effect the modulation has on the autocorrelation function and

further the scene in Fig. 2.4, it is useful to apply some arbitrary, but representative numbers to the

modulated and unmodulated pulses.

Consider a modulated and an unmodulated pulse, both with T = 10 us and for the LFM B = 5

MHz. Each pulse has been normalized to unit energy such that
´ T

0 |s(t)|
2dt = 1. The autocorre-
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lation response of each is shown in Fig. 2.7 where showing only half of the autocorrelations is

necessary since they are symmetric about t = 0. The LFM autocorrelation clearly will do a much

better job of resolving relatively close together objects as opposed to the tone owing to its well

defined peak. Additionally, a lobing structure has been revealed where the lobe around the match

point, t = 0, is called the mainlobe while all other lobes are known as sidelobes. As will be shown,

these sidelobes are inherent to virtually all waveforms and are problematic in their tendency to hide

weaker reflections. For now though, the LFM autocorrelation is superior to the tone autocorrela-

tion from its resolution improvement alone. To show why introducing a modulation has resulted

in such a drastic autocorrelation improvement, it is useful to examine their power spectra.

The power spectra of either the LFM or the tone or any pulsed radar waveform for that matter

is evalutated by taking the magnitude squared of the Fourier transform of the pulse. The result of

these operations is shown in Fig. 2.6. The baseband tone is simply a DC pulse so its power is

concentrated at 0 frequency and takes on a sinc squared envelope owing to its rectangular pulse

shape. The LFM spectrum on the other hand is spread fairly evenly throughout its swept bandwidth

(| f | ≤ 2.5MHz). The vertical lines in Fig.2.6 represent the bandwidth of the tone and the LFM.

For the tone the bandwidth is considered to be

Btone ≈
1
T

(2.20)

which in this case is 100 kHz. This corresponds to approximately the 4 dB bandwidth of the tone

or where the spectral power falls below 4 dB of the peak. For the LFM, the bandwidth is normally

considered to be its swept bandwidth which corresponds to approximately its 6 dB bandwidth

which in this case is 5 MHz.

In general, the notion of bandwidth is defined for the application. For matters of resolution,

the relevant bandwidth metrics are usually defined with respect to the spectral power falling below

some relative power threshold like the ones just mentioned for the tone or the LFM. For non-LFM

waveforms, the 3dB bandwidth (the point at which the spectral power falls below 1/2 (-3dB) of the
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Sidelobes

Mainlobe

LFM Resolution

Tone Resolution

Figure 2.5: The autocorrelation of 10 us tone and a 10 us, 5 MHz LFM

~6 dB down

~4 dB down

Figure 2.6: The power spectrum of 10 us tone and a 10 us, 5 MHz LFM
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peak power) is commonly used to estimate the resolution. In other applications it may be relevant

to consider the XX% bandwidth or the bandwidth which contains XX% of the signal power. A

common value may be the 99% bandwidth. The absolute bandwidth is the frequency beyond

which there is no frequency content.

Regardless, the threshold bandwidth metrics (3dB, 4dB, 6dB), tie nicely into what is known as

the time-bandwidth product (BT ). For an unmodulated pulse, the BT is

BT = T
1
T

= 1. (2.21)

For the LFM from above, using the swept bandwidth or the 6dB bandwidth which are synonymous

in this case, the BT becomes

BT = (10−5 s)(5 ·106 Hz) = 50. (2.22)

In general, a waveform with X times the BT of another waveform will likewise have an X

times improved resolution. So, for a given pulse length increasing the bandwidth improves the

range resolution.

Finally, if an LFM were transmitted rather than a tone, after the matched filtering operation, the

result in Fig. 2.2 becomes Fig. 2.7 where objects 2 and 3 are now clearly separable. Still, there are

problems. Despite the processing gains of matched filtering and using the much higher resolution

LFM, objects 4 and 6 are still buried beneath the noise since the SNR is too low to detect them.

2.1.3 Pulse Integration and LFM Sidelobe Mitigation

2.1.3.1 Pulse Integration

Radars rarely operate in a single pulse mode. Typically, whether it is attached to an aircraft, a

spacecraft, or is stationary, the view of the radar will be changing as either it moves itself or the

object it is attached to moves. Still, radars will often transmit with a pulse repetition frequency
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Figure 2.7: The noisy radar data from Fig. 2.2 where the transmit signal was an LFM after being
matched filtered

(PRF) in the kHz or even tens of kHz where thousands of pulses will be transmitted every second

such that despite the motion of the radar or the platform, consecutive pulses will return data from

largely the same scene, especially for objects that are stationary with respect to the radar. The

inverse of the PRF is the pulse repetition interval (PRI) which says a pulse is transmitted every tPRI

seconds. Sets of consecutive pulses are often jointly processed as determined by the length of the

coherent processing interval (CPI). Organizing pulses in this way is useful for several reasons.

Due to the Doppler effect, objects moving with respect to the radar induce a frequency shift

on the signal which is very effective for identifying moving objects in the presence of stationary

objects. By collecting multiple pulses in a CPI, these (usually) small frequency shifts can be

measured to estimate velocity. More will be said on this later.

The more immediate reason for transmitting multiple pulses is achieving more power on target.

Assuming the scene changes minimally over the course of a CPI or if the changes due to object or

platform motion can be compensated for, the energy from various pulses can be added together or

integrated to achieve a better SNR.

To demonstrate how this works consider the matched filter data from N different pulses in a
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CPI. For every pulse, the underlying scene is the same, but the noise is assumed to be indepen-

dent, identically distributed (i.i.d.), and zero mean. At any arbitrary point in time, the summation

(integration) of this data is

yN(t0) =
N

∑
n=1

yn(t0)+ vn(t0). (2.23)

Since the signal data in each case is the same and in phase (2.23) becomes

yN(t0) = Ny(t0)+
N

∑
n=1

vn(t0). (2.24)

where the n subscript has been dropped since all yn(t0) are by definition equivalent. The signal

power is then (Ny(t0))2. The noise power however is evaluated as the variance of the noise com-

ponent. Since the noise is zero mean, its variance is defined

E

∣∣∣∣∣ N

∑
n=1

vn(t0)

∣∣∣∣∣
2
= E

[(
N

∑
n=1

vn(t0)

)(
N

∑
n=1

v∗n(t0)

)]
. (2.25)

Since the noise is i.i.d., the cross terms cancel and (2.25) becomes [40]

E

[(
N

∑
n=1

vn(t0)

)(
N

∑
n=1

v∗n(t0)

)]
= Nσ

2
v (2.26)

where σ2
v is the noise variance of a single sample. From this result, the signal power increased by

a factor of N2 while the noise power only increased by a factor of N. The SNR is then improved by

a factor N, the ratio between these values. Thus for the integration of N pulses, the relative noise

power will decrease by 10log10(N). Much more will be said about random variables in Chapter 3.

Consider Fig. 2.7. Objects 5 and 6 are buried beneath the noise, but this is for a single pulse.

With coherent pulse integration Fig. 2.7 becomes Fig. 2.8 where 100 pulses have be coherently

integrated. In Fig. 2.8 object 4 is now plainly visible and the LFM sidelobes have been revealed

from the noise. Still, object 6 is not identifiable. It appears to no longer be buried in the noise, but it

instead is hidden beneath the sidelobes of object 5. Because of this, no degree of pulse integration
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Sidelobes
Sidelobes

Sidelobes

Figure 2.8: The noisy radar data from Fig. 2.2 where the transmit signal was an LFM after being
matched filtered and coherently integrated over 100 pulses

will reveal object 6 necessitating other approaches. One option is to use a waveform other than

the LFM which has lower autocorrelation sidelobes. In general, the mitigation of autocorrelation

sidelobes is the driving force behind waveform design.

2.1.3.2 LFM Sidelobe Mitigation

One of the best ways to mitigate the sidelobes of the LFM is through tapering the received data’s

spectrum such that

Ytaper( f ) = Y ( f )W ( f ) (2.27)

where Y ( f ) is the spectrum of the returned data and W ( f ) is the tapering function. In general, these

tapering functions will smooth the sharp corners of the LFM spectrum that are seen in Fig. 2.6. In

the time domain, this has the effect of lowering the autocorrelation sidelobes significantly, but also

inducing SNR and range resolution losses. In Fig. 2.9, the resulting autocorrelation and spectrum

are shown after tapering an LFM with a Taylor window [32]. The autocorrelation response is

calculated via the Weiner-Khinchine theorem by taking an inverse Fourier transform of the tapered
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spectrum. The resulting autocorrelation in Fig. 2.9 demonstrates a sidelobe level about 30 dB

below the original peak, but the autocorrelation peak itself is almost 5 dB lower than its untapered

counterpart and it has a slightly poorer resolution. Given a scenario with sufficient SNR, tapering

would likely be desirable.

Applying the taper to the LFMs in Fig. 2.8 yields Fig. 2.10 where the new tapered results are

shown in red on top of the untapered LFM results. The clear lowering of sidelobes is apparent

as well as a loss in SNR. Critically, despite the loss in SNR the improved sidelobe levels have

revealed object 6 as just past object 5. This example is just representative as there are numerous

window functions each of which have their own trade offs and can be applied in different ways.

Further information on tapers can be found in [41–43].

2.2 Pulse Compression Waveform Design

Given the SNR benefits provided by matched filtering, much of the work in designing radar wave-

forms has naturally focused on the mitigation of autocorrelation sidelobes in order to further im-

prove radar performance. Likewise, this section expands upon the spectral challenges that result

from attempting to lower those same sidelobes. To demonstrate these challenges and some of their

proposed solutions this section is broken into several subsections which describe different wave-

form models and design schemes including, non-linear FM (NLFM), phase codes, poly-phase

coded FM (PCFM), and random FM waveforms. These subsections are in now way exhaustive in

the topic of waveform diversity [6, 8, 9]. However, they do provide a good starting point when it

comes to designing waveforms specifically for lower autocorrelation sidelobes and spectral con-

tainment.

2.2.1 Non-linear FM

After discussing the LFM waveform and tapering techniques it is natural to first discuss what are

typically considered non-linear FM waveforms (NLFM). In section 2.1.3.2, tapering was discussed
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Figure 2.9: Comparison of an LFM waveform with and without a Taylor tapering window

1 2 3 4 56

6

Figure 2.10: The noisy radar data from Fig. 2.2 with either an LFM or a tapered LFM and coherent
integration
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as means to lower autocorrelation sidelobes at the expense of reduced range resolution and SNR

loss. In the frequency domain, tapering LFM waveforms has the effect of making the power

spectrum more Gaussian like. NLFM waveforms inherently posses this Gaussian like spectrum

and consequently much lower autocorrelation sidelobes. They are often designed via the principle

of stationary phase (POSP) and have time-frequency function which resembles a "sideways-S"

[44–46].

2.2.2 Phased-coded Waveforms

The phase-coded signal model considers radar waveforms as a sequence of discrete values. Prac-

tically speaking, such a model is intuitive. After all most electronic systems nowadays are digital

systems which sample the input data into a sequence of discrete values anyway. Additionally, the

phase-coded model is relatively simple making it mathematically tractable from a design stand-

point. Stated formally, a unit energy phase coded signal of duration T is defined as [7]

s(t) =
1√
T

N

∑
n=1

exp( jφn)rect
(

t− (m−1/2)tb
tb

)
(2.28)

where rect(·) is defined

rect(t) =

 1 −1/2 < t < 1/2

0 otherwise
(2.29)

and the N phase values, φ1, φ2, · · · , φN are collectively the phase code. tb is the time width of each

rect(·) and is known as the chip time. Since the model is based on a sequence of rectangular chips,

the autocorrelation can be evaluated as the discrete correlation of the phase coded sequence with

itself. The continuous time autocorrelation is then a linear interpolation of the discrete correlation

as is seen in Figs. 2.11 and 2.12.
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2.2.2.1 Phase-coded Waveform Examples

As a field, there has been a huge number of contributions to the study of phase codes, far too many

to study in detail here. However, many excellent resources exist such as [6, 7]. As a representative

example, Barker codes and Minimum Peak Sidelobe (MPS) codes are discussed in some detail

here while some other design schemes are introduced.

Perhaps the most well known set of phase codes are the Barker codes. Originally developed

in 1953, Barker codes realize a peak to sidelobe ratio (PSL) of 1/N where N is the length of the

code [47]. Barker codes are binary codes in that the phase values only take on one of two antipodal

states usually referred to as 1 and 0 which map to π and 0 respectively but, any two relative states

are acceptable so long as that are opposite of each other on the unit circle. The unfortunate aspect

of Barker codes is that they are only known to exist for values N ≤ 13. The N = 13 Barker code

autocorrelation is shown in Fig. 2.11.

With this limitation in mind, numerous authors have sought to find the next best thing which

are termed minimum peak sidelobe (MPS) codes. As the name implies, for a length N binary

code, the MPS sequence achieves the lowest possible sidelobe level. Due to the binary nature of

the code, numerical optimization methods are not suited to the problem. Consequently exhaustive

searches have been employed to find MPS codes. The problem with an exhaustive search is how

many sequences there are for a given value of N since Ns = 2N where Ns is the number of candidate

binary sequences. In 1975, Lindner implemented such an exhaustive search for N ≤ 40, but due

to the sheer number of codes to check, the computerized search took 50 days of computation [48]!

Since then, other more efficient approaches have extended the list of known MPS codes such

as [49] which found codes all the way to N = 70. Fig. 2.12 shows the autocorrelation of an MPS

code for N = 64 where the optimal PSL happens to be 4/N or 1/16.

If one considers codes with larger alphabets such that φn is allowed to take on values beyond

just π or 0, sequences which meet the Barker code performance of 1/N can be found for longer than

N = 13 sequences. These are known as polyphase barker codes [50]. Beyond Barker, polyphase

Barker, and MPS codes, numerous other code designs have been proposed. These include Frank
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1/N

Figure 2.11: The autocorrelation of a length-13 Barker code

4/N

Figure 2.12: The autocorrelation of a length-64 MPS code
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codes [51], Zadoff-Chu codes [52], P-codes [53, 54], Golomb codes [55], and many more. [6–8]

provide excellent overviews of this topic along with a more in depth analysis of particular codes

and coding schemes.

2.2.2.2 Phase-coded Waveform Spectral Characteristics

To this point, little has been said about the spectral content of radar signals. In Section 2.1.2,

bandwidth was discussed with respect to the autocorrelation response and resolution, but for tones

and LFMs bandwidth is not really an issue from a waveform generation standpoint since each

have a spectra which decays or "rolls-off" quite quickly beyond its primary bandwidth. For phase

codes this is not the case. The rectangular shape of the chips and the instantaneous phase changes

between the chips tend towards waveforms with poor spectral roll-off.

Taking the Fourier transform of (2.28) yields

S( f ) =
1√
T

N

∑
n=1

sin(π f tb)
π f

exp( j(φn−2π f (n−1/2)tb)) (2.30)

and the power spectral density is then

|S( f )|2 = sin2 (π f tb)
T (π f )2

N

∑
n=1

N

∑
m=1

exp( j(φn−φm−2π f (n−m)tb)) (2.31)

which can be reduced to

|S( f )|2 = sin2 (π f tb)
T (π f )2

(
N +2

N−1

∑
n=1

N

∑
m=n+1

cos(φn−φm−2π f (n−m)tb)

)
(2.32)

which is a super-position of cosine modulated sinc squared functions which result in poor spectral

roll-off [56]. The cosine terms result in a repeating pattern of images every 1/tb Hz centered at 0

Hz in this baseband representation. These images are then attenuated by the sinc squared function.

For the Barker and MPS codes in Figs. 2.11 and 2.12, the spectra are plotted in Fig. 2.13 where

each spectrum has been normalized to the same bandwidth. Based on Fig. 2.13, the fundamental
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Figure 2.13: The power spectral density of the Barker and MPS codes from Figs. 2.11 and 2.12
respectively

bandwidth, | f | < 1/2, is determined by the chip length tb. In general, as with the LFM spectrum

in Fig. 2.6, the goal is to contain the spectrum to within this interval to the degree possible.

Otherwise, the transmit electronics will filter out the higher frequency components of the signal

leading to linear signal distortion and AM. This AM can then result in further non-linear distortion

in the high power amplifier. Even if the transmission system can handle the extended spectrum,

then the signal may interfere with other users and the receiver then needs to be able to handle the

wide bandwidth itself. Accepting such a wide bandwidth may result in additional interference to

the radar from other users that would otherwise be attenuated out of band if the radar could just

focus on the fundamental interval. Additionally, a wider bandwidth means accepting a higher noise

power as additional higher frequency noise is accepted [12].

Clearly, there are good reasons to keep the signal spectrally contained. Consequently, several

methods have been proposed to aid in spectral roll-off. One method is to smooth the phase transi-

tions by linearly changing the phase over a fraction of the chip width [7]. For bi-phase codes such

as the ones shown in this section, the bi-phase to quadriphase (BTQ) transform [57] and deriva-

tive phase shift keying [58] have been shown to be affective at containing the bi-phase spectrum.
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Still some increase in sidelobe levels is incured from these methods. Another approach is to use a

different shaping filter for the chips. Rather than using rectangular chips Chen and Cantrell sug-

gested using a Gaussian weighted sinc function [59]. However, this approach introduces AM to

the signal which presents its own problems. Finally, a method that was originally developed for

implementing poly-phase codes is discussed in the next Section.

2.2.3 Polyphase-coded Frequency Modulation

The last section ended with a discussion on the spectral challenges associated with implementing

bi-phase and poly-phase coded waveforms. Polyphase-coded Frequency Modulation (PCFM) was

developed as a means to address these issues [60]. The PCFM waveform model borrows heavily

from the continuous phase modulation (CPM) communications scheme which is commonly used

for power constrained applications where power efficiency is key such as the BluetoothTM wireless

standard [61–64]. Being a phase modulation scheme, CPM is constant amplitude like phase codes

making it amenable to high power transmitters. However, its phase function is continuous as well

making it actually a frequency modulation scheme with, in general, better spectral containment

than a purely phase modulated scheme.

The CPM signal model is predicated on a continuous wave (CW) signal in that it has no math-

ematically defined beginning or end such that

sCPM(t;I) = exp

(
j2π

m

∑
k=−∞

Ikhkq(t− kTs)

)
, mT ≤ t ≤ (m+1)T (2.33)

where I is an infinite length vector of information carrying symbols, Ts is the symbol time, hk is

a scalar known as the modulation index which can change with every symbol. q(t) is the symbol

phase response which itself is defined as

q(t) =
ˆ t

0
g(τ)dτ (2.34)

where g(t) is the frequency shaping filter or frequency pulse. To adapt (2.33) to a pulsed Radar
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waveform model, the communications aspects were dropped and the signal was made to be time

limited yielding

sPCFM(t;x) =

 exp
(

j ∑
N
n=1 xnq(t−nTs)

)
0≤ t ≤ (N−1)T

0 otherwise
(2.35)

where the N-length vector x = [α1 α2 · · · αN ]
T is comprised of the PCFM parameters which

have subsumed the 2π term [60, 65] in (2.33). (2.35) can alternatively be written in terms of the

frequency shaping filter such that (2.35) becomes

sPCFM(t;x) =

 exp
{

j
(´ t

0 g(τ)∗
[
∑

N
n=1 αnδ (t− (n−1)Ts)

]
dτ

)}
0≤ t ≤ (N−1)

0 otherwise
(2.36)

where the integration stage shows explicitly that the PCFM phase (and the CPM phase function

on which it is based) are continuous functions of times. For CPM, g(t) can take on many different

shapes yielding different advantages and disadvantages when it comes to spectral containment and

demodulation. PCFM however, was constructed as a means to implement poly-phase codes which

dictates q(t) should be a rectangular function such that at the end of every subpulse (every Ts

interval), the PCFM phase will match the phase of the poly-phase code it was meant to implement.

The shaping filter g(t) is normalized to integrate to 1 such that the shaping filter is

g(t) =


1
Ts

0 < t ≤ Ts

0 0 < otherwise
(2.37)

and the PCFM parameters are bounded on the interval αn ∈ {−π,π}. To then implement a poly-

phase code as a PCFM waveform, the PCFM code is computed as the piecewise difference of

the poly-phase code. Since the element by element difference of an N-length vector results in an

(N−1)-length vector, the first element of the N-length PCFM code is set to the first element of the

poly-phase code. In this way, the PCFM parameters are akin to instantaneous frequencies. Such
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a process results in the phase functions in Fig. 2.14(a) where a P4 code [54] has been adapted

to the PCFM model to improve spectral containment. 2.14(b) shows the dramatic improvement

in spectral containment however 2.14(c) shows a degradation in the PSL level has likewise oc-

curred. Given the spectral containment capabilities of the PCFM model, it did not take long for its

capabilities as a standalone waveform design scheme to be realized. Instead of simply implement-

ing existing poly-phase codes, waveforms based on the PCFM model waveforms were optimized

and demonstrated in [66] where greedy search methods were shown as an effective means to find

PCFM codes which result in good spectral containment and low autocorrelation sidelobes.

More recently, a new representation of the PCFM model has been used to implement highly

efficient and effective PCFM optimization schemes which utilize gradient descent methods, the

subject of Section 2.5. Consider the integration and convolution steps of (2.36). If these are

evaluated, the PCFM phase takes on an exceedingly simple definition

φ(t;x) =
N

∑
n=1

αnbn(t), (2.38)

where each basis function

bn(t) =
ˆ t

0
g(τ− (n−1)Ts)dτ (2.39)

is the integral of g(t) and is time shifted by an integer multiple of Ts. Given the rectangular shaping

filter, each bn(t) becomes a time shifted ramp function such that

g(t) =


0 0 < t ≤ (n−1)Ts

(t− (n−1)Ts)/Ts (n−1)Ts < t ≤ nTs

1 nTs ≤ NTs

(2.40)

The definition of bn(t) results in what is known as first order PCFM. Additional integration stages

can be incorporated into the PCFM definition to realize functions which are continuous not only

in phase, but also frequency, chirp-rate, etc, but for the sake of brevity these are not considered

here, but can be found in [67]. Likewise, the basis functions in (2.40) could be generalized to any
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(a)

(c)(b)

Figure 2.14: A P4 code compared to its implementation as a PCFM waveform
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desirable function to realize coded FM (CFM) such as through the use of legendre polynomials

[68].

Other options for bn(t) aside, the convenience of (2.38) is realized when one considers how the

PCFM form has to be optimized and handled on a computer. It has to be sampled and this sampled

version needs to somehow capture the continuous nature of the PCFM phase that achieves excellent

spectral containment. Conveniently, the PCFM form can be easily discretized by sampling the

N basis functions directly and collecting these samples into the basis function matrix B. The

discretized PCFM waveform is then realized as

s = exp( jBx) (2.41)

where B is an M×N matrix. By bounding the PCFM parameters to the digital frequency space

[−π,π], the number of PCFM parameters, N, becomes approximately equivalent to BT such that

N ≈ BT . The ratio between M and N is then the oversampling factor K which represents the

ratio between the maximum digital bandwidth allowed by the number of samples in the discrete

waveform and the waveform’s 3 dB bandwidth. In Fig. 2.14(b), K = 10 since the edges of the

digital bandwidth extend to | f |= 5 and the 3 dB bandwidth occurs at approximately | f |= 1/2. The

key aspect of the oversampling factor is that it allows for the unambiguous digital representation of

the roll-off region. By ensuring the digital waveform exhibits good spectral roll-off in this region,

the physical implementation of the waveform will likewise exhibit a good spectral roll-off enabling

a high fidelity, physical radar waveform.

Given these parameters, the original PCFM formulation guaranteed that for an oversampling

factor of K, there were also K samples of the ramping portion of each bn(t). In [69], it was shown

that by relaxing the condition N ≈ BT such that N > BT further sidelobe suppression could be

achieved. However, to guarantee a BT lower than N, the PCFM parameters had to be further

restricted to the interval [−π/L,π/L] where L is the termed the over-coding factor. Given [69]

utilized a greedy search, to maintain the new interval the search just ignored values outside that
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interval.

In further optimization work, gradient descent methods were utilized. Since explicitly limiting

the interval of the PCFM parameters would greatly complicate the gradient descent implementa-

tions if not make them impossible, the optimizations themselves were designed to seek spectrally

contained solutions regardless of the degree of over-coding. In [23], this was achieved using a Fre-

quency Template Error (FTE) metric, which had previously been examined in [66], to explicitly

optimize for a good spectral roll-off. In [70], only initializations which tend towards spectrally con-

tained solutions were considered. In [71], since the cost function did not tend towards spectrally

contained solutions, no over-coding was used and spectral containment was achieved explicitly

through the PCFM form itself. In general, the PCFM form has been used in many of ways for a

variety of design goals some of which will be discussed in the next section.

2.2.4 Random FM Waveforms

The previous sections largely considered the performance of single waveforms, but their perfor-

mance can be considered in aggregate as well. To do so, the concept behind noise waveforms is

relatively simple. Given a set of unique individual waveforms where the sidelobe response of one

waveform is completely uncorrelated with the response of others then when coherently summed,

the sidelobe responses of the different waveforms will add in a noise like manner. Thus, through

coherent integration as discussed in section 2.1.3, the sidelobe response can be mitigated just like

the noise response.

To demonstrate this, Fig. 2.15 shows the same scene examined in numerous figures thus far, but

tested with varying numbers of noise waveforms (not necessarily RFM) under three different CPI

lengths ranging from 1 to 10 to 100. Critically, this is a pulse agile setting where a unique pulse is

transmitted at every PRI. In Fig. 2.15(a) with only one waveform to work with, objects 4 and 6 are

obscured and the scene looks much like Fig. 2.7. In Fig. 2.15(b), object 4 has now been revealed

from underneath the noise, but in Fig. 2.15(c) where 100 unique noise waveforms are used, object

6 has been revealed and there are no visible sidelobes. It is not that these waveforms do not have
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1 2 3 4 56

1 2 3 4 56

1 2 3 4 56

1 
Noise Waveform

10
 Noise Waveforms

100
 Noise Waveforms

Figure 2.15: The noisy radar data from Fig. 2.2 with varying CPI sizes of 1, 10 and 100 corre-
sponding to (a), (b), and (c) respectively
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1 2 3 4 56

Sidelobes

Sidelobes

Sidelobes

100 of the SAME
Single

 Noise Waveform

Figure 2.16: The noisy radar data from Fig. 2.2 but the transmit waveform is a single noise
waveform with a 100 pulse CPI

sidelobes, rather the sidelobes are already at or below the noise floor so they are indistinguishable

from the noise. Since they are noise waveforms, the sidelobes then decay with the noise level as

more and more waveforms are coherently integrated. This is in direct contrast to Fig. 2.16 where

instead of transmitting and coherently integrated 100 unique noise waveforms, the same single

noise waveform was transmitted at every PRI. The noise floor is lower, but this time the sidelobes

are revealed, not suppressed, and object 6 is obscured.

Given the sidelobe suppression shown in Fig. 2.15, radar noise waveforms offer a unique

performance advantage such that better detection can be achieved in the presense or large returns

by simply transmitting more unique waveforms. The question then is how to make and design

them.

In 1959, Horton answered this question simply for use on aircraft altimeters. Just transmit

noise [22]. Surely if the radar waveform itself is literally noise then it will exhibit the desired noise

like characteristics. However, just transmitting noise implies significant AM resulting in a high

PAPR making it poorly suited for high power operation. To overcome this, one could consider the

noise waveform implementations suggested by [27–29, 72] where the noise modulation is in the
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phase such that the signals are constant amplitude and thus amenable to high power transmission.

This is the first mention of what are known as random FM waveforms which are the focus of this

work. The rest of this section introduces some the latest work on this topic.

2.2.4.1 Pseudo-Random Optimized FM (PRO-FM)

To achieve good autocorrelation sidelobes and spectral roll-off, PRO-FM utilizes an alternating

projection approach where a candidate waveform is projected in an iterative fashion between the

time and frequency domains [25, 26]. For the k iteration, the process is defined by the alternating

application of

rk+1(t) = F−1 {|G( f )|exp( j∠F{pk(t)})} (2.42)

and

pk+1 = u(t)exp( j∠(rk+1(t)) (2.43)

where F and F−1 are the Fourier and inverse Fourier transforms respectively, |G( f )| is some desired

spectral envelope, u(t) is a constant amplitude envelope, and ∠ extracts the angle of the argument.

The key to producing good RFM waveforms from (2.42) and (2.43) is the choice of |G( f )|.

In [25, 26], |G( f )| was chosen to be a Gaussian envelope. In terms of the spectrum a Gaussian

envelope exhibits decent roll-off aiding in spectral containment. In terms of autocorrelation per-

formance, since the inverse Fourier transform of a Gaussian function is likewise Gaussian, if the

PSD of the waveform is Gaussian then the autocorrelation will likewise be Gaussian resulting in

ideally zero autocorrelation sidelobes. In practice, the optimization will result in a good spectral

match, but not perfect.

To demonstrate the effectiveness of the PRO-FM approach. 100 random FM waveforms were

optimized according to (2.42) and (2.43) for a BT of 128. Adopting the PCFM notation for over-

sampling with respect to the 3 dB bandwidth, K was set to 4. These parameters and optimization

results are shown in Figs. 2.17 and 2.18 which show the resulting spectra and autocorrelations

respectively.
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Figure 2.17: RMS spectrum of 100, optimized PRO-FM waveforms and their desired template

Figure 2.18: Coherently integrated and RMS autocorrelations of 100 PRO-FM waveforms com-
pared to the RMS autocorrelation of 100 generic noise waveforms
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In Fig. 2.17, the RMS spectrum of the 100 PRO-RM waveforms matches the spectral template

out to about | f | < 1 (2 times the 3 dB bandwidth) before it deviates from the template due to the

rectangular pulse shape. Thus the PRO-FM waveforms exhibit decent spectral roll-off. In 2.18,

perhaps the most impressive aspect of PRO-FM is its RMS autocorrelation response. For a generic

noise waveform such as white Gaussian noise, the RMS autocorrelation sidelobes should be at

about−10log10(BT ). After optimization, the PRO-FM RMS sidelobes near the mainlobe are a full

order of magnitude better at about −20log10(BT ). Then to demonstrate the noise like coherent

integration of random FM waveform sidelobes, the coherent integration of the autocorrelations

results in an approximately 10log10(100) = 20 dB sidelobe level improvement versus the RMS

sidelobes since 100 autocorrelation were summed.

These waveforms have been demonstrated experimentally and they have been utilized for

numerous applications such as for spectral notching to limit the impact of in band interference

[73–75], radar and communications spectrum sharing [76–78], simultaneous dual-polarized radar

[79], non-linear harmonic radar with FM-noise waveforms [80], and even random movement radar

which mimics the human eye [81].

Since the formulation of PRO-FM, a few other approaches have been formulated to optimize

random FM waveforms such as Temporal Template Error (TTE) waveforms which utilize a hybrid

approach between a gradient based optimization and a projection [24], and Logarithmic frequency

template error (Log-FTE) waveforms which utilize a gradient descent optimization and the PCFM

waveform model approach to achieve excellent spectral containment [23]. See [11] for an overview

of several random FM waveform implementations.

2.2.4.2 Process Based Random FM Waveforms

As apposed to the previously discussed random FM waveform approaches which are optimized

or designed on an individual level, process based random FM waveforms are more similar to

drawing a sample function from a random process. Some examples of this kind of implementation

are [27–29, 31, 72, 82, 83], where the phase function of the waveforms are based on a Gaussian
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random process and instantiating the phase function is as simple as using an RNG to generate

the phase and thus the waveforms. Further, [30] actually bases the phase function of constant

amplitude orthogonal frequency division multiplexing (OFDM). Using this kind of methodology,

creating waveforms with a given set of predefined characteristics is very cheap computationally

speaking.

The majority of this dissertation expands these types of waveforms and on the work in [31].

Chapter 3 discusses these kinds of waveforms within the classical terminology of random variables

and processes and how they translate to a more radar centric perspective. Chapters 4-5 put these

concepts to work in designing what are called waveform generating functions (WGFs) to achieve

desirable radar waveform characteristics.

2.3 Continuous Wave Radar

In a pulsed mode, over a PRI the energy on target will be proportional to the average power of the

transmission. If the pulse is constant amplitude and it has power Pt, then the average power over a

PRI is

Pavg =
Pttd
TPRI

(2.44)

where td is the duty factor and TPRI is the length of the PRI in seconds. The duty factor arises from

the fact that the radar is only transmitting for a fraction of the time. If the transmitter is only active

5% of the time, then td = 0.05. The distinction between a pulsed mode and continuous wave (CW)

radar lies in the duty factor. A CW radar transmits 100% of the time so td = 1. In the context of

(2.44), this means a CW radar can transmit at a fraction of the power of a pulsed radar and achieve

the same power on target. However, transmitting continuously presents other issues [32].

In a pulsed mode, the highly sensitive, delicate receive electronics have to be shut off during

transmission to protect them from the extremely high output power of the transmitter that would

otherwise break them. This results in a blind range which is proportional to the pulse length. How-

ever after transmission, the receiver can listen without being drowned out by the transmitter. For a

39



CW radar, this is no longer the case. The transmitter and receiver are necessarily simultaneously

operating so the receiver has to contend with the direct path from the transmitter. Even though CW

radars can get away with transmitting at lower powers overall the, the direct path signal, if unmiti-

gated, would be orders of magnitude stronger than any returns. To combat this, a large part of CW

radar design is devoted to mitigating direct path interference [32, 84]. Still, this constraint leads to

CW radars usually be low power systems with relatively short operating ranges. (Although, there

is at least one major exception to this due to special circumstances [85]).

In terms of the transmit waveform and processing, CW operation enables some interesting

modes. In frequency modulated continuous wave (FMCW) radar, the transmission is frequency

modulated such as with continuous repetitions of an LFM or an alternating sequence of up-chirps

and down-chirps. With appropriate processing, range and velocity information can be obtained

[86].

In terms of noise radar, the approaches proposed by [22, 72] were CW based. The original

PRO-FM formulation was likewise for CW operation [25] where matched filtering was used by

cutting the transmit waveform into contiguous segments. The advantage CW radar provides to

noise waveforms is an extremely high BT . In general, for noise waveforms their sidelobe levels are

proportional to their BT . In a pulsed mode we can consider the concept of an aggregate BT which is

the BT of an individual waveform times the number of waveforms in a CPI. This aggregate BT will

be proportional to the final sidelobe level after coherent integration. However, if each waveform

were longer or more were transmitted during a CPI, then the aggregate BT would increase for a

given bandwidth. The limit of this process is CW radar which intuitively achieves the highest BT

for a given bandwidth. For noise radar, this is important because it mitigates the interference effect

of the direct path by lowering it sidelobes. If the sidelobes of the direct path are low enough, they

will not mask targets of interest. For the CW random FM waveforms designed in Chapter 5, the

same segmented matched filtering process will be used.
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2.4 Doppler Processing and the Ambiguity Function

2.4.1 The Doppler Effect

One the most useful capabilities of many radar systems is their ability to accurately discern the

velocity of a given object, whose ability to do this is based on the Doppler effect. Just about

everyone has experienced the Doppler effect in the context of a siren on an ambulance or firetruck

becoming lower or higher pitched as it moves away or approaches respectively. A similar effect

occurs with electromagnetic radiation.

To explain, consider an object moving radially away from a radar. When the radar transmits the

pulse the object is at some range R0 relative to the radar. However, by the time the leading edge of

the pulse reaches the object, the object will have moved beyond R0. Accounting for the velocity of

the object v and the speed of propagation of the radar pulse c, the time for the leading edge of the

pulse to come into contact with the object can be calculated by setting the position of the pulse’s

leading edge equal to the position of the object such that

ct = R0 + vt (2.45)

by solving for t. Doing so yields

t0 =
R0

c− v
(2.46)

where t0 represents the time when the leading edge of the pulse impinges on the moving object.

The round trip time is then two times this value such that

tr1 =
2R0

c− v
(2.47)

where tr0 is the total time from the transmission of the leading edge of the pulse to its returning to

the receiver. A similar analysis can be performed for the trailing edge of the pulse. With respect

to the leading edge of the pulse, the trailing edge is transmitted after a T second delay where T
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is the duration of the pulse. During the pulses transmission, the object has continued moving so

by the time the trailing edge leaves the transmitter it is at a new position R1. The delay from the

transmission of the leading edge of the pulse to the trailing edge of the pulse hitting the object is

then

t2 =
R1

c− v
+T. (2.48)

Based on the delay to transmitting the trailing edge of the pulse and the motion of the object,

R1 = R0 + vT . This transforms (2.48) into

t1 =
R0 + vT

c− v
+T. (2.49)

The fractional term in (2.49) represents the flight time of the trailing edge of the pulse. Doubling

this term realizes the delay from the transmission of the leading pulse edge to the reception of the

reflected trailing pulse edge such that

tr1 = 2
R0 + vT

c− v
+T. (2.50)

The difference between (2.50) and (2.47) represents the duration of the reflected pulse where

Tr = 2
R0 + vT

c− v
+T − 2R0

c− v
= T

c+ v
c− v

. (2.51)

In other words, the motion of the object has modulated the duration of the pulse such that the

returned pulse is longer or shorter depending on whether the object is moving away or towards the

radar respectively. (2.51) holds true so long as nothing is moving at a significant fraction of the

speed of light which should be true for any terrestrial application. The ratio between the received

duration and the transmit duration is then

Tr

T
=

c+ v
c− v

. (2.52)
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To this point the discussion has focused on the difference in arrival time between the leading

and trailing edges of a pulse, but (2.52) can be applied to any arbitrary points during a signal

transmission CW or otherwise. For a sinusoidal (tone) transmission, defining these points as the

beginning and end of a frequency period shows how this expansion or contraction of the pulse

effects frequency. Assuming T is the transmit period and Tr is the received period, then the change

in frequency is the reciprocal such that

fr

ft
=

c− v
c+ v

. (2.53)

Further since typically v� c, (2.53) can be approximated and the new frequency is

fr ≈ ft

(
1− 2v

c

)
. (2.54)

This can be rewritten in terms the transmit wavelength λ such that the Doppler frequency shift

takes on the familiar form

fD = fr− ft ≈−
2v
λ
. (2.55)

The question is then whether (2.55) is applicable to non-tonal waveforms such as the ones

discussed in the previous sections. This introduces the concept of narrow-band versus wide-band

signals and percent bandwidth. Percent bandwidth is defined such that

%BW =
B
fc
×100% (2.56)

where fc is the carrier frequency of the signal and B is the bandwidth of the signal by some metric

such as those mentioned previously. Generally speaking, if (2.56) is less than 10% then the signal

is considered narrow-band and the dominant impact of Doppler on the signal is described by (2.55).

Otherwise, the pulse duration modulation effect described by (2.52) needs to be used.
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2.4.2 The Ambiguity Function

Understanding how the match filtering process is impacted by Doppler shifts of the waveforms is

critical to evaluating the behavior of a given radar waveform. The prototypical means of assessing

this is through what is known as a ambiguity function. The ambiguity function is defined such that

A(τ, fd) =

ˆ +∞

−∞

exp( j2π fdt)s(t)s∗(t + τ)dt (2.57)

where f(d) is the Doppler frequency. Note that the only difference between the ambiguity function

and the matched filter is the addition of the Doppler term. That is, if fd is set to zero, the (2.57)

is the autocorrelation response. More specifically, (2.57) is the narrow band ambiguity function

where the Doppler frequency is approximated as only a function of the carrier frequency and the

waveform undergoes a uniform frequency shift. More general forms of the ambiguity function take

into account the pulse duration dilation to capture the Doppler shift for every frequency present in

the signal. However, for narrow-band signals, (2.57) is perfectly sufficient.

To understand how Doppler shifts can impact the match filtering process, Figs. 2.19 and 2.20

show the ambiguity functions of an LFM (down-chirp) and a PRO-FM waveforms both with a BT

of 128. In Fig. 2.19, the LFM ambiguity function conforms to a very regular structure sometimes

referred to as a "sheared ridge". As the degree of Doppler increases, there is an obvious coupling

between range and Doppler such that higher and higher amounts of Doppler will result in range

registration errors. This behavior is a direct result of the LFM’s linearly sweeping time-frequency

behavior. The vertical line at zero Doppler is exactly the LFM matched filter response. In Fig.

2.20, there is no such regular structure. Off from zero Doppler, there is no meaningful mainlobe

whatsoever. In this case it is not so much that a high degree of Doppler results in a range regis-

tration error so much that it would result in no registration at all. This is known as a "thumbtack"

response. The LFM ambiguity function is said to be Doppler-tolerant in that detection is possible

in the presence of significant Doppler, while this is clearly not the case for the PRO-FM waveform

and any noise like waveform like it. This brief discussion on the ambiguity function is meant to
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Figure 2.19: Range-Doppler ambiguity function of an LFM waveform

Figure 2.20: Range-Doppler ambiguity function of a single PRO-FM waveform
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demonstrate the significant effects Doppler shifts can impart on the match filtering process. A more

in depth discussion on the ambiguity function and Doppler in general can be found in numerous

resources such as [7, 32].

2.5 Gradient Descent Techniques

The different waveform design schemes employed in this work all utilize the gradient descent

class of optimization techniques. In mathematical optimization problems the goal is to minimize

(or maximize) some cost function value which measures some attribute of a problem. Often times

this is described as minimizing the error, but it could just as easily mean attempting to maximize

profits. In general, the mathematical optimization problem can be defined as [87]

minimize J(x)

such that fi(x)≤ ci, i = 1,2, . . . ,M
(2.58)

where x is a vector of parameters, each fi(x) ≤ ci is a constraint on the parameters where each ci

is a constant. The goal of any optimization process is then to find x∗ such that

J(x∗)≤ J(x) for all x. (2.59)

where the ∗ indicates x∗ minimizes the cost function value. As defined in 2.59, x∗ is a global

minimizer of J(x). That is there is no x such that J(x) is less than J(x∗). In practice however, it is

often only possible to find an x such that

f (x∗)≤ f (x) for all x ∈N (2.60)

where N is an infinitesimal open set (local neighborhood) containing x∗ [56].

In general, the gradient descent optimization process is iterative. At the kth iteration, the set of
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optimizable parameters is updated as

xk+1 = xk +αkpk (2.61)

where xk is the vector of parameters, pk is the search direction and αk is the step size or how far to

move xk in the direction of pk. Generally speaking, the step direction pk is chosen as

pk =

 −∇Jk when k = 0

−∇Jk +βkpk−1 otherwise
(2.62)

such that the search direction is a linear combination of the negative of the current gradient and the

previous step directions. Gradient descent techniques usually vary in their calculation of β . One

popular family of techniques are non-linear conjugate gradient (NLCG) techniques such as was

used to design PCFM waveforms in [70]. An excellent survey of NLCG methods can be found

in [88].

For this work however, the relatively simple heavy ball gradient descent method is used where

β is defined such that

0 < β < 1. (2.63)

In this way, the search direction has a kind of inertia where the search direction can not change

very quickly [89]. If the resulting search direction results in a direction of ascent, then it is reset to

the negative of the current gradient which is guaranteed to decrease the cost function value to some

degree. For the cost functions in this work, this method has been found to be a simple, efficient

means of reaching a locally optimal solution.

For the final dissertation, this section will be expanded upon to provide a more comprehensive

overview of optimization and gradient descent techniques.
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Chapter 3

Stochastic Waveform Analysis and Evaluation

The core goal of this entire work is to design, evaluate, and implement what are known as wave-

form generating functions (WGFs). By definition, a WGF is a random process whose sample

functions are intended to be radar signals. Of course, this definition is extremely general. It does

not say anything about the stochastic process other than its intended use. Without designing the

underlying random process of the, WGF the resulting "waveforms" could be extremely poor or

even nonsensical from a radar perspective. Consequently, there is a need to be able to evaluate the

WGF for its ability to create useful radar waveforms.

Since the WGF is a stochastic entity, it has to be evaluated using statistical tools and these tools

have to be framed such that they reveal useful characteristics of the WGF from a radar perspec-

tive. For example, a simple statistical analysis of the WGF may answer the question, "what is the

correlation between samples of the WGF separated by t seconds?" or "what is the mean value of

the WGF over time?", but the answers to these kinds of questions reveal little about the usefulness

of the WGF for producing good radar waveforms. Instead, from a radar perspective more use-

ful questions are, "on average what spectrum will the sample functions of the WGF possess?" or

"on average what will the matched filter response look like?". Answering these questions requires

applying additional nuance to the typical analysis of stochastic processes. With this in mind, the

analytical tools developed here build directly off of the fundamentals of random signals analysis

covered in any random signals text such as [40, 43, 90–92], so it is prudent to first cover the ba-

sics of these topics as they apply to the discrete time random processes designed as WGFs in this

work. The usual progression in these texts is to begin with a basic overview of random variables

and random processes before venturing into more advanced topics. The approach taken here is no
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different.

To begin, Section 3.1 provides a brief overview of the fundamentals of random variables

through examples, by introducing the concept of moments, and defining the relationships between

different random variables. Section 3.2 extends these ideas to random processes and the relation-

ships between them. Section 3.3 explains how the topics in apply to stochastically defined radar

signals and stochastic radar signal processing. Finally, Section 3.4 aggregates all this information

into a set of eight metrics for evaluating both CW and pulsed random processes as WGFs for their

ability to produce useful radar waveforms.

3.1 Random Variables Review

Generally speaking, random variables describe the possible outcomes of an experiment such as

rolling a die or the toss of a coin. For example, in the case of a fair die, there are six equally

probable outcomes while for a fair coin there are two equally probable outcomes. In either case

the experiment, that is the roll of the die or the flip of the coin, is entirely described by their

probability mass function or PMF. In the case of the fair die, this can be written as

pX(x = xi) =

 1/6 xi = 1,2,3,4,5,6

0 otherwise
, (3.1)

which can read as, "the probability that the random variable X is equal to xi is 1/6 for xi =

1,2,3,4,5,6 and 0 otherwise". Additionally, (3.1) has several other properties which generalize

to any probability mass function. Note that for (3.1), and any PMF in general,

pX(x = xi)≥ 0 (3.2)

and
n

∑
i=1

pX(x = xi) = 1. (3.3)
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In the case of (3.1), n = 6. To further characterize PMFs and random variables in general, it is

useful to define what are called moments which are calculated via the expectation operator, E[ · ]

such that the nth moment is defined

E[Xn ] =
N

∑
i=1

xi pX(x = xi), (3.4)

where N is the total number of possible outcomes of the random variable X . The simplest moment

is naturally the first moment which is also known as the mean and is defined such that

E[X ] =
N

∑
i=1

xi pX(x = xi) = µX , (3.5)

which can be intuitively understood as the sample average of the random variable X . In other

words, if more and more independent outcomes of the random variable X where averaged, the

results would approach µX . Additionally, central moments are defined relative to the mean such

that the nth central moment is defined

E[ (X−µX)
n ] =

N

∑
i=1

(xi−µX)
n pX(x = xi). (3.6)

The most commonly used central moment is the variance which is defined

E[ (X−µX)
2 ] =

N

∑
i=1

(xi−µX)
2 pX(x = xi) = σ

2
X , (3.7)

where the variance can be understood as the degree to which the outcomes of the random variable

vary around the mean. The positive valued square root of the variance is the standard deviation.

These definitions can be extended to continuous random variables which can describe many

natural processes such as the thermal noise in a circuit. These continuous random variables as

apposed to the example discrete random variable defined in (3.1) can take on a continuum of values

and are instead described by the probability density function (PDF). The continuous analogue to
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the discrete uniform (equal probability) PMF of the die roll in (3.1), is the continuous uniform

distribution defined as

pX(x) =

 1/(b−a) a < x < b

0 otherwise
. (3.8)

The outcome of an experiment described by (3.8) is equally likely to be any value in the range

a < x < b. Like the PMF, the PDF is also strictly positive although it integrates to 1 on the real

number line rather than summing to one over its members. The moments of a continuous random

variable are defined by an integral rather than a sum such that the nth moment becomes

E[Xn ] =

ˆ
∞

−∞

xn pX(x)dx, (3.9)

where the first moment is the mean and is defined

E[X ] =

ˆ
∞

−∞

xpX(x)dx = µX . (3.10)

The nth central moment becomes

E[ (X−µX)
n ] =

ˆ
∞

−∞

(x−µX)
n fX(x)dx. (3.11)

and the variance becomes

E[ (X−µX)
2 ] =

ˆ
∞

−∞

(x−µX)
2 fX(x)dx = σ

2
X , (3.12)

Together, moments and central moments for both the discrete and continuous random variable

are a useful means of evaluating their behavior, but often times two or more random variables will

be related to each other. These relationships can likewise be mathematically characterized.

Consider the fair die roll from above. What if two fair dice are rolled simultaneously? In the
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case of random variables X1 and X2 for the first and second die respectively, the joint PMF is

pX1,X2(x1 = x1,i;x2 = x2,i) =

 1/36 x1,i = 1,2,3,4,5,6; x2,i = 1,2,3,4,5,6

0 otherwise
. (3.13)

where the individual variables can take on any integer value from one to six and the probability of

any pair of values is 1/36. When rolling two fair dice it is intuitive that the roll of one die does

not impact the probability the other. In this way, X1 and X2 are independent in the sense that the

outcome of one does not impact the PMF of the other or vice versa. Consequently, in (3.13) the

probability of

pX1,X2(x1 = x1,i;x2 = x2,i) = pX1(x1 = x1,i)pX2(x2 = x2,i). (3.14)

Independence also provides an important result for expectations. For independent random variables

[40]

E[ X1X2 ] = E[ X1 ]E[ X2 ]. (3.15)

Now consider a new random variable, Y , where Y is sum of the outcomes between X1 and X2

such that

Y = X1 +X2 (3.16)

where the result of either X1 or X2 will clearly impact the value of Y . The relationship between Y

and either X1 or X2 can be measured by their respective covariance where

σXY = E [ (Y −E[ Y ])(X−E[ X ]) ] (3.17)

which is a measure of how Y and X move together. In words, how do they vary together around

their respective means? If they both tend to either be more or less than their means, then σXY will

be positive. If they both tend to have opposite signs about their means then σXY will be negative.

If they have no tendency to be either positive or negative relative to their means and each other,

then σXY will be 0.
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If σXY is something other than zero, then the variables are correlated to some degree. If the

covariance is zero then the variables are uncorrelated. However, they are not necessarily indepen-

dent. (3.17) is only a measure of the linear relationship between random variables. (3.17) can be

zero, but the random variables may be related in a non-linear way and thus uncorrelated but not

independent.

Finally, another useful tool for examining the behavior of random variables is the characteristic

function which is defined

ψX(ω) = E[exp( jωX)] =

ˆ
∞

−∞

exp( jωx) fX(x)dx. (3.18)

where this form can apply to both continuous and discrete random variables; however, in the

discrete case the PMF must be written in terms of Dirac delta functions. As a tool, the characteristic

function is an effective means of calculating the moments of the random variable X , since it is often

easier to calculate these moments from the characteristic function than it is to do so directly using

(3.4) or (3.9). More details on how this can be done can be found in [40, 90, 93]. Interestingly, the

characteristic function is extensively used in Chapters 4 and 5 of this work, but only indirectly and

not for calculating moments. This is made clear in those chapters.

In summary, this section acts a very brief introduction to the fundamentals of random variables

as they are used in this work. A much more comprehensive discussion on these topics can be found

in any random variables and stochastic processes dedicated textbook such as [40, 90, 93] to name

just a few.

3.2 Random Processes Review

One way to look at a random processes is as a sequence (continuous or discrete) of random vari-

ables. At any instant of time, the random process defines a random variable with its own PDF or

PMF and perhaps a dependence on other parts of the random process (other random variables). To

see this, consider the random walk denoted as X [m ] (square brackets indicate discrete time) and
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is defined as follows. At each instant of time, m, a fair coin is flipped. If it comes up heads, one

is added to the counter. If it comes up tails, one is subtracted from the counter. At time zero, the

counter is defined to be 0 such that X [0 ] = 0. The table below shows the PMFs of X [m ] for the

first several times m. For clarity, the zero valued cells have been filled with ’-’. At each time, m,

m
0 1 2 3 4 5

X [m ]

5 - - - - - 1/32
4 - - - - 1/16 -
3 - - - 1/8 - 5/32
2 - - 1/4 - 1/4 -
1 - 1/2 - 3/8 - 5/16
0 1 - 1/2 - 3/8 -
-1 - 1/2 - 3/8 - 5/16
-2 - - 1/4 - 1/4 -
-3 - - - 1/8 - 5/32
-4 - - - - 1/16 -
-5 - - - - - 1/32

Table 3.1: Random walk PMFs for m = 0,1,2,3,4,5

the value of X [m ] is described by the PMF in each column of Table 3.1. Something that is not

immediately evident from the table however, is the dependence between the different random vari-

ables at each time m. Based on the definition of the random walk, if X [m0 ] = 4, then X [m0 + 1 ]

can only equal either 3 or 5 with equal probability, but there is really no way to see that from the

content of Table 3.1.

This is much more apparent when viewing random processes from a more holistic perspective.

Rather than looking at the process as a sequence of random variables, it can instead be viewed as

a collection of member functions which each have their own probability of occurring. For the ran-

dom walk some possible partial sequences are shown in Table 3.2. where xa or any other subscript

indicates a unique sample function of the random process X [m ]. In this form, the dependence on

previous values is more obvious since the counter is only able to change by one unit at every time

step.
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m = 0, 1, 2, 3, 4, 5, 6, · · ·

xa[m ] = 0, −1, −2, −1, 0, −1, −2, · · ·

xb[m ] = 0, 1, 2, 3, 4, 3, 4, · · ·

xc[m ] = 0, 1, 0, −1, −2, −3, −2, · · ·

Table 3.2: Random walk partial sequences for m = 0,1,2,3,4,5,6

These observations made here regarding the random walk process and the characterization of

random processes in general is formalized in the following sections. However, this analysis will

focus only on discrete time stochastic processes. While the development in the following sections

can be generalized to continuous random processes, doing so is not necessary since the WGF

design of this work is performed using exclusively discrete time processes.

3.2.1 Correlation Functions

Table 3.1 demonstrates how a stochastic process at a given instant of time is itself a random vari-

able. Table 3.2 anecdotally showed how the random variables at different times can be correlated

with each other. In other words, if for a given sample function, the value at time n1 is known

and n1 and n2 are correlated, then something can be said about the sample function at time n2.

For a random process this correlation between samples at different times is described by the two-

dimensional autocorrelation function defined as

R[m1,m2 ], E [X [m1 ]X∗[m2 ] ] . (3.19)

Alternatively, the autocovariance function measures the relationship at times m1 and m2 relative to

the mean such that

V [m1,m2 ], E
[
(X [m1 ]−E[X [m1 ] ]) (X [m2 ]−E[X [m2 ] ])

∗ ] . (3.20)
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where the relationship between (3.20) and (3.17) is obvious. However, instead of considering the

relationship between different random variables, (3.20) considers the relationships that exist within

a random process at different times. If the random process X [m ] happens to be zero mean for all

time, then (3.19) and (3.20) are equivalent.

This concept can also be extended across different random processes using the cross-correlation

function where

RXY [m1,m2 ], E [ X [m1 ]Y ∗[m2 ] ] , (3.21)

or the cross-covariance function where

VXY [m1,m2 ], E
[
(X [m1 ]−E[X [m1 ] ]) (Y [m2 ]−E[Y [m2 ] ])

∗ ] , (3.22)

If the random processes X [m ] and Y [m ] are both zero mean for all time, then (3.21) and (3.22) are

equivalent.

Understanding the autocorrelation or the autocovariance function of a random process goes

a long way in characterizing that process; however, there a few properties of (3.19) and (3.20)

that can make them difficult to use, but primarily the issue is that they are a function of absolute

time which means to use these functions the underlying process must have an absolute time line.

Mathematically, this may not be an issue, but consider modeling the wave height on the ocean as

a random process. What does absolute time even mean in this context? In many physical systems

an absolute time reference makes little sense. Fortunately many of these same systems can be

modeled such that they are not functions of absolute time at all. Instead, their autocorrelation

function only depends on relative time.

For a stochastic process to be stationary in its autocorrelation function, two conditions must be

met. First its mean must be constant as a function of time such that

E [X [nm ] ] = µX , (3.23)
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and the autocorrelation function must be invariant to a constant time shift such that

R[m1,m2 ] = R[m1− `,m2− ` ] (3.24)

where ` is an integer. A random process which meets these conditions is said to be wide sense sta-

tionary (WSS). Stationarity can likewise be defined for higher order moments. A random process

which is stationary for all of its moments is said to be strict sense stationary (SSS).

If a process is WSS, then its autocorrelation can be defined more simply such that

R[` ] = E [X [m ]X∗[m− ` ] ] (3.25)

which is a function of only one variable, `. Such a behavior is useful and common to many real

processes even if only over short periods of time. Consider the wave height problem. The system

may be WSS while the wind speed and direction are constant, but once those change so to may the

properties of the wave height, but even stationarity over short time periods can be very useful such

as for human speech modeling [43, 94].

Finally, a random process may not be a function of relative time for all time shifts, but it may

be stationary for certain shifts. Such a random process is said to be cyclo-stationary where

R[m1,m2 ] 6= R[m1− `,m2− ` ] (3.26)

but

R[m1,m2 ] = R[m1−K`,m2−K` ] (3.27)

and K is some positive valued integer. If the interval K is small enough, it is often practical to

simply average the autocorrelation over that interval and to treat the random process as if it were

WSS anyway realizing

R[` ] =
1
K

K−1

∑
k=0

E [X [m+ k ]X∗[m+ k− `, ] ] . (3.28)
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Such an approach is used for the random processes in Chapter 5.

3.2.2 Power Spectral Density (PSD)

For any discrete function, whether it be something deterministic or the random processes consid-

ered here, spectral quantities are evaluated via the discrete-time Fourier transform (DTFT) which

is defined

S( f ) =
∞

∑
m=−∞

x[m ]exp(− j2π f m) −1/2 < f < 1/2 (3.29)

where the frequency variable f is in units of cycles per sampling interval.

The PSD of a random process describes the average power of the process at a particular fre-

quency. Since random processes are assumed to be infinite in time evaluating the PSD of a process

given the definition of the DTFT requires taking a limit such that the PSD becomes

S( f ) = lim
M→∞

E

 1
M

∣∣∣∣∣ M

∑
n=1

x[m ]exp(− j2π f m)

∣∣∣∣∣
2
 (3.30)

However, hidden within this definition of the PSD is that the PSD is actually a transformation of

the autocorrelation function. Expanding 3.30 yields

S( f ) = lim
M→∞

1
M

M

∑
m1,m2=1

E [x[m1 ]x∗[m2 ] ]exp(− j2π f (m1−m2)) (3.31)

where the expectation has been moved inside the summations by its linearity and the expectation

term is the definition of the correlation function for a given m1 and m2. However, this prevents

an issue. The frequency term is a function of only the difference between m1 and m2 meaning the

process could have different spectral characteristics at different absolute times, but (3.31) would

simply average them all. Consequently, the PSD is usually only considered for WSS processes,

cyclo-stationary processes, or processes which are stationary for some meaningful amount of time
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where ’meaningful’ is context dependent. Thus, assuming stationarity (3.31) becomes

S( f ) = lim
M→∞

1
M

M

∑
m1,m2=1

R[` ]exp(− j2π f `) = lim
M→∞

1
M

M−1

∑
`=−(M−1)

(M−|`|)R[` ]exp(− j2π f `)

(3.32)

where in the final part (3.32) like terms from the double summation were consolidated. Finally,

(3.32) can be further rewritten such that

S( f ) =
∞

∑
`=−∞

R[` ]exp(− j2π f `)+ lim
M→∞

1
M

M−1

∑
`=−(M−1)

|`|R[` ]exp(− j2π f `) (3.33)

where, under the condition that |`|R[` ] decays quickly enough, the limit term in (3.33) approaches

zero such that

S( f ) =
∞

∑
`=−∞

R[` ]exp(− j2π f `) (3.34)

which is simply the DTFT of the autocorrelation function. Likewise, a cross-spectral density

between two jointly stationary random processes can be defined such that

SXY ( f ) =
∞

∑
`=−∞

RXY [` ]exp(− j2π f `) (3.35)

More details on this formulation of the PSD and the autocorrelation above can be found in [43,91,

92, 95].

3.2.3 Estimation

The previous subsections defined the mathematical tools used to examine random processes, but

practically speaking these quantities are typically unknown in advance and the entire goal is to

determine these properties. Consequently, they must be estimated from a finite amount of recorded

data. Broadly speaking, this estimation process falls into one of two categories, either model-

based or model-free estimation. In model-based estimation, the process being analyzed is assumed

to have some sort of structure. If this assumption is correct, then parameters such as the autocor-
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relation and PSD can be effectively estimated with relatively little data. For example, model based

estimation is used for the efficient digitization of human speech and in adaptive filtering [43, 94].

For the purposes of this work and in the context of basic radar processing such as match filtering

and spectral estimation, it is more important to consider model free estimation.

3.2.3.1 Random Variable Estimation

Estimation is easiest to understand from the viewpoint of estimating the properties of a single

random variable. Consider some random variable, X , with some unknown distribution, but its

mean (first moment) needs to be determined. To do so, several outcomes are pulled from the

random variable and are denoted as, xn, where n is the index of the outcome sample. Estimating

the mean of this random variable can be performed by taking the sample average of the independent

samples such that

µ̂X =
1
N

N

∑
n=1

xn (3.36)

where the hat of µ̂X indicates this is an estimate of the expected value, µX , as defined in (3.23). At

a basic level, an estimator is an empirical tool, while the expectation operator is an analytical tool.

In (3.23), the expectation operator uses known properties of the random variable to mathematically

determine the first moment. (3.36) however assumes nothing about the random variable and then

uses actual, measured sample values to approximate the moment and so there will inevitably be

some error in the estimate. Perhaps most confusingly, this implies the estimator itself is also a

random variable with its own mean and variance. Consequently, the expectation operator can be

used to analytically determine the properties of the estimator itself. Applying this to (3.36) realizes

E[ µ̂X ] =
E[∑N

n=1 xn ]

N
=

NµX

N
= µX . (3.37)

Intuitively, (3.37) indicates that (3.36) should approach exactly the mean value of the random

variable, but it does not reveal how quickly it will approach that value given some number of
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samples, N. To do that, it is necessary to evaluate the variance of (3.36) which is by definition

σ
2
µ̂X

= E

 ∣∣∣∣∣ 1
N

N

∑
n=1

xn

∣∣∣∣∣
2
− ∣∣∣∣∣E

[
1
N

N

∑
n=1

xn

]∣∣∣∣∣
2

(3.38)

Expanding the first term and utilizing the result of (3.37) to evaluate the second terms yields

σ
2
µ̂X

=
1

N2 E

[
N

∑
n1,n2=1

xn1x∗n2

]
−|µX |2. (3.39)

For each term in the double summation where n1 = n2, the result is σ2
X + |µX |2, but since the

samples are independent of each other, where n1 6= n2 the result is simply |µX |2. Thus, (3.39)

simplifies to

σ
2
µ̂X

=
1
N

σ
2
X (3.40)

where the variance of the estimator is a scaled version of the variance of the random variable itself.

As N is increased, the variance of the estimator is decreased and better and better estimates of the

first moment are realized.

However, how helpful is this if σ2
X is also unknown? The variance can also be estimated

although doing so is somewhat more complicated. A variance estimator can be defined such that

σ̂
2
X =

1
N−1

N

∑
n=1
|xn− µ̂X |2 (3.41)

where µ̂X is the same sample mean defined in (3.36). Taking the expectation of this estimator

realizes

E[ σ̂2
X ] =

1
N−1

N

∑
n=1

E[ |xn− µ̂X |2 ] =
1

N−1

N

∑
n=1

E[xnx∗n− xnµ̂
∗
X − x∗nµ̂X + µ̂X µ̂

∗
X ]. (3.42)

Since the expectation is a linear operator it can be applied to each term individually such that (3.42)
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becomes

E[ σ̂
2
X ] =

N
N−1

(
(σ2

X + |µX |2)−2(
1
N

σ
2
X + |µX |2)+(

1
N

σ
2
X + |µX |2)

)
= σ

2
X (3.43)

where the estimator will approach the random variable’s variance. Unfortunately, determining the

variance of (3.41) involves the fourth moment of the random variable. Nevertheless, the effective-

ness of second order estimators is an important topic especially as it pertains to random processes

and to the waveforms designed in this work.

3.2.3.2 Autocorrelation Estimation

Often time the focus of estimating autocorrelation functions is on WSS processes which is reason-

able. WSS processes have some convenient properties and are found in many practical situations.

However, for the purposes of the content of Chapter 4, it is important to specifically address how

the correlation function of a non-stationary process can be estimated. To do so, two things are

necessary: independent sample functions of the process and an absolute time reference. Consider

the random walk sample functions shown in Table 3.2. Each sample function is independent of the

others and has a well defined starting point. Thus, a given sample term in the correlation function

can be evaluated such that

R̂[m1,m2 ] =
1
N

N

∑
n=1

xn[m1 ]x∗n[m2 ] (3.44)

where n references a given sample function and m1 and m2 refer to specific discrete times within

those sample functions. The independence of the different sample functions makes this possible.

It is important to note as well that for non-stationary process the absolute values of m1 and m2 are

important since in general R[m1,m2 ] 6= R[m1 + k,m2 + k ] where k is an integer. In other words,

for each sample function there is only one available sample for each m1 and m2. Effectively,

the estimation in (3.44) is identical to that of a single random variable. The primary caveat is
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maintaining a consistent reference time. For this estimator, the expectation is

E[ R̂[m1,m2 ] ] =
1
N

N

∑
n=1

E[xn[m1 ]x∗n[m2 ] ] =
NR[m1,m2 ]

N
= R[m1,m2 ]. (3.45)

For a WSS process evaluating the autocorrelation can technically be performed in the same

way. However, since for a WSS R[m1,m2 ] = RXX [m1 + k,m2 + k ], each sample function techni-

cally provides an infinite number of samples for each relative time value. Consequently, an entire

autocorrelation function can be estimated to arbitrary precision with a single sample function. Al-

though, WSS does not guarantee that each sample function has the same autocorrelation. It only

guarantees that the autocorrelations of each sample function are themselves a function of only

relative time. This distinction is made by examining the difference between time averages and en-

semble averages. First, consider the ensemble average autocorrelation of a WSS discrete stochastic

process which is defined

R[` ] = E[X [m ]X [m+ ` ] ] (3.46)

The ensemble average as defined by the expectation operator is the average autocorrelation across

all possible sample functions, but not every sample function will necessarily have the same au-

tocorrelation. Alternatively, the time average estimate of the autocorrelation for a given sample

function is defined

R̂[` ] = lim
M→∞

1
M

M

∑
m=1

x[m ]x∗[m+ ` ] (3.47)

Then, if the time average estimate approaches the ensemble average in a squared error sense as

M→ ∞, then the process is said to be ergodic in the autocorrelation. Stated succinctly

R[` ] = E[X [m ]X [m+ ` ] ] = lim
M→∞

1
M

M

∑
m=1

x[m ]x∗[m+ ` ] (3.48)

where x[m ] is some sample function of the ergodic process X [m ] [40]. A similar statement can be

made for the mean.

Thus, given M samples of a discrete ergodic process, the lags of the autocorrelation from 1−M
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to M−1 can be estimated from a time average such that

R̂[` ] =
1

M−|`|

 ∑
M
k=1+` x[k ]x∗[k− ` ] 0≤ ` < M

∑
M+`
k=1 x[k ]x∗[k− ` ] −M < ` < 0

(3.49)

where the factor out front normalizes each lag to the number of samples being averaged. (3.49)

is known as the standard unbiased autocorrelation sequence (ACS) estimate where ACS is another

name for the discrete autocorrelation function. However, the normalization term in (3.49) intro-

duces some issues. First of all for a total of M samples, for a lag of |`|= 1 there are M−1 unique

products to average. For |`| = 2, there are M− 2 unique products to average. For |`| = M− 1

there is only one product to work will. Consequently, the larger lags will possess a much greater

degree of variance compared to small lags and vary erratically. Secondly, (3.49) is not guaranteed

to be postive semidefinite such that a PSD estimate derived from (3.49) could be negative valued

at certain frequencies [40, 43, 91, 92, 95].

These concerns can be addressed by only normalizing by the total number of samples such that

R̂[` ] =
1
M

 ∑
M
k=1+` x[k ]x∗[k− ` ] 0≤ ` < M

∑
M+`
k=1 x[k ]x∗[k− ` ] −M < ` < 0

. (3.50)

which is known as the standard biased ACS estimate. Normalizing in this fashion diminishes the

impact of the erratically varying higher lag terms and is guaranteed to be postive semi-definite such

that any PSD estimate obtained from (3.50) is guaranteed to be positive. For these reasons, (3.50)

is more commonly used [43].

However, as the name implies, (3.50) introduces what is known as a bias. Consider the ex-

pectation of (3.50). Each autocorrelation lag becomes scaled by its own number of terms in the

summation such that

E[ R̂[` ] ] =
(

1− |`|
M

)
R[` ] −M < ` < M. (3.51)

the estimator converges to a windowed version of the autocorrelation function rather than simply
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the autocorrelation itself. This windowing effect is perhaps more important when considering the

spectral estimation techniques described in the next section.

3.2.3.3 Power Spectral Density Estimation

The most straightforward way to estimate the PSD is to simply use the definition. Assuming X [m ]

is WSS and given M data samples, the definition of the PSD given in (3.30) becomes

Ŝ( f ) =
1
M

∣∣∣∣∣ M

∑
m=1

x[m ]exp(− j2π f m)

∣∣∣∣∣
2

(3.52)

which is known as the periodogram spectral estimator. As a method the periodogram has been

used to find periodicity in time series data for well over 100 years at this point [96, 97].

The behavior of the periodogram can be examined by expanding the magnitude squared term

such that (3.52) becomes

Ŝ( f ) =
1
M

M

∑
m1,m2=1

x[m1 ]x∗[m2 ]exp(− j2π f (m1−m2)) (3.53)

Since the process is assumed to be stationary only the difference between m1 and m2 is relevant to

the estimation process combining like terms in (3.53) allows for a single summation described by

the variable ` such that

Ŝ( f ) =
1
M

M−1

∑
`=−(M−1)

exp(− j2π f `)

 ∑
M
k=1+` x[k ]x∗[k− ` ] 0≤ ` < M

∑
M+`
k=1 x[k ]x∗[k− ` ] −M < ` < 0

, (3.54)

which is simply the DTFT of the standard biased autocorrelation estimate. Written more succinctly,

(3.54) becomes

Ŝ( f ) =
M−1

∑
`=−(M−1)

R̂[` ]exp(− j2π f `). (3.55)

However, the PSD estimate based on the autocorrelation estimate is known as a correlogram even

though it is equivalent to the periodogram in its result [98]. Unfortunately, without modification
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the periodogram (or correlogram) estimate actually does a poor job of estimating the spectra for

because of bias and variance.

First, the expectation of (3.55) yields

E[ Ŝ( f ) ] =
M−1

∑
`=−(M−1)

E[ R̂[` ] ]exp(− j2π f `) =
M−1

∑
`=−(M−1)

(
1− |`|

M

)
R[` ]exp(− j2π f `) (3.56)

where the windowing of the standard biased autocorrelation estimate will now impact the PSD

estimate. This biasing window is notated such that

wB[m ] =


(

1− |m|M

)
|m|< M

0 otherwise
, (3.57)

where m is an integer. (3.57) is known as a triangular or Bartlett window. It should be noted

that the periodogram and the correlogram are both based on the DTFT which sums over (−∞,∞),

but with only a finite amount of data from which to estimate, these sums are necessarily truncated

to the relevant intervals in (3.52) and (3.55). Regardless of this truncation, the properties of the

DTFT still apply. Consequently, the product of the autocorrelation and its bias is equivalent to a

convolution in the frequency domain such that.

E[ Ŝ( f ) ] =
ˆ 1

2

− 1
2

S(θ)WB( f −θ)dθ (3.58)

For the Bartlett window, the DTFT can be calculated such that

WB( f ) =
1
M

(
sin(π f M/2)
sin(π f/2)

)2

. (3.59)

Thus, even with a perfect, zero variance estimate of the periodogram, the resulting PSD estimate

itself would still be biased by a convolution with the window, (3.59), as pictured in Fig. 3.1. This

convolution primarily results in two effects on the spectral estimate. First, the mainlobe of the

window has a smoothing effect on the estimate such that the frequency resolution is limited. The
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Figure 3.1: The normalized Bartlett spectrum on a dB scale with M = 32 as defined by (3.59)

sidelobes on the other hand result in what is known as spectral leakage where power from higher

portions of the spectrum are smeared into the lower power portions of the roll-off region. The sec-

ond periodogram problem, variance, is more difficult to evaluate in general since it depends on the

fourth order moments of a given random process. (Although, to foreshadow, this can be evaluated

for the WGFs optimized in Chapters 4 and 5.) Still, although such a proof is beyond the scope of

this work, it suffices to say that the periodogram is an inconsistent estimator. In other words, even

as the size of the periodogram, M, is allowed to approach infinity the variance of the periodogram

will not approach zero. Intuitively, this effect is evident from the biased autocorrelation estimate.

Regardless, of how large M becomes, the higher lags as ` approaches M in the autocorrelation

estimate will always posses a high degree of variance due to the limited number of terms being

averaged. A more complete discussion on this topic can be found in [43, 99].

Due to the bias and variance issues inherent to the periodogram, over the decades various tech-

niques have been introduced to create trade-offs between these two effects. One such method

involves the use of windows. Rather than simply accepting the Bartlett window, windowing tech-

niques introduce their own windows with more desirable characteristics to the data. To do so, the
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Blackman-Tukey spectral estimator is defined such that [98]

ŜBT( f ) =
K−1

∑
`=−(K−1)

w[` ]r̂[` ]exp(− j2π f `) (3.60)

where w[` ] is an even function where usually w[0 ] = 1 and w[` ] = 0 for |`| ≥ K and w[` ] decays

smoothly to zero with increasing |`| and K < M. Since this window weights the lags of the auto-

correlation estimate, it is known as a lag window. While this is a time domain window, its impact

can also be written in frequency domain such that

ŜBT( f ) = Ŝ( f )∗W ( f ) (3.61)

which shows that the Blackman-Tukey spectral estimate is itself a biased form of the periodogram

estimate and ∗ denotes convolution. The key point however is that w[` ] can be designed to achieve

a useful trade-off in the estimate between variance, resolution, and spectral leakage. For example

defining w[` ] to be a rectangular window of length K where K < M will produce a lower variance

estimate since such a window would remove the highest variance members of r̂[` ]. However, this

comes at the cost of resolution. A full discussion on this topic is beyond the scope of this work, but

it can be shown that in general if the spectral resolution of the periodogram is on the order of 1/M,

then the spectral resolution of the Blackman-Tukey spectral estimate will be on the order of 1/K.

Likewise if the variance of the periodogram is normalized to 1 then the Blackman-Tukey spectral

estimate variance will be on the order of K/M. Still, this only addresses the windows length. The

choice of the window’s shape represents a trade-off between smearing and leakage effects [43].

With these goals in mind, over the years a multitude of windows have been proposed some of which

are likewise used in radar processing to mitigate autocorrelation sidelobes for LFM waveforms.

Some of the more common windows include Hanning, Hamming, Kaiser, and Blackman windows.

Much more information on these and other windows can be found in [41, 43, 91, 92, 100, 101].

Fundamentally, the Blackman-Tukey spectral estimate treats the M available samples as a sin-

gle record to be evaluated all at once. In contrast, there are methods which break the data into
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multiple chunks, process these chucks individually, and then average those results to obtain lower

variance, poorer resolution estimates than the periodogram estimate alone.

The simplest of these approaches is the Bartlett method [102, 103] where a data set of M

samples is split into N data sets of N = M/W such that each set is W samples long. A periodogram

(or correlogram) is then evaluated for each subset and then these results are averaged. The Bartlett

method can be written such that the spectral estimate is

ŜB( f ) =
1

W

N

∑
n=1

Ŝn( f ) (3.62)

where the subscript n denotes each member of the N data sets and Ŝn( f ) is the periodogram esti-

mate of the nth member. The frequency resolution of this method is on the order of the resolution

of the individual periodograms which is 1/W while the variance is reduced by a factor of N. This

method is essentially how spectral analysis is performed in Chapter 5. In a similar way the Welch

method divides the data record into segments, but it differs in that it also allows these segments to

overlap each other and for these segments to be windowed [104].

Overall, the estimation of the PSD of a given random process is a deceptively difficult task. On

the surface it seems like it should be as simple as taking a partial DTFT of the data and moving on

but as has been discussed, this periodogram estimator is a poor estimator in both its bias a variance.

This problem has motivated the development of numerous refined spectral estimation techniques

many of which were at least introduced here. For this work, the most relevant of which is the

Bartlett method which will be used to process noise-like, CW radar signals.

3.3 Stochastic Processes as Radar Signals

The beginning of this chapter introduced the admittedly vague concept of the WGF, but with the

tools of Sections 3.1 and 3.2, it is now possible to characterize WGFs in the context of radar

processing. For example, if a WGF is meant to produce pulsed waveforms, then the underlying

stochastic process must be time limited. If it produces CW waveforms, it must be unlimited in time.
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If it is meant to produce FM waveforms, then it must be constant in amplitude. Whether or not

these characteristics are true for a given WGF will have an impact on how the WGF is evaluated.

This is especially important when considering the difference between a pulsed WGF versus a CW

one. In any case however, evaluating the WGF requires adapting the general stochastic process

autocorrelation and power spectral density concepts to their specific meanings in a radar context.

3.3.1 Pulsed Stochastic Processes as Radar Signals

Thus far stochastic processes have been defined as infinite in time, but for a WGF to produce

pulsed radar waveforms, it must be time-limited. One solution to this problem is to apply a window

function such as a rectangular window to an infinite in duration random process to force it to be

time limited. However, the approach taken here is to define the stochastic process to be time

limited by definition. Defining a stochastic process in this way is unusual and it necessarily means

that these WGFs are not stationary. Clearly, if the process is strictly 0 valued for some time and

then allowed to vary, its autocorrelation function will also vary as a function of absolute time.

Consequently, when examining the pulsed WGFs defined here, the focus is on ensemble averages.

With this in mind, consider a complex, time-limited stochastic process which is meant to be

used as a WGF for pulsed radar waveform applications such that

Sp[m ] =

 S[m ] m = 1,2, · · · ,M

0 otherwise
. (3.63)

where the subscript ’p’ indicates the pulsed nature of the process. During the interval [1,2, . . . ,M]

the process is stochastic, but outside of this interval it is deterministically zero valued. Because of

this, the autocorrelation function outside of this interval is also zero valued such that

Rp[m1,m2 ] =

 R[m1,m2 ] 1≤ m1 ≤M, 1≤ m2 ≤M

0 otherwise
, (3.64)
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Since the process is not stationary, each sample function only provides one sample for each pair

of m1 and m2 such that (3.64) can only be estimated through ensemble averages over numerous

sample functions in the manner discussed in Section 3.2.3.2. However, in the context of radar

signal processing, we do not necessarily care about finding (3.64) specifically. Instead, we care

about finding the matched filter response.

3.3.1.1 Pulsed Matched Filter Estimation

Recall the matched filter defined in 2.1.2. Confusingly, in the context of radar the term "autocor-

relation function" is often used interchangeably with the "matched filter response". However, this

radar defined autocorrelation is not equivalent to the autocorrelation function in the random pro-

cess sense. To address this ambiguity, the autocorrelation in the context of radar will be referred

to specifically as the matched filter response although this terminology is relaxed in later chapters.

With this in mind, in discrete terms the matched filter is defined such that

r[` ] =
∞

∑
m=−∞

x[m ]x∗[m− ` ] (3.65)

which is simply the convolution of the signal x[m ] with x∗[−m ]. For a given sample function of

the pulsed random process defined in (3.63) specifically, the matched filter response can be written

as

r̂p[`,N = 1 ] =
1
M


M
∑

m=1+`
sn[m ]s∗n[m− ` ] 0≤ ` < M

M+`

∑
m=1

sn[m ]s∗n[m− ` ] −M < ` < 0
(3.66)

which is zero valued elsewhere. For completeness, (3.66) has been written for all non-zero values

of the matched filter estimate, but for future convenience the matched filter estimate will be written

only in terms of positive ` since the matched filter estimate is conjugate symmetric such that

r̂p[`,N ] = r̂∗p[−`,N ].

(3.66) emphasizes the time limited nature of the signal and the subscript n indicates the nth

sample function of (3.63) where n is arbitrary. The estimator is written as a function of N to
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emphasize the concept of coherent integration across unique sample functions or waveforms from

a noise-like radar perspective. Specifically in (3.66), N = 1 shows the estimate is being made

with a single sample function, but generally the ensemble average matched filter response can be

estimated using an arbitrary number of sample functions such that (3.66) becomes

r̂p[`,N ] =
1
N

N

∑
n=1

r̂p,n[`,1 ] =
1

NM

N

∑
n=1

M

∑
m=1+`

sn[m ]s∗n[m− ` ] 0≤ ` < M (3.67)

where the N sample function estimate represents an average over N single sample function matched

filter estimates.

Interestingly, even though the process is clearly not stationary or ergodic due to its pulsed

definition, the matched filter response treats it as if it were in a way. To see this, the expectation of

(3.67) yields.

rp[` ] = E[ r̂p[`,N ] ] =
1

NM

N

∑
n=1

M

∑
m=1+`

E[sn[m ]s∗n[m− ` ] ] 0≤ ` < M (3.68)

where evaluating the expectation realizes

rp[` ] = E[ r̂p[`,N ] ] =
1
M


M
∑

m=1+`
Rp[m,m− ` ] 0≤ ` < M

M+`

∑
m=1

Rp[m,m− ` ] −M < ` < 0
. (3.69)

such that the matched filter response given a lag of ` is actually the average correlation of the

process’s autocorrelation function for the same lag, `.

To put rp[` ] into perspective, as discussed in Section 2.2.4 for noise-like waveforms, coherent

integration is meant to lower the sidelobe response. In (3.67), increasing amounts of coherent

integration is used to improve the estimate of the process’s matched filter response and (3.69)

shows that the limit of this coherent integration is exactly the expected matched filter response of

the process itself, rp[` ]. Consequently, rp[` ] represents just how low those sidelobes can be driven

via coherent integration for a given Sp[m ]. Thus, if rp[` ] is already achieved, then further coherent
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integration via (3.67) (by increasing N) will result in no further lowering of the sidelobe level. In

general, this ideal matched filter response, rp[` ], is a goal that can never be truly reached as doing

so would require coherently integrating an impractical or even infinite number of waveforms. The

question then becomes how quickly does coherent integration lower the sidelobes and approach

rp[` ]. What if there are only 100 sample functions to coherently integrate? How the matched

filter response can be expected to behave given exactly N coherent integrations is described by the

second moment of the estimator,

E
[∣∣r̂p[`,N ]

∣∣2 ] , (3.70)

which in a radar context can be described as the Expected RMS Autocorrelation Function or the

Expected RMS Matched Filter Response. These names describe how (3.70) itself can be estimated,

where instead of coherently averaging the matched filter estimates, they are instead averaged via

RMS. (Although, it is technically just a mean square method since no square root operation has

been applied.)

In general evaluating the second moment of an estimator can be difficult, however since this

estimator looks across different sample functions rather than as a time averaging operation over a

single sample function, evaluating (3.70) is fairly straightforward as the different sample functions

are independent of each other. With this in mind, (3.70) becomes

E
[∣∣r̂p[`,N ]

∣∣2 ]= 1
N2 E

∣∣∣∣∣ N

∑
n=1

r̂p,n[`,1 ]

∣∣∣∣∣
2
 . (3.71)

The magnitude squared operation over the sum can be expanded such that (3.71) is now

E
[∣∣r̂p[`,N ]

∣∣2 ]= 1
N2

N

∑
n1,n2=1

E
[

r̂p,n1[`,1 ]r̂
∗
p,n2

[`,1 ]
]
. (3.72)

Since the matched filter responses of different sample functions are independent of each other, the

expectation of their product can be written as the product of their expectations. Thus, where n1 6= n2

the terms in the double summation become the magnitude squared of the expected matched filter
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response
∣∣rp[` ]

∣∣2. There are N(N− 1) of these terms. Otherwise when n1 = n2, the expectation

represents the second moment of the matched filter estimate where N = 1. There are N of these

terms. Consequently, (3.72) can be simplified such that

E
[∣∣r̂p[`,N ]

∣∣2 ]= 1
N

E
[∣∣r̂p[`,1 ]

∣∣2 ]+ N−1
N

∣∣rp[` ]
∣∣2 . (3.73)

In (3.73) As N increases, the contribution of the second moment of the single sample function

expected matched filter decreases while the contribution of the magnitude squared of the ideal

matched filter response approaches one. Thus, as expected, the second moment of the estimator

approaches the ideal response with increasing N.

However, this moment is not yet in terms of its variance plus the magnitude squared of its mean.

To find this form, the variance of the estimator given a single sample function is by definition.

E
[∣∣r̂p[`,1 ]− rp[` ]

∣∣2 ]= E
[∣∣r̂p[`,1 ]

∣∣2 ]− ∣∣rp[` ]
∣∣2 0≤ ` < M (3.74)

Inserting this result into (3.73) realizes

E
[∣∣r̂p[`,N ]

∣∣2 ]= 1
N

(
E
[∣∣r̂p[`,1 ]

∣∣2 ]− ∣∣rp[` ]
∣∣2)+ ∣∣rp[` ]

∣∣2 (3.75)

where the first term on the right hand side is the variance and the second term is the magnitude

squared of the mean. Clearly, as N increases the variance decreases.

To demonstrate the contribution of the variance and mean terms in (3.75) individually, consider

some pulsed WGF whose sample functions are constant in energy. For this WGF, Fig. 3.2 plots the

analytically calculated RMS matched filter result itself as well as its mean and variance separately

for N = 104 coherent integrations. From a radar perspective, the black trace represents the average

matched filter response given 104 coherent integrations, while the blue trace represents the ideal

result with further coherent integration. The orange trace represents the variance term. Where the

variance dominates the response, ` > 120, the RMS response largely follows the variance trace.

74



Figure 3.2: The analytically calculated expected RMS matched filter response of an example WGF
for N = 104 sample functions and its mean and variance as defined in (3.75)

Where the mean term dominates the response, ` < 90, the RMS result largely follows the mean

trace. Where the variance is roughly equivalent to the mean 90 ≤ ` ≤ 120, the RMS response

deviates from either of them as it is the sum of both. Near ` = 0 the variance races towards zero.

Since the energy in each sample function is constant, the peak of the matched filter estimate is

identical for every sample function such that the peak experiences no variance.

To demonstrate the impact of coherent integration, Fig. 3.3 plots the expected RMS matched

filter response, (3.70), for N = [100, 102, 104, 107] along with the expected matched filter re-

sponse, rp[` ] which is now plotted in black. Away from the mainlobe for lags greater than about

120, |rp[` ]|2 is fairly small on the order of -80 dB. Because of this, for N = [100, 102, 104] the

matched filter estimate is dominated by the variance term in (3.73). Consequently, when going

from N = 100 to N = 102 to N = 104 there is roughly a 20 dB decrease in the expected sidelobe

level of the estimate for each step. It is not until N = 107 that the impact of the expected matched

filter response starts to becomes apparent in these regions. For the near in sidelobes however for

roughly ` < 120, the expected matched filter response is already evident in the estimate at N = 102
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owing to its relatively high power.

The behavior apparent in Fig. 3.3 allows for a distinction to be made between the variance

component and the mean component of (3.73). The sidelobes contributed by the mean compo-

nent which can also be called the the expected matched filter response or the ideal matched filter

response are persistent. They cannot be mitigated through coherent integration as they are a fun-

damental property of a given WGF as defined by its respective rp[` ]. However, The variance term

in (3.73) represents the transient component of the sidelobes. These are those sidelobes which can

be mitigated through coherent integration.

Before moving on, it is important to recognize that the traces for N = [100, 102, 104, 107]

represent expected values or averages given N coherent integrations. In practice, the empirical

sidelobe response from actually integrating instantiated unique matched filter responses will not

resemble the smooth lines shown in Fig. 3.3. Instead, the transient sidelobes will vary a fair degree

around the same line as can be see in Fig. 3.4 where 105 sample functions of the pulsed WGF

used in Fig. 3.3 have been, instantiated, match filtered, and coherently integrated. This result

is compared to the analytically calculated RMS matched filter response given N = 105 coherent

integrations. In the region where the transient sidelobes are dominant (` > 120), the empirical

estimate of rp[` ] varies greatly around the analytical expectation. Which makes sense as these

sidelobes are a manifestation of the estimate’s variance. However, in the persistent sidelobes dom-

inated region (` < 120), the analytical expectation and the empirical estimate appear very close on

the dB scale since every single sample function possesses the same persistent sidelobe component

as determined by the underlying WGF itself. This behavior can alternatively be examined in the

frequency domain.
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Figure 3.3: The analytically calculated expected RMS matched filter response for an example
WGF given varying degrees of coherent integration

Figure 3.4: The analytically calculated expected RMS matched filter response of an example WGF
compared to an empirical estimate of the matched filter given N = 105 coherent integrations

77



3.3.1.2 Pulsed PSD Estimation

The estimation of the PSD of (3.63) presents similar issues as with the estimation of the matched

filter response. Since (3.63) is not stationary, the typical stochastic process definition of the PSD

does not apply here. Instead, for (3.63) as a WGF the PSD represents the average spectral content

of the process over all possible sample functions. The most straightforward way to show this is to

invoke the autocorrelation definition of the PSD where for a discrete radar signal the PSD is simply

the DTFT of the matched filter response. Since the matched filter response has been shown to be an

average over the correlation function Rp[m1,m2 ], then so to is the PSD from a WGF perspective.

With this in mind the PSD can be defined relative to the matched filter response such that

Sp( f ) =
M−1

∑
`=−(M−1)

rp[` ]exp(− j2π f `). (3.76)

An estimate of the PSD can then be obtained as the DTFT of the matched filter estimate such that

Ŝp( f ,N) =
1
N

N

∑
n=1

Ŝp,n[`,1 ]

=
1
N

M−1

∑
`=−(M−1)

N

∑
n=1

r̂p,n[`,1 ]exp(− j2π f `)

=
M−1

∑
`=−(M−1)

r̂p[`,N ]exp(− j2π f `).

(3.77)

where the expectation of (3.77) will clearly result in (3.76). Likewise, the second moment of

(3.77) can be evaluated in a similar manner to the matched filter case. Using the same principle of

independence across different sample functions, the second moment of the PSD estimator is

E
[∣∣Ŝp( f ,N)

∣∣2 ]= 1
N

E
[∣∣Ŝp( f ,1)

∣∣2 ]+ N−1
N

∣∣Sp( f )
∣∣2 . (3.78)

Again as in the matched filter case, (3.78) can be written in terms of the variance plus a mean term
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such that

E
[∣∣Ŝp( f ,N)

∣∣2 ]= 1
N

(
E
[∣∣Ŝp( f ,1)

∣∣2 ]− ∣∣Sp( f )
∣∣2)+ ∣∣Sp( f )

∣∣2 . (3.79)

As N approaches infinity, the variance term dissipates and (3.79) approaches the magnitude squared

of the PSD as expected. (3.78) can be directly related to the mean and variance of the matched

filter estimate such that (3.79) becomes

E
[∣∣Ŝp( f ,N)

∣∣2 ]= 1
N

E

∣∣∣∣∣ M−1

∑
`=−(M−1)

r̂p[`,1 ]exp(− j2π f `)

∣∣∣∣∣
2
−∣∣∣∣∣ M−1

∑
`=−(M−1)

rp[` ]exp(− j2π f `)

∣∣∣∣∣
2


+

∣∣∣∣∣ M−1

∑
`=−(M−1)

rp[` ]exp(− j2π f `)

∣∣∣∣∣
2

.

(3.80)

However, the variance term is somewhat peculiar in this case as it appears to contain the correlation

between different correlation estimates. To see this, the variance term can be expanded such that

(
M−1

∑
`1,`2=−(M−1)

E
[

r̂p[`1,1 ]r̂∗p[`2,1 ]
]

exp(− j2π f (`1− `2))

)
−
∣∣Sp( f )

∣∣2 . (3.81)

where the double summations take the same form as those in (3.53). In (3.53) it was shown that

the double summation could be written as a single summation over the elements of the process’s

autocorrelation function. Here, the initial summations are already over the matched filter response

which is akin to the random process autocorrelation function. Using the result in (3.80), another

conjugate symmetric function can be defined such that

k[η ] =


M−1
∑

`=η−(M−1)
E[ r̂p[`,1 ]r̂∗p[`−η ,1 ] ] 0≤ η < 2M−1

M−1+η

∑
`=−(M−1)

E[ r̂p[`,1 ]r̂∗p[`−η ,1 ] ] −(2M−1)≤ η < 0
(3.82)

which confusingly, is the 4M− 3 length expected matched filter response of the matched filter
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response of Sp[m ]. Putting (3.82) into (3.79) realizes

E
[∣∣Ŝp( f ,N)

∣∣2 ]= 1
N

(
2M−2

∑
η=−(2M−2)

k[η ]exp(− j2π f η)−
∣∣Sp( f )

∣∣2)+
∣∣Sp( f )

∣∣2 , (3.83)

such that the variance of the PSD estimator depends on the DTFT of the expected matched filter

response of the matched filter response.

Finally, the total variance of the PSD estimate can be compared to the total variance of the

matched filter estimate such that

M−1

∑
`=−(M−1)

E
[∣∣r̂p[`,1 ]

∣∣2 ]−|rp[` ]|2 =
ˆ 1/2

−1/2

2M−2

∑
η=−(2M−2)

k[η ]exp(− j2π f η)−|Sp( f )|2d f . (3.84)

Beginning with the term containing k[η ], the summation can be moved outside of the integral such

that the integral extends only over the complex exponential term. For η 6= 0, this integral extends

over an integer number of cycles of the exponential such that it is equal to zero realizing

M−1

∑
`=−(M−1)

E
[∣∣r̂p[`,1 ]

∣∣2 ]−|rp[` ]|2 = k[0 ]−
ˆ 1/2

−1/2
|Sp( f )|2d f . (3.85)

The second term on the right hand side can be expanded such that

M−1

∑
`=−(M−1)

E
[∣∣r̂p[`,1 ]

∣∣2 ]−|rp[` ]|2 = k[0 ]−
ˆ 1/2

−1/2

∣∣∣∣∣ M−1

∑
`=−(M−1)

rp[` ]exp(− j2π f `)

∣∣∣∣∣
2

d f . (3.86)

Next, distributing the magnitude squared operation realizes

M−1

∑
`=−(M−1)

E
[∣∣r̂p[`,1 ]

∣∣2 ]−|rp[` ]|2 = k[0 ]

−
M−1

∑
`1,`2=−(M−1)

rp[`1 ]r∗p[`2 ]

ˆ 1/2

−1/2
exp(− j2π f (`1− `2))d f .

(3.87)
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where again the integral is zero except for when `1 = `2. Thus, (3.87) becomes

M−1

∑
`=−(M−1)

E
[∣∣r̂p[`,1 ]

∣∣2 ]−|rp[` ]|2 = k[0 ]−
M−1

∑
`=−(M−1)

|rp[` ]|2. (3.88)

Based on (3.82), the left most term of (3.88) is equivalent to k[0 ], which demonstrates that the

variance of the matched filter estimate is equivalent to the variance of the spectral estimate. The

implications of the variance of spectral estimate can be visualized as a function of N.

As with the matched filter estimation, it is helpful to examine the behavior of the estimator on

an example WGF. To do so, consider the same WGF used for Figs. 3.2-3.4. In Fig. 3.5, the three

components of (3.79) have been plotted for N = 1 where the each term has been square rooted such

that they are on the same order as the expected PSD Sp( f ). Consequently, the standard deviation is

plotted here rather than the variance. In the spectral case, the impact of variance/deviation is much

less dramatic than for the expected matched filter. Regardless, as N increases the black trace will

approach the blue trace while the orange trace reduces at a rate of 10log10(N).

For the particular WGF function used here each sample function possess the same total energy.

In the expected matched filter case this meant that the variance approached zero at the peak of the

mainlobe. In the frequency domain however, this means the total power in any individual spectral

estimate must be equivalent to the power in the expected PSD such that

ˆ 1/2

−1/2
Ŝp( f ,N)d f =

ˆ 1/2

−1/2
Sp( f )d f (3.89)

for any value of N. Consequently, the spectral estimate can only vary above and below Sp( f )

such that (3.89) is maintained. Visualizing the impact of the variance in the spectral case, is easier

to do by examining empirical estimates of the spectrum as opposed to examining the analytical

RMS matched filter response as in Fig. 3.3. In Fig. 3.6, the PSD of the WGF was estimated

using N = [100 102 104]. With each increase in the number of sample functions/waveforms used

to estimate the PSD, the variance clearly decreases and the estimate approaches the expected PSD,

Sp( f ).
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Figure 3.5: The analytically calculated RMS PSD of an example WGF and its mean and variance
for N = 1 coherent integrations

Figure 3.6: Empirical estimates of an example WGF’s PSD given varying degrees of coherent
integration
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Perhaps the most important equation in this entire discussion is simply (3.76) since it demon-

strates how the expected matched filter response, rp(`), and the expected PSD, Sp( f ), are funda-

mentally connected. In estimating the matched filter the ideal result is simply rp(`) where further

coherent integration will lead to no further decrease in the sidelobes. The sidelobes of rp(`) in turn

are a fundamental property of the (3.76). Thus, the expected matched filter response can only ever

be as good as the expected PSD allows it to be and vice versa.

3.3.1.3 Pulsed Cross-correlation and Cross-spectral Density Estimation

In addition to understanding the spectral and autocorrelation characteristics of the waveforms pro-

duced by (3.63), it is important to understand how the waveforms interact with each other through

their cross-correlation and cross-spectral density characteristics. However, in a radar context these

terms differ from how they would be used in a random process context where cross-correlation

and cross-spectral density refer to the interaction between completely different random processes.

Here, these terms refer to the interaction between different sample functions (waveforms) of the

same random process (pulsed WGF).

For this analysis it is actually easier to begin with the expected cross-spectral characteristics

where it is more straightforward to take advantage of the independence of different sample func-

tions. To do so, the expected cross-spectral density is defined here as the expected product of one

sample functions spectrum with the conjugate of another such that

Cp( f ) = E

[(
M

∑
m=1

sa[m ]exp(− j2π f m)

)(
M

∑
m=1

sb[m ]exp(− j2π f m)

)∗]
(3.90)

where the subscripts a and b indicate that these are unique sample functions of the process Sp[ f ].

Since the sample functions are independent, the expectation operation can be applied to each spec-

trum individually such that (3.90) becomes

Cp( f ) =

(
M

∑
m=1

E[sa[m ] ]exp(− j2π f m)

)(
M

∑
m=1

E[sb[m ] ]exp(− j2π f m)

)∗
. (3.91)
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Distributing the summations realizes

Cp( f ) =
M

∑
m1,m2=1

E[sa[m1 ] ]E[s∗b[m2 ] ]exp(− j2π f (m1−m2)). (3.92)

which is similar in form to (3.31), but there is of course no limit operation and the expectation is

applied to each term individually rather than as a pair. Regardless, the summation can be rewritten

over a single variable, `, in a similar manner to (3.31) such that the expected cross-spectral density

is equivalent to the DTFT over the cross-correlation function,

Cp( f ) =
M−1

∑
`=−(M−1)

cp[` ]exp(− j2π f `). (3.93)

where the cross correlation function cp[` ] is defined,

cp[` ] =
1
M


M
∑

m=1+`
E[sa[m ] ]E[s∗b[m− ` ] ] 0≤ ` < M

M+`

∑
m=1

E[sa[m ] ]E[s∗b[m− ` ] ] −M < ` < 0
(3.94)

In terms of measuring these quantities, the cross-spectral density can be estimated via

Ĉp( f ,N) =
1
N

N

∑
n=1

(
M

∑
m=1

sn,a[m ]exp(− j2π f m)

)(
M

∑
m=1

sn,b[m ]exp(− j2π f m)

)∗
(3.95)

where n indexes over different pairs of unique sample functions. As for the expected autocorrela-

tion, and the expected PSD, the second moment of this estimator can be shown to be

E
[
|Ĉp( f ,N)|2

]
=

1
N

(
E
[
|Ĉp( f ,1)|2

]
−|Cp( f )|2

)
+ |Cp( f )|2. (3.96)

The term E
[
|Ĉp( f ,1)|2

]
can then be written as

E
[
|Ĉp( f ,1)|2

]
= E

∣∣∣∣∣ M

∑
m=1

sn,a[m ]exp(− j2π f m)

∣∣∣∣∣
2
E

∣∣∣∣∣ M

∑
m=1

sn,b[m ]exp(− j2π f m)

∣∣∣∣∣
2
 (3.97)
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where the expectation has been distributed to each independent term. The expectations in (3.97)

should be recognized as a definition of the processes expected PSD, Sp( f ), such that (3.96) be-

comes

E
[
|Ĉp( f ,N)|2

]
=

1
N

(
S2

p( f )−|Cp( f )|2
)
+ |Cp( f )|2. (3.98)

In other words, the expected envelope of a single cross-spectral density pair should largely resem-

ble the PSD of the underlying pulsed WGF. However, this only applies to the envelope since in

general each cross-correlation pair will have a random phase while Sp( f ) by definition has zero

phase for all f . Consequently, with repeated coherent integration these phases cancel each other

out and the variance term in (3.98) diminishes.

Similarly, the expected cross-correlation function can be estimated via

ĉp[`,N ] =
1

NM

N

∑
n=1


M
∑

m=1+`
sn,a[m ]s∗n,b[m− ` ] 0≤ ` < M

M+`

∑
m=1

sn,a[m ]s∗n,b[m− ` ] −M < ` < 0
(3.99)

where the second moment of the estimator is

E
[∣∣ĉp[`,N ]

∣∣2 ]= 1
N

(
E
[∣∣ĉp[`,1 ]

∣∣2 ]− ∣∣cp[` ]
∣∣2)+ ∣∣cp[` ]

∣∣2 . (3.100)

For only the positive lags, E
[∣∣ĉp[`,1 ]

∣∣2 ] becomes

E
[∣∣ĉp[`,1 ]

∣∣2 ]= 1
M2

M

∑
m1,m2=1+`

E[sn,a[m1 ]s∗n,a[m2 ]]E[s∗n,b[m1−` ]sn,b[m2−` ]] 0≤ `<M (3.101)

where the expectation can be applied separately to the independent sample functions. This results

in a product of correlations such that (3.101) becomes

E
[∣∣ĉp[`,1 ]

∣∣2 ]= 1
M2

M

∑
m1,m2=1+`

Rp[m1,m2 ]R∗p[m1− `,m2− ` ] 0≤ ` < M. (3.102)

Perhaps the most interesting result from (3.102) occurs when `= 0 where the second moment is the
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sum over the magnitude squared of every element of the WGFs correlation function. Consequently,

when comparing two WGFs which produce waveforms of the same 3 dB bandwidth, but one has

higher expected matched filter sidelobes, then the one with the higher sidelobes will experience a

higher peak RMS cross-correlation.

From a practical standpoint, the expected cross-spectral density and the expected autocorrela-

tion function are unlikely to be very useful since it is trivial to force them to be zero for any given

WGF. To see this, consider a contrived WGF whose sample functions are all the exact same LFM,

but with a uniformly random phase. Such a phase is canceled by the matched filtering process, but

would remain in the cross-correlation and cross-spectral density estimates such that their expected

values are zero. Because of this, it is not unreasonable to assume that these terms will be zero

valued or near zero for a more useful WGF.

3.3.2 Stochastic Processes as CW Radar Signals

Compared to pulsed WGFs, CW WGFs fit much more neatly within the traditional understanding

of stochastic processes simply because these WGFs are defined to be infinite in time meaning

much of the estimation development of Section 3.2.3 applies. Although, these operations take on a

more specific meaning in the context of radar. In the pulsed case, how the WGF was measured was

driven by how its sample functions are processed as radar waveforms. Similarly, it is necessary

to establish how CW WGF sample functions can be utilized and processed as nonrepeating CW

signals.

In the pulsed case, this is fairly intuitive were the processing is focused on each individual

pulse, but it the CW case the processing is not as straightforward. Consider a CW scenario. A

portion of a single sample function is instantiated from the WGF and then transmitted for some

CPI length. The receiver records at the same time. Is it best to treat the entire transmission as a

single pulse and match filter the result? Or, is it better to subdivide the data into subsets and then

process those results?

86



3.3.2.1 Autocorrelation Estimation

Since the WGFs of this section are infinite in time and only a single sample function will be used

for each radar CPI, it now makes sense to use the time averages of Section 3.2.3 rather than the

ensemble averages as in the pulsed case. Consequently, the CW WGFs considered in this section

are assumed to be not only WSS but also ergodic in the autocorrelation, which conveniently means

the match filtering estimate is actually equivalent to the biased autocorrelation estimate of the

process itself as defined in (3.50) such that

r̂CW[` ] = R̂[` ] =
1
M

 ∑
M
k=1+` s[k ]s∗[k− ` ] 0≤ ` < M

∑
M+`
k=1 s[k ]s∗[k− ` ] −M < ` < 0

. (3.103)

where M is the total number of samples at hand such as those recorded in a CPI and r̂CW[` ] is an

estimate of the WGF’s matched filter response. Likewise the expectation of (3.103), is then

E[ r̂CW[` ] ] =

(
1− |`|

M

)
rCW[` ] = E[ R̂[` ] ] =

(
1− |`|

M

)
R[` ] −M < ` < M. (3.104)

However, while estimating the matched filter via (3.103) is a perfectly reasonable way to estimate

the matched filter response of the WGF, it is not necessarily a good way to process noise-like CW

radar data due to Doppler effects.

Another way to think about the CW CPI is as a single, very long pulse which means the

mainlobe will be highly sensitive to Doppler shifts. Further, the waveforms considered here are

noise like and will exhibit ambiguity functions similar to the Doppler intolerant one shown in

Fig. 2.20 where the only meaningful response exists near zero Doppler as apposed to the Doppler

tolerant LFM ambiguity function in Fig. 2.19. The most straightforward way to accommodate this

issue is to filter the data with different Doppler shifted versions of the transmit signal in order to

cancel out the Doppler and measure velocity. However, this is computationally very costly since in

general for a CW scenario M will be very large and each Doppler filter requires its own matched

filtering operation.
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Fortunately, the Doppler problem can be largely mitigated by using pseudo-pulse processing

where the single, very long pulse is broken into numerous segments where each segment is treated

as its own pulse. How big these pseudo-pulses should be is a matter of unambiguous Doppler

considerations versus processing requirements. In principal, pseudo-pulse processing is equivalent

to the matched filter estimation in (3.103) for zero Doppler. Away from zero-Doppler, the Doppler

shift is effectively quantized across the different pseudo-pulses such that it can be mostly canceled

via standard FFT based Doppler processing across slow-time.

Written in terms of pseudo-pulse processing where the CW signal has been split into N, W -

length pseudo-pulses, 3.103 becomes

r̂CW[`,M ] =
1
M

N

∑
n=1

 ∑
Wn
m=1+W (n−1)+` s[m ]s∗[m− ` ] 0≤ ` < nW −1

∑
Wn+`
m=1+W (n−1) s[m ]s∗[m− ` ] −(n+1−N)W +1 < ` < 0

. (3.105)

where (3.105) is actually equivalent to (3.103) for the same value of M, if M is assumed to be

evenly divisible by W such that N = M/W .

From a practical standpoint, the analysis of (3.105) can be simplified significantly. Since, in

general, W will be much less than M such that the impact of the triangular biasing window in

(3.104) will be very small within the vicinity of the pseudo-pulse matched filter peak. Thus, the

pseudo-pulse estimator can be redefined in terms of the correlation between one of these pseudo-

pulses and its infinite length sample function such that

r̂CW[`,W,1 ] =
1

W

W

∑
m=1

s[m ]s∗[m− ` ] (3.106)

where the pseudo-pulse begins at the arbitrary time m = 1. Technically as defined in (3.106), `

extends from minus infinity to positive infinity, but in general only perhaps the first few tens of

thousands of |`| will matter in any practical situation.

Further, in the interest of modeling coherent integration across consecutive pseudo-pulses
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(3.106) can be written in terms of N, W -length pulses such that

r̂CW[`,W,N ] =
1

NW

N

∑
n=1

(
nW

∑
m=W (n−1)+1

s[m ]s∗[m− ` ]

)
. (3.107)

Since SCW[m ] is assumed to be ergodic, (3.107) will approach rCW[` ] as either N or W approach

infinity. In (3.107) from the way the pseudo-pulses are directly adjacent to each other in time,

the autocorrelation of one pulse is mixed with the cross-correlations with other pulses. Beyond

`=W −1, the correlation function is described entirely by the cross-correlations between a given

pseudo-pulse and others. The key assumption made about the pseudo-pulses is that they are ef-

fectively uncorrelated each other such that each one represents a unique sample set of the process.

Effectively, this means the expected matched filter response, rCW[` ], of a good CW WGF should

decay quickly. From a radar standpoint, this is desirable anyway since a quickly decaying ex-

pected matched filter function implies better autocorrelation sidelobe performance with increasing

coherent integration.

The variance of (3.107) is defined

E[ | r̂CW[`,W,N ]|2 ] = 1
M2 E

∣∣∣∣∣ M

∑
m=1

s[m ]s∗[m− ` ]

∣∣∣∣∣
2
 (3.108)

where for convenience, the double summation over N and W has been replaced with a single sum-

mation over M where M = NW . Distributing the magnitude squared operation over the summation

yields

E[ | r̂CW[`,W,N ]|2 ] = 1
M2

M

∑
m1,m2=1

E [s[m1 ]s∗[m1− ` ]s∗[m2 ]s[m2− ` ] ] (3.109)

where the variance is shown to depend on the fourth order moments of the process SCW[m ]. Un-

fortunately, unlike in the pulsed case which took advantage of the independence across different

sample functions to simplify the second moment, no such quality can be used here. However, the

anticipation is that different pseudo-pulses will be largely uncorrelated with each other such that

89



they are effectively independent samples of the matched filter function. In fact, for a stationary,

ergodic process this must be true in the limit. Otherwise, the time average would never approach

the ensemble average.

Because of this, the CW matched filter response, rCW[` ] and its second moment in (3.109) can

be viewed in a similar way as the pulsed case. rCW[` ] represents the ideal matched filter response

when an infinite number of pseudo-pulses are coherently integrated while the second moment of its

estimator represents the expected matched filter response given the integration of a finite number

of pseudo-pulses of length W .

To see this behavior, in Fig. 3.7 the RMS matched filter response for various values of M

or combinations of N and W are plotted in comparison to the expected matched filter response.

This figure is analogous to Fig. 3.3 for the pulsed case. Where the RMS response is much larger

than the expected autocorrelation, the RMS matched filter sidelobes decrease at a rate of roughly

10log10(M) while where the expected matched filter sidelobes are dominate the response stays the

same with increasing M. Perhaps the most notable difference between 3.3 and 3.7 is the relatively

flat response of the the RMS mathced filter sidelobes in the CW case compared to the pulse case

where they approach zero at the edge of the pulse. This is because in the CW case the plotted

response is necessarily truncated as it technically extends infinitely in either direction. Conse-

quently, the triangular window that realizes the sloping matched filter response in the pulsed case

is inconsequential here. Finally, as in the pulsed case, the expected RMS autocorrelation responses

are only averages. Any empirical estimate made from actual sample functions of the process will

vary from the expected RMS response to a fair degree as can be seen in Fig. 3.8.
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Figure 3.7: The analytically calculated RMS matched filter response of an example WGF given
varying total numbers of samples, M

Figure 3.8: Comparison between the analytically calculated RMS matched filter response of an
example WGF and an empirical estimate of the same WGF’s matched filter response for M = 3 ·106
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3.3.2.2 CW WGF Power Spectral Density Estimation

One convenient aspect of pseudo-pulse processing is that it directly lends itself to a particular

form of spectral estimation were the received data is cut into subsets anyway. Because of this, the

specific approach used in this work is the Bartlett method where the individual DTFT estimates

of the process’s spectrum over a number of subsets (pseudo-pulses) are averaged to reduce the

variance of the estimate overall. This estimation method is described in Section 3.2.3.3 and is

defined for a CW WGF such that

ŜCW( f ,W,N) =
1
N

N

∑
n=1

∣∣∣∣∣ nW

∑
m=W (n−1)+1

s[m ]exp(− j2π f (m−W (n−1)))

∣∣∣∣∣
2

(3.110)

were the overall PSD estimate is the average over the individual PSD estimates of each pseudo-

pulse. As with any estimator of the PSD of an infinite random process, the trade-offs between

different values of N and W involve compromises between bias, variance, and resolution. To see

this, (3.110) can be written as the mean of corellogram estimates such that it becomes

ŜCW( f ,W,N) =
1

NW

N

∑
n=1

W−1

∑
`=−(W−1)

r̂n[` ]exp(− j2π f `) (3.111)

where r̂n[` ] represents the matched filter estimate of the nth pseudo-pulse. Note that this dif-

fers from the pseudo-pulse estimation of the autocorrelation function where the matched filter

estimates were mixed with the cross-correlation terms between a given pseudo-pulse and its im-

mediate neighbors. Here, the spectrum of each pseudo-pulse is considered individually. Because

of this the, the expectation of (3.111) yields

E
[
ŜCW( f ,W,N)

]
=

W−1

∑
`=−(W−1)

(
1− |`|

W

)
RCW[` ]exp(− j2π f `) =

1
W

(
sin(π fW )

sin(π f )

)2

∗SCW( f )

(3.112)

which contains the Bartlett window biasing term. According to (3.112) it is preferable to make W

as large as possible such that the biasing term is minimized. However, (3.112) says nothing about
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the variance, which can be examined through the second moment of (3.111)

E
[∣∣ŜCW( f ,W,N)

∣∣2 ]= 1
(NW )2 E

∣∣∣∣∣ N

∑
n=1

W−1

∑
`=−(W−1)

r̂n[` ]exp(− j2π f `)

∣∣∣∣∣
2


=
1

(NW )2

N

∑
n1,n2=1

W−1

∑
`1,`2=−(W−1)

E
[

r̂n1[`1 ]r̂∗n2
[`2 ]

]
exp(− j2π f (`1− `2))

(3.113)

which is once again, a fourth order function of the WGF. The assumption behind the Bartlett

method is that the different windows are largely independent of each other such that the variance

is minimized with the coherent integration of the different spectral estimates.

To demonstrate this spectral estimation scheme, the expected PSDs for the previously consid-

ered WGF for varying values of W are plotted in Fig. 3.9. In the passband region, the value of W

has little effect, but it clearly has a significant impact on the apparent spectral roll-off where higher

values of W (larger Barlett window sizes) clearly result in better spectral roll-off. This effect is

directly attributable to biasing term present in the Bartlett spectral estimation scheme as defined

in (3.112). In other words, how the spectrum is estimated has a significant impact on the apparent

spectral roll-off of the WGFs PSD.

By itself, Fig. 3.9 seems to indicate that large windows are strictly better than smaller ones as

they result in better spectral roll-off. However, the traces in Fig. 3.9 assume an infinite amount

of data is available. In Fig. 3.10, M = 220 samples of the process have been instantiated and

the spectrum of the process has been empirically estimated using the Bartlett method for varying

values of N and W such that M = NW . Here the trade-off between roll-off meaning a less biased

estimate of the processes PSD, and variance is obvious. Greater degrees of coherent integration

through increasing N result in a smoother spectral estimate at the expense of a more biased PSD

with more spectral leakage that results in a poorer spectral roll-off.

This result raises an interesting question. The pseudo-pulse processing matched filter esti-

mation leads in nicely to the Bartlett spectral estimation scheme, but there is no reason another

spectral estimation scheme could not be used. Although, exploring this in detail is beyond the
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Figure 3.9: The analytically calculated expected PSD of an example WGF given varying Bartlett
window sizes.

Figure 3.10: Empirical estimates of an example WGF’s PSD given varying numbers and sizes of
Bartlett windows for M = 220 total samples
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scope of this work it is worth noting that any other windowing spectral estimation scheme will

result in some SNR loss do the window application. In radar, where SNR is often the biggest

problem in performing adequate detection, such a trade-off could prove undesirable.

3.4 Evaluating Waveform Generating Processes

Thus far, WGFs and their analysis have been discussed in purely mathematical terms using the

DTFT, but the DTFT is continuous in frequency which clearly cannot be represented on a digital

system. Consequently, it is necessary to redefine the topics discussed in 3.3 in terms of the discrete

Fourier transform (DFT) using matrix vector notation.

3.4.1 Pulsed WGFs

Beginning with the pulsed WGF defined in (3.63), this can be represented such that

s =
[
Sp[1 ] Sp[2 ] · · · Sp[M ]

]T (3.114)

where s is an M×1 column vector containing the non-zero valued portions of the pulsed waveform

generating function. s is used interchangeably to stand for the WGF itself as well as an arbitrary

sample function of the WGF as in the following equations of this section.

The non-zero portion of the WGF’s correlation function, Rp[m1,m2] can be conveniently rep-

resented via a matrix such that

C = Rp[m1,m2 ] = E
[

ssH ] (3.115)

where C is an M×M correlation matrix. According to (3.69), the expected matched filter response

is the sum across the diagonals of (3.115) such the `th element of the expected matched filter vector

r is

r` = E [ r̂` ] =
M

∑
m=1+`

Cm,m−` =
M

∑
m=1+`

E
[

sms∗m−`
]

0≤ `≤M−1 (3.116)
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where Cm,m−` is the element in the mth row and the (m− `)th column of C and sm is the m element

of s. Taken together for −(M− 1) ≤ ` ≤ (M− 1) where r` = r∗−`, the expected matched filter

vector, r, is 2M−1 in length.

Alternatively, r can be represented as the inverse discrete Fourier transform (IDFT) of the

WGF’s discrete PSD. However, to do so the WGF’s PSD must be evaluated with a sufficient num-

ber of points such that

sf = E [ ŝf ] = E [As�As∗ ] (3.117)

where s is a zero padded version of s such that

s =
[

sT 0T
M−1×1

]T
(3.118)

and s is 2M− 1 in length. Here, A is a (2M− 1)× (2M− 1) DFT matrix and � is the hadamard

product which outputs a vector that is the element by element product of its arguments. The vector

sf is equivalent to a sampled form of Sp( f ). The expected matched filter response is then realized

as the IDFT of (3.117) realizing

r = AHE [As�As∗ ] . (3.119)

Although, (3.119) will likely need to be scaled and have its samples rearranged in order to exactly

match (3.116) depending on exactly how A is defined. Likewise, AH is the IDFT matrix.

Similarly, the second moments of these functions can be evaluated to realize the expected RMS

matched filter response and the power spectral deviation. Using the definition in (3.116), the ex-

pected RMS matched filter response for a single sample function can be written as the expectation

of the estimate of the expected matched filter such that

E[ |r̂`|2 ] = E

∣∣∣∣∣ M

∑
m=1+`

sms∗m−`

∣∣∣∣∣
2
=

M

∑
m1,m2=1+`

E
[

sm1s∗m1−`s
∗
m2

sm2−`
]

0≤ `≤M−1 (3.120)

which is symmetric about `= 0 and is a function of the fourth moment of s. For convenience, these
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fourth order moments can be collected into the structure KM×M×M×M where

Km1,m2,m3,m4 = E
[

sm1s∗m2
s∗m3

sm4

]
. (3.121)

Alternatively, the expected RMS matched filter for a single sample function estimate can be defined

in terms of DFTs using (3.119) such that

E[ |r̂`|2 ] = E
[∣∣AH (As� (As)∗)

∣∣2 ] . (3.122)

The power spectral deviation for a single sample function estimate can then be defined as a function

of the estimate of the power spectral density defined in (3.117) realizing

(
E
[
|ŝf|2

]
−E [ŝf]

2
)1/2

. (3.123)

Defining the cross metrics requires a similar process, but with notation to show that there are

two unique sample functions. Using the DFT notation, the expected cross-spectral density becomes

E
[

Asa� (Asb)
∗ ] , (3.124)

where a and b indicate unique sample functions, and the expected cross-correlation becomes

AHE
[
Asa� (Asb)

∗] . (3.125)

Similarly, for a single sample function pair estimate, the expected RMS cross-correlation is

E
[
|AH (Asa� (Asb)

∗) |2 ] , (3.126)
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and the single sample function pair estimate of the RMS cross-spectral density is

(
E
[∣∣Asa� (Asb)

∗∣∣2])1/2
. (3.127)

Generally, there are two types of functions defined here. There are those which measure the

behavior of the sample functions in aggregate such as the expected matched filter response, and

those which measure the behavior of the individual sample functions. These terms are collected

into Table 3.3 for convenience.

Table 3.3: Summary of stochastic waveform measures for pulsed WGFs

Aggregate Measures

Power Spectrum sf = E [ ŝf ] = E [As�As∗ ]

Autocorrelation AHE [As�As∗ ]

Cross-Spectral Density E
[

Asa� (Asb)
∗ ]

Cross-Correlation AHE
[
Asa� (Asb)

∗]

Individual Measures

Power Spectral Deviation
(

E
[
|ŝf|2

]
−E [ŝf]

2
)1/2

RMS Autocorrelation E[ |r̂`|2 ] = E
[∣∣AH (As� (As)∗)

∣∣2 ]

RMS Cross-Spectral Density E
[
|AH (Asa� (Asb)

∗) |2 ]
RMS Cross-Correlation

(
E
[∣∣Asa� (Asb)

∗∣∣2])1/2
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3.4.2 CW WGFs

CW WGFs can be treated in the same manner. The length M section of a single sample function

can be represented as

s = [SCW[m+1 ] SCW[m+2 ] · · ·SCW[M ]] (3.128)

where m is arbitrary. Since CW WGFs are assumed to be stationary, their metrics are somewhat

simplified. The expected matched filter response is identical to the random processes autocorrela-

tion function such that for the first |`| ≤M−1 lags, the expected matched filter vector is defined

r = RCW[` ] = E[sms∗m−`] (3.129)

where again m is arbitrary. The 2M−1 length PSD given Bartlett method estimation can be defined

in terms of the DFT matrix and the vector r such that

sf = A(wB� r) = E [ ŝf ] = E [As� (As∗) ] (3.130)

where wB is the Bartlett window in vector form and s is the 2M−1 length zero-padded version of

(3.128). Again, depending on the specific form of A, sample shifting and scaling may be required

to guarantee all the terms in (3.130) are exactly equivalent.

Evaluating the RMS matched filter response is unfortunately more complicated without making

further assumptions about the WGF. According to (3.109), given an N and W , this can be calculated

as

E[ |r̂`|2 ] =
1

M2

M

∑
m1,m2=1

E
[

sm1s∗m1−`s
∗
m2

sm2−`
]
. (3.131)

Finally, the power spectral deviation given M samples can be evaluated from (3.130) such that

(
E
[
|ŝf|2

]
−E [ŝf]

2
)1/2

. (3.132)
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3.4.3 Summary

This chapter introduced the basic concepts behind the estimation of random variables and processes

and then applied them to a special class of random processes called waveform generating functions

(WGFs) for both pulsed and CW radar modes. In doing so, the basics behind the estimation of

random signals were re-framed in the context of random radar signals processing in great detail. In

fact, estimators were introduced for fourth order terms such as the RMS matched filter response and

the power spectral deviation. In general higher order estimators such as these simply are not that

useful other than for analysis purposes. In a practical scenario where samples from some random

process have been collected, estimating these fourth order terms is simply too computationally

expensive and requires to much data to reach a good estimate. For instance, if M samples have

been collected then there are M4 possible fourth order moments to estimate!

However, the purpose of random radar signals compared to the traditional purpose of random

signals estimation is different. Consider a communications signal. The goal is to estimate the

parameters of the process in order to reveal the information hidden within the signal, but in a

traditional monostatic radar scenario the transmitted signals are already known. Instead, the goal

is to estimate the environment’s impact on the signal usually through Doppler shifts and time

delays. Consequently, the development of this chapter has been entirely in the anticipation that the

WGF has some known, analytical model such that the tools of this chapter can applied analytically

to generally characterize the usefulness of the random waveforms generated by a given WGF. In

short, there is no anticipation that the structure K for example will be experimentally determined.

It will only ever be analytically calculated from the known model.

With this in mind, the next two chapters introduce the pulsed Stochastic Waveform Generation

(StoWGe) and the CW Stochastic Waveform Generation (CW-StoWGe) models whose parameter-

ized WGFs have been specifically formulated such that the metrics defined in Section 3.4 can be

analytically calculated and optimized according to radar signals performance goals.
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Chapter 4

Pulsed Stochastic Waveform Generation (StoWGe)

Chapter 3 introduced stochastic processes as radar waveform generating functions (WGF) where

the sample functions of a given random process are utilized as radar waveforms. In the same vein,

various metrics were introduced as a means to assess the suitability of a given random process

as a radar WGF. However, little was said about how to find or design a random process that has

desirable properties. In [31], the stochastic waveform generation (StoWGe) signal model was

introduced as a means to design and optimize stochastic processes which produce random FM

waveforms with desirable power spectra. This chapter reintroduces this topic and expands upon it

greatly by formulating the model in more general terms, implementing it with more flexibility, and

considering a much more comprehensive set of test cases.

This chapter begins with an overview of the pulsed StoWGe model in Section 4.1. Section 4.2

introduces the expected frequency template error (EFTE) for pulsed StoWGe, while Section 4.3

introduces the means to optimize the pulsed StoWGe expected power spectrum by minimization

of the EFTE cost function along with a regimen of test cases. Section 4.4 discusses the results

of the optimization as well as comparisons to previous random FM waveforms and, Section 4.5

presents experimental results which demonstrate both the soundness of the pulsed StoWGe model

and design scheme as well as the suitability of the waveforms for implementation on physical

hardware. Finally, Section 4.6 provides conclusions regarding the pulsed StoWGe optimization

scheme and results.
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4.1 The Pulsed StoWGe Signal Model

The StoWGe signal model produces waveforms of the form shown in (3.63). However, since the

waveforms produced by the pulsed StoWGe model are constant modulus, the most appropriate

baseband signal mode is

S[m ] =

 exp( jΦ[m ]) m = 1,2, · · · ,M

0 otherwise
(4.1)

where the capital S and the capital Φ indicate that these are stochastic processes. In (4.1), S[m ] is

a non-linear transformation of the stochastic process Φ[m ]. The goal is then to design Φ[m ] such

that the sample functions of S[m ] are useful pulsed, radar waveforms.

For convenience, (4.1) can be rewritten using vector notation such that the zero valued portions

of (4.1) are left off and the non-zero valued portion is

s = exp( jφφφ). (4.2)

To facilitate the optimization of s as a WGF, φφφ is, by definition of the pulsed StoWGe model,

parameterized such that

φφφ= Bx+µµµ (4.3)

where B is an M×N, real-valued matrix, x is an N × 1 vector of independent, identically dis-

tributed, zero-mean, random variables, and φφφ is an M× 1 vector of constant real values. In this

form, x provides φφφ with its stochastic character and by designing B, the distributions of each

element of φφφ can be tailored such that the WGF, s, has desirable characteristics.

Additionally, µµµ provides each element of φφφ with a mean value such that

E[φφφ ] =µµµ. (4.4)

where the expectation operator is applied on an element wise basis. Alternatively, µµµ could be
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omitted and the members of x could be allowed to have non-zero means to achieve the same result

in which case (4.4) would become

E[φφφ ] = BµµµX (4.5)

where µµµX is a vector of the means of the random variables in x. While this would be just as

effective at providing any desired mean to the elements of φφφ it unnecessarily obfuscates them by

tying them into the elements of B and the mean values of x.

To gain a better idea of how the pulsed StoWGe structure functions, (4.3) can be rewritten such

that

φφφ=

(
N

∑
n=1

Xnbn

)
+µµµ (4.6)

where Xn is the nth random variable in the vector x and bn is the nth column vector of B. In this

form, φφφ is a linear combination of basis functions which are the columns of B, and the weight of

each basis function is randomly chosen as a sample value of each member of x. Since the elements

of x are by definition zero-mean, µµµ can provide any mean value to the elements of φφφ.

As was discussed in much detail in Section 3.4, the WGF metrics are functions of the WGFs

moments. For the pulsed StoWGe model, these moments are likewise functions of B and µµµ. The

correlation between the m1th sample and the m2th is defined

E
[

sm1s∗m2

]
= E [exp( j(φm1−φm2) ] (4.7)

where the phase values can be expanded based on the structure of µµµ such that

E
[

sm1s∗m2

]
= E [exp( j((bm1−bm2)x+µm1−µm2)) ] (4.8)

where bm1 and bm2 are the m1th and m2 row vectors of B respectively. Since the values of µµµ are

constant, they can be factored out of the expectation and the equation can be rewritten as

E
[

sm1s∗m2

]
= exp( j(µm1−µm2))E

[
N

∏
n=1

exp( j(bm1,n−bm2,n)Xn)

]
, (4.9)
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where the inner product argument of the complex exponential, (bm1−bm2)x, can be rewritten using

a product operator since it is an exponent and bm1,n is the nth member of the m1th row of B. Since

the elements of x are by definition statistically independent, the expectation can be moved inside

the product operator yielding

E
[

sm1s∗m2

]
= exp( j(µm1−µm2))

N

∏
n=1

E [exp( j(bm1,n−bm2,n)Xn ] . (4.10)

Such that (4.9) becomes a product of expectations rather than the expectation of a product. Similar

to the analysis in [27, 28, 82], note that the expectation in (4.10) is the form of the characteristic

function of a random variable which itself is defined as

ψX(ω) = E [exp( jωX) ] (4.11)

where ψX(ω) is the characteristic function of the random variable X as defined in Section 3.1.

Putting (4.11) into (4.10), the correlation of the signal samples becomes

E
[
sm1s∗m2

]
= exp( j(µm1−µm2))

N

∏
n=1

ψXn(bm1,n−bm2,n), (4.12)

where ψXnω is the characteristic function of the nth random variable and ω = bm1,n−bm2,n. Further,

the fourth order moment can be derived similarly such that

E
[
sm1s∗m2

s∗m3
sm4

]
= exp( j(µm1−µm2−µm3 +µm4))

N

∏
n=1

ψXn(bm1,n−bm2,n−bm3,n+bm4,n). (4.13)

In (4.12) and (4.13), the moments of s are functions of the elements of B and µµµ. Therefore, (4.3)

can be optimized according to the metrics in Section 3.4 by adjusting the values of the elements of

B and µµµ.
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4.2 The Expected Frequency Template Error (EFTE) for Pulsed StoWGe

In [31], the expected frequency template error (EFTE) cost function was introduced as a means

to measure the squared error between the expected power spectrum of some waveform generating

process and some desired spectral shape. This can be stated mathematically as

Jp =

∣∣∣∣∣∣∣∣E [ ŝf ]−u
∣∣∣∣∣∣∣∣2

2
(4.14)

where

sf = E [ ŝf ] (4.15)

is the expected power spectrum of the WGF, s, as defined in Section 3.4, || · ||22 is the squared

Euclidean norm, u is some desired power spectrum, and the subscript, p, indicates the pulsed

StoWGe model. Then, as (4.14) is minimized, the WGF will on average produce waveforms with

a power spectrum that is more and more similar to u in a mean squared error sense. Potentially, a

cost function could be defined for any of the metrics discussed in Section 3.4, but the EFTE cost

function offers advantages relative to other stochastic waveform metrics.

For one, the expected power spectrum shares a Fourier transform pair relationship with the

expected autocorrelation. Accordingly, by selecting a desired spectrum which results in an excel-

lent expected autocorrelation, the expected autocorrelation can be optimized simultaneously. This

concept has been used extensively in the design of random FM waveforms [23, 24, 26] and in the

design of single, low auto-correlation sidelobe waveforms [44,45,105] as was discussed in Section

2.2. However, these waveform design implementations operated on a per waveform basis whereas

here the notion is applied to an entire family of waveforms defined via a WGF.

Additionally, the expected power spectrum is only a second order function of the WGF as

apposed to a fourth order function like the power spectral deviation or the RMS matched filter re-

sponse. This represents a clear advantage in terms of the processing and complexity requirements.

Simply put, for an M length pulsed WGF there are M2 second order terms, but there are M4 fourth
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order terms.

Alternatively, one may consider optimizing the expected autocorrelation directly since it is

also a second order function. The most straightforward choices are to optimize via minimizing

either ISL, PSL, or the more flexible generalized integrated sidelobe level (GISL) metric [70,

105]. However, these metrics largely disregard spectral containment making the EFTE metric

more desirable at least for random FM waveforms [105].

One major drawback of the EFTE cost function is that it only considers the average behavior

of waveforms. Individual waveforms could have very poor properties such as wildly spread out

spectra or high autocorrelation sidelobes, but so long as they average out to the desirable outcome

the EFTE metric will not capture this behavior. Practically speaking, we will only ever be able to

coherently integrate a finite number of waveforms so it is important to consider their individual

behavior in addition to their aggregate characteristics. With this mind, it is crucial to at least

examine the individual metrics of Section 3.4 to ensure the minimization of the EFTE cost function

is producing useful WGFs. Such an examination is provided in the following sections.

4.3 Optimization of the Pulsed StoWGe Expected Power Spectrum

As alluded to in Section 4.2, the pulsed StoWGe expected power spectrum can be optimized by

minimizing the EFTE cost function in a similar manner [31]. In order to determine the best opti-

mization method, the 2-norm in (4.14) can be expanded such that it becomes

Jp = (E [ ŝf ])
T (E [ ŝf ])−2uT (E [ ŝf ])+uT u (4.16)

which is a fourth order function of s. Additionally, as shown in (4.12), the second order moments

of the samples in s are already products of the characteristic functions of the random variables

of x. The characteristic functions themselves are dependent on B. Consequently, the EFTE cost

function is highly non-linear. This makes it unlikely that (4.14) is convex such that finding its

global minimum is extremely difficult if not impossible.
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In addition to being non-convex and non-linear, (4.14) is also unconstrained. That is the ele-

ments of B andµµµ are allowed to take on any real value. As discussed in Section 2.5, non-linear cost

functions can be difficult to optimize, but at the very least it is straightforward to apply gradient

descent methods to find at least a local minimum, so long as the function is differentiable which

(4.14) is. With this in mind the most important part of gradient descent optimization is to calculate

the gradient itself.

4.3.1 The Pulsed StoWGe EFTE Gradient

As the name implies gradient descent techniques require the evaluation of the cost function gradi-

ent. For the EFTE cost function this can be calculated for both the basis function matrix, B, and

the mean value vector, µµµ. In terms of a single element of B, the derivative of (4.14) is

∂Jp

∂bk,n
= 2

(
∂E [ ŝf ]

∂bk,n

)T

(E [ ŝf ]−u) (4.17)

where bk,n is the element of B in the kth row and nth column, and the derivative of the expected

power spectrum is evaluated on an element wise basis. The derivative of the wth element of E[ŝf,w]

is

∂E[ŝf,w]

∂bk,n
= 2ℜ


M

∑
m=1

aw,ma∗w,k exp( j(µm−µk))
∂ψXp(bm,n−bk,n)

∂bk,n

N

∏
p=1
p6=k

ψXp(bm,n−bk,n)

 (4.18)

where ℜ{·} extracts the real part. A full derivation of (4.18) can be found in Appendix A.1.2.1.

(4.17) can be evaluated for each element of B and collected into the structure

∇BJp =



∂Jp
∂b1,1

∂Jp
∂b1,2

· · · ∂Jp
∂b1,N

∂Jp
∂b2,1

∂Jp
∂b2,2

· · · ∂Jp
∂b2,N

...
... . . . ...

∂Jp
∂bM,1

∂Jp
∂bM,2

· · · ∂Jp
∂bM,N


(4.19)
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to realize the gradient with respect to B.

Likewise, the derivative with respect to a single value of µµµ is

∂J
∂ µk

= 2
(

∂E [ ŝf ]

∂ µk

)T

(E [ ŝf ]−u) (4.20)

where µk is the kth element of µµµ. Taking the derivative on an element wise basis, the derivative of

the wth element of E[|sf,w|2] is

∂E[ ŝf,w ]

∂ µk
= 2ℑ

a∗w,k exp(− jµk)
M

∑
m=1
m6=k

aw,m exp( jµm)
P

∏
p=1

ψXp(bk,p−bm,p)

 (4.21)

where ℑ{·} extracts the imaginary part. A complete derivation of (4.21) can be found in Appendix

A.1.2.2. The results of (4.20) and (4.21) can be collected into the structure

∇µµµJ =



∂J
∂ µ1

∂J
∂ µ2
...

∂J
∂ µM


(4.22)

to realize the gradient of the EFTE cost function with respect to the mean phase value vector µµµ.

4.3.2 Gradient Descent Implementation

As discussed in Section 2.5, the local optimization of a non-linear problem can be more of an art

than a science. The quality of the final result is often strongly dependent on seemingly arbitrary

initialization decisions and the type of optimization and its parameters (e.g. β for gradient descent

methods). Consequently, the choice of parameters is often a heuristic process of trial, error and

educated guesses.

In the course of evaluating the efficiency of various gradient descent techniques such as the ones

in [88], it was found that one of the simplest varieties, heavy ball gradient descent, was uniquely
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robust and efficient at minimizing the pulsed StoWGe EFTE cost function. As was discussed in

more detail in Section 2.5, for gradient descent methods a search direction is chosen such that

qi =

 −gi when i = 0

−gi +βqi−1 otherwise
(4.23)

where for heavy ball gradient descent β takes on a value such that 0 < β < 1 which makes the

search direction at the ith iteration a linear combination of the current gradient and weighted ver-

sions of previous search directions [89]. The fact that heavy ball gradient descent would be more

efficient (converging more quickly than other implementations) than other more sophisticated ap-

proaches such as non-linear conjugate gradient methods, is itself a surprising result considering

they generally work better than the simplistic heavy ball method.

The particulars of the heavy ball gradient descent method used in this work are detailed in

Table 4.1. Going from the first steps to the last, the following is an overview of heavy ball gra-

dient descent minimization of the EFTE cost function for pulsed StoWGe WGFs. First, in step

1 various parameters are initialized. The parameters M, N, pX(x), u, B0, and µµµ0 pertain di-

rectly to the pulsed StoWGe model and are discussed in detail in the next section. The parameters

β , ρup, ρdown, c, and γ are used exclusively for the gradient descent optimization. As step 2 indi-

cates, the optimization is run iteratively until a set of condition(s) is met. The optimization begins

in step 3 were the current cost function value and the gradients with respect to both B and µµµ are

evaluated. In step 4, the search direction components corresponding to the both B and µµµ are cal-

culated as a function of the heavy ball parameter β and their respective previous search direction

components.

At this point it is important to remember what these two different gradients mean in the context

of the gradient descent scheme. As presented, they appear as if they are two distinct gradients

and consequently independent search directions, but this is just a matter of notational convenience.

Instead, as they are treated here, they are really just two different portions of the same total gradient

with respect to all the parameters in both B and µµµ.
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Table 4.1: Pseudo-code for the gradient descent optimization of pulsed StoWGe WGFs through
the minimization of the EFTE

EFTE Gradient Descent Optimization of the Pulsed StoWGe WGF

1: Initialize: M, N, pX(x), u, B0, µµµ0, β , ρup, ρdown, c, γ

set i = 0,Q0 = 0M×N ,q0 = 0M×1

2: Repeat

3: Evaluate: Jp(Bi,µµµi), ∇BJp(Bi,µµµi), and ∇µµµJp(Bi,µµµi)

4: Qi+1 =−∇BJp(Bi,µµµi)+βQi, qi+1 =−∇µµµJp(Bi,µµµi)+βqi

5: If
(
〈Qi+1,∇BJp(Bi,µµµi)〉+qT

i+1(∇µµµJp(Bi,µµµi))
)
≥ 0

6: Qi+1 =−∇BJp(Bi,µµµi), qi+1 =−∇µµµJp(Bi,µµµi)

7: End (If)

8: While Jp(Bi + γQi+1, µµµi + γqi+1)

> Jp(Bi,µµµi)+ cγ
(
〈Qi+1,∇BJp(Bi,µµµi)〉F +qT

i+1(∇µµµJp(Bi,µµµi))
)

9: γ = ρdownγ

10: End (While)

11: Bi+1 = Bi + γQi+1, µµµi+1 =µµµi + γqi+1, γ = ρupγ

12: i = i+1

13: If CStop

14: Stop

15: End (If)

16: End (Repeat)

In steps 4 through 6, the new search direction (both Qi+1 and qi+1) is tested to make sure it

actually is a descent direction. As noted in Section 2.5, if the search direction and the gradient are

vectors, then if the inner product between them is positive then the search direction is actually an

ascent direction and it needs to be reset to the negative of the current gradient. Here, the search

direction consists of both a matrix and a vector, but the principle is the same. In step 5, the

Frobenius product is evaluated with respect to Qi+1 and ∇BJp(Bi,µµµi) which is defined such that

〈T,V〉 := ∑
n,m

tnmvnm (4.24)
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where T and V are arbitrary matrices of the same dimensionality. The Frobenius product itself is

equivalent to stringing the columns of each matrix into a single, long vector and calculating the

resulting inner product. If the resulting sum of the Frobenius product and the inner product in step

5 is greater than zero then the search direction is actually a direction of ascent and it is reset to the

negative of gradient.

Next, in steps 8 through 10, a simple line search is performed to find an acceptable step size, γ .

Section 2.5 introduces the strong Wolfe conditions, but here only the Armijo condition (the first of

the strong Wolfe conditions), corresponding to the term multiplied by c, is used as apposed to using

both strong Wolfe conditions. The second Wolfe condition, the curvature condition, is left off here

since, while it would result in a more efficient optimization on a per iteration basis, it would also

require repeated evaluations of the gradient which would significantly increase the per iteration

computational cost. Consequently, the trade off here is to sacrifice some per iteration improvement

for a meaningful reduction in computational expense to enable a much greater overall number of

iterations in the same amount of time as compared to using both conditions. In step 9 if the Armijo

condition is not met, the step size is reduced by a factor of ρdown < 1 until an acceptable step size

is found.

After the line search, in step 11 the parameters are updated and the step size in increased by

a factor of ρup > 1. Increasing γ here is a natural consequence of the line search. Without this

step, the step size would likely get smaller and smaller and the per iteration improvement would

dwindle. In affect, this is a rudimentary compensation for leaving out the curvature condition

which keeps the step size from getting too small. In other words, the Armijo condition keeps the

step size from getting too large while step 11 keeps the step size from getting to small. In step 12

the iteration index is increased. Finally, in steps 13 through 15 the stopping conditions are checked

where in step 13 CStop is a generic place holder for the stopping condition(s). If they are met, then

the optimization is finished. The particular values and conditions used for the optimization in Table

4.1 are discussed in detail in Sections 4.3.3 and 4.3.4.
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4.3.3 Pulsed StoWGe Model Initializations

One difficulty in evaluating the optimization of pulsed StoWGe via the EFTE cost function is the

number of parameters to consider. Table 4.2 highlights this issue by listing all the independent

parameters.

Table 4.2: WGF parameters which must be selected or initialized prior to optimization

Fixed Parameters

M Number of samples per waveform

N Number of random variables per waveform

pX(x) Random Variable Distribution Function

u The Desired expected spectrum

Optimizable Parameters
B Basis Function matrix

µµµ Waveform Sample mean value vector

The parameters M, N, pX(x), and u are fixed throughout the optimization, while the basis

function matrix B and the mean phase value vector µµµ are optimized. The fixed parameters have to

be set before beginning the optimization while the optimizable parameters have to be initialized.

With a total of six parameters to consider, the number of unique optimizations to run can quickly

become impractical. With this in mind, it is necessary to select a meaningful subset of test cases.

The next several paragraphs discuss the selected initializations for the parameters in Table 4.2

along with the rationale for those selections.

Number of Waveform Samples: M – To understand how the EFTE minimization performs on

pulsed StoWGe, the only requirement on M is that it is sufficiently large such that a meaningfully

large BT with respect to the 3 dB bandwidth can be realized. For digital waveforms the maximum

BT is equal to the number of digital samples. If the waveform is oversampled relative to its 3

dB bandwidth then the BT is reduced by that factor. To allow for a meaningfully large BT , M is

fixed such that M = 512 samples. This way, even if the expected spectrum has a relatively high

oversampling factor relative to the 3 dB bandwidth such as 4, the waveforms produced by the

optimized WGF will still possess a relatively high BT of 128.
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Number of Random Variables: N – The smaller the value of N, the fewer the number of ran-

dom variables that have to be instantiated with every waveform and the fewer the number of basis

function that have to be summed to instantiate the phase function. From this, it is desirable that N is

kept as small as possible. The questions are then how small can N be and still be able to match the

desired spectrum and with a small value of N are the waveform instantiations sufficiently different

to realize a noise like sidelobe reduction with coherent integration. To answer these questions, N

will be varied over the powers of 2 between 1 and 512 such that N ∈ {2,4,8,16,32,64,128,256}.

Random Variable Distribution Function: pX(x) – The possible forms of pX(x) include all

valid PDFs/PMFs, although we can disregard PDFs/PMFs with a non-zero mean. The phase mean

value vector µµµ makes giving pX(x) a mean value unnecessary. Still the options for pX(x) are vast.

The approach taken here is to consider a few common and relatively simple distributions which

have mathematically tractable characteristic functions. The first distribution to be considered is the

binary uniform distribution less formally known as a fair coin toss. That is, the distribution has

equal an probability of taking one of two states such that

DU2: pX(x) =
1
2

δ (x+π)+
1
2

δ (x−π) (4.25)

where here the two states are±π . Alternatively, we also consider a continuous uniform distribution

defined as

CU: pX(x) =
1

2π

 1 −π ≤ x≤ π

0 otherwise
(4.26)

where the distribution extends from −π to π . In addition to these uniform distributions, it is

informative to compare them to the Gaussian distribution which has already been evaluated for the

purposes of random FM waveforms in other works such as [27–29, 31, 72, 82]. Here, the Gaussian

random variable is defined to have unit variance such that

G: pX(x) =
1√
2π

exp
(
−x2

2

)
(4.27)
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For convenience the three different pX(x) will be referred to via shorthand as DU2, CU , and G

respectively. These three distributions should provide insight into the behavior and usefulness of

highly constrained distributions such as DU2 and less restrictive distributions such as CU and G

which can take on a continuum of values.

Desired Spectrum: u – As discussed in Chapter 2, it is often desirable for a waveform to

exhibit a Gaussian like spectrum as this spectrum ideally results in zero autocorrelation sidelobes

and good spectral roll-off. Consequently, this spectrum will be examined here as well.

Still, for low oversampling factors with respect to the 3 dB bandwidth the roll-off is fairly poor.

In fact, for an oversampling factor of 2, a Gaussian spectrum only decays to about -12 dB in peak

normalized power by the edge of the sample bandwidth. This may be enough motivation in some

cases to move away from the Gaussian spectrum. One alternative is the Super-Gaussian spectral

shape defined as

u( f ) = Aexp
(
| f − fc|n

x3dB

)
(4.28)

where A arbitrarily scales the power, x3dB can be chosen to set B3dB, n is an integer greater than two,

and fc is the center frequency. If n is set to two, then (4.28) is simply a Gaussian function. Values

of n greater than two result in a function with a similar shape as a Gaussian, but with a flatter

passband and a much steeper roll-off. As n approaches infinity (4.28) approaches a rectangular

function which is the third spectral shape considered here.

The baseband rectangular spectral template is defined such that

u( f ) =

 1 − fB/2≤ f ≤ fB/2

0 otherwise
(4.29)

where the 3 dB bandwidth, fB, is also the absolute bandwidth in this case. This template represents

perfect spectral containment.

In Fig. 4.1 these three functions, Gaussian, Super-Gaussian with n = 4, and the rectangular

function, are plotted with an oversampling factor with respect to the 3 dB bandwidth of K = 2.
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The Super-Gaussian decays much more quickly towards the sample bandwidth edges (±Bsamp/2)

as compared to the Gaussian function while the rectangular functions resembles a "brick-wall" at

the 3 dB bandwidth representing the ideal spectral roll-off.

The downside to the Super-Gaussian function as compared to the traditional Gaussian is that

it will never achieve zero autocorrelation sidelobes. However, it will not have nearly as high

of sidelobes as the rectangular function either. To examine this, the best case autocorrelation

responses of these functions are plotted in Fig. 4.2 where the oversampling factor has been set to

K = 8 in order to provide good visibility of the sidelobe structure. The Gaussian autocorrelation

function has no sidelobes shown and if it were zoomed out arbitrarily far it never would. The

rectangular spectrum results in the familiar sinc like sidelobes of an LFM with peak levels at

roughly -13.4 dB. The super-Gaussian spectrum however has a peak sidelobe at roughly -20 dB,

but subsequent peaks decay rapidly from this level with the next peaks at roughly -37 dB. The key

takeaway from this plot is that even for noise or random FM waveforms where coherent integration

of multiple pulses can be expected to lower the sidelobe levels, if the average spectrum approaches

the shapes in Fig. 4.1 their autocorrelation responses can be no better than the shapes in Fig. 4.2.

In this way, the choice of spectra determines what kind of persistent sidelobes the WGF will have.

Historically, the super-Gaussian function has been a topic of much interest in optics [106],

here it is suggested as a compromise between the zero persistent autocorrelation sidelobe Gaus-

sian spectrum that demonstrates modest spectral containment and the rectangular spectrum which

achieves ideal spectral containment, but with extensive persistent sidelobes. With this in mind,

these three templates are used with two different oversampling factors of K = 2 or K = 4 as plotted

in Figs. 4.1 and 4.3 respectively.

For future convenience, these spectral templates are referred to by shorthand. The Gaussian

templates with either K = 2 or 4 are G2 and G4 respectively. The Super-Gaussian templates with

n = 4 and either K = 2 or 4 are S4G2 and S4G4 respectively. The Rectangular templates with

either K = 2 or 4 are R2 and R4 respectively.
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Sample BW

3dB BW

B3dB

Bsamp
= 2

Figure 4.1: Desired spectra for the EFTE optimization with a 3 dB oversampling factor of K = 2

Figure 4.2: Corresponding autocorrelation response of the desired EFTE spectra
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Sample BW

3dB BW

B3dB

Bsamp
= 4

Figure 4.3: Desired spectra for the EFTE optimization with a 3 dB oversampling factor of K = 4

Initial Basis Function Matrix: B0 – As has been shown in other works for non-convex opti-

mization, the initialization can have a dramatic effect on the result of the optimization. In general,

the challenge is to find an initialization that tends toward good solutions. For this work, two initial-

izations are examined to demonstrate this behavior. The first one is based on the PCFM framework

as discussed in Section 2.2.3. The initial B has the exact form of the PCFM basis matrix for a given

M, N, and oversampling factor, K, of the desired spectrum with respect to the 3 dB bandwidth.

The second initialization is an identity matrix when the number of random variables matches

the number of waveform samples, but when N < M the matrix is modified as in Fig. 4.4
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Figure 4.4: Structure of the "Identity" basis matrix initialization (BID)

For convenience, the PCFM basis matrix initialization is referred to as BPC and the modified

identity matrix initialization is referred to as BID.

Initial Phase Mean Value Vector: µµµ0 – An asymmetric baseband expected spectrum can only

be achieved if the phase values have a non-zero mean value. However, since this work is only

concerned with the symmetric spectral templates discussed above, it is not necessary for the phase

of the pulsed StoWGe signals to have a non-zero mean value. In fact it would be detrimental to

matching to the templates. For future work the optimization of µµµ can be considered for such cases

as spectral notching where asymmetric baseband spectra are required. For this work however, µµµ0

will be initialized as a vector of zeros and will not be optimized. For completeness and to show how

it can be done, the algorithm in Table 4.1 include the vector µµµ as a set of optimizable parameters,

but for the optimizations in this work these terms are simply removed.

Summary: – All the initializations and their shorthand notation from above are summarized

in Table 4.3.
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Table 4.3: Optimization initializations for the pulsed StoWGe parameters. All combinations are
considered resulting in 288 total optimizations

Variable Definition Test Cases

M Number of waveform Samples M = 512

N Number of random variables N = 2, 4, 8, 16, 32, 64, 128, 256

pX(x) Random Variable Distribution

DU2 – Discrete Uniform, 2 states

CU – Continuous Uniform

G – Gaussian with unit variance

u Desired Spectrum

G2 – Gaussian (K = 2)

G4 – Guassian (K = 4)

S4G2 – Super-Gaussian (n = 4,K = 2)

S4G4 – Super-Gaussian (n = 4,K = 4)

R2 – Rectangular (K = 2)

R4 – Rectangular (K = 4)

B0 Basis Function Initialization
BPC – PCFM basis matrix

BID – Modified identity matrix

µµµ0 Phase Mean Value Vector 0 – [0 0 · · · 0 ]TM×1

4.3.4 Pulsed StoWGe Gradient Descent Parameter Initializations

The specific values of the gradient descent parameters, the choice of line search, and the choice

of heavy ball gradient descent as apposed to others were made with the intention of making the

optimization reasonably fast but more importantly robust. It is certainly possible if not likely that

there is a better set of parameters, line search, and gradient descent method that could minimize

the EFTE cost function more quickly than what it presented here, but the goal of this work is to

show that the minimization can produce useful WGFs and not necessarily how quickly it can do

so. After all, one of the biggest advantages of StoWGe is that the optimization does not have to

be performed in a just in time manner since entire stochastic families of waveforms are optimized

rather than individual waveforms.

With this mindset, the parameters, β , ρup, ρdown, c, and γ where chosen via trial and error.
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For every one of the test cases outlined in Table 4.3, β , ρup, ρdown, c where set to .95,1.01, .9, .01

respectively and γ was initialized as 10−6.

In Table 4.1, the stopping conditions were represented by a place holder since the chosen

conditions really only make sense in the context of the values chosen for the other parameters. For

the pulsed StoWGe optimization, three stopping conditions were used. The first is simply that the

optimization will run for at least 5000 iterations. This is a consequence of the initial step size being

very small, which in turn was a decision made to prevent the optimization from jumping into a poor

solution space. In general, the initial basis matrix, B0, results in a very poor match to the expected

spectrum, which in turn means basically any step in any direction of any size stands a good chance

of lowering the cost function value and being "acceptable" as far as the algorithm is concerned.

For example, if adding 1 billion to each parameter in the initial basis matrix results in a decrease

in the cost function value, then the algorithm will accept that change. The problem is that it is

unlikely that an "excellent" local minimum exists in the neighborhood of such an exotic region of

the solution space. Making the initial step size so small is intended to prevent this from happening

and to guarantee that whatever optimization solution is found is in or near the neighborhood of the

initialization. The down side is that since it starts out so small such that it can take a fair number

if iterations for it to become large enough such that the cost function is meaningfully decreased

with each iteration. The minimum of 5000 iterations prevents the other stopping conditions from

prematurely ending the optimization.

Second, if the total decrease of the cost function in any consecutive set of 1000 iterations is

less than .01 dB, the optimization is stopped. The rationale is simply that if the optimization is

progressing so slowly (outside of the first 5000 iterations), then it is unlikely that further iterations

will realize meaningful improvement.

Finally, the optimization will stop at either 106 iterations or if the cost function value goes

below -200 dB. These are both pragmatic conditions. If the iteration count makes it to 106, then

the cost function value is likely already very small and is barely not meeting beating the previous

condition so the optimization is stopped in the interest of time. The -200 dB condition is somewhat
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arbitrary, but the idea is that -200 dB is effectively 0 in this context. In the sense that is there really

a difference between -200 dB and say -210 dB in a way that can be meaningfully evaluated when

producing the stochastic waveforms? In linear terms the difference is minuscule.

The key takeaway in how these stopping conditions were chosen is not how arbitrary they seem

to be, but that they were intentionally chosen to be conservative (designed not to stop too early)

through a heuristic process of trial and error. After all, non-linear, local minimization itself is as

much an art as it is a science [87].

4.4 Pulsed StoWGe Optimizations Results

By the definition of the EFTE cost function, the best pulsed StoWGe WGFs are those which result

in the smallest cost function values as a function of B0, N, and pX(x). Every result of each of

the optimizations detailed in Table 4.3 is tabulated in Tables B.7-B.12 on a dB scale where more

negative values (smaller) represent a better optimization result. If the goal of this work were only

to produce WGFs which achieve a desired expected power spectrum, then all the relevant analysis

could be performed by simply examining the contents of those tables. However, the goal behind

the WGFs optimized here is that they produce useful random FM waveforms for radar purposes

and having a good expected spectrum is only a part of that goal. Still, it is expected that these two

goals are well correlated and that if a WGF matches well to its desired expected spectrum then it

is more likely to produce useful radar waveforms than otherwise. Because of this, Tables B.1-B.6

represent an excellent starting point.

The analysis begins in Section 4.4.1 by examining a problematic corner case that occurs for

the WGFs with a small value of N. Then, using many of the metrics outlined in Table 3.3, Section

4.4.2 evaluates the WGFs with the best cost function values for their ability to produce useful radar

waveforms. Section 4.4.3 looks at how the optimizations achieved their results by qualitatively

examining the optimized basis and correlation matrices. Finally, Section 4.4.4 compares the pulsed

StoWGe waveforms produced here to previous pulsed random FM waveforms.
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4.4.1 Small N

4.4.1.1 Discrete Distributions

According to the tables in Appendix B, for many of the templates the DU2 distribution realizes

excellent matches to the desired power spectral template regardless of the value of N. In the case

of the S4G2 template, the values of N = 2,4 actually perform the best and even meet the -200 dB

stopping point of the optimization, but these excellent matches hide a significant issue.

If pX(x) is a discrete distribution with a finite number of states then the WGF will likewise have

a finite number of sample functions. For the DU2 distribution, two states per random variable, the

WGF can only produce 2N unique waveforms, so when N = 2,4 the expected power spectrum

measured by the EFTE is just the sample mean of 4 or 16 sample functions respectively. With so

few sample functions to choose from, the WGF in this case is clearly not useful for generating

random FM waveforms, since the last thing noise-like waveforms should do is repeat themselves.

In fact, when N = 2 there is a 25% chance that two of the same waveform will be instantiated

consecutively assuming they are all equally probable as they would be for the DU2 case.

Instead, in a completely roundabout way, these small sets of waveforms are more like com-

plementary waveforms [71, 107, 108], in that they combine to match a desired property. In the

Gaussian template cases, they combine to produce zero autocorrelation sidelobes making them

explicitly complementary waveforms. Still, what really sets the small N cases apart for discrete

distributions is the very small number of member functions. Because of this, only WGFs with a

sufficiently large sample space will be considered for FM noise purposes.

To a degree "sufficiently large" is somewhat arbitrary, but it can be thought of this way. Given

a 100 pulse CPI, or some other reasonably sized CPI, what are the odds that the same waveform

is repeated in those 100 pulses? For the DU2 case, all sample functions are equally probable so

the answer is just 100(1/2N). For N = 2,4,8,16, the solutions are 100%, 100%, 39%, and 0.15%

respectively. With N = 16, in about 15 out of every 1000 CPIs there will be 2 of the same sample

function in a given set of 100. Although with N = 16 the chance of a repeat is small, out of an
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abundance of caution this work will only consider values of N ≥ 32 as useful for random FM

purposes from here on out for the DU2 distribution.

4.4.1.2 Continuous Distributions

For the CU and G distributions, the small N cases tend to perform worse than the larger N cases

according to the tables in Appendix B. Consequently, they are of less concern since they would not

be considered "good" in the first place. Still, they sometimes do outperform the larger N cases so

it is prudent to examine the behavior of the WGFs with a continuous pX(x) and small N.

Being continuous, regardless of the value of N the WGF with a continuous pX(x) can produce

an infinite number of sample functions so the small sample function set size will not be an issue

here. However, they do present a less obvious issue that is revealed by examining the power

spectral deviation.

In Table B.1, the BPC initialization results in a better match to the power spectral template

for smaller values of N for pX(x) = CU, and nearly equivalent results for any value of N for

pX(x) = G. Figs. 4.5 and 4.6 show the resulting power spectral deviation for the CU case and the

G case respectively for values of N including 2, 8, 32, and 128. Additionally, the G2 template is

shown for reference.

The most notable aspects of Figs. 4.5 and 4.6 is the tremendous spike in the power spectral

deviation at 0 frequency for the smaller values of N. As N increases, the spike decreases and the

power spectral deviation function becomes more smooth overall until in the N = 128 case it is

indistinguishable from the template meaning the deviation is on the order of the expected power

spectrum.

For the smaller values of N, the spike is intuitive. With so few random variables to construct

the phase for any given sample function the probability that they are all close to zero or all well

away from 0 is non-negligible, which represents a problem from a pulse integration standpoint. It

will take more pulse integration for the sample power spectrum to resemble the expected power

spectrum. To avoid this issue, only WGFs with N ≥ 32 will be considered for either the CU or G
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Figure 4.5: Normalized power spectral deviation for the CU distribution, the G2 template, and
various values of N

Figure 4.6: Normalized power spectral deviation for the G distribution, the G2 template, and
various values of N

124



distributions in the same way as for the DU2 case.

4.4.2 Pulsed StoWGe Optimized WGF Analysis

With the small N cases addressed, the question becomes how to evaluate the effectiveness of the

rest of the WGFs for instantiating useful radar waveforms. The most straightforward place to

begin, is to examine the cases with the best cost function values as a function of u and pX(x) for

N ≥ 32. With six templates and three distributions this leaves 18 WGFs to examine in more detail.

These cases are collected in Table 4.4. Beyond the template match, it is important to understand

Table 4.4: Optimized WGFs which resulted in the lowest value of Jp for each pX(x) and u as a
function of N for N ≥ 32 and B0.

Distribution (pX(x))

DU2 CU DU2

J N B0 J N B0 J N B0

T e
m

pl
at

e
(u

)

G2 -154.1 128 BPC -154.0 32 BId -74.2 32 BPC

G4 -200.0 128 BPC -115.1 32 BPC -88.5 256 BPC

S4G2 -157.3 32 BPC -89.6 32 BPC -46.2 64 BPC

S4G4 -88.8 64 BPC -76.2 64 BPC -42.0 32 BPC

R2 -57.1 128 BPC -42.9 32 BPC -37.1 32 BPC

R4 -48.1 64 BPC -39.6 32 BPC -33.8 32 BPC

how these WGFs perform in other ways, but especially in the time domain and on an individual

basis. Such an analysis can be performed by utilizing several of the metrics discussed in 3.4. The

metrics deemed helpful for evaluating the usefulness of the optimized WGFs are:

• Expected power spectrum - This metric is directly optimized by the cost function. It is clearly

relevant to the analysis.

• Power spectral deviation - While it is essential that the waveforms on average have a good

spectrum, it is also useful to understand how the power spectrum of a given waveform can
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be expected to deviate from the expected power spectrum. If each waveform deviates wildly

from the expected spectrum, it may take much more coherent integration for the sample

power spectrum to resemble the expected power spectrum as opposed to a WGF with much

less power spectral deviation.

• Expected autocorrelation - For a WGF to be useful for creating noise like waveforms, at

a minimum the autocorrelation sidelobes should decrease with coherent integration. The

expected autocorrelation represents the lowest possible sidelobes given sufficient coherent

integration. In general, the expected autocorrelation should have extremely low sidelobe

levels, but ultimately this depends on the spectral template and the WGFs ability to realize

that template.

• Expected RMS autocorrelation - While it is useful to know that the sidelobe levels will

decrease with coherent integration, it is likewise useful to know at what level they will begin.

The expected RMS autocorrelation represents the expected autocorrelation level of a single

WGF generated waveform.

• Expected RMS cross-correlation - If any single pair of StoWGe waveforms are filtered with

each other, the expected RMS cross-correlation represents the magnitude of this result. In

general, it is desirable that unique waveforms have little cross-correlation to maximize sep-

arability and reduce ambiguity.

This is only five of the eight metrics listed in Table 3.3. The other three metrics as discussed in

3.3.1.3 generally are not useful and were included for completeness.

4.4.2.1 Gaussian Template Results

In Figs. 4.7 and 4.8 the analytically calculated spectral and temporal metrics of each of the two

Gaussian templates are plotted respectively. Judging from Fig. 4.7(a,b) each of the different dis-

tributions were able to achieve fairly good matches to the Gaussian templates where for the G2

template the expected spectra are indistinguishable from the template while for the G4 template
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there is some deviation from the template on the part of the CU and G distributions at the sample

bandwidth edges.

The spectral deviation plots are a little more interesting. In 4.7(c), the DU2 distribution realizes

some periodic, small spikes in its deviation while in 4.7(d), the G distribution shows much more

variability over its bandwidth compared to the others indicating its individual waveforms could

on occasion have much more or less power in the roll-off regions. Such behavior indicates it

would likely take more coherent integration for the spectral estimates of the Gaussian random

variable WGF sample function to approach their expected power spectrum as opposed to the other

distributions.

In Fig. 4.8(a,b), the expected autocorrelation function (ACF) for each distribution either

matches the templates corresponding ACF or even outperforms it in the case of the G distribution.

Although, the CU distribution does somewhat worse for the G4 template, but not meaningfully

so. The expected autocorrelation represents the resulting autocorrelation with infinite coherent

integration. The autocorrelation levels of noise like waveforms decrease at a rate of 10log10(L)

where L is the number of waveforms being coherently integrated. If a given waveform of a WGF

realizes an individual sidelobe level of around -40 dB, it would still take the coherent integration

of 1000000 waveforms to run into the sidelobe floor presented by the CU distribution in 4.8(b),

so really the expected autocorrelation sidelobes only need to be as low as what can be reasonably

obtained given the RMS autocorrelation sidelobes and the size of the CPI.

In Fig. 4.8(c), the RMS autocorrelations for the poorly contained spectrum of the G2 template

all exhibit a fast oscillatory component with the DU2 distribution having the highest amplitude

oscillations. For the G4 template in Fig. 4.8(d), the G distribution exhibits a broadening at the

base of the mainlobe and a couple of fairly large oscillations thereafter. The CU distribution has

some higher frequency oscillations while for the DU2 distribution, there is a small bump at the

mainlobe but is then smooth thereafter. For noise and noise like waveforms without any optimiza-

tion, the average sidelobe level (near the mainlobe) should be around −10log10(BT ) which are

-24.1 and -21.1 for the G2 and G4 templates respectively. Even accounting for the oscillations,

127



roughly speaking each choice of distribution was able to meet or exceed these values. Though, the

broadening of the base of the mainlobe in the G distribution case for the G4 template makes it less

obvious where the sidelobe region truly begins.

In Fig. 4.8(e), the oscillations present for the G2 template RMS autocorrelations are likewise

present in the RMS cross-correlations. However in Fig. 4.8(f), the large scale oscillations disappear

from the RMS autocorrelations. Overall, the RMS cross-correlation results largely resemble the

RMS autocorrelation results but without a mainlobe.
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Figure 4.7: Pulsed StoWGe spectral optimization results for Gaussian templates: expected power
spectrum for the G2 template (a), expected power spectrum for the G4 template (b), expected
power spectral deviation for the G2 template (c), expected power spectral deviation for the G4
template (d)

128



(a)

Gaussian (K=2) Gaussian (K=4)

(b)

E
xp

ec
te

d 
A

C
F

E
xp

ec
te

d 
R

M
S

 A
C

F
E

xp
ec

te
d 

R
M

S
 C

ro
ss

-C
or

re
la

ti
on

(c)

(e)

(d)

(f)

Figure 4.8: Pulsed StoWGe temporal optimization results for Gaussian templates: expected au-
tocorrelation for the G2 template (a), expected autocorrelation for the G4 template (b), expected
RMS autocorrelation for the G2 template (c), expected RMS autocorrelation for the G4 template
(d), expected RMS cross-correlation for the G2 template (e), expected RMS cross-correlation for
the G4 template (f)
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4.4.2.2 Super-Gaussian Template Results

Compared to the G2 and G4 templates, there is much more disparity between the distributions

for matching the S4G2 and S4G4 templates. In Fig. 4.9(a,b) the G distribution does a very poor

job of matching to either template, while the CU distribution did much better in comparison. For

the S4G2 template in 4.9(a) the DU2 expected power spectrum is nearly indistinguishable from

the template while for the S4G4 template of 4.9(b) the DU2 distributed random variable enabled

a much better match to the template down to about -35 dB which clearly outperforms the other

distributions.

In 4.9(c,d), the spectral deviation plots are largely proportional to the expected power spectra.

However, the G distribution experiences a somewhat larger degree of spectral deviation while the

DU2 case for the S4G2 template has some small spikes similar to its behavior for the G2 template

in 4.7(c).

As opposed to the G2 and G4 templates, the S4G2 and S4G4 templates have near in sidelobes.

In 4.10(a,b), each distribution was largely able to match these sidelobes. However, beyond the first

few sidelobes the distributions start to really deviate below -80 dB. However, these sidelobes are

still low enough that they would only ever be seen with an exceptionally large amount of coherent

integration.

The RMS autocorrelations for the S4G2 template in Fig. 4.10(c) exhibit some ringing as they

did for the G2 template in 4.8(c), but the DU2 distribution now exhibits very prominent oscillations

suggesting some kind of periodic component in the WGF. This will be revisited in Section 4.4.2.4.

Interestingly, these oscillations almost completely disappear for the S4G4 template in 4.10(d).

However, the G distribution shows the large scale oscillations that were also present in the G4

template of 4.8(d).

The RMS cross-correlations in Fig. 4.10(e,f) once again are very similar to the RMS auto-

correlation, but with less dramatic oscillations in the S4G4 case and with the mainlobe removed.
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Figure 4.9: Pulsed StoWGe spectral optimization results for super-Gaussian templates: expected
power spectrum for the S4G2 template (a), expected power spectrum for the S4G4 template (b),
expected power spectral deviation for the S4G2 template (c), expected power spectral deviation for
the S4G4 template (d)
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Figure 4.10: Pulsed StoWGe temporal optimization results for super-Gaussian templates: expected
autocorrelation for the S4G2 template (a), expected autocorrelation for the S4G4 template (b),
expected RMS autocorrelation for the S4G2 template (c), expected RMS autocorrelation for the
S4G4 template (d), expected RMS cross-correlation for the S4G2 template (e), expected RMS
cross-correlation for the S4G4 template (f)
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4.4.2.3 Rectangular Template Results

The rectangular template represents the most restrictive power spectrum and unsurprisingly it re-

sulted in the worst optimized values of the EFTE cost function of the three template types. How-

ever, the DU2 distribution performed significantly better than either the G or CU distributions. In

Fig. 4.11(a,b) the CU distribution was able to match to the template marginally better than the

G distribution, but they both achieved poor matches to the template. The DU2 distribution did a

pretty good job implementing the brick wall at the 3 dB bandwidth, but even it bottomed out at

about -25 dB in the roll-off region in the R2 case. In the R4 case of 4.11(b) it realized a sort of

spectral pedestal before dropping steeply again and leveling off at -35 dB.

The spectral deviation plots in Fig.4.11(c,d) are roughly proportional to the spectral results,

however in either the R2 or the R4 case the DU2 spectral deviation is slightly smoother and lower

at the edges of the template bandwidth than what would be implied from the expected spectrum.

This indicates that from sample function to sample function, these edges are a little more consistent

than the rest of the expected spectrum.

Compared to the sidelobes of the other templates, the R2 and R4 templates exhibit dramatically

higher sidelobe levels akin to the sinc like sidelobes of an LFM. In Fig. 4.12(a,b), the previously

included template trace has been left off to improve clarity. However, the DU2 trace effectively

follows what would be expected of the template owing to its decent spectral match. The poorly

matched G and CU expected spectra result in likewise poor matches to the template’s expected

autocorrelation.

Fig. 4.12(c,d) shows the expected RMS autocorrelation response where the first several side-

lobes of the expected autocorrelation are clearly visible. No matter how much coherent integration

is used these will remain. The rest of the expected RMS autocorrelation behaves similarly to the

other templates. The DU2 distribution does have an interesting bump in the towards the edges of

the sidelobe regions. It is important to note, that as the DU2 waveforms are coherently integrated,

their autocorrelation response will more and more resemble the sinc like response in 4.12(a,b).

The expected RMS cross-correlation also presents an interesting behavior in the DU2 distribu-
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Figure 4.11: Pulsed StoWGe spectral optimization results for rectangular templates: expected
power spectrum for the R2 template (a), expected power spectrum for the R4 template (b), expected
power spectral deviation for the R2 template (c), expected power spectral deviation for the R4
template (d)
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Figure 4.12: Pulsed StoWGe temporal optimization results for rectangular templates: expected
autocorrelation for the R2 template (a), expected autocorrelation for the R4 template (b), expected
RMS autocorrelation for the R2 template (c), expected RMS autocorrelation for the R4 template
(d), expected RMS cross-correlation for the R2 template (e), expected RMS cross-correlation for
the R4 template (f)
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tion case. In Fig. 4.12(e,f), the DU2 trace has a correlation spike at 0 delay. It would appear this

correlation might have been needed to achieve the good spectral matches shown in 4.11(a-b).

4.4.2.4 DU2 Distribution and S4G2 Spectral Template Case Study

Section 4.4.2.2 commented on the large oscillations present in the expected RMS autocorrelations

and cross-correlations of the DU2 distribution for the S4G2 template in Fig. 4.10(c,e). While the

N = 32 case provided the best spectral match it also produced those dramatic oscillations that result

in higher autocorrelation sidelobes. This begs the question. Is there another result from the DU2

results of Table B.3 that produces a better expected RMS autocorrelation? Although it would have

a poorer spectral template match, if the expected RMS autocorrelation is much better the poorer

spectral performance may be worth it.

To explore this idea, all the results for N ≥ 32 for the DU2 distribution in Table B.3 are plotted

in Fig. 4.13. Each sub figure has 8 traces corresponding to N = 32,64,128,256 and B0 =BPC,BID.

The traces belonging to the B0 = BPC, N = 32 case from Figs. 4.9 and 4.10 are plotted in blue.

While what is considered to be the best WGF here, the B0 = BPC, N = 256 case, is plotted in

red. For convenience since they utilized the same B0, these case will be referred to as N = 32 and

N = 256. All other traces are plotted in gray for clarity.

Interestingly, despite having a cost function value that is more than 13 dB worse than the ideal

case, the expected spectrum trace in Fig. 4.13(a) of the N = 256 case and the N = 32 are nearly

indistinguishable. This is reasonable though. In linear terms the total difference between -157.3

dB and -142.9 dB is quite small even if the ratio between them is more than an order of magnitude.

Perhaps more notably, the spectral deviation of the N = 256 case in Fig. 4.13(b) does not posses

the small peaks seen in the N = 32 case and on others. Further, the expected RMS autocorrelation

and cross-correlation of the N = 256 case in Fig. 4.13(d,e) lack the large oscillations apparent in the

N = 32 case indicating these features may be related. Since the N = 256 WGF provides largely the

same expected power spectrum performance as the N = 32 case while achieving a better expected

RMS autocorrelation, the N = 256 appears to be a better choice as a WGF.
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Figure 4.13: All results for the DU2 distribution and the S4G2 template: N = 32 in blue, N = 256 in
red, expected power spectrum (a), expected power spectral deviation (b), expected autocorrelation
(c), expected RMS autocorrelation (d), expected RMS cross-correlation (e)
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4.4.3 Optimized Basis and Correlation Matrices

The previous section looked at how well the pulsed StoWGe model and the EFTE optimization

is able to optimize for a desired expected power spectrum. This section looks at how it did so.

The correlation matrices and selected basis functions for the K = 4 templates (G4, S4G4, R4) are

plotted in Figs. 4.14-4.16 respectively. Sixteen of the N basis functions are plotted in each case

since plotting all of them would make the plots difficult to interpret. The correlation matrices are

plotted in magnitude on a dB scale. Since the optimized WGFs have a 0 valued µµµ, the correlation

matrices are real.

Beginning with the G4 template, in Fig. 4.14(a,c,e) each distribution has optimized towards

unique basis function shapes from the smooth wavelet like functions of the G distribution to the

step like functions of the DU2 distribution. While this in itself is interesting, for gaining intuition

into how the distributions achieve their respective curves in Figs. 4.7 and 4.8, it is more important

to examine the correlation matrices in 4.14(b,d,f).

Consider the G distribution correlation matrix in 4.14(b). Due to the characteristic function of

Gaussian distributions and the fact that µµµ is set to zeros, the correlation matrix is strictly positive.

Now recall that the expected autocorrelation is defined as the sum across the diagonals of the

correlation matrix and the expected spectrum is the IFFT of that result. In 4.7(b), the G result

nearly matches the template. Since the correlation matrix is strictly positive, the only way for this

to happen is for the regions above and below the main diagonal to be extremely close to zero.

Indeed, in 4.14(b) this is the case.

The CU and DU2 results are a little more nuanced. Their correlation matrix values can be

negative, so while there may be meaningful correlation in the diagonals off from the main diagonal,

it is still possible for the sum to result in low autocorrelation sidelobes. This appears to be the case

for the DU2 correlation matrix in 4.14(f) where significant correlation is observed at the bottom

left and top right corners perhaps as large as -12 dB indicating the beginning and end of the DU2

waveforms are somewhat correlated. However, in 4.8(b) the resulting expected autocorrelation is

a near perfect match to the template’s ideal autocorrelation so the correlation must cancel itself out

138



when summed over the diagonals. Intriguingly, the DU2 distribution resulted in the best template

match in 4.7(b) meaning the correlation between the ends of the waveform may be helpful to

further improve spectral containment.

For the S4G4 template results in 4.15 recall that the G distribution did a poor job of matching

to the spectral template in Fig. 4.9(b). In an attempt to match to the template, the optimization

resulted in sort of square shaped steps at the edges of the basis functions. The impact of these

features is seen on the main diagonal of the resulting correlation matrix in 4.15(b) where the top

left and bottom right regions of the diagonal become like an identity matrix indicating little if

any correlation between samples. Despite its best attempt, this was not enough and the Gaussian

distributed random variables appears ill-suited to achieve the S4G4 template.

The CU and DU2 distributions did significantly better, but the DU2 distribution once again

provided the best performance in the roll-off region. In this case, some sidelobes are present in the

template autocorrelation meaning some correlation should be expected off from the main diagonal

as is the case for the CU and DU2 distributions in Fig. 4.15(d,f). The CU distribution resulted

in smooth basis functions while the DU2 distribution resulted in smooth basis functions, but with

periodic spikes. If Fig. 4.10(b), the DU2 distribution produced the best match to the template

autocorrelation though exhibiting a sidelobe floor around -110 dB. This floor is attributable to the

significant correlation in the upper and lower triangular regions of Fig. 4.15(f) where evidently the

correlation does not cancel as well as it did in the G4 case (4.14(f)).

For the R4 template in 4.16, only the DU2 distribution was able to produce a decent match to

the desired template (Fig. 4.11(b)). Like the with the G distribution for the S4G4 template, both the

G and CU distributions optimized towards jagged basis functions and bizarre correlation matrices.

This appears to be an indicator the optimization had trouble achieving a good template match.

Considering the LFM like sidelobes of the R4 template it makes sense that the DU2 correlation

matrix in 4.16(f) has significant correlation throughout the entire matrix. This was necessary to

achieve the expected autocorrelation in Fig. 4.12(b) and the corresponding spectrum in 4.11(b).
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Figure 4.14: Optimized correlation matrices and selected basis functions for each distribution for
the G4 template: Correlation matrices are plotted in magnitude on a dB scale. selected G basis
functions (a), G correlation matrix (b), selected CU basis functions (c), CU correlation matrix (d),
selected DU2 basis functions (e), DU2 correlation matrix, (f)
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Figure 4.15: Optimized correlation matrices and selected basis functions for each distribution for
the S4G4 template: Correlation matrices are plotted in magnitude on a dB scale. selected G basis
functions (a), G correlation matrix (b), selected CU basis functions (c), CU correlation matrix (d),
selected DU2 basis functions (e), DU2 correlation matrix, (f)
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Figure 4.16: Optimized correlation matrices and selected basis functions for each distribution for
the R4 template: Correlation matrices are plotted in magnitude on a dB scale. selected G basis
functions (a), G correlation matrix (b), selected CU basis functions (c), CU correlation matrix (d),
selected DU2 basis functions (e), DU2 correlation matrix, (f)
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4.4.4 Pulsed StoWGe Comparisons to Previous RFM Waveforms

The previous sections established that the optimized DU2 random variable pulsed StoWGe WGFs

generally produce the best radar waveforms as determined by various metrics. The goal of this

section is to provide further context to those results by comparing those same DU2 based WGFs

to previous random FM waveforms according to the same metrics. Thus far in the literature [23,

24, 71], the PRO-FM waveforms discussed in Section 2.2.4.1 have been used as a standard of

comparison. They are used in the same way here. With this in mind, the goal of this section is not to

establish whether or not these pulsed StoWGe waveforms are better than the PRO-FM waveforms

specifically. Rather, the goal is to compare more generally the behavior of the pulsed StoWGe

waveforms to that of other random FM waveforms. The comparison to the PRO-FM waveforms is

especially useful since the PRO-FM have much more in common with other developed random FM

waveforms than they do to the pulsed StoWGe waveforms. In this way, the general comparisons to

the PRO-FM waveforms should be generally true when compared to other classes of random FM

waveforms as well such as those developed in [23, 24, 71].

To perform the comparison, the DU2 pulsed StoWGe WGFs are compared to the PRO-FM

waveforms in the same manner the DU2 pulsed StoWGe WGFs were compared to the G and CU

pulsed StoWGe variants for each of the six different spectral templates. In Figs. 4.17-4.22, the DU2

traces were analytically calculated and are the same as those in Figs. 4.7-4.12. However, since there

is no known way to analytically calculate the expected spectrum, the expected autocorrelation, and

so on for the PRO-FM waveforms, these have to be estimated in a monte carlo fashion. To do so,

10000 PRO-FM waveforms were optimized for each of the desired spectral templates for a total

of 60000 unique waveforms. These waveforms were also designed to have the same BT as the

equivalent pulsed StoWGe waveforms. The metrics were then estimated via these waveforms.

4.4.4.1 Pulsed StoWGe and PRO-FM with zero Doppler

In 4.7-4.12, a few broad trends can be identified. First, looking at the spectral results in Figs. 4.7,

4.9, and 4.11 In general, the StoWGe waveforms achieve better spectral containment than the PRO-
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FM waveforms. In each case, the expected spectrum of the StoWGe waveforms drops off more

precipitously than that of the PRO-FM waveforms. However, there are other random FM variants

that achieve a better spectral roll-off than the PRO-FM waveforms anyway [71]. With this in

mind, a perhaps more consequential difference between them can be seen in the spectral deviation

plots. In every case, for every spectral template, the PRO-FM waveforms have far less deviation

across their passband. This means, on average, individual PRO-FM waveforms will be much

closer to their expected spectrum than a given StoWGe waveform would be. The consequence of

this behavior is evident in the RMS autocorrelation traces of Figs. 4.8, 4.10, and 4.12 where in

every case, the PRO-FM waveforms can be expected to have lower autocorrelation sidelobes on a

per waveforms basis than can be expected of the StoWGe waveforms. This makes intuitive sense.

If an individual waveform is expected to be closer to its expected spectrum than otherwise, then its

autocorrelation will likewise be closer to its expected autocorrelation than otherwise.

This is perhaps the most important difference between the StoWGe waveforms developed here

and previous random FM waveforms. Simply put, the StoWGe waveforms were designed to have

a good average spectrum. No constraint was placed on the spectrum of each individual waveform.

The PRO-FM waveforms were individually designed each to have the desired spectrum. If that

desired spectrum results in low autocorrelation sidelobes, then the key takeaway is that random FM

waveforms which are designed on a per waveform basis will likewise have lower autocorrelation

sidelobes on a per waveform basis as compared to random FM waveforms which were designed

in aggregate. While this looks like a significant shortcoming of the StoWGe waveforms, this work

never claims that the StoWGe waveforms achieve an exceptional per waveform autocorrelation

performance. Instead, the key advantages of StoWGe is that the waveforms can be spectrally

shaped, they are constant amplitude, but critically they are also extremely computationally cheap

to instantiate. All the optimization is moved up front, whereas for PRO-FM and many other random

FM instantiations, the optimization is both computationally expensive and must be performed for

every single waveform.

Still, it would be objectively better if the StoWGe waveforms had an improved per waveform
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autocorrelation performance. To do so, it may be possible to optimize directly the expected RMS

autocorrelation or the spectral deviation, but for now such an approach is beyond the scope of this

work.

As a final note, it is important to recall that the PRO-FM expected autocorrelation traces are

simply estimates. The PRO-FM traces in Figs. 4.8(a,b), 4.10(a,b), and 4.12(a,b) would likely be

even lower and perhaps match or exceed the StoWGe traces with a larger number of waveforms.

4.4.4.2 Pulsed StoWGe and PRO-FM Ambiguity Functions

Section 4.4 evaluated the optimization of the pulsed StoWGe waveforms for three different random

variable distributions, but it only did so for zero Doppler metrics. In the interest of addressing the

Doppler question, this section presents pulsed StoWGe expected and expected RMS ambiguity

functions, but for the sake of conciseness only for the DU2 WGFs since these were generally

shown in Section 4.4 to be superior to the G and CU distribution based WGFs. For clarity, only the

ambiguity functions corresponding to the 4 times oversampled spectra are shown. Additionally, in

the interest of comparing to previous random FM waveforms the pulsed StoWGe results are shown

alongside equivalent PRO-FM results.

Similar to previous comparisons, the PRO-FM ambiguity functions are estimates based on the

10000 waveforms instantiated for each of the 4 times oversampled spectra. Since the ambiguity

function is a measure of fast time Doppler, for each Doppler bin the corresponding doppler shift

was applied to each waveform and was then filtered with the zero Doppler conjugate of itself as

defined by the ambiguity function.

For the StoWGe waveforms, the ambiguity functions were calculated analytically by modifying

their expected autocorrelation and expected RMS autocorrelations to include a Doppler shift. To

do so, for a given doppler frequency, fd, a Doppler shift vector, d, can be formed such that

d = exp( j2π fdt) (4.30)
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Figure 4.17: Comparison between the analytical spectral characteristics of optimized DU2 based
pulsed StoWGe and estimated spectral PRO-FM characteristics, expected power spectrum for the
G2 template (a), expected power spectrum for the G4 template (b), expected power spectral devia-
tion for the G2 template (c), expected power spectral deviation for the G4 template (d)
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Figure 4.18: Comparison between the analytical temporal characteristics of optimized DU2 based
pulsed StoWGe and estimated temporal PRO-FM characteristics, expected autocorrelation for the
G2 template (a), expected autocorrelation for the G4 template (b), expected RMS autocorrelation
for the G2 template (c), expected RMS autocorrelation for the G4 template (d), expected RMS
cross-correlation for the G2 template (e), expected RMS cross-correlation for the G4 template (f)
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Figure 4.19: Comparison between the analytical spectral characteristics of optimized DU2 based
pulsed StoWGe and estimated spectral PRO-FM characteristics, expected power spectrum for the
S4G2 template (a), expected power spectrum for the S4G4 template (b), expected power spectral
deviation for the S4G2 template (c), expected power spectral deviation for the S4G4 template (d)
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Figure 4.20: Comparison between the analytical temporal characteristics of optimized DU2 based
pulsed StoWGe and estimated temporal PRO-FM characteristics, expected autocorrelation for the
S4G2 template (a), expected autocorrelation for the S4G4 template (b), expected RMS autocorrela-
tion for the S4G2 template (c), expected RMS autocorrelation for the S4G4 template (d), expected
RMS cross-correlation for the S4G2 template (e), expected RMS cross-correlation for the S4G4
template (f)
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Figure 4.21: Comparison between the analytical spectral characteristics of optimized DU2 based
pulsed StoWGe and estimated spectral PRO-FM characteristics, expected power spectrum for the
R2 template (a), expected power spectrum for the R4 template (b), expected power spectral devia-
tion for the R2 template (c), expected power spectral deviation for the R4 template (d)
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Figure 4.22: Comparison between the analytical temporal characteristics of optimized DU2 based
pulsed StoWGe and estimated temporal PRO-FM characteristics, expected autocorrelation for the
R2 template (a), expected autocorrelation for the R4 template (b), expected RMS autocorrelation
for the R2 template (c), expected RMS autocorrelation for the R4 template (d), expected RMS
cross-correlation for the R2 template (e), expected RMS cross-correlation for the R4 template (f)
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where t is an M×1 normalized time vector. Despite a Doppler shift, the expected autocorrelation

for a pulsed StoWGe can be calculated in a similar manner as before where an IFFT is taken over

the power spectral density. However, with a Doppler shift it is not longer a power spectral density.

Instead, the IFFT is taken with respect to a cross spectral density such that

E
[
r̂ fd
]
= AHE

[
As� (A(s�d))∗

]
(4.31)

With respect to the expectation operator, the Doppler shift can simply be pulled out and the Doppler

shifted second moment simply becomes

d∗m2
Cm1,m2 = d∗m2

E
[
sm1s∗m2

]
= d∗m2

N

∏
n=1

ψXn exp( j (µm1−µm2))(bm1,n−bm2,n) (4.32)

which allows for the calculation of the expected ambiguity function.

Similarly, the Doppler shift can also be pulled out of the Doppler shifted RMS autocorrelation

such that

E
[∣∣r̂`, fd∣∣2]= d∗m1

dm2

`

∑
m1,m2=1

E
[
sM−`+m1s∗m1

s∗M−`+m2
sm2

]
(4.33)

Taken together, these equations allow for the analytical calculation of the plots on the left sides of

Figs. 4.23 and 4.24 respectively.

As was shown in Fig. 2.20, RFM waveforms should be expected to exhibit a thumbtack like

ambiguity function with little Doppler tolerance. In both Figs. 4.23 and 4.24 this is clearly the

case. Fig. 4.23 shows the analytical expected autocorrelations of the StoWGe waveforms in Fig.

4.23(a,c,e) while the estimated PRO-FM results are shown in 4.23(b,d,f). In the PRO-FM case it

cannot be definitively said what the ambiguity functions will do with further coherent integration,

but since they are noise like waveforms it is reasonable to expect the further minimization of energy

off from the mainlobe making the response even more thumbtack like.

For the pulsed StoWGe waveforms, there is no such question. Since the plots in Fig. 4.23(a,c,e)

represent the analytical expectation of the ambiguity function, there is clearly a floor to the ambi-
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Figure 4.23: Comparison between the analytical ambiguity functions of optimized DU2 based
pulsed StoWGe and estimated ambiguity functions for PRO-FM: pulsed StoWGe for the G4 tem-
plate (a), PRO-FM for the G4 template (b), pulsed StoWGe for the S4G4 template (c), PRO-FM
for the S4G4 template (d), pulsed StoWGe for the R4 template (e), PRO-FM for the R4 template
(f)
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Figure 4.24: Comparison between the analytical RMS ambiguity functions of optimized DU2
based pulsed StoWGe and estimated RMS ambiguity functions for PRO-FM: pulsed StoWGe for
the G4 template (a), PRO-FM for the G4 template (b), pulsed StoWGe for the S4G4 template (c),
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guity surface that is lower for the G4 template, then higher for the S4G4 template, and higher yet

for the R4 template. These floors will not decrease with coherent integration. Importantly, as can

be seen from the insets of the mainlobe in each plot, these floor only exist off of the zero-Doppler

axis.

The expected RMS ambiguity plots in Fig. 4.24 are perhaps easier to interpret since there is a

much higher decree of homogeneity between the subplots. The most obvious difference between

the StoWGe results and the PRO-FM results is the presence of a zero-Doppler valley of sorts in the

case of the PRO-FM waveforms, which is a direct consequence of the lower RMS autocorrelation

sidelobes of the PRO-FM waveforms shown in Figs. 4.18(d), 4.20(d), and 4.22(d). Other than that,

the StoWGe and PRO-FM results are remarkably similar for each of the three desired spectra.

4.5 Experimental Results

As important as modeling and simulation are to any design problem there is simply no substitute

for experimental demonstration. In this section, the analytical models of the optimized pulsed

StoWGe WGFs shown in Section 4.4.2 are compared directly to both simulated estimates of the

WGF properties as well as physically measured signals which were implemented on hardware in

a loopback configuration. Since the DU2 based WGFs have been shown to be the best generally

speaking, they are the ones considered here.

In each of Figs. 4.25-4.30 there are three traces. The first is the "analytical" trace. These traces

are identical to the ones in 4.4.2 and they were calculated directly using the definition of the pulsed

StoWGe model and the optimized WGFs for the metrics defined in Section 3.4.

The second is the "simulation" trace. For each of the DU2 based pulsed StoWGe WGFs shown

in detail in Section 4.4.2, 1000 waveforms were instantiated for each of the desired spectra for a

total of 6000 waveforms. In the same manner as for the PRO-FM waveforms in Section 4.4.4, the

different random FM metrics were estimated on a computer.

Finally, the third is the "loopback" trace. Each of the 6000 waveforms used to create the

simulated results were up-sampled by a factor of 12.5 using sinc interpolated, and then they were
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projected onto a constant modulus envelope. They were then digitally up-converted to a center

frequency of - fs/4. Given the system DAC rate of 2.5 GHz, the signals have a 3 dB bandwidth

of either 100 MHz or 50 MHz for the 2 times oversampled or the 4 times oversampled spectrum

respectively and a center frequency of 625 MHz in either case. The signals were then implemented

on an arbitrary waveform generator, linearly amplified, and subsequently attenuated and recorded

at passband at a rate of 2.5 GHz. The recorded signals were then digitally down converted and

re-sampled down to the baseband sample rate of 200 MHz. The different random FM metrics were

then estimated from this data.

Speaking generally about Figs. 4.25-4.30, the analytical results and the simulated results match

very well. This is especially true in spectral results where the blue trace, the analytical results, are

almost completely hidden by the orange trace, the simulation results, but they are not quite the

same since the orange traces only represents an estimate. This discrepancy is most apparent in the

expected autocorrelation plots of Figs. 4.26(a,b), 4.28(a,b), and 4.30(a,b) where there is a clear di-

vergence in the sidelobe regions between the analytical and the simulated traces, but this difference

is expected. The analytical expected autocorrelation shows what happens when an infinite number

of waveform autocorrelations are coherently integrated, but only 1000 waveforms were actually

integrated in each simulated case. Consequently, on a dB scale, the difference is readily apparent

where the estimation error is large compared to the magnitude of the analytical value such as in

the sidelobe regions of the expected autocorrelation. With more and more integration it can be

expected that the simulated traces will approach the analytical results. In contrast to the expected

autocorrelation plots, the RMS autocorrelation simulated traces provide an excellent match to the

analytical results as in the spectral cases. The key takeaway in comparing the analytical to the

simulated results is that the mathematical characterization of the WGF accurately describes the

statistics of the random FM waveforms that it produces.

In order to determine whether or not the simulated results reflect physically realizable wave-

forms, those same waveforms have been implemented in a loopback configuration. In contrast to

the simulated results, there is a more notable difference between the loopback and analytical spec-
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tral traces, but these differences can likely be attributed to the upsampling process and filtering

effects.

First, the upsampling distortion is most obvious in the out of band regions of 4.25(b) and

4.25(a,b), where the normalized power of the loopback traces exceed that of the analytical or the

simulated traces at least briefly. The initial sinc interpolation is ideal in that the baseband sample

bandwidth is perfectly preserved at the higher sample rate, but projecting the signal back on a

constant amplitude envelope will inevitably distort the spectrum to some degree. Nevertheless,

this step is necessary to maintain an ideally constant amplitude signal.

Second, filtering effects are most obviously present in 4.29(a,b) where there is a clear ripple in

the spectra across the passband. These affects are present in the other spectra as well, but the flat

response of the rectangular spectral shapes makes it especially conspicuous. Without other infor-

mation, it is ambiguous whether this ripple is a filtering effect or an artifact of the implementation

of the StoWGe waveforms; however, the PRO-FM waveforms were also implemented in loopback

in the same manner. As can be see in Fig. 4.31 the loopback PRO-FM waveforms exhibit sim-

ilar passband distortion as in the pulsed StoWGe case. Previous experimentation with PRO-FM

waveforms has not shown this effect indicating the distortion is hardware related and not a fun-

damental characteristic of the waveforms under test [26]. Apart from these effects, the loopback

traces largely reflect the analytical and simulated results.

Interestingly, the spectral distortion has had little effect on the temporal results. In Figs. 4.26,

4.28, and 4.30, there is very little difference between the simulated and loopback traces further

validating the analytical description of the waveforms as well as their suitability for physical im-

plementation.
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Figure 4.25: Optimized, DU2 based, pulsed StoWGe analytical, simulated, and loopback spec-
tral results for Gaussian templates: expected power spectrum for the G2 template (a), expected
power spectrum for the G4 template (b), expected power spectral deviation for the G2 template
(c), expected power spectral deviation for the G4 template (d)
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Figure 4.26: Optimized, DU2 based, pulsed StoWGe analytical, simulated, and loopback tem-
poral results for Gaussian templates: expected autocorrelation for the G2 template (a), expected
autocorrelation for the G4 template (b), expected RMS autocorrelation for the G2 template (c),
expected RMS autocorrelation for the G4 template (d), expected RMS cross-autocorrelation for
the G2 template (e), expected RMS cross-autocorrelation for the G4 template (f)
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Figure 4.27: Optimized, DU2 based, pulsed StoWGe analytical, simulated, and loopback spectral
results for super-Gaussian templates: expected power spectrum for the S4G2 template (a), ex-
pected power spectrum for the S4G4 template (b), expected power spectral deviation for the S4G2
template (c), expected power spectral deviation for the S4G4 template (d)
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Figure 4.28: Optimized, DU2 based, pulsed StoWGe analytical, simulated, and loopback temporal
results for super-Gaussian templates: expected autocorrelation for the S4G2 template (a), expected
autocorrelation for the S4G4 template (b), expected RMS autocorrelation for the S4G2 template
(c), expected RMS autocorrelation for the S4G4 template (d), expected RMS cross-autocorrelation
for the S4G2 template (e), expected RMS cross-autocorrelation for the S4G4 template (f)
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Figure 4.29: Optimized, DU2 based, pulsed StoWGe analytical, simulated, and loopback spec-
tral results for rectangular templates: expected power spectrum for the R2 template (a), expected
power spectrum for the R4 template (b), expected power spectral deviation for the R2 template (c),
expected power spectral deviation for the R4 template (d)
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Figure 4.30: Optimized, DU2 based, pulsed StoWGe analytical, simulated, and loopback tempo-
ral results for rectangular templates: expected autocorrelation for the R2 template (a), expected
autocorrelation for the R4 template (b), expected RMS autocorrelation for the R2 template (c), ex-
pected RMS autocorrelation for the R4 template (d), expected RMS cross-autocorrelation for the
R2 template (e), expected RMS cross-autocorrelation for the R4 template (f)

163



Figure 4.31: Comparison between the estimated expected spectrum of the loopback measured
pulsed StoWGe DU2 waveforms and the loopback measured PRO-FM waveforms for the R2 tem-
plate. Both sets exhibit similar passband spectrum distortion due to hardware effects.

4.6 Pulsed StoWGe Summary

The overall goal in defining the pulsed StoWGe WGF was to enable the computationally cheap

instantiation of spectrally contained, constant modulus, pulsed radar waveforms. The efficient

instantiation is achieved through the model by definition since the signal phase is created through

a matrix vector multiply and by pulling values from an RNG. However, guaranteeing the resultant

signals are useful in a radar context requires an involved optimization of the underlying parameters

of the signal model.

Nevertheless, the gradient based minimization of the expected frequency template error (EFTE)
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cost function defined in Section 4.2 was show in Section 4.4 to be an effective means of shaping the

expected power spectrum of the waveforms instantiated by a particular stochastic waveform gen-

erating function (WGF). In doing so, the resultant waveforms were shown to be constant modulus

and to adhere generally to desired spectral shapes while still being noise-like in that their auto-

correlation sidelobes decrease with coherent integration and having noise-like cross-correlation

characteristics. In other words, they were shown to be desirable for radar purposes.

Further, to gain more insight into the behavior of the pulsed StoWGe model, various spectral

templates were considered along with varying numbers of basis functions and random variable

distributions. While proving out the flexibility of the model, this testing and analysis likewise

strongly indicated that random number distributions with fewer degrees of freedom results in better

WGFs, but most especially when it comes to matching the expected power spectrum to more

restrictive shapes like a rectangular spectrum. This result will require further research.

In Section 4.4.4, these waveforms were compared directly to previous random FM waveforms

where it was shown that on an individual basis previous pulsed, random FM waveforms can achieve

superior autocorrelation performance, but each individual waveform has to be optimized which

creates a trade space between computational cost and the autocorrelation levels of the individual

waveforms. In a real-time scenario, optimizing each individual waveform can easily be computa-

tionally prohibitive, but for pulsed StoWGe a WGF with a desired spectrum and BT can be opti-

mized ahead of time and then be used to create an effectively infinite number or radar waveforms

at minimal real-time computational cost.

Finally, in Section 4.5 the pulsed StoWGe waveforms were examined in both simulation and

loopback tests where the analytically derived performance of the pulsed StoWGe waveforms was

verified demonstrating the soundness of the pulsed StoWGe model as well as the real world phys-

icality of the resultant waveforms.
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Chapter 5

CW Stochastic Waveform Generation (CW-StoWGe)

As discussed in 2.3, CW modes maximize the BT for a given bandwidth. Since the sidelobe

performance of noise waveforms and specifically the FM noise waveforms considered in this work

is directly proportional to the BT it is logical to consider FM noise waveforms for a CW mode.

This chapter begins by introducing the CW-StoWGe model in Section 5.1 and then discusses

the EFTE cost function for CW-StoWGe in Section 5.2. In Section 5.3, the means to optimize the

CW-StoWGe power spectrum are discussed, Section 5.4 presents the results of the optimization

and compares the CW-StoWGe waveforms to previously designed and implemented random FM

waveforms. Section 5.5 demonstrates the suitability of the CW-StoWGe waveforms for physical

implementation by experimentally verifying them in a loopback scenario. Finally, Section 5.6

provides a summary and some conclusions regarding the optimization and implementation of the

CW-StoWGe signal model.

5.1 The CW-StoWGe Signal Model

For pulsed StoWGe, the basis matrix B and the mean phase value vector µµµ described the phase of

the entire signal and while the signal could be arbitrarily long, it was always finite. In a CW mode

however, the infinitely long signal would likewise require an infinitely large B and µµµ. For this

reason to extend pulsed StoWGe to an infinite length in time, it is necessary to fundamentally alter

its structure such that there are only a finite number of parameters to optimize. To do so, consider
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the continuous phase modulation (CPM) signal model defined as [63, 64, 109]

s(t;I) = exp

(
j2π

m

∑
k=−∞

Ikhkq(t− kTs)

)
, mT ≤ t ≤ (m+1)T (5.1)

where I is an infinite length vector of information carrying symbols, Ts is the symbol time, hk is a

scalar known as the modulation index which can change with every symbol, and q(t) is the phase

response defined as

q(t) =
ˆ t

0
g(τ)dτ (5.2)

where g(t) is the frequency shaping filter or frequency pulse which is required to be time limited.

For communications, CPM has been found to be extremely useful by being energy efficient since

it is constant amplitude and for its spectral efficiency in terms of bits/hertz. CW-StoWGe likewise

takes advantage of CPM’s energy and spectral efficiency. From an optimization stand point, the

finite length frequency shaping filter makes this possible.

Consider (5.1). The phase is an infinite superposition of time shifted versions of a single basis

function while the pulsed StoWGe phase is a finite superposition of numerous basis functions. The

fact that the frequency pulse is time limited means it can be modeled by a finite set of parameters

which themselves can be optimized to achieve desired characteristics. Still, to put (5.1) completely

into the StoWGe framework it is necessary to modify it to a degree such that the CW-StoWGe

waveform model is

s(t;x) = exp

(
j

m

∑
k=−∞

Xkq(t− kTs)

)
, mT ≤ t ≤ (m+1)T (5.3)

where hk has been removed entirely and I has been replaced with x to emphasize the random vari-

ables no longer carry information and can take on any zero-mean distribution. For communications

purposes, the information symbols would almost certainly be distributed on a discrete uniform ba-

sis. Still, even with these changes the forms of (5.1) and (5.3) are very similar, but for (5.1) the

design paradigm calls for a good communications signal while for (5.3) the design goal is for good
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radar waveforms that posses low autocorrelation sidelobes and good spectral containment.

In Chapter 4, the StoWGe signal model was introduced in discrete terms to facilitate its design

and optimization on a computer. Likewise, the CW-StoWGe model can be discretized as

s[m ] = exp

(
j

k

∑
n=−∞

Xnq[m−nTs ]

)
kTs ≤ m < (k+1)Ts (5.4)

where q(t) becomes

q[m ] =
m

∑
p=0

g[ p ]. (5.5)

In (5.4), Ts is now a positive integer such that a new random variable contributes to the signal phase

every Ts samples. The frequency pulse, g[k ], is defined to be non-zero for 0 ≤ n < LTs samples

where L is an integer. In CPM, L = 1 one corresponds to full-response CPM [63] while L > 1

corresponds to partial-response CPM [64]. For CPM, the value of L has a significant impact on

how easy or difficult it is to demodulate a signal, but it is useful for shaping the signal’s power

spectrum. For radar, L is a means to gain more design freedom with little down side other than the

computational complexity of optimizing more parameters. The structure of (5.4) is visualized in

Fig. 5.1 where the rows correspond to individual time domain samples of the CW-StoWGe model

while the columns depict how a given random variable contributes the phase of a given sample.

All qm for m ≥ LTs are the same value. This is indicated by the stair-stepping solid black line. A

new random variable contributes to the phase every Ts samples and then contributes uniquely for

LTs samples, after which its contribution is just a constant phase offset.

168



q11sm-1

sm

sm+1

exp( j(=

=

=

exp( j(

exp( j(

. . .

. . .

. . .

. . .

. . .

. . .

+

+

+. . .

q12

q13

+

+

+

+

+

+

q7

q8

q9. . . q10

q11

q12

q3

q0q4

q5

q6+

+

+

q7

q8

q9

q10

q11

q12

q13

q13 +. . .

+

+

+

+

+

+

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

q13

+

+

+

+

Xn-1

×
Xn-2

×
Xn-3

×

q0+

+

+

+

+

+

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

q13

+

+

+

+
. . .

. . .

. . .

Xn
×

Xn+1

×
Xn+2

×

q0+

+

+

+

+

+

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

q13

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Every Ts samples, 
a new RV contributes 
to the phase.

. . .

. . .

. . .

. . .

. . .

Each RV contributes 
uniquely for 
N=LTs samples

Every 
for m1,m2 > N-1
(Below solid line) 

m
2

m
1=q q

))

))

)). . .

Figure 5.1: The CW-StoWGe phase structure at time m for Ts = 4 and L = 3.

As with pulsed StoWGe, to evaluate the characteristics of a particular CW-StoWGe implemen-

tation, it is necessary to evaluate the second and fourth order moments of the model. However, an

apparent issue with CW-StoWGe is that it is not actually stationary. Instead, it is cyclo-stationary

(defined in Section 3.2.1) over the interval Ts such that

E
[
s[m]s[m+ `]

]
6= E

[
s[m+ k]s[m+ k+ `]

]
(5.6)
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where k is an integer, but it is true that

E
[
s[m]s[m+ `]

]
= E

[
s[m+ kTs]s[m+ kTs + `]

]
(5.7)

Consequently, to acheive a correlation vector which is a function of only one variable it is necessary

to average the correlation over this relatively small interval. In doing so, the evaluation of these

moments is carried out in detail in Appendix A.2.1, but the final results are reproduced here for

convenience. The second moment (correlation) at delay ` is

C[` ] =
Ts−1

∑
v=0

 0

∏
n=d v−`−LTs+2

Ts e
ψXn

(
v−nTs

∑
k=0

g[k ]−
v−`−nTs

∑
k=0

g[k ]

) (5.8)

where ψXn is characteristic function of the random variable Xn. The indexes of the summation

of g[k ] will often go beyond it non-zero values (k ≥ LTs), but including these does not impact

the value of C[` ]. (5.8) could be modified to omit these terms, but doing so would significantly

complicate the expression and so these terms are left. Additionally, the upper limits of the sums

could be less than the lower limit. In these cases, the summations are by definition equal to zero.

Treating the CW-StoWGe model as a stationary process allows the second moments to be

organized into a convenient structure. First a (2W −1)×1 correlation vector can be constructed as

c = [ C[−W +1] C[−W +2] · · · C[W −2] C[W −1] ]T . (5.9)

This vector can then be used to create a toeplitz correlation matrix such that

C =



C[0 ] C[−1 ] · · · C[−W +1 ]

C[1 ] C[0 ] · · · C[−W +2 ]
...

... . . . ...

C[W −1 ] C[W −2 ] · · · C[0 ]


. (5.10)

which will be useful for evaluating the expected power spectrum.
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Likewise, a derivation of the fourth order moment is provided in Appendix A.2.1, but is repro-

duced here for convenience as

K[`1, `2, `3 ] =
Ts−1

∑
v=0

[
nmax

∏
n=nmin

ψXn

(
v−nTs

∑
k=0

g[k]−
v−`1−nTs

∑
k=0

g[k]−
v−`2−nTs

∑
k=0

g[k]+
v−`3−nTs

∑
k=0

g[k]

)]
(5.11)

where

nmin =

⌈
v−max{v, `1, `2, `3}−LTs +2

Ts

⌉
(5.12)

and

nmax =

⌊
min{v, `1, `2, `3}

Ts

⌋
. (5.13)

Once again, the upper limits of the summations may exceed the non-zero portions of g[k ] and the

summations may be 0. Eliminating these terms from (5.11) is possible, but doing so would signif-

icantly complicate the expression. The impact of cyclo-stationarity is also seen in the fourth mo-

ment. Consequently K[`1, `2, `3] represents the average fourth moments at relative delays `1, `2, `3.

This is a consequence of the fact that

E
[
s[m]s[m− `1]s[m− `2]s[m− `3]

]
6= E

[
s[m+ k]s[m− `1 + k]s[m− `2 + k]s[m− `3 + k]

]
(5.14)

where k is an integer, but it is true that

E
[
s[m]s[m− `1]s[m− `2]s[m− `3]

]
= E

[
s[m+ kTs]s[m− `1 + kTs]s[m− `2 + kTs]s[m− `3 + kTs]

]
.

(5.15)

The fourth moment is used in the calculation of the RMS autocorrelation and the power spectral

deviation and the RMS autocorrelation function.

5.2 The Expected Frequency Template Error (EFTE) for CW-StoWGe

The previous Chapter demonstrated how shaping the expected spectrum of pulsed StoWGe wave-

forms is an effective means of creating WGFs which generate useful radar waveforms. The same
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EFTE metric can be used for the CW-StoWGe model as well. On the surface, the EFTE for the

CW-StoWGe model is virtually identical to that of the pulsed StoWGe model with the only visual

difference being a subscript such that

JCW =

∣∣∣∣∣∣∣∣E [ ŝf ]−u
∣∣∣∣∣∣∣∣2

2
. (5.16)

where the subscript ’CW’ indicates the CW-StoWGe model and ŝf represents the spectral estimate

using the Bartlett spectral estimation scheme such that the CW-StoWGe EFTE measures the mean

squared error between some desired spectral shape and the expected power spectral density for

the WGF given the Bartlett spectral estimation method is used. In other words, the CW-StoWGe

EFTE does not optimize the "true" WGF PSD directly. Instead it optimizes it with respect to how

it is measured.

Further, this has an impact on how sf can be evaluated. For pulsed StoWGe, the expected

autocorrelation function is realized as a sum over the diagonals of the correlation matrix. For CW-

StoWGe, the correlation matrix is Hermitian and the expected autocorrelation function is evaluated

directly via (5.8). However, the Bartlett estimate of the PSD is based on a windowed version of

this correlation matrix such that

sf = A(wB� c) (5.17)

where wB is the Bartlett window in vector form.

In general, the Bartlett method and the use of the standard unbiased autocorrelation estimate

are used as a means to reduce the impact of the variance of the higher lag estimates of the corre-

lation vector. However, given the CW-StoWGe model, these correlation terms can be evaluated

analytically such that removing the window term from (5.17) should yield an exceptionally close

estimate to the "true" PSD of the CW-StoWGe WGF assuming enough samples of the correlation

vector are included such that it rolls-off to nearly zero value. At the same time, how useful is

knowing this from a practical standpoint? The spectrum can never be experimentally measured in

this way. Consequently, it is examined and optimized here as it would be observed in a physical
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experiment.

It is expected however that as the number of DFT points in (5.17) approaches infinity, then

(5.17) would approach the true PSD of the WGF. This tendency can be seen in Fig. 3.9 where

increasing the DFT points results in better and better spectral roll-off as the expectation of the

estimate approaches the true PSD of the WGF.

5.3 Optimization of the CW-StoWGe Expected Power Spectrum

Since the CW-StoWGe EFTE cost function is similarly non-linear and unconstrained as with the

pulse StoWGe EFTE cost function, it can likewise be locally optimized via gradient descent meth-

ods. However, given the very different waveform model the particulars of the gradient descent

method will differ as well. Here, instead of optimizing the basis function matrix, B, or the mean

phase value vector, µµµ, the shaping filter, g, is optimized in order to make the expected PSD of a

given WGF resemble some desirable spectral shape. As with any gradient descent method, the

most important calculation is that of the gradient itself.

5.3.1 The CW-StoWGe EFTE Gradient

Compared to the pulsed StoWGe EFTE gradient, the difficulty is not so much in the evaluation of

any given derivitive, it is instead a problem of indexing. A detailed derivation of the CW-StoWGe

EFTE gradient is provided in Sections A.2.2 and A.2.3; however, a brief overview is provided here

for convenience.

In Section A.2.2, the derivative of the CW-StoWGe EFTE cost function with respect to the yth

element of g is shown to be

∂JCW

∂gy
= 2

(
∂E [ŝf]

∂gy

)T

(E [ŝf]−u) . (5.18)
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The derivative of the wth element of the CW-StoWGe expected spectrum is then

∂E
[
ŝf,w
]

∂gy
= aw

∂C
∂gy

aH
w . (5.19)

where aw is the wth row of the DFT matrix A and the derivative is applied in an element wise

manner. (5.19) shows how the gradient is a function of the derivative with respect to the CW-

StoWGe correlation matrix. Since this correlation matrix is Hermitian, there are actually only

W unique derivatives to evaluate despite the W ×W sized correlation matrix. Further steps are

included in Section A.2.2, but the derivative of the ` element of the CW-StoWGe correlation vector

is

∂c[` ]
∂gy

=
1
Ts

Ts−1

∑
v=0

0

∑
z=nmin

∂ψXz

(
∑

v−zTs
k=v−|`|−zTs+1 g[k]

)
∂gy

0

∏
n=nmin

n6=z

ψXn

(
v−nTs

∑
k=v−|`|−nTs+1

g[k]

) . (5.20)

It is important to note that the derivative in (5.20) will often be zero since in many cases the

argument of the characteristic function may not depend on gy. However, rewriting (5.20) such that

these terms are excluded would make it significantly more complicated and would not add any

clarity to the problem. The derivatives with respect to particular characteristic function account for

this ambiguity in Section A.2.3.

Regardless, the derivative in (5.20) can be used to evaluate the derivative in (5.19) and subse-

quently the derivative in (5.18). Putting the results for each term in g together, the gradient of JCW

with respect the g can be written such that

∇gJCW =



∂JCW
∂g1

∂JCW
∂g2
...

∂JCW
∂gLTs−1

∂JCW
∂gLTs


(5.21)
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5.3.2 CW-StoWGe Gradient Descent Implementation

As with pulsed StoWGe, the heavy ball gradient descent method described in Sections 2.5 and

4.3.2 was found to be an effective means of optimization. Consequently, Tables 4.1 and 5.1 mirror

each other in significant ways other than the explicit differences in the models themselves.

In step 1 the various parameters are initialized. The initialization of the CW-StoWGe model

parameters, Ts,L, pX(x),u, and g0, is described in detail in 5.3.3, while the initialization of the

heavy ball gradient descent parameters β ,ρup,ρdown, and γ , is described in Section 5.3.4.

Beginning in step 3, one of the more prominent differences between the pulsed and CW mod-

els can be seen in that the gradient in this case consists of a single vector (∇gJCW(gi)) rather than

the combination of a vector and a matrix as in Table 4.1. Consequently, Table 5.1 more obvi-

ously follows a gradient descent framework with no need for special matrix operations such as the

Frobenious product.

In step 4, the new search direction is defined as a combination of the negative of the current

gradient and a scaled version of the previous search direction where 0 < β < 1. In step 5, the inner

product is taken of the new search direction and the current gradient. If the resulting quantity is

positive the new search direction is actually a direction of ascent so it must be reset to the negative

of the current gradient in step 6.

Steps 8 through 10 represent a simple backtracking algorithm in order to find an appropriate

step size, γ . In step 8, the current shaping filter, gi is incremented by γqi+1. The cost function

is then evaluated at this point. If the new cost function value represents a decrease by at least

cγqT
i+1∇gJCW(gi), then the candidate step size has met the Armijo condition which is the first of

the Strong Wolfe conditions. As in the pulsed case, the second Wolfe condition, the curvature

condition is ignored since it requires an additional evaluation of the gradient with the candidate

step size. In this way, each iteration is somewhat less efficient than what could be achieved with

both Wolfe conditions, but each iteration is also more efficient making more iterations possible in

a given amount of time. If the Armijo condition is not met, the step size is decreased by the factor

ρdown. This process is repeated until an acceptable step size is found.
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After completing the line search, in step 11 the shaping filter is updated according to the new

step size and search direction. Then, the step size is increased by a factor of ρup which keeps the

step size from ever getting too small due to the line search. As in the pulsed case, this is a simple

means of compensating for not implementing the curvature condition.

In step 12, the iteration variable is incremented. Finally, in step 13 CStop is a place holder for the

stopping conditions which are explained in Section 5.3.4. Step 16 indicates that the optimization

is repeated until the stopping conditions are met.

EFTE Gradient Descent Optimization of the CW-StoWGe WGF

1: Initialize: Ts, L, pX(x), u, g0, β , ρup, ρdown, c, γ

set i = 0,q0 = 0M×1

2: Repeat

3: Evaluate: JCW(gi), ∇gJCW(gi)

4: qi+1 =−∇gJCW(gi)+βqi

5: If qT
i+1(∇gJCW(gi))≥ 0

6: qi+1 =−∇gJCW(gi)

7: End (If)

8: While JCW(gi + γqi+1)> JCW(gi)+ cγqT
i+1(∇gJCW(gi)

9: γ = ρdownγ

10: End (While)

11: gi+1 = gi + γqi+1, γ = ρupγ

12: i = i+1

13: If CStop

14: Stop

15: End (If)

16: End (Repeat)

Table 5.1: Pseudo-code for the gradient descent optimization of CW-StoWGe WGFs through the
minimization of the EFTE
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5.3.3 CW-StoWGe Model Initializations

As in the pulsed case, there are numerous parameters that must be considered in optimizing the

CW-StoWGe WGF. These parameters are listed in Table 5.2. In this case, the parameters Ts,

L, pX(x), and u must be initialized while the shaping filter, g consists of the parameters to be

optimized. The next several paragraphs discuss each parameter, their selected initialization(s) and

the rational behind those selections.

Table 5.2: WGF parameters which must be selected or initialized prior to optimization

Fixed Parameters

Ts Number of samples per waveform

L Number of random variables per waveform

W Number of FFT points

pX(x) Random Variable Distribution Function

u The Desired expected spectrum

Optimizable Parameters g Shaping Filter Function

Intervariable Spacing, Ts, and Partial Response, L: The intervariable spacing and the partial

response parameter are discussed together since their product, LTs, determines the length of g and

consequently the number of optimizable parameters. Intuitively, the product LTs should be as large

as possible since more degrees of freedom should result in more design freedom and consequently

better spectral matches. However, it remains to be seen if it is better to have more random variables

tightly spaced in time but with longer responses (small Ts, large L), or is it better to have fewer,

more spaced out random variables with less overlap in time (large Ts, small L)? To examine these

questions, various combinations of Ts and L will be considered. For Ts these include {2, 4, 6, 8}.

For L these include {1, 2, 3, 4, 5, 6, 7, 8}.

Random Variable Distribution Function pX(x): To maintain a consistent comparison to the

pulsed results, the same set of random variable distribution functions will be examined as for the

pulsed StoWGe model. These include the DU2, CU, and G distributions discussed in detail in

Section 4.3.3.

177



Desired Spectrum u: To maintain a consistent comparison to the pulsed results, the same set

of spectral templates will be examined as for the pulsed StoWGe model. These include the G2,

G4, S4G2, S4G4, R2, and R4 spectral templates discussed in detail in Section 4.3.3.

Initial Frequency Shaping Filter g0: The two initial shaping filters were chosen with two

goals in mind. The initializations should demonstrate the non-convexity of the cost function, and

they should generally result in "good" matches to the PSD.

To demonstrate the non-convexity of the cost function, the initializations need to be sufficiently

unique such that when all other parameters are held constant, the different initializations realize

unique optimized shaping filters. The second goal of a good match to the template was achieved

through trial and error. Numerous initializations were examined, and the two that are used here are

not claimed to be the best initialization in any given case, but in general they have been found to

tend towards good matches to the spectral templates as will be shown in Section 5.4.

The first initialization is based on the rectangular shaping used for CPM where L = 1 [109]. In

continuous terms, the rectangular shaping filter is defined

RECT : g0(t) =


1

2Ts
0 < t < Ts

0 otherwise
(5.22)

To optimize, (5.22) can be discretized such that

RECT : g0 =

[
01×Tsb(L−1)/2c

1
2Ts

11×Ts 01×Tsd(L−1)/2e

]T

, (5.23)

where the floor operator, b·c, returns the largest integer smaller than the argument, and the ceiling

operator, d·e, returns the smallest integer larger than the argument. In (5.23), the initial shaping

filter is defined such that L = 1 since the non-zero portions of g0 only extend over one Ts length

interval. However, the total number of optimizable parameters is defined such that N = LTs. In

this way, the initial shaping filter has no partial response(L = 1), but the optimization is allowed to

create a partial response in order to minimize the cost function assuming it has been allotted the
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degrees of freedom to do so.

The second initialization tested here is not based on any existing shaping filter to the author’s

knowledge rather it is based on a process of trial and error. In continuous terms it is defined

EXP : g0(t) =


1
A exp(−|t−L/2|) 0 < t < L

0 otherwise
(5.24)

where division by A normalizes the initialization to integrate to a total of 1/2. (5.24) can be

discretized for optimization such that

EXP : g0 =
1
A

exp(−|t−L/2|) (5.25)

where t is an LTs length vector whose values extend uniformly over the range [0,L].

These two initializations will be referred to as gRECT and gEXP respectively.

Summary: – All the initializations and their shorthand notation from above are summarized

in Table 5.3.

5.3.4 CW-StoWGe Gradient Descent Parameter Initializations

In the course of performing the optimizations for this work, the pulsed StoWGe optimizations were

carried out first. As a starting point for the CW-StoWGe optimizations, the same values for the

gradient descent parameters, β , ρup, ρdown, c and the stopping conditions were carried over from

the pulsed StoWGe optimization, and these values were found to be sufficient for this optimization

as well. The good suitability of these parameters and stopping conditions for both optimizations is

likely a consequence of them being relatively conservative. (i.e. the sufficient decrease parameter,

c, is fairly small in the scope of gradient methods.) The values for β , ρup, ρdown, c are .95, 1.01, .9,

and .01 respectively and a complete description of the stopping conditions can be found in 4.3.4.

It bears repeating that there are likely better sets of parameters and more efficient means of

optimizing the CW-StoWGe shaping filters in terms of computational time. However, the goal of
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Table 5.3: Optimization initializations for the pulsed StoWGe parameters. All combinations are
considered resulting in 1152 total optimizations

Variable Definition Test Cases

Ts Intervariable Spacing Ts = 2, 4, 6, 8

L Partial Response N = 1, 2, 3, 4, 5, 6, 7, 8

pX(x) Random Variable Distribution

DU2 – Discrete Uniform, 2 states

CU – Continuous Uniform

G – Gaussian with unit variance

u Desired Spectrum

G2 – Gaussian (K = 2)

G4 – Guassian (K = 4)

S4G2 – Super-Gaussian (n = 4,K = 2)

S4G4 – Super-Gaussian (n = 4,K = 4)

R2 – Rectangular (K = 2)

R4 – Rectangular (K = 4)

g0 Basis Function Initialization
gRECT – Rectangular vector

gEXP – Exponential vector

this work is not demonstrate the most efficient means of optimization for these problems, rather

it is to show that they can be optimized such that the resulting WGFs produce useful random FM

waveforms. Computational speed was only a concern inasmuch as the optimizations could be

performed in a practical time frame such as hours instead of weeks.

5.4 CW-StoWGe Optimization Results

The best WGFs according to the EFTE optimization are those which achieved the smallest cost

function value as a function of g0, Ts, L, and pX(x). Every result of each of the optimizations

detailed in Table 5.4 is tabulated in Tables B.7-B.12 on a dB scale where more negative values

(smaller) represent a better optimization result. However, as in the pulsed case, there is more to

producing good radar waveforms than simply achieving a desired expected power spectrum. Still,
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the goals of producing good radar waveforms and achieving a desired expected power spectrum

are closely related meaning a WGF which results in a good expected spectral match is more likely

to produce useful radar waveforms than otherwise. Consequently, this section as a whole examines

the WGFs in Tables B.7-B.12 for their ability to produce useful random FM radar waveforms in

terms of the expected spectrum and other metrics.

Table 5.4: Optimized WGFs which resulted in the lowest value of JCW for each pX(x) and u as a
function of Ts, L, and g0.

Distribution (pX(x))

DU2 CU G

J Ts L g0 J Ts L g0 J Ts L g0

T e
m

pl
at

e
(u

)

G2 -115.4 4 8 gEXP -96.4 8 5 gRECT -78.5 2 4 gRECT

G4 -132.1 4 4 gEXP -124.7 8 4 gRECT -100.4 8 8 gRECT

S4G2 -127.3 8 5 gRECT -95.0 8 7 gRECT -51.6 8 5 gRECT

S4G4 -105.3 8 8 gEXP -80.4 8 8 gRECT -47.9 6 5 gRECT

R2 -56.0 8 6 gRECT -48.4 8 2 gRECT -42.6 4 3 gRECT

R4 -52.8 8 8 gEXP -43.3 8 2 gRECT -39.6 4 5 gRECT

To begin, Section 5.4.1 examines the WGFs which produced the best matches found in Ta-

bles B.7-B.12 as a function of the template and the random variable distribution. This analysis

is performed by using several of the metrics in Table 3.3, albeit with the important CW process-

ing caveats covered in Section 5.4.1. Section 5.4.2 takes a look at how the shaping filters were

optimized to achieve expected power spectrum template matches. Finally, 5.4.3 compares the

optimized CW-StoWGe waveforms to previous random FMCW waveforms.

5.4.1 CW-StoWGe Optimized WGF Analysis

As with the pulsed case, the most obvious place to start in evaluating the quality of a given opti-

mized CW-StoWGe WGF is to look at how well its expected spectrum matches the desired tem-

plate. Table 5.4 lists the cases with the best optimized cost function values as a function of Ts, L,
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and g0. Given six different templates and 3 different random variable distributions there are a total

of 18 CW-StoWGe waveform generating functions to examine in greater detail.

As with the pulse case, examining the performance of a given WGF for producing random

FM waveforms requires examining them beyond their expected power spectrum. To do so, the

several of the metrics 3.3 are used to determine how effective the optimized CW-StoWGe WGF

are for producing useful random FMCW waveforms. The metrics deemed useful for evaluating the

optimized CW-StoWGe WGFs are

• Expected power spectrum - Since this metric it directly optimized it is clearly relevant to the

analysis.

• Power spectral deviation - In the pulsed case, the power spectral deviation described how

each individual pulse can be expected to deviate from the expected power spectrum. In

the CW-StoWGe case, the power spectral deviation describes how the estimated spectrum

will vary with respect to the DFT of a single window. With pseudo-pulse processing, this

effectively serves the same purpose as for the pulse case. It is desirable that the power

spectral deviation is minimized such that the DFT of a given window is as close as possible

to the desired power spectrum.

• Expected Autocorrelation - This metric demonstrates the best autocorrelation performance

for a given WGF which occurs for CW-StoWGe when there are an infinite number of pseudo-

pulses, or with one infinitely long pulse. Ideally, the expected autocorrelation sidelobes

should be extremely low such that with increasing coherent integration the sidelobes are

lowered further and further. Any difference between this metric and the expected RMS au-

tocorrelation represents a potential for lowering the autocorrelation sidelobes with coherent

integration.

• Expected RMS autocorrelation - Since any given observation scenario will invariably be

time limited, it is important to understand the expected autocorrelation level given finite time

182



support. The expected RMS autocorrelation represents the average autocorrelation level for

a given delay and filter length.

Notably absent from the aforementioned metrics are the cross-correlation metrics. Since in a CW

setting only one sample function of the WGF will ever be transmitted at a time, there will never

be cross-correlation terms to consider making them irrelevant to this analysis. However, there

could be a scenario where multiple transmitters send out unique sample functions of the WGF in a

multi-static application, but that is beyond the scope of this work.

5.4.1.1 Gaussian Template Results

If Figs. 5.2 and 5.3 the analytically calculated spectral and temporal plots of the results in Table

5.4 are plotted respectively. As evidenced by 5.2(a,b), each distribution was able to make a good

match to the desired template for either of the G2 or the G4 templates. However, in the G4 case the

expected spectra do deviate from the desired template beginning below about -30 dB in normalized

power. Without further analysis, it is impossible to say whether this is a result of the optimization

fundamentally being unable to match to the template at such low power levels or if this is the

impact of spectral estimation bias from too few DFT point (W=1024 in this case).

In 5.2(c) for the G2 template, each distribution achieved a spectral deviation curve that is on

the order of the spectral template itself which mirrors the results in the pulsed case. Likewise, the

spectral deviation for the G4 template in Fig. 5.2(d) mirrors the pulsed case in that the DU2 distri-

bution spectral deviation largely matches the spectral template power but contains small, periodic

spikes, the CU distribution spectral deviation largely matches the spectral template power, and the

G distribution spectral deviation results in a higher degree of deviation over almost the whole sam-

ple bandwidth but primarily in the roll-off regions. This higher degree of deviation indicates it will

take a larger amount of coherent integration for the sample function spectral estimates to approach

the expected power spectrum as compared to the other distributions.

In Fig. 5.3(a,b) for either the G2 or the G4 templates, the expected autocorrelations achieve

lower autocorrelation sidelobes than what would be expected given a perfect template matched
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as evidenced by the template trace. The template trace is simply the IFFT of the power spectral

template. The expected autocorrelation traces indicate that as the window length W is increased

or the number of coherently integrated pseudo-pulses is increased, then the autocorrelation level

will approach that of their respective trace. In each case, the expected autocorrelation quickly falls

below -140 dB. This result demonstrates that the waveforms produced by the WGFs are truly noise

like in that their autocorrelation sidelobe decrease with an increase in coherent integration.

The RMS autocorrelation are perhaps more useful from a practical standpoint since the ex-

pected ACF plots assume infinite coherent integration. Whereas, Figs. 5.3(c,d) represent the

expected autocorrelation levels when processing with a single pseudo-pulse of length Tfilt. An

interesting trend in either of 5.3(c,d) is the pronounced sinusoidal pattern in the RMS autocorre-

lation as a function of normalized time which is especially prevalent for the G distribution for the

G2 template. This oscillatory structure is due to the fact that the CW-StoWGe WGFs are cyclo-

stationary rather than simply stationary.

Additionally, as discussed early, for these traces W = 1024. For a 3dB oversampling factor

of 2 for the G2 template and 4 for the G4 template, this results in an approximate W/2 = 512

and a W/4 = 256 BT for each case respectively. For noise and noise-like CW waveforms, the

average autocorrelation level should be around 10log10(BT ). For the G2 template results in 5.3(c),

this level is about -27.1 dB and for 5.3(d) the level is about -24.1. In either case the traces level

off or average to within a couple dB of these levels further indicating the noise like character of

waveforms.
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Figure 5.2: CW-StoWGe spectral optimization results for Gaussian templates: expected power
spectrum for the G2 template (a), expected power spectrum for the G4 template (b), expected
power spectral deviation for the G2 template (c), expected power spectral deviation for the G4
template (d)
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Figure 5.3: CW-StoWGe temporal optimization results for Gaussian templates: expected autocor-
relation for the G2 template (a), expected autocorrelation for the G4 template (b), expected RMS
autocorrelation for the G2 template (c), expected RMS autocorrelation for the G4 template (d)

5.4.1.2 Super-Gaussian Template Results

As with pulsed-StoWGe, there is once again much more disparity between the different random

variable distributions for the Super-Gaussian templates as compared to the Gaussian templates. In

Fig. 5.4(a,b), the G distribution performed the worst while the CU distribution performed markedly

better, but the DU2 distribution clearly outperformed either. Interestingly in 5.4(b) (the S4G4

template), the CU and DU2 distribution hit a sort of spectral containment floor just above -40 dB

in normalized power. However, this floor can be attributed directly to measurement bias.

In Fig. 5.4(c,d), a similar pattern is seen compared to the Gaussian spectral templates. The G
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distribution experiences a higher degree of spectral deviation while the CU and DU2 distributions

have a deviation level that is largely proportional to their respective expected power spectra. How-

ever, for these templates, the DU2 distributed random variables no longer result in small, periodic

spikes in the spectral deviation plots.

In Fig. 5.5)(a,b), the inevitable sidelobes of the Super-Gaussian spectral shape are clearly

present as the dashed black lines in the inset plots. The poor spectral match of the G distribution

leads to a likewise poor match to the templates’ respective autocorrelations. However, decent

spectral matches achieved by the CU and DU2 distributions lead to descent matches to the spectral

template autocorrelations. This is at least the case for the first several significant sidelobes. Beyond

those sidelobes, the DU2 distribution exhibits some ringing, but otherwise quickly fades away as

is desired. Thus, the sidelobes in any case can be arbitrarily lowered through coherent integration.

The RMS autocorrelation plots in Fig. 5.5(c,d) once again average to about the 10log10(BT )

which are the same levels as before. Interestingly, as in the pulsed case, for the S4G2 template, the

DU2 distributed random variables result in an RMS autocorrelation with a significant oscillatory

component, while the G distribution has a similar but less pronounced behavior, and the CU dis-

tribution trace is nearly flat. For the S4G4 template in Fig. 5.5(d) each distribution resulted in a

relatively flat RMS autocorrelation response. However, the DU2 distribution results in a small dip

near the mainlobe.
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Figure 5.4: CW-StoWGe spectral optimization results for super-Gaussian templates: expected
power spectrum for the S4G2 template (a), expected power spectrum for the S4G4 template (b),
expected power spectral deviation for the S4G2 template (c), expected power spectral deviation for
the S4G4 template (d)
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Figure 5.5: CW-StoWGe temporal optimization results for super-Gaussian templates: expected
autocorrelation for the S4G2 template (a), expected autocorrelation for the S4G4 template (b),
expected RMS autocorrelation for the S4G2 template (c), expected RMS autocorrelation for the
S4G4 template (d)

5.4.1.3 Rectangular Template Results

For pulsed StoWGe the rectangular spectral templates results in the poorest power spectral matches

where only the DU2 distributed random variables were really able to produce a decent match. This

is likewise true in the CW case, but to a greater extreme where none of the distributions were

able to achieve an excellent spectral roll-off. However, as evidenced by Fig. 5.6(a,b) the DU2

distribution still did the best job of matching to the pass band of the spectrum and rolling-off to

some degree.
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The spectral deviation traces in Fig. 5.6(c,d) are largely proportional to the expected spectral

traces. However, once again, the G distributed random variable result in a slightly higher degree of

deviation as compared to the other distributions, but this is of little consequence in this case since

the G distribution resulted in such a poor spectral match anyway.

In the expected autocorrelation plots of Fig. 5.7(a,b), since only the DU2 distribution was able

to meaningfully match to the passband of the rectangular templates, only the DU2 traces exhibit

the expected sinc like autocorrelation sidelobes like those of an LFM. As the amount of coherent

integration is increased, the autocorrelation sidelobes will decrease no further than those that are

shown in Fig. 5.7(a,b).

For the expected RMS autocorrelation plots in 5.7(c,d), the sinc like sidelobes are high enough

that they are evident in these traces. The effect is especially pronounced for the DU2 random

variable distribution results. Otherwise, the RMS autocorrelation sidelobe levels once again decay

to about 10log10(BT )
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Figure 5.6: CW-StoWGe spectral optimization results for rectangular templates: expected power
spectrum for the R2 template (a), expected power spectrum for the R4 template (b), expected power
spectral deviation for the R2 template (c), expected power spectral deviation for the R4 template
(d)
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Figure 5.7: CW-StoWGe temporal optimization results for rectangular templates: expected au-
tocorrelation for the R2 template (a), expected autocorrelation for the R4 template (b), expected
RMS autocorrelation for the R2 template (c), expected RMS autocorrelation for the R4 template
(d)

5.4.2 Optimized Frequency Shaping Filters

For pulsed StoWGe, determining how the optimization minimized the cost function required ex-

amining both the basis function matrix and the correlation matrix. With CW-StoWGe, the only

optimized structure is the frequency shaping filter and the since the CW-StoWGe model is cylco-

stationary the correlation matrix is largely described by the autocorrelation functions of the previ-

ous section.

With this in mind, Figs. 5.8 and 5.9 show the optimized shaping filters for all of the 2 and 4
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times oversampled desired spectra respectively for all the cases examined in the previous section.

These cases are listed in Table 5.4.

In Fig. 5.8, the x-axis extends from 1 to 64 where 64 is the maximum possible length of the

shaping filters optimized in this work. Such a length corresponds to Ts = 8 and L = 8. Shaping

filters shorter than this were centered in the plot to make for an easier comparison to the other

filters. The range of the y-axis was chosen such that the entirety of the shaping filters are visible.

Although, in the case of the Fig. 5.8(b) the Gaussian (G) random variable based shaping filter was

allowed to go off the plot since showing it in its entirety would have poorly scaled the other filters.

Likewise, the range of the y-axis was adjusted in 5.9 to best show the shaping filters.

Perhaps the most interesting aspect of the shaping filters is their inconsistency. For example

compare the DU2 traces in 5.8(b) and 5.9(b). In both cases the optimization was trying to match to a

super-Gaussian expected spectrum, but with a different oversampling factor. Despite the similarity

in spectral shape, the optimization came to two very different solutions. On the other hand, there

does seem to be a pattern to the CU traces for the same templates. For the rectangular templates

in 5.8(c) and 5.9(c) it is really only worth looking at the DU2 filters since these are the only ones

that produced any kind of reasonable match to the desired spectra. In these cases, there seems to

be little in common between the different shaping filters. Perhaps these results are a testament to

the usefulness of the gradient descent optimization of a non-convex function, since there is nothing

intuitive about the solutions shown in Figs. 5.8 and 5.9, but as evidenced by the previous section,

they often achieve good matches to the desired expected spectrum. This is especially true of the

DU2 distributed random variables which generally achieved the best matches compared to the

other random variable distributions.
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Figure 5.8: Optimized frequency shaping filters for each distribution for the 2 times oversampled
templates: G2 template (a), S4G2 template (b), R2 template (c)
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Figure 5.9: Optimized frequency shaping filters for each distribution for the 4 times oversampled
templates: G4 template (a), S4G4 template (b), R4 template (c)
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5.4.3 CW-StoWGe Comparisons to Previous Random FM Waveforms

As in the pulsed case, the DU2 distributed random variable WGFs generally produce the best radar

waveforms. Since the PRO-FM waveforms have been demonstrated in a CW mode (PRO-FMCW),

they once again make sense as a standard of comparison [25]. In a similar manner to 4.4.4, the

results of the DU2 CW-StoWGe waveforms will be compared directly to the PRO-FM waveforms

using the same metrics as in 5.4.1. The goal of this comparison is not to determine which of either

the CW-StoWGe or the PRO-FM waveforms are better. Instead, the goal is to establish what the

CW-StoWGe waveforms do and do not have in common with previous random FMCW waveforms.

5.4.3.1 CW-StoWGe and PRO-FM with zero Doppler

To do so, the CW-StoWGe waveforms traces in Figs. 5.10 to 5.15 are pulled directly from section

5.4.1, while the PRO-FM traces are monte carlo estimates based on instantiated PRO-FMCW

waveforms. In contrast to the pulsed waveforms, getting a good monte carlo estimate of the PRO-

FMCW is a matter of creating one, very long, high BT waveform rather than many smaller ones.

Using the PRO-FMCW instantiation and optimization method defined in [25], for the 4 times

oversampled templates, 3 waveforms with a BT of approximately 2560000 where instantiated.

While for the 2 times oversampled templates, 3 waveforms with a BT of approximately 5120000

where instantiated. There resulting expected spectra, spectral deviations, autocorrelations, and

RMS autocorrelations where then estimated via the FMCW estimation methods defined in 3.4.

The DU2 results and the PRO-FMCW estimates are presented in Figs. 5.10.

Starting the with expected spectra in Figs. 5.10, 5.12, and 5.14, the CW-StoWGe results gen-

erally achieve better spectral roll-off and containment. Although in the case of the 1‘rectangular

templates of Fig. 5.14(a,b), the PRO-FMCW waveforms achieve somewhat better spectral con-

tainment. The bigger contrast between these waveform generation methods is seen in the power

spectral deviation results. For the CW-StoWGe waveforms, the deviation is almost directly pro-

portional to the expected spectrum. For the PRO-FMCW, like their closely related pulsed variant,

the spectral deviation is significantly less than the expected spectrum level. Although, the PRO-
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FMCW waveforms are of a different structure than the pulsed PRO-FM waveforms, they are still

optimized in a similar manner. The PRO-FMCW waveforms are instantiated by optimizing indi-

vidual segments to achieve the desired power spectrum. These segments are then phase aligned

and concatenated to create the overall CW waveform. The CW-StoWGe signals however are only

tasked with matching the expected spectrum as the length of the signal approaches infinity. While

the mechanics are different from the pulsed case, the result is similar. The power spectrum of a

PRO-FMCW waveform will be much closer to its expected spectrum in a mean squared error sense

over a given time interval than a commensurate CW-StoWGe waveform will.

The impact of this fact is evident in the RMS autocorrelation plots of Figs. 5.11, 5.13, and

5.15. Regardless of the template, for the given filter length the PRO-FM waveforms achieve a

lower autocorrelation sidelobe level on a per pseudo-pulse level. This effect is mostly concentrated

near the mainlobe and the advantage decreases as the delay increases. As the normalized time

approaches 1, the sidelobe level approaches that of the CW-StoWGe waveforms which happens to

be approximately 10log10(BT ). For the 4 times oversampled template with the 1024 sample length

filter this comes out to approximately -24.1 dB while for the 2 time oversampled templates and the

same length filter this comes out to about -27.1 dB. In contrast to the pulsed waveforms where the

autocorrelation decays due to the time limited nature of the pulses. In pseudo-pulse processing, the

filtered data vector extends well beyond the filter length. In this case, the filter length is also the

length of each PRO-FMCW segment. As the delay increases, the filtering segments overlaps more

and more with the adjacent segment rather than with the matched segment. Since the adjacent

segments were optimized and instantiated separately from the filtering segment, then there should

be no structure between them resulting in a level that is described by the BT of the filtering segment.

All of this is to say that for delays beyond the length of the pseudo-pulse filter, there is no difference

in the RMS autocorrelation performance for the CW-StoWGe and the PRO-FMCW waveforms for

the same BT and spectrum. Because of this, the lower autocorrelation level advantage achieved

by the pulsed PRO-FM waveforms and other random FM waveform types is actually diminished

somewhat in the CW case since the sidelobe levels level off to about 10log10(BT ) anyway. One
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solution would be to make longer and longer filters and segments, but this would be increasingly

computationally expensive. Regardless, as in the pulsed case the major advantages afforded by the

CW-StoWGe waveforms are good spectral containment and an extremely computationally cheap

instantiation.

5.4.3.2 CW-StoWGe and PRO-FM Ambiguity Functions

In order to examine the Doppler characteristics of the CW-StoWGe waveforms, the analytical

expected RMS ambiguity function was evaluated for each of the 4 times oversampled spectral

templates and for only the DU2 distributed random variable WGFs used in the previous section

since these tended to produce the best random FM waveforms.

As a standard of comparison, the PRO-FM waveforms designed to match the corresponding

spectra where also used to estimate the RMS ambiguity functions for th PRO-FMCW case. Each

of the three PRO-FMCW waveforms have a BT of approximately 256000.

As in the pulsed case, examining the impact of a Doppler shift of the RMS autocorrelation

requires introducing that shift to the RMS autocorrelation equation. For a given Doppler shift, fd,

a Doppler shift function, d[m ] can be formed such that

d[m ] = exp( j2π fdt[m ]) (5.26)

where t[m ] is a normalized time axis. This Doppler shift can be introduced to (3.108) such that the

Doppler shifted RMS matched filter response becomes

E
[
|r̂[`,W, fd]|2

]
= E

∣∣∣∣∣ 1
W

W

∑
m=1

s∗[m]d∗[m]s[m+ `]

∣∣∣∣∣
2
 . (5.27)

where m starts arbitrarily at 1. Expanding the magnitude squared realizes

E
[
|r̂[`,W, fd]|2

]
=

1
W 2

W

∑
m1,m2=1

E [s∗[m1 ]d∗[m1 ]s[m1 + ` ]s∗[m2 ]d∗[m2 ]s[m2 + ` ]] . (5.28)
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Figure 5.10: Comparison between the analytical spectral characteristics of optimized DU2 based
CW-StoWGe and estimated spectral PRO-FMCW characteristics, expected power spectrum for
the G2 template (a), expected power spectrum for the G4 template (b), expected power spectral
deviation for the G2 template (c), expected power spectral deviation for the G4 template (d)
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Figure 5.11: Comparison between the analytical temporal characteristics of optimized DU2 based
CW-StoWGe and estimated temporal PRO-FMCW characteristics, expected autocorrelation for the
G2 template (a), expected autocorrelation for the G4 template (b), expected RMS autocorrelation
for the G2 template (c), expected RMS autocorrelation for the G4 template (d)
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Figure 5.12: Comparison between the analytical spectral characteristics of optimized DU2 based
CW-StoWGe and estimated spectral PRO-FMCW characteristics, expected power spectrum for the
S4G2 template (a), expected power spectrum for the S4G4 template (b), expected power spectral
deviation for the S4G2 template (c), expected power spectral deviation for the S4G4 template (d)
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Figure 5.13: Comparison between the analytical temporal characteristics of optimized DU2 based
CW-StoWGe and estimated temporal PRO-FMCW characteristics, expected autocorrelation for
the S4G2 template (a), expected autocorrelation for the S4G4 template (b), expected RMS auto-
correlation for the S4G2 template (c), expected RMS autocorrelation for the S4G4 template (d)
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Figure 5.14: Comparison between the analytical spectral characteristics of optimized DU2 based
CW-StoWGe and estimated spectral PRO-FMCW characteristics, expected power spectrum for
the R2 template (a), expected power spectrum for the R4 template (b), expected power spectral
deviation for the R2 template (c), expected power spectral deviation for the R4 template (d)
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Figure 5.15: Comparison between the analytical temporal characteristics of optimized DU2 based
CW-StoWGe and estimated temporal PRO-FMCW characteristics, expected autocorrelation for the
R2 template (a), expected autocorrelation for the R4 template (b), expected RMS autocorrelation
for the R2 template (c), expected RMS autocorrelation for the R4 template (d)
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where the Doppler terms relative to the expectation are constant and can be pulled out of the

expectation such that

E
[
|r̂[`,W, fd]|2

]
=

1
W 2

W

∑
m1,m2=1

d∗[m1]d[m2]E [s∗[m1]s[m1 + `]s[m2]s∗[m2 + `]] . (5.29)

where the Doppler shift represents a phase shift on each term in the double summation.

In contrast to the pulsed case where both the expected ambiguity functions and the expected

RMS ambiguity functions were shown, only the RMS ambiguity functions are shown here. This is

a consequence of the form of CW-StoWGe expected autocorrelation function as defined in Section

3.2.3 which is defined

r[` ] = lim
W→∞

1
W

W

∑
m=1

s∗[m ]s[m+ ` ]. (5.30)

as a consequence of ergodicity. Multiplying this by a Doppler shift realizes

rd[`, fd] = lim
W→∞

1
W

W

∑
km=1

d∗[m]s∗[m]s[m+ `]. (5.31)

In general, the Doppler terms will uniformly distribute the phase of each term in (5.31) around the

unit circle such that the sum approaches 0 for all non-zero doppler. However, there is an exception

when the period of the Doppler frequency matches the period of the cyclo-stationarity. (Recall that

(5.30) represents the average correlation at the `th delay.)

For the CW-StoWGe cyclo-stationarity period of Ts samples, this means the average correlation

with ` delay can be written as

r[` ] =
1
Ts

Ts

∑
m=1

E[s∗[m]s[m+ `]] (5.32)

Given a period matching Doppler shift such that

d[m] = d[m+Ts], (5.33)
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then (5.31) becomes

r[`, fd ] =
1
Ts

Ts

∑
m=1

d∗[m]E[s∗[m]s[m+ `]]. (5.34)

Doppler vectors are defined such that they sum to zero of their period, but in (5.34) they are

in general each multiplied by a unique constant such that this is not guaranteed. However, if the

Doppler shift does not satisfy (5.33) then (5.34) is not longer valid since in general each consecutive

set of Ts terms would be multiplied by different sets of Doppler terms forcing the correlation to

approach zero.

All of this is to say, that the expected CW-StoWGe ambiguity function is not very useful since

it is zero valued almost everywhere.

In Fig. 5.16, The RMS ambiguity functions for the DU2 based CW-StoWGe WGFs for the

4 times oversampled templates are plotted in 5.16(a,c,e). Their estimated PRO-FM equivalents

are plotted in 5.16(b,d,f). As in the pulsed case, the most notable difference between them is

the zero-Doppler valley present in the PRO-FM results which corresponds to the lower near-in

autocorrelation sidelobes seen in the PRO-FM results of Figs. 5.11, 5.13, and 5.15. Off from the

zero-Doppler axis, the ambiguity functions of the CW-StoWGe and the PRO-FM waveforms are

much more similar in that they resemble a thumbtack response that should be expected for random

FM waveforms. In contrast to the pulsed waveforms the ambiguity functions extend beyond the

y-axis as a consequence of their CW nature. Regardless, beyond the zero-Doppler axis there is

little difference between the CW-StoWGe waveforms and previous random FM waveforms.
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Figure 5.16: Comparison between the analytical RMS ambiguity functions of optimized DU2
based CW-StoWGe and estimated RMS ambiguity functions for PRO-FMCW: CW-StoWGe for
the G4 template (a), PRO-FMCW for the G4 template (b), CW-StoWGe for the S4G4 template (c),
PRO-FMCW for the S4G4 template (d), CW-StoWGe for the R4 template (e), PRO-FMCW for
the R4 template (f)
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5.5 CW-StoWGe Experimental Results

In Section 4.5, the analytical pulsed StoWGe model was verified via both simulation and loopback

experimentation. Since the CW-StoWGe model significantly differs from its pulsed counterpart

it is likewise prudent to verify through similar means. To do so, the analytical models of the

optimized CW-StoWGe WGFs from Section 5.4 are compared directly to both simulated estimates

as well as physically implemented and measured signals in a loopback configuration. Since the

DU2 based WGFs tended to produce the best radar waveforms, these are the ones examined here.

In Figs. 5.17 -5.22 there are three traces. The analytical traces were calculated directly using

the definition of the CW-StoWGe model and were lifted directly from the figures in Section 5.4.

The simulation traces were calculated by estimating in a similar manner as the PRO-FMCW

results in Section 5.4.3. For each of the DU2 WGFs for each of the spectral templates, a sample

function of 1024000 samples was instantiated resulting in a BT of approximately 512000 for the 2

times oversampled templates and about 256000 for the 4 times oversampled templates respectively

and a total of 6 quasi-CW radar waveforms. These waveforms were then segmented and evaluated

for the various metrics via the methods described in Section 3.3.2.

Finally, the CW-StoWGe signals were implemented on the same loopback system as the pulsed

StoWGe waveforms. Each of the 6 CW-StoWGe waveforms were sinc interpolated by a factor of

12.5 and then pojected onto a constant modulus envelope. They were then digitally up-converted

to a center frequency of - fs/4. Given a DAC rate of 2.5 GHz, the signals have a 3 dB bandwidth

of either 100 MHz or 50 MHz for the 2 times oversamples or the 4 times oversampled spectra

respectively and a center frequency of 625 MHz. The signals were implemented on an arbitrary

waveform generator at a passband rate of 2.5 GHz, before being linearly amplified, then attenuated,

and finally recorded at passband at a rate of 2.5 GHz. The received signals were then digitally down

converted and re-sampled to a baseband sample rate of 200 MHz. The various metrics were then

calculated using this data via the same methods as for the simulated waveforms. The PRO-FMCW

waveforms were likewise implemented in the same manner as a standard of comparison.

In examining Figs. 5.17-5.22, the analytical traces are almost entirely hidden by the simulated
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traces especially for the the spectral results. Such a match indicates that the analytical analysis

of the model accurately reflects the statistics of the actual sample functions. However, this excel-

lent match is notably absent in the sidelobe regions of the expected autocorrelations of 5.18(a,b),

5.20(a,b), and 5.22(a,b) where the analytical and simulation traces clearly diverge. This behavior

was seen in the pulsed StoWGe case as well and for a similar reason. Here, the expected autocor-

relation traces represents the autocorrelation of an infinitely long sample function, but of course

the simulated result is finite thus the traces diverge. In linear terms, the error between the simu-

lated trace and the analytical traces is very small, but on a dB scale, the difference is several orders

of magnitude where the value of the analytical trace is also very small. It can be expected that

with longer and longer sample functions (waveforms), the simulated traces would approach the

analytical traces.

On the other hand, there are more meaningful differences between the simulated traces and the

loopback traces in a similar manner to the pulsed StoWGe results, but this is to be expected. In

that section the loopback spectral distortion relative to the ideal simulated results was attributed

to the signal upsampling and hardware filtering effects. Since the CW-StoWGe waveforms were

upsampled in exactly the same way and implemented on the same equipment, it is reasonable

that they should exhibit similar forms of distortion. In fact, in comparing the loopback traces of

Figs. 4.25(a) and 5.17(a), where both the pulsed and the CW waveforms achieved nearly the same

spectral result, the distortion from the ideal simulated and analytical results is nearly identical. This

effect is likely attributable to filtering effects within the loopback system. To further verify this

conclusion, PRO-FMCW waveforms of the same BT and spectral shapes were also implemented

in loopback. In Fig. 5.23, the R2 expected spectrum loopback results of both the CW-StoWGe and

the PRO-FMCW waveforms are plotted together where they both exhibit a similar distortion effect

over the passband region. In previous work, PRO-FMCW waveforms have not shown this behavior

[25]. Consequently, it is reasonable to conclude this is a filtering effect and not a fundamental issue

with the implementation of the CW-StoWGe waveforms.

Despite these spectral effects, there is relatively little distortion in any of the corresponding
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temporal results. Overall after accounting for the upsampling process and the loopback systems

filtering effects, there is an excellent match between the simulated results and loopback results

indicating the suitability of the CW-StoWGe waveforms for physical implementation.
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Figure 5.17: Optimized, DU2 based, CW-StoWGe analytical, simulated, and loopback spectral
results for Gaussian templates: expected power spectrum for the G2 template (a), expected power
spectrum for the G4 template (b), expected power spectral deviation for the G2 template (c), ex-
pected power spectral deviation for the G4 template (d)
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Figure 5.18: Optimized, DU2 based, CW-StoWGe analytical, simulated, and loopback temporal
results for Gaussian templates: expected autocorrelation for the G2 template (a), expected autocor-
relation for the G4 template (b), expected RMS autocorrelation for the G2 template (c), expected
RMS autocorrelation for the G4 template (d)
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Figure 5.19: Optimized, DU2 based, CW-StoWGe analytical, simulated, and loopback spectral
results for super-Gaussian templates: expected power spectrum for the S4G2 template (a), ex-
pected power spectrum for the S4G4 template (b), expected power spectral deviation for the S4G2
template (c), expected power spectral deviation for the S4G4 template (d)
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Figure 5.20: Optimized, DU2 based, CW-StoWGe analytical, simulated, and loopback temporal
results for super-Gaussian templates: expected autocorrelation for the S4G2 template (a), expected
autocorrelation for the S4G4 template (b), expected RMS autocorrelation for the S4G2 template
(c), expected RMS autocorrelation for the S4G4 template (d)
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Figure 5.21: Optimized, DU2 based, CW-StoWGe analytical, simulated, and loopback spectral re-
sults for rectangular templates: expected power spectrum for the R2 template (a), expected power
spectrum for the R4 template (b), expected power spectral deviation for the R2 template (c), ex-
pected power spectral deviation for the R4 template (d)
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Figure 5.22: Optimized, DU2 based, CW-StoWGe analytical, simulated, and loopback temporal
results for rectangular templates: expected autocorrelation for the R2 template (a), expected auto-
correlation for the R4 template (b), expected RMS autocorrelation for the R2 template (c), expected
RMS autocorrelation for the R4 template (d)
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Figure 5.23: Comparison between the estimated expected spectrum of the loopback measured
CW-StoWGe DU2 waveforms and the loopback measured PRO-FMCW waveforms for the R2
template. Both sets exhibit similar passband spectrum distortion due to hardware effects.

5.6 CW-StoWGe Summary

Similar the pulsed case, the goal behind CW-StoWGe was to enable the computationally cheap

instantiation of useful radar waveforms, but here for continuous wave (CW) purposes. Likewise

to pulsed StoWGe, the cheap efficient instantiation is a fundamental characteristic of the CW-

StoWGe model where the phase is created through the convolution of a random variables with a

frequency shaping filter, but guaranteeing their usefulness requires an optimization of the signal

model’s underlying parameters.

To further complicate matters, in the CW case it is necessary to select a means of estimating
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the power spectrum and autocorrelation since there are numerous methods to choose from. For the

sake of tractability, periodograms and pseudo-pulse processing were chosen for then. Under these

conditions, the gradient based minimization of the expected frequency template error (EFTE) cost

function defined in Section 5.2, was shown in Section 5.4 to be an effective means of shaping the

CW-StoWGe models expected power spectrum while remaining constant modulus and retaining

noise-like characteristics such as lower autocorrelation sidelobes with greater integration time.

The CW-StoWGE model was optimized for the same set of desired spectra and random variable

distributions as in the pulsed case, but with varying degrees of the partial response parameter,

L, and the inter-variable spacing, Ts. Unsurprisingly, it was shown that higher values of Ts and

L generally result in better, optimized WGFs. (more design degrees of freedom.) However, it

was also shown, as in the pulsed case, that more restrictive random variable distributions tend

to result in better matches to desired expected spectra, a surprising results that warrants further

investigation.

Then to evaluate the CW-StoWGe waveforms against previous research, the CW-StoWGe

waveforms were compared directly against previously designed FMCW noise waveforms. Al-

though, a comparison was more difficult in the CW case since existing noise-like FMCW wave-

forms are instantiated on segment by segment basis, while the CW-StoWGe waveforms instantiated

continuously. This difference in design resulted in the previous FMCW waveforms achieved better

(lower) near-in sidelobe while in comparison to CW-StoWGe. However, this advantage only ex-

tended as far as the design segment length. Beyond this this time frame, the previous waveforms

and the CW-StoWGe waveforms achieve similar sidelobe levels.

Finally, CW-StoWGe radar waveforms were instantiated based on the best WGFs as deter-

mined by the optimization and the following analysis, and then implemented on hardware in a

loopback configuration. These loopback results were then compared to both the analytical and the

simulated results where it was found that the physically implemented signals were nearly identical

to the analytical and simulated results demonstrating the suitability of the CW-StoWGe waveforms

for physical implementation. Overall this chapter has shown that the design and optimization of
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the CW-StoWGe model enables the computationally cheap instantiation of random FMCW wave-

forms with desirable spectral and autocorrelation characteristics.
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Chapter 6

Conclusions & Future Work

Previous work and analysis has demonstrated the performance advantages of random FM wave-

forms. Like general noise waveforms, they are unambiguous such that there are no unambiguous

range considerations since each waveform is unique. Additionally, their autocorrelation sidelobe

performance can be improved arbitrarily through increasing their time-bandwidth (BT ) product.

Unlike general noise waveforms, random FM waveforms are constant in amplitude meaning they

are amenable to implementation on high-powered amplifiers (HPA). However, maintaining a con-

stant modulus envelope while also achieving sufficient spectral containment and good autocorre-

lation properties has proven difficult in practice. One general approach is to optimize individual

waveforms such that they achieve these goals. While this has been shown to be an effective means

of meeting these goals, it is also a computationally expensive process making real-time operation

difficult. Alternatively, random FM waveforms have been defined as a stochastic process such

that they can be produced with minimal computational expense via a random number generator

(RNG). But in past work, the waveforms produced from these approaches have been static in that

their average spectra is Gaussian with no means of optimizing them to suit other design goals.

The primary motivation of this work was to achieve the performance level of the optimization

approach while circumventing its computational cost by implementing the waveforms in a manner

consistent with the second approach. To do so, instead of thinking of random FM waveforms as

singular entities to be examined and optimized on an individual basis, they were considered as

equivalent members of a waveform family as defined by some underlying waveform generating

function (WGF). In this way, an entire family of waveforms can be optimized simultaneously by

optimizing their underlying WGF thus eliminating the need to perform a computationally expen-
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sive optimization of each and every waveform. The waveforms themselves are then produced by

instantiating sample functions from the underlying WGF.

To implement this framework, Chapter 3 introduced the mathematical basis behind random

variables and stochastic processes, and then explained how these same concepts and analytical

tools can be used to address the design and analysis of random FM waveforms. Most importantly,

Section 3.4 introduced a series of eight metrics which translate the fundamentals of stochastic

processes to a radar centered perspective. Then, by leveraging these ideas, Chapters 4 and 5

defined the pulsed stochastic waveform generation (Pulsed StoWGe) and the continuous-wave

stochastic waveform generation (CW-StoWGe) models for pulsed and CW random FM waveforms

respectively.

In summary, these models define a parameterized WGF. Then, by optimizing these parameters

the WGFs can be designed to produce radar waveforms with desirable characteristics. The ap-

proach taken here was to optimize these parameters according to the expected frequency template

error (EFTE) cost function which measures the average error between the expected power spec-

tral density of the waveforms produced by their respective WGF and some desired spectrum. By

minimizing the EFTE, the instantiated waveforms would on average have a power spectrum which

resembles the desired spectrum. The question in performing the gradient descent optimization

was to what degree can the EFTE be minimized given a desired spectrum and the pulsed or CW

StoWGe models. To answer this question an extensive set of combinations of desired spectra and

model parameters were chosen and systematically tested by minimizing the EFTE cost function

via gradient descent techniques. In chapters 4 and 5 it was clearly shown that for certain combina-

tions of pulsed or CW-StoWGe parameters the EFTE cost function can be effectively minimized

such that the waveforms instantiated via the optimized WGFs achieve an expected spectrum that is

very similar to the desired spectrum in a squared error sense. In particular, using discrete uniform

random variables with two states (DU2) and maximizing the model’s degrees of freedom were

found to result in good spectral matches.

To further prove out the process and to evaluate the resulting waveforms, random FM wave-
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forms were then instantiated from these WGFs and then verified to posses the expected charac-

teristics based on their respective WGFs. But perhaps most importantly, their expected spectral,

autocorrelation, and cross-correlation characteristics were all verified in an experimental demon-

stration on physical equipment showing that the mathematical theory accurately describes reality.

These waveforms were shown in monte carlo comparisons to be largely equivalent to some previ-

ously designed random FM waveforms in terms of both spectral containment and cross-correlation,

but perhaps worse in autocorrelation performance on a per waveform basis. Despite this relative

shortcoming, the StoWGe waveforms do enjoy a massive advantage in terms of there instantiation

since there is no need to optimize them on a per waveform basis. Consequently, the pulsed and CW

StoWGe waveforms can easily be implemented in a real-time through an RNG once the underlying

WGF itself is optimized.

Even so, there is likely further room for improvement within the StoWGe framework. This

work optimized the expected spectrum of the WGFs. Considering the importance of the spectrum

for radar waveforms, this was a sensible place to start. However, there could be advantages in

optimizing other metrics as well. For example the expected spectrum is an average measure, so

optimizing it does not directly control how the StoWGe waveforms behave on and individual level.

Consequently, it can take a fair amount of coherent integration before the sample average spectrum

strongly resembles the expected spectrum. To address this in future work, it may be possible to

optimize the individual measures of Section 3.4 such as the power spectral deviation or the RMS

autocorrelation to improve the per waveform spectral and autocorrelation properties of the StoWGe

waveforms. Although such an optimization would likely be much more complicated on account

of the per waveform metrics being fourth order functions of the WGF rather than second order

functions as in the expected spectrum. Regardless, such an approach is worth exploring in future

work.

More broadly, this work applied optimization to theory to the previously conceived idea of

explicitly treating random FM waveforms as stochastic processes rather than as individual items.

The pulsed and CW StoWGe models are simply a means of enabling the optimization of stochastic
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processes for radar purposes, but the pulsed and CW-StoWGe models are not necessarily the only

way to do so. In fact, there is a very real possibility that may not be the best method in first place,

but until other models are formulated this of course cannot be known. Even so, StoWGe has now

been shown to produce useful, physical random FM waveforms, but perhaps from a more forward

looking perspective StoWGe’s greatest contribution is simply showing that designing stochastic

processes in such a dynamic way is even possible. With this in mind, future work should explore

other possible WGF models and parameterizations in an effort to improve upon the per-waveform

and aggregate performance characteristics achieved by the pulsed and CW-StoWGe models them-

selves.
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Appendix A

StowGe Derivations

This appendix derives the second and fourth order moments of the pulsed StoWGe waveform

generating function of Chapter 4 and the CW-StoWGe waveform generating function of Chapter

5 such that the metrics in Section 3.4 can be analytically evaluated for these models. Additionally,

the derivatives with respect to the pulsed and CW EFTE cost functions are also derived.

A.1 Pulsed StoWGe

Evaluation of the Pulsed StoWGe EFTE and its gradient requires the calculation of its second

and fourth order moments. Section A.1.1 derives these moments, Section A.1.2 uses the second

moment to derive the gradients of the EFTE cost function, and Section A.1.3 derives the gradient

with respect to selected random variable distributions.

A.1.1 Pulsed StoWGe Moments

As in (4.2) and (4.3) The pulsed StoWGe waveform generating process is defined as

s = exp( jφφφ) (A.1)

where

φφφ= Bx+µµµ (A.2)

and B is a M×N matrix of basis functions, x is a N× 1 vector of random variables, and µµµ is a

vector of constant values which are the expected value of the samples of φφφ. By definition, the
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second moment or correlation between two samples in (A.1) is

E
[
sm1s∗m2

]
= E [exp( j((bm1−bm2)x+µm1−µm2))] (A.3)

where m1 and m2 are arbitrary. Since the mean terms are constant they can be pulled out of the

expectation such that

E
[
sm1s∗m2

]
= exp( j(µm1−µm2))E [exp( j(bm1−bm2)x)] . (A.4)

Next, the inner product inside the argument of the complex exponential can be written as a sum-

mation. Since this summation exists inside and exponential, the whole quantity can be written as a

product realizing

E
[
sm1s∗m2

]
= exp( j(µm1−µm2))E

[
N

∏
n=1

exp( j(bm1,n−bm2,n)Xn)

]
, (A.5)

where bm1,n is the element in the m1th row and the nth column of B and xn is the nth element of

x. Next and perhaps most importantly, each member of x is independent such that the expectation

of their product can be written as product of their expectations. Using this fact allows for the

expectation to be pulled inside of the product such that

E
[
sm1s∗m2

]
= exp( j(µm1−µm2))

N

∏
n=1

E [exp( j(bm1,n−bm2,n)Xn)] . (A.6)

The individual terms can be recognized as the form of the characteristic function for the random

variable Xn as defined in Section 3.1 such that

ψX(ω) = E[exp( jωX)] =

ˆ
∞

−∞

exp( jωx) fX(x)dx. (A.7)
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where ω = (bm1,n−bm2,n). (A.6) becomes

E
[
sm1s∗m2

]
= exp( j(µm1−µm2))

N

∏
n=1

ψXn(bm1,n−bm2,n). (A.8)

Then by selecting a distribution for each Xn, the correlation between the samples can be evaluated

via (A.8)

Similarly, the fourth moment between samples of (A.1) is by definition

E
[
sm1s∗m2

s∗m3
sm4

]
= E [exp( j((bm1−bm2−bm3 +bm4)x+µm1−µm2−µm3 +µm4))] . (A.9)

Following an identical set of steps as above, the fourth moment can be shown to be

E
[
sm1s∗m2

s∗m3
sm4

]
= exp( j(µm1−µm2−µm3 +µm4))

N

∏
n=1

ψXn(bm1,n−bm2,n−bm3,n+bm4,n), (A.10)

which can be evaluated after choosing a distribution for each Xn.

A.1.2 The Pulsed StoWGe EFTE Gradient

A.1.2.1 Basis Function Matrix Gradient

To calculate the gradient of the EFTE cost function, defined as

Jp =

∣∣∣∣∣∣∣∣E [ ŝf ]−u
∣∣∣∣∣∣∣∣2

2
, (A.11)

with respect to basis matrix B, begin by evaluating the derivative of the cost function with respect

to a single element of B such that

∂Jp

∂bk,n
=

∂

∂bk,n

∣∣∣∣∣∣∣∣E [ ŝf ]−u
∣∣∣∣∣∣∣∣2

2
(A.12)
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where bk,n is the element of B in the kth row and the nth column. According to the chain rule,

(A.12) becomes
∂J

∂bk,n
= 2

(
∂E [ ŝf ]

∂bk,n

)T

(E [ ŝf ]−u) (A.13)

where the derivative is applied to E [ ŝf ] on an element wise basis. For the wth sample of the

expected spectrum, the derivative is

∂E[ ŝf,w ]

∂bk,n
=

M

∑
m1,m2=1

aw,m1a∗w,m2
exp( j(µm1−µm2))

∂

∂bk,n

(
N

∏
p=1

ψXp(bm1,p−bm2,p)

)
. (A.14)

The only possible non-zero terms of the derivative in (A.14) occur when exclusively either m1 or

m2 are equal to k. Therefore, (A.14) can be rewritten as

∂E[ ŝf,w ]

∂bk,n
= aw,k exp( jµk)

M

∑
m2=1
m2 6=k

a∗w,m2
exp(− jµm2)

∂

∂bk,n

(
N

∏
p=1

ψXp(bk,p−bm2,p)

)

+a∗w,k exp(− jµk)
M

∑
m1=1
m1 6=k

aw,m1 exp( jµm1)
∂

∂bk,n

(
N

∏
p=1

ψXp(bm1,p−bk,p)

) (A.15)

The two summations are complex conjugates of each other such that

∂E[ ŝf,w ]

∂bk,n
= 2ℜ

aw,k exp( jµk)
M

∑
m=1
m6=k

a∗w,m exp(− jµm)
∂

∂bk,n

(
N

∏
p=1

ψXp(bk,p−bm,p)

) (A.16)

where the subscript of the iterator m has been dropped since it is no longer necessary. Finally, there

is exactly one term in the product where bn,k appears resulting in

∂E[ ŝf,w ]

∂bk,n
= 2ℜ


M

∑
m=1
m6=k

aw,ma∗w,k exp( j(µm−µk))
∂ψXp(bm,n−bk,n)

∂bk,n

N

∏
p=1
p6=n

ψXp(bm,p−bk,p)

 (A.17)
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From (A.17) and (A.13), each partial derivative with respect to the elements of B can be placed

into the structure ∇BJp such that

∇BJp =



∂Jp
∂b1,1

∂Jp
∂b1,2

· · · ∂Jp
∂b1,N

∂Jp
∂b2,1

∂Jp
∂b2,2

· · · ∂Jp
∂b2,N

...
... . . . ...

∂Jp
∂bM,1

∂Jp
∂bM,2

· · · ∂Jp
∂bM,N


(A.18)

A.1.2.2 Mean Phase Value Vector Gradient

According to the chain rule, the derivative of the EFTE cost function with respect to a single

element of the mean value vector µµµ is

∂Jp

∂ µk
= 2

(
∂E[ ŝf ]

∂ µk,n

)T

(E[ ŝf ]−u) (A.19)

where µk is the kth element of µµµ. The derivative of E[ ŝf ] can be evaluated in an element wise

manner such that

∂E[ ŝf,w ]

∂ µk
=

M

∑
m1,m2=1

aw,m1a∗w,m2

∂

∂ µk
exp( j(µm1−µm2))

N

∏
p=1

ψXp(bm1,p−bm2,p). (A.20)

The non-zero terms of (A.20) occur when k = m1 or k = m2 but not both. Taking this into account,

one of the sums can be removed yielding

∂E[ ŝf,w ]

∂ µk
= jaw,k exp( jµk)

M

∑
m2=1
m2 6=k

a∗w,m2
exp(− jµm2)

N

∏
p=1

ψXp(bk,p−bm2,p)

− ja∗w,k exp(− jµk)
M

∑
m1=1
m1 6=k

aw,m1 exp( jµm1)
N

∏
p=1

ψXp(bm1,p−bk,p)

(A.21)
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Since this is a difference of conjugates, (A.21) can be written as the imaginary part of either term

such that

∂E[ ŝf,w ]

∂ µk
= 2ℑ

a∗w,k exp(− jµk)
M

∑
m=1
m6=k

aw,m exp( jµm)
N

∏
p=1

ψXp(bk,p−bm,p)

 (A.22)

where ℑ[ · ] extracts the imaginary part. From (A.22) and (A.19) the gradient with respect to the

mean value phase vector µµµ can be evaluated such that

∇µµµJp =



∂Jp
∂ µ1

∂Jp
∂ µ2
...

∂Jp
∂ µN


. (A.23)

A.1.3 The Pulsed StoWGE EFTE Gradient for Selected Distributions

Evaluating the gradient with respect to specific distributions is a matter of evaluating the character-

istic function for the distribution, its derivative with respect to the relevant parameter, and inserting

these results into the generalized gradients which are (A.17) and (A.22) in this case.

A.1.3.1 Discrete uniform distribution with two states (DU2)

Multiplying a discrete, uniform random variable with two state (denoted DU2 here) by bm,n−bk,n

shifts the position of the deltas in its PDF such that for the distribution used here becomes

DU2: pX(x) =
1
2

δ
(
x+π(bm,n−bk,n)

)
+

1
2

δ
(
x−π(bm,n−bk,n)

)
(A.24)

The characteristic function is then

DU2: ψX(bm,n−bk,n) = cos(π(bm,n−bk,n)) (A.25)
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and its derivative with respect to bk,n is

DU2:
∂ψX(bm,n−bk,n)

∂bk,n
= π sin(π(bm,n−bk,n)) (A.26)

Inserting (A.25) and (A.26) into (A.17) realizes

∂E[ ŝf,w ]

∂bk,n
= 2ℜ


M

∑
m=1
m6=k

aw,ma∗w,k exp( j(µm−µk))π sin(π(bm,n−bk,n))
N

∏
p=1
p6=n

cos(π(bm,n−bk,n))


(A.27)

Inserting (A.30) into (A.22) yields

∂E[ ŝf,w ]

∂ µk
= 2ℑ

a∗w,k exp(− jµk)
M

∑
m=1
m6=k

aw,m exp( jµm)
N

∏
p=1

cos(π(bm,n−bk,n))

 (A.28)

A.1.3.2 Continuous uniform distribution (CU)

Multiplying a continuous uniform distribution (denoted here as CU) with a scaler stretches the

distribution. For the U [−π,π] distribution used here, this realizes

CU: pX(x) =
1

2π(bm,n−bk,n)

 1 −π(bm,n−bk,n)≤ x≤ π(bm,n−bk,n)

0 otherwise
(A.29)

The characteristic function is then

CU: ψX(bm,n−bk,n) =
sin(π(bm,n−bk,n))

π(bm,n−bk,n)
(A.30)

The derivative of (A.35) with respect to bk,n is then

CU:
∂ψX(bm,n−bk,n)

∂bk,n
=
−π2(bm,n−bk,n)cos(π(bm,n−bk,n))+π sin(π(bm,n−bk,n))

π2(bm,n−bk,n)2 (A.31)
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Inserting (A.30) and (A.31) into (A.17) realizes

∂E[ ŝf,w ]
∂bk,n

= 2ℜ

{
∑

M
m=1
m6=k

aw,ma∗w,k exp( j(µm−µk))×(
sin(π(bm,n−bk,n))

π(bm,n−bk,n)2 −
cos(π(bm,n−bk,n))

bm,n−bk,n

)
∏

N
p=1
p6=n

sin(π(bm,n−bk,n))

π(bm,n−bk,n)

} (A.32)

where the derivative has been rearranged to make it more concise. Inserting (A.30) into (A.22)

yields

∂E[ ŝf,w ]

∂ µk
= 2ℑ

a∗w,k exp(− jµk)
M

∑
m=1
m6=k

aw,m exp( jµm)
N

∏
p=1

sin(π(bm,n−bk,n))

π(bm,n−bk,n)

 (A.33)

A.1.3.3 Gaussian distribution (G)

The zero mean Gaussian distribution with variance (bm,n−bk,n)
2 is defined

G: pX(x) =
1

(bm,n−bk,n)
√

2π
e
− 1

2

(
x

bm,n−bk,n

)2

(A.34)

The characteristic function is realized by taking the Fourier transform of (A.34) yielding

G: ψX(bm,n−bk,n) = e−
1
2 (bm,n−bk,n)

2
(A.35)

The derivative of A.35 with respect to bk,n is then

G:
∂ψX(bm,n−bk,n)

∂bk,n
= (bm,n−bk,n)e−

1
2 (bm,n−bk,n)

2
(A.36)

Inserting A.35 and A.36 into A.17 yields

∂E[ ŝf,w ]

∂bk,n
= 2ℜ


M

∑
m=1
m6=k

aw,ma∗w,k exp( j(µm−µk))(bm,n−bk,n)
N

∏
p=1

exp
(
−1/2(bm,n−bk,n)

2x2)


(A.37)
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where the p 6= n has been removed from the product operator since it subsumed the exponential

component of the derivative term. The derivative with respect to mean value vector becomes

∂E[ ŝf,w ]

∂ µk
= 2ℑ

a∗w,k exp(− jµk)
M

∑
m=1
m6=k

aw,m exp( jµm)
N

∏
p=1

exp
(
−1/2(bm,n−bk,n)

2x2)
 (A.38)

A.2 CW-StoWGe Derivations

Evaluation of the CW-StoWGe EFTE and its gradient requires the calculation of its second and

fourth order moments. Section A.2.1 derives these moments, Section A.2.2 uses the second mo-

ment to derive the gradient of the EFTE cost function, and Section A.2.3 derives the gradient with

respect to selected random variable distributions.

A.2.1 CW-StoWGe Moments

The discrete, CW-StoWGe waveform generating process is defined as

s[m ] = exp

(
j

(
k

∑
n=−∞

Xnq[m−nTs ]

))
kTs ≤ m < (k+1)Ts (A.39)

where positive integer Ts is the inter-variable spacing such that a new Xn contributes to the phase

content of (A.39) every Ts samples. The phase function q[m ] is the cumulative sum of the fre-

quency shaping filter or frequency pulse defined as

q[m ] =
m

∑
k=0

g[k ]. (A.40)

and the frequency shaping filter is time limited such that

g[m ] =

 g0[m ] m = 0,1, · · · ,LTs−1

0 otherwise
(A.41)
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where g[m ] can take on any real value in the interval 0≤ n < LTs. Accordingly, the positive integer

LTs is the response length of the frequency shaping filter such that each random variable contributes

dynamically (changes from sample to sample) to the frequency content of (A.39) for LTs samples.

The form of (A.39) and the value of k emphasize the causal nature of the CW-StoWGe form.

As the time index m increases, more random variables contribute to the phase, but future random

variables (Xn;n > k) do not contribute to the phase. However, this is already guaranteed by the

form of g[m ] (and subsequently q[m ]) since g[m < 0 ] = 0. With in mind, (A.39) can be rewritten

as

s[m ] = exp

(
j

∞

∑
n=−∞

Xnq[m−nTs ]

)
(A.42)

where k has been dropped and replaced with ∞.

Using this form, the correlation between two samples of (A.42) is by definition

E [s[m1 ]s∗[m2 ] ] = E

[
exp

(
j

(
∞

∑
n1=−∞

Xn1q[m1−n1Ts ]−
∞

∑
n2=−∞

Xn2q[m2−n2Ts ]

))]
(A.43)

which can be simplified such that

E [s[m1 ]s∗[m2 ] ] = E

[
exp

(
j

∞

∑
n=−∞

Xn

(
q[m1−nTs ]−q[m2−nTs ]

))]
. (A.44)

Since q[m < 0 ] = 0 and q[m≥ LTs ] = b where b = ∑
LTs−1
m=0 g[m ] is a constant almost every term in

the summation is zero meaning only a finite number of random variables contribute to the phase

argument of (A.44) for any given m1 and m2.

With this in mind, the last (largest or most positive n) random variable to have a non-zero

contribution is determined by the larger of either m1 or m2. Using m as a stand-in for the larger of

the two reference times, the largest relevant value of n can be found by solving

m−nTs < 0 (A.45)
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for n which results in

n >
m
Ts
. (A.46)

Since n must be and integer and new random variables only contribute every Ts samples, n is

rounded down such that

nmax =

⌊
max{m1,m2}

Ts

⌋
(A.47)

where max{·} returns the maximum over its argument, b·c is the floor function which returns the

greatest integer less than its argument, and nmax represents the largest value of n corresponding to

a random variable with a non-zero contribution to the phase.

Likewise, the first (smallest or most negative n) random variable to have a non-zero contribution

is determined by the smaller of either m1 or m2. Using m as a stand-in for the smaller of the two

reference times, the smallest relevant value of n can be found by solving

m−nTs ≤ LTs−2 (A.48)

for n which results in

n≥ m−LTs +2
Ts

. (A.49)

Since n must be an integer and new random variables only contribute every Ts samples, n needs to

be rounded up such that

nmin =

⌈
min{m1,m2}−LTs +2

Ts

⌉
(A.50)

where min{·} returns the minimum over its argument, d·e is the ceiling function which returns the

smallest integer greater than its, argument and nmin represents the smallest value of n corresponding

with a random variable with a non-zero contribution to the phase.

Taken together, these allow (A.44) to be equivalently rewritten as

E [s[m1 ]s∗[m2 ] ] = E

[
exp

(
j

nmax

∑
n=nmin

Xn

(
q[m1−nTs ]−q[m2−nTs ]

))]
(A.51)
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where the derived bounds replace the summation limits. Recall now from Section 3.1 the definition

of the characteristic function which is repeated here for convenience

ψX(ω) = E[exp( jωX)] =

ˆ
∞

−∞

exp( jωx) fX(x)dx. (A.52)

Additionally, if X1 and X2 are independent random variables then

ψX(ω) = E[exp( jω(X1 +X2))] = E[exp( jωX1)]E[exp( jωX2)]. (A.53)

Conveniently, since the random variables in (A.51) are by definition independent, (A.53) can be

applied to (A.51) to realize

E [s[m1]s∗[m2]] =
nmax

∏
n=nmin

ψXn

(
q[m1−nTs]−q[m2−nTs]

)
(A.54)

where the summation has been replaced with the product of the random variables’ individual char-

acteristic functions. (A.54) adequately represents the correlation between the two samples at times

m1 and m2, but what is needed for evaluating the expected spectrum is a function where it does

not matter what m1 and m2 are in absolute terms. Instead, what matters is the difference between

them. Otherwise, the expected spectrum could change as a function of time. In other words, the

CW-StoWGe model needs to be stationary, but by examining (A.54) this is not the case. Based on

the definitions of q[m ], nmin, and nmax, it is found that in general

E [s[m1]s∗[m2]] 6= E [s[m1 + k]s∗[m2 + k]] (A.55)

where k is an integer. However, if instead of allowing any joint shift in m1 and m2 and instead only

shifts which are a multiple of Ts are allowed then

E [s[m1]s∗[m2]] = E [s[m1 + kTs]s∗[m2 + kTs]] (A.56)
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which is a property referred to as cyclo-stationarity. The same behavior is observed with CPM

[109]. In general, Ts will be much smaller than the DFT size (Ts << W ) and also much smaller

than a receive data record. With this in mind it is reasonable to consider the average correlation

over the interval Ts which realizes

C[m1−m2 ]=
1
Ts

Ts−1

∑
v=0

E [s[m1 + v ]s∗[m2 + v ]] =
1
Ts

Ts−1

∑
v=0

nmax

∏
n=nmin

ψXn

(
q[m1+v−nTs ]−q[m2+v−nTs]

)
(A.57)

which will realize the same result given any joint shift in m1 and m2. Thus, m1 and m2 can be

chosen arbitrarily and (A.57) can be described entirely by the difference between them. To simplify

(A.57), set

m1 = v (A.58)

and

m2 = v− ` (A.59)

such that

C[` ] =
1
Ts

Ts−1

∑
v=0

E [s[v ]s∗[v− ` ] ] =
1
Ts

Ts−1

∑
v=0

nmax

∏
n=nmin

ψXn

(
q[v−nTs ]−q[v− `−nTs ]

)
(A.60)

where

nmax =

⌊
max{v,v− `}

Ts

⌋
(A.61)

and

nmin =

⌈
min{v,v− `}−LTs +2

Ts

⌉
. (A.62)

and ` represents the difference between m1 and m2. C[` ] represents the average correlation given

a spacing of `.

It is more useful to define (A.60) in terms g[m ] rather than q[m ] since g[m ] is the actual
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function modified to minimize the EFTE. Using (A.41), this realizes

C[` ] =
1
Ts

Ts−1

∑
v=0

nmax

∏
n=nmin

ψXn

(
v−nTs

∑
k1=0

g[k1 ]−
v−`−nTs

∑
k2=0

g[k2 ]

)
(A.63)

In (A.63) for ` ≥ 0,the difference of sums results in the canceling of the terms of g[k] from 0 to

v− `−nTs. This simplifies the form of (A.63) such that

C[` ] =
1
Ts

Ts−1

∑
v=0

nmax

∏
n=nmin

ψXn

(
v−nTs

∑
k=v−`−nTs+1

g[k ]

)
`≥ 0 (A.64)

However, since the CW-StoWGe model is cyclo-stationary and real, C[`] =C[−`]. Consequently,

(A.64) can be written in terms of the magnitude of ` which realizes

C[` ] =
1
Ts

Ts−1

∑
v=0

0

∏
n=nmin

ψXn

(
v−nTs

∑
k=v−|`|−nTs+1

g[k ]

)
(A.65)

for all `. Likewise, nmax and nmin are simplified such that

nmax =

⌊
v
Ts

⌋
= 0 (A.66)

and

nmin =

⌈
v−|`|−LTs +2

Ts

⌉
. (A.67)

In (A.65) the argument inside the summation will likely include 0 valued portions of g[k ]. How-

ever, since these terms do not affect the value of (A.65) and since excluding them would signifi-

cantly complicate the form of (A.65), they are left.

To enable the calculation of the expected spectrum and the EFTE cost function, it is convenient

to organize the results of (A.63) into vector and matrix structures. First, a (2W −1)×1 correlation

vector can be constructed such that

c = [ C[−W +1] C[−W +2] · · · C[W −2] C[W −1] ]T . (A.68)
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This vector can then be used to create a Hermitian correlation matrix such that.

C =



C[0 ] C[−1 ] · · · C[−W +1 ]

C[1 ] C[0 ] · · · C[−W +2 ]
...

... . . . ...

C[W −1 ] C[W −2 ] · · · C[0 ]


. (A.69)

Like the second moment, the fourth moment can be used to evaluate useful waveform gener-

ating function metrics such as the RMS autocorrelation and the power spectral deviation. Fortu-

nately, evaluating the fourth moment is similar to evaluating the second moment only with more

terms. Even the cyclo-stationarity property still applies although, this takes it down from four

independent variables down to three rather than from two to one as for the second moment. Ac-

cordingly, the fourth moment is a function of `1, `2, and `3 such that

K[`1, `2, `3] =
1
Ts

Ts−1

∑
v=0

[
nmax

∏
n=nmin

ψXn

(
v−nTs

∑
k1=0

g[k1]−
v−`1−nTs

∑
k2=0

g[k2]−
v−`2−nTs

∑
k3=0

g[k3]+
v−`3−nTs

∑
k4=0

g[k4]

)]
(A.70)

where

nmin =

⌈
min{v,v− `1,v− `2,v− `3}−LTs +2

Ts

⌉
(A.71)

and

nmax =

⌊
max{v,v− `1,v− `2,v− `3}

Ts

⌋
. (A.72)

A.2.2 The CW-StoWGe EFTE Gradient

The calculation of the CW-StoWGe EFTE gradient begins identically to the Pulsed StoWGe gra-

dient except the gradient is taken with respect to the frequency shaping filter instead of the basis

function matrix. The CW-StoWGe EFTE cost function is defined as

JCW =

∣∣∣∣∣∣∣∣E [ ŝf ]−u
∣∣∣∣∣∣∣∣2

2
. (A.73)
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The derivative with respect to the yth element of g[m ] is then

∂JCW

∂gy
=

∂

∂gy

∣∣∣∣∣∣∣∣E [ ŝf ]−u
∣∣∣∣∣∣∣∣2

2
. (A.74)

According to the chain rule, (A.74) becomes

∂JCW

∂gy
= 2

(
∂E [ ŝf ]

∂gy

)T

(E [ ŝf ]−u) (A.75)

where the derivative is applied to E [ ŝf ] on an element wise basis. For the wth sample of the

expected power spectrum, the derivative is

∂E
[

ŝf,w
]

∂gy
= aw

∂C
∂gy

aH
w . (A.76)

where aw is the wth row of the DFT matrix and the partial derivative is evaluated with respect

to each element of C. Since C is Hermitian, there are only W unique derivatives to evaluate

corresponding to [ C0 C1 · · · CW−1 ]
T . The derivative of the correlation function at lag ` is

∂C[` ]

∂gy
=

∂

gy

(
1
Ts

Ts−1

∑
v=0

0

∏
n=nmin

ψXn

(
v−nTs

∑
k=v−|`|−nTs+1

g[k ]

))
(A.77)

The derivative can be moved inside of the summation such that

∂C[` ]

∂gy
=

1
Ts

Ts−1

∑
v=0

∂

gy

0

∏
n=nmin

ψXn

(
v−nTs

∑
k=v−|`|−nTs+1

g[k]

)
. (A.78)

Then by using the product rule, (A.78) becomes

∂C[` ]

∂gy
=

1
Ts

Ts−1

∑
v=0

0

∑
z=nmin

∂ψXz

(
∑

v−zTs
k=v−|`|−zTs+1 g[k]

)
∂gy

0

∏
n=nmin

n6=z

ψXn

(
v−nTs

∑
k=v−|`|−nTs+1

g[k]

) . (A.79)
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In general, many of the terms inside of the inner summation will actually be zero, since in many

cases gy will not appear within the derivative making the partial derivative zero valued. Unfortu-

nately, accounting for these cases and eliminating them from (A.79) is tedious as it depends on

Ts, L, ` such that the indexing would become exceptionally onerous and would not really add any

clarity to equation. If anything, doing so would make (A.79) much more complicated and less

intuitive. These partial derivatives can be collected into the gradient structure ∇gJCW such that

∇gJCW =



∂JCW
∂g1

∂JCW
∂g2
...

∂JCW
∂gN


. (A.80)

A.2.3 The CW-StoWGe EFTE Gradient for Selected Distributions

Unlike in the pulsed StoWGe case, the derivative term in A.79 does not necessarily contain the

variable gy and so could actually be zero valued. Fortunately, this ambiguity can be addressed

using substitution and the chain rule. To do so, define a function

f (z, `) =
v−hTs

∑
k=v−|`|−zTs+1

g[k ] (A.81)

Then the derivative with respect to gy is

∂ f (z, `)
∂gy

=

 1 (v−|`|− zTs +1)≤ y ≤ (v− zTs)

0 otherwise
(A.82)

Putting (A.81) into (A.79) realizes

∂C[` ]

∂gy
=

1
Ts

Ts−1

∑
v=0

0

∑
z=nmin

∂ψXz ( f (z, `))
∂gy

0

∏
n=nmin

n6=z

ψXn ( f (n, `))

 , (A.83)
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which by the chain rule becomes

∂C[` ]

∂gy
=

1
Ts

Ts−1

∑
v=0

0

∑
z=nmin

∂ f (z, `)
∂gy

∂ψXz ( f (z, `))
∂ f (z, `)

0

∏
n=nmin

n6=z

ψXn ( f (n, `))

 . (A.84)

Since the partial with respect gy addresses the zero or non-zero ambiguity, the gradients for each

distribution can be evaluated in terms of the place holder function (A.81).

A.2.3.1 Discrete uniform distribution with two states (DU2)

Multiplying a discrete, uniform random variable with two states (denoted DU2 here) by f (z, `)

shifts the position of the deltas in its PDF such that for the distribution used here

DU2: pX(x) =
1
2

δ (x+π f (z, `))+
1
2

δ (x−π f (z, `)) (A.85)

The characteristic function is then

DU2: ψX( f (z, `)) = cos(π f (z, `)) (A.86)

and its derivative with respect to f (z, `) is

DU2:
∂ψX( f (z, `))

∂ f (z, `)
=−π sin(π( f (z, `))) (A.87)

Inserting (A.86) and (A.87) into (A.84) realizes

∂C[` ]

∂gy
=− π

Ts

Ts−1

∑
v=0

0

∑
z=nmin

∂ f (z, `)
∂gy

sin(π( f (z, `)))
0

∏
n=nmin

n6=z

cos(π f (z, `))

 . (A.88)
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A.2.3.2 Continuous uniform distribution (CU)

Multiplying a continuous uniform distribution (denoted here as CU) with a scaler stretches the

distribution. For the U [−π,π] distribution used here, this realizes

CU: pX(x) =
1

2π( f (z, `))

 1 −π( f (z, `))≤ x≤ π( f (z, `))

0 otherwise
(A.89)

The characteristic function is then

CU: ψX( f (z, `)) =
sin(π( f (z, `)))

π( f (z, `))
(A.90)

The derivative of (A.90) with respect to f (z, `) is then

CU:
∂ψX( f (z, `))

∂ f (z, `)
=

π2( f (z, `))cos(π( f (z, `)))+π sin(π( f (z, `)))
π2 f 2(z, `)

(A.91)

Inserting (A.90) and (A.91) into (A.84) realizes

∂C[` ]

∂gy
=

1
Ts

Ts−1

∑
v=0

0

∑
z=nmin

∂ f (z, `)
∂gy

(
sin(π f (z, `))

π f 2(z, `)
+

cos(π f (z, `))
f (z, `)

) 0

∏
n=nmin

n6=z

ψXn

sin(π( f (z, `)))
π( f (z, `))

 , (A.92)

where the derivative has been rearranged to make it more concise.

A.2.3.3 Gaussian distribution (G)

The zero mean Gaussian distribution with variance f 2(z, `) is defined

G: pX(x) =
1

f (z, `)
√

2π
e−

1
2

(
x

f (z,`)

)2

(A.93)
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The characteristic function is realized by taking the Fourier transform of (A.34) yielding

G: ψX( f (z, `)) = e−
1
2 f 2(z,`) (A.94)

The derivative of A.35 with respect to f (z, `) is then

G:
∂ψX( f (z, `))

∂ f (z, `)
=− f (z, `)e−

1
2 f 2(z,`) (A.95)

Inserting A.94 and A.95 into (A.84) yields

∂C[` ]

∂gy
=− π

Ts

Ts−1

∑
v=0

0

∑
z=nmin

∂ f (z, `)
∂gy

f (z, `)e−
1
2 f 2(z,`)

0

∏
n=nmin

n6=z

e−
1
2 f 2(z,`)

 . (A.96)

where the p 6= n has been removed from the product operator since it subsumed the exponential

component of the derivative term.

242



Appendix B

Tabulated Optimization Results

B.1 Pulsed StoWGe

Gaussian (K = 2)
PX(x) : DU2 CU Gaussian

B0 : BPC BId BPC BId BPC BId

#
of

R
an

do
m

V
ar

ia
bl

es
(N

) 2 -154.1 -154.1 -153.9 -57.4 -73.9 -59.0

4 -154.1 -154.1 -152.4 -129.4 -74.2 -74.2

8 -154.1 -149.1 -129.5 -143.4 -74.2 -74.2

16 -154.1 -153.6 -121.0 -153.8 -74.2 -74.2

32 -154.1 -154.0 -114.3 -154.0 -74.2 -74.2

64 -142.8 -117.0 -107.6 -153.3 -70.5 -62.6

128 -154.1 -116.7 -100.8 -153.8 -74.1 -74.0

256 -154.1 -117.1 -97.7 -153.3 -74.1 -73.5

Table B.1: Pulsed StoWGe EFTE optimized cost function values for various combinations of
parameters and initializations for a desired Gaussian spectrum which is oversampled by a factor of
2 with respect to its 3 dB bandwidth (K = 2)

B.2 CW-StoWGe
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Gaussian (K = 4)
PX(x) : DU2 CU Gaussian

B0 : BPC BId BPC BId BPC BId
#

of
R

an
do

m
V

ar
ia

bl
es

(N
) 2 -135.6 -179.2 -64.5 -41.4 -56.0 -48.6

4 -173.9 -169.7 -102.8 -55.7 -71.2 -60.2

8 -158.6 -156.0 -115.5 -56.8 -76.4 -68.5

16 -163.1 -139.5 -112.9 -60.0 -88.2 -65.7

32 -138.0 -132.7 -115.1 -59.2 -88.1 -60.1

64 -170.6 -130.0 -114.6 -57.2 -88.2 -54.3

128 -200.0 -129.8 -113.2 -84.4 -84.6 -50.9

256 -188.2 -129.4 -110.6 -90.9 -88.5 -88.0

Table B.2: Pulsed StoWGe EFTE optimized cost function values for various combinations of
parameters and initializations for a desired Gaussian spectrum which is oversampled by a factor of
4 with respect to its 3 dB bandwidth (K = 4)

Super-Gaussian (n = 4,K = 2)
PX(x) : DU2 CU Gaussian

B0 : BPC BId BPC BId BPC BId

#
of

R
an

do
m

V
ar

ia
bl

es
(N

) 2 -200.1 -148.0 -61.5 -42.9 -45.7 -43.4

4 -200.0 -182.1 -84.2 -46.2 -45.9 -45.9

8 -151.9 -150.0 -90.7 -50.9 -45.9 -45.9

16 -155.9 -137.0 -93.2 -52.1 -45.9 -45.7

32 -157.3 -132.4 -89.6 -58.3 -45.4 -45.3

64 -153.2 -129.9 -87.2 -57.0 -46.2 -44.1

128 -154.7 -129.8 -84.9 -56.2 -46.2 -45.6

256 -142.9 -129.0 -59.3 -59.5 -46.2 -45.5

Table B.3: Pulsed StoWGe EFTE optimized cost function values for various combinations of
parameters and initializations for a desired super-Gaussian spectrum with a roll-off factor of 4
(n = 4) and is oversampled by a factor of 2 with respect to its 3 dB bandwidth (K = 2)
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Super-Gaussian (n = 4,K = 4)
PX(x) : DU2 CU Gaussian

B0 : BPC BId BPC BId BPC BId
#

of
R

an
do

m
V

ar
ia

bl
es

(N
) 2 -86.1 -85.9 -58.2 -39.8 -41.5 -39.8

4 -88.1 -88.4 -73.0 -50.1 -41.8 -41.7

8 -88.4 -88.4 -78.3 -52.1 -41.8 -41.8

16 -88.1 -88.4 -77.6 -50.7 -42.0 -41.7

32 -88.1 -88.3 -73.1 -47.1 -42.0 -41.4

64 -88.8 -88.1 -76.2 -28.2 -42.0 -40.8

128 -88.8 -79.0 -54.5 -49.3 -42.0 -40.8

256 -76.3 -88.6 -61.4 -59.1 -42.0 -42.0

Table B.4: Pulsed StoWGe EFTE optimized cost function values for various combinations of
parameters and initializations for a desired super-Gaussian spectrum with a roll-off factor of 4
(n = 4) and is oversampled by a factor of 4 with respect to its 3 dB bandwidth (K = 4)

Rectangular (K = 2)
PX(x) : DU2 CU Gaussian

B0 : BPC BId BPC BId BPC BId

#
of

R
an

do
m

V
ar

ia
bl

es
(N

) 2 -56.9 -56.8 -42.4 -38.5 -37.2 -36.8

4 -57.0 -57.0 -43.1 -35.3 -37.2 -37.1

8 -57.1 -57.0 -43.4 -33.0 -37.3 -37.1

16 -57.0 -57.1 -43.3 -34.4 -37.2 -37.3

32 -56.9 -56.7 -42.9 -37.5 -37.1 -37.1

64 -57.0 -57.0 -42.8 -42.4 -36.9 -36.9

128 -57.1 -56.7 -40.5 -42.5 -36.8 -36.8

256 -57.0 -54.4 -39.5 -41.7 -36.8 -36.7

Table B.5: Pulsed StoWGe EFTE optimized cost function values for various combinations of
parameters and initializations for a desired rectangular spectrum which is oversampled by a factor
of 2 with respect to its absolute bandwidth (K = 2)

245



Rectangular (K = 4)
PX(x) : DU2 CU Gaussian

B0 : BPCFM BId BPCFM BId BPCFM BId

#
of

R
an

do
m

V
ar

ia
bl

es
(N

) 2 -51.0 -51.0 -38.8 -33.3 -33.9 -33.6

4 -51.1 -51.1 -40.0 -31.5 -33.9 -33.9

8 -51.0 -51.1 -40.0 -31.6 -34.0 -33.9

16 -51.0 -51.0 -39.8 -33.3 -34.0 -33.9

32 -50.9 -51.1 -39.6 -38.9 -33.8 -33.7

64 -51.1 -50.4 -38.1 -39.4 -33.7 -33.6

128 -51.0 -49.2 -36.5 -38.7 -33.8 -33.5

256 -48.1 -49.7 -37.2 -39.3 -33.7 -33.6

Table B.6: Pulsed StoWGe EFTE optimized cost function values for various combinations of
parameters and initializations for a desired rectangular spectrum which is oversampled by a factor
of 4 with respect to its absolute bandwidth (K = 4)
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Gaussian (K = 2)
p X

(x
) g0: RECT EXP

L Ts: 2 4 6 8 2 4 6 8

D
U

2

1 -45.3 -42.5 -48.6 -47.9 -45.3 -42.5 -48.6 -47.9

2 -48.9 -45.1 -95.2 -71.4 -48.9 -45.1 -95.2 -71.4

3 -49.9 -70.5 -101.3 -80.7 -78.5 -95.0 -95.8 -97.5

4 -55.2 -93.3 -99.0 -103.3 -59.3 -97.5 -100.3 -101.3

5 -62.2 -91.2 -110.1 -107.9 -67.6 -94.3 -99.3 -106.1

6 -88.3 -97.4 -103.2 -107.7 -95.5 -99.0 -104.4 -108.0

7 -110.2 -99.4 -107.1 -107.8 -99.6 -99.7 -106.3 -108.8

8 -93.8 -101.2 -107.0 -109.1 -96.0 -115.4 -106.5 -109.7

C
U

1 -53.5 -54.0 -62.3 -61.6 -53.5 -54.0 -62.3 -61.6

2 -68.1 -84.7 -88.3 -92.6 -68.1 -75.3 -90.1 -84.1

3 -78.6 -86.8 -89.3 -93.1 -78.5 -86.8 -85.7 -87.4

4 -78.8 -86.3 -89.5 -96.2 -78.7 -85.3 -85.8 -87.5

5 -79.1 -86.5 -85.9 -96.4 -78.8 -82.6 -85.8 -87.5

6 -79.3 -86.5 -85.9 -96.5 -79.0 -86.5 -85.9 -87.5

7 -79.3 -86.5 -85.9 -88.1 -79.0 -86.5 -85.9 -87.5

8 -79.3 -86.5 -85.9 -88.1 -79.0 -86.5 -85.9 -87.5

G

1 -54.9 -60.6 -63.5 -68.6 -54.9 -60.6 -63.5 -68.6

2 -63.8 -66.7 -67.4 -67.7 -63.8 -66.7 -67.4 -78.5

3 -65.8 -67.4 -78.5 -78.5 -65.8 -67.4 -78.5 -78.5

4 -78.5 -78.5 -78.5 -78.5 -66.7 -78.5 -78.5 -78.5

5 -67.1 -78.5 -78.5 -78.5 -67.1 -78.5 -78.5 -78.5

6 -78.5 -78.5 -78.5 -78.5 -67.4 -78.5 -78.5 -78.5

7 -78.5 -78.5 -78.5 -78.5 -78.5 -78.5 -78.5 -78.5

8 -78.5 -78.5 -78.5 -78.5 -78.5 -78.5 -78.5 -78.5

Table B.7: CW-StoWGe EFTE optimized cost function values for various combinations of param-
eters and initializations for a desired Gaussian spectrum which is oversampled by a factor of 2 with
respect to its 3 dB bandwidth (K = 2)
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Gaussian (K = 4)
p X

(x
) g0: RECT EXP

L Ts: 2 4 6 8 2 4 6 8

D
U

2

1 -57.1 -49.6 -45.1 -52.4 -57.1 -49.6 -54.6 -52.4

2 -76.5 -51.1 -61.1 -73.6 -76.5 -55.3 -61.1 -73.6

3 -78.7 -59.5 -75.5 -119.3 -78.7 -84.7 -67.3 -70.9

4 -80.0 -118.9 -130.3 -127.8 -80.0 -132.1 -128.6 -129.2

5 -80.3 -130.7 -126.9 -128.7 -80.3 -76.0 -121.9 -130.7

6 -82.9 -127.5 -128.8 -129.5 -86.2 -124.3 -123.1 -130.3

7 -82.9 -127.0 -128.0 -127.2 -87.0 -127.3 -128.7 -132.1

8 -128.4 -123.7 -125.2 -127.1 -130.1 -116.1 -126.9 -129.3

C
U

1 -54.1 -53.2 -53.6 -54.1 -54.1 -53.2 -53.6 -54.1

2 -85.3 -69.7 -69.3 -76.0 -85.3 -69.7 -69.2 -70.7

3 -87.0 -88.0 -82.4 -107.3 -87.0 -87.3 -82.2 -97.8

4 -87.7 -95.8 -95.5 -124.7 -87.0 -84.7 -108.4 -89.2

5 -87.1 -96.6 -96.9 -120.6 -87.1 -91.0 -105.2 -116.4

6 -87.8 -97.3 -117.0 -121.2 -87.2 -98.8 -112.4 -119.5

7 -87.8 -98.2 -120.7 -120.5 -94.0 -99.4 -121.9 -119.6

8 -87.8 -99.3 -123.2 -121.3 -97.4 -102.5 -116.6 -120.4

G

1 -50.5 -56.7 -60.3 -62.8 -50.5 -56.7 -60.3 -62.8

2 -58.9 -68.8 -75.0 -79.5 -58.9 -68.8 -75.0 -79.5

3 -64.6 -75.0 -81.4 -85.9 -64.6 -75.0 -81.4 -85.9

4 -68.9 -79.5 -85.9 -90.3 -68.9 -79.5 -85.9 -90.3

5 -72.3 -83.0 -89.4 -93.7 -72.3 -83.0 -89.4 -93.7

6 -75.1 -85.9 -92.1 -96.4 -75.1 -85.9 -92.1 -96.4

7 -77.5 -88.3 -94.5 -98.6 -77.5 -88.3 -94.5 -98.6

8 -79.5 -90.3 -96.4 -100.4 -79.5 -90.3 -96.4 -100.4

Table B.8: CW-StoWGe EFTE optimized cost function values for various combinations of param-
eters and initializations for a desired Gaussian spectrum which is oversampled by a factor of 4 with
respect to its 3 dB bandwidth (K = 4)
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Super-Gaussian (K = 2)
p X

(x
) g0: RECT EXP

L Ts: 2 4 6 8 2 4 6 8

D
U

2

1 -53.1 -41.3 -48.5 -46.1 -53.1 -41.3 -48.5 -46.1

2 -54.7 -60.8 -55.0 -57.6 -54.7 -60.8 -55.0 -57.6

3 -55.2 -76.5 -95.9 -96.6 -55.2 -47.6 -101.0 -77.7

4 -57.3 -95.9 -113.5 -126.5 -57.3 -81.6 -99.3 -126.8

5 -57.6 -97.3 -122.3 -127.3 -77.7 -94.9 -119.3 -91.0

6 -59.4 -113.7 -124.6 -125.4 -78.0 -112.9 -115.0 -124.6

7 -77.6 -109.5 -109.0 -125.9 -78.2 -121.8 -123.4 -125.5

8 -74.7 -122.0 -116.3 -124.3 -66.1 -110.9 -120.5 -125.4

C
U

1 -54.1 -59.8 -60.7 -62.5 -54.1 -59.8 -60.7 -62.5

2 -59.9 -76.9 -77.3 -80.5 -59.9 -74.6 -72.3 -75.9

3 -64.5 -79.2 -83.7 -87.9 -61.0 -76.8 -79.1 -86.2

4 -64.5 -80.7 -86.3 -93.7 -61.0 -80.4 -84.6 -93.2

5 -64.5 -82.6 -88.5 -94.8 -61.0 -81.8 -85.6 -94.2

6 -64.5 -83.2 -88.8 -94.3 -61.0 -82.4 -85.8 -94.3

7 -64.5 -83.5 -89.0 -95.0 -61.0 -82.6 -85.9 -94.4

8 -64.5 -83.6 -89.0 -95.0 -61.0 -82.7 -85.9 -94.4

G

1 -46.8 -48.8 -49.5 -49.8 -46.8 -48.8 -49.5 -49.8

2 -49.7 -50.5 -50.7 -50.7 -49.7 -50.5 -50.7 -50.7

3 -50.3 -50.7 -50.8 -50.8 -50.3 -50.7 -50.8 -50.8

4 -50.5 -50.7 -50.8 -51.6 -50.5 -50.7 -50.8 -50.8

5 -50.6 -50.8 -51.5 -51.6 -50.6 -50.8 -50.8 -51.6

6 -50.7 -50.8 -51.5 -51.6 -50.7 -50.8 -51.5 -51.6

7 -50.7 -51.5 -51.5 -51.6 -50.7 -51.5 -51.5 -51.6

8 -50.7 -50.8 -51.5 -51.6 -50.7 -51.5 -51.5 -51.6

Table B.9: CW-StoWGe EFTE optimized cost function values for various combinations of param-
eters and initializations for a desired super-Gaussian spectrum with a roll-off factor of 4 (n = 4)
and is oversampled by a factor of 2 with respect to its 3 dB bandwidth (K = 2)

249



Super-Gaussian (K = 4)
p X

(x
) g0: RECT EXP

L Ts: 2 4 6 8 2 4 6 8

D
U

2

1 -44.1 -58.6 -44.4 -48.8 -44.1 -58.6 -44.4 -48.8

2 -49.9 -60.1 -49.6 -56.0 -49.9 -60.1 -49.6 -61.4

3 -50.1 -60.6 -54.0 -63.8 -50.1 -60.6 -72.4 -63.8

4 -50.8 -60.8 -72.6 -75.1 -50.8 -60.3 -72.6 -75.1

5 -50.8 -65.6 -81.1 -89.1 -50.8 -61.0 -81.1 -89.1

6 -50.8 -61.3 -86.4 -88.7 -50.8 -64.1 -86.4 -88.7

7 -50.8 -70.3 -86.4 -94.2 -50.8 -72.3 -86.4 -93.8

8 -50.8 -71.0 -91.8 -94.5 -50.8 -72.3 -91.8 -105.3

C
U

1 -43.6 -55.8 -57.1 -58.6 -43.6 -55.8 -57.1 -58.6

2 -47.7 -59.5 -69.9 -72.7 -47.7 -59.0 -69.9 -72.7

3 -48.4 -59.8 -71.4 -76.4 -48.4 -59.8 -71.4 -74.6

4 -48.5 -59.8 -71.4 -77.9 -48.5 -59.8 -71.4 -77.9

5 -48.5 -59.8 -71.4 -79.5 -48.5 -59.8 -71.4 -79.5

6 -48.5 -59.8 -71.4 -80.0 -48.5 -59.8 -71.4 -80.0

7 -48.5 -59.8 -71.4 -80.3 -48.5 -59.8 -71.4 -80.3

8 -48.5 -59.8 -71.4 -80.4 -48.5 -59.8 -71.4 -80.4

G

1 -42.8 -45.5 -46.0 -46.6 -33.3 -29.6 -31.2 -31.8

2 -45.5 -47.1 -47.5 -47.7 -33.3 -34.4 -36.5 -35.3

3 -46.6 -47.5 -47.7 -47.8 -34.6 -40.9 -38.3 -36.2

4 -47.1 -47.7 -47.8 -47.9 -40.4 -43.2 -39.2 -36.2

5 -47.3 -47.8 -47.9 -47.9 -42.5 -44.5 -39.2 -36.2

6 -47.5 -47.8 -47.9 -47.9 -46.4 -44.8 -39.2 -36.2

7 -47.6 -47.9 -47.9 -47.9 -46.0 -44.8 -39.2 -36.2

8 -47.7 -47.9 -47.9 -47.9 -45.1 -44.8 -39.2 -36.2

Table B.10: CW-StoWGe EFTE optimized cost function values for various combinations of pa-
rameters and initializations for a desired super-Gaussian spectrum with a roll-off factor of 4 (n= 4)
and is oversampled by a factor of 4 with respect to its 3 dB bandwidth (K = 4)
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Rectangular (K = 2)
p X

(x
) g0: RECT EXP

L Ts: 2 4 6 8 2 4 6 8

D
U

2

1 -47.5 -38.3 -39.7 -44.4 -47.5 -38.3 -44.6 -44.4

2 -50.7 -45.9 -50.9 -51.6 -50.7 -45.9 -50.9 -51.6

3 -51.7 -52.3 -49.7 -53.2 -51.7 -47.3 -52.3 -53.7

4 -52.3 -52.4 -50.7 -53.2 -52.3 -53.2 -52.5 -50.6

5 -52.4 -52.6 -50.7 -55.9 -52.4 -48.0 -51.2 -54.1

6 -52.7 -53.6 -53.4 -56.0 -52.7 -48.0 -52.4 -53.5

7 -52.7 -53.6 -53.7 -54.7 -52.7 -51.8 -53.6 -54.3

8 -52.9 -53.6 -54.0 -55.4 -52.9 -55.9 -49.8 -51.3

C
U

1 -43.9 -45.7 -47.0 -47.9 -43.9 -45.7 -47.0 -47.9

2 -44.4 -46.4 -47.5 -48.4 -44.4 -46.4 -47.5 -48.4

3 -44.6 -46.4 -47.6 -48.4 -44.6 -46.4 -47.6 -48.4

4 -44.7 -46.4 -47.6 -48.4 -44.6 -46.4 -47.6 -48.4

5 -44.7 -46.4 -47.6 -48.4 -44.6 -46.4 -47.6 -48.4

6 -44.7 -46.4 -47.6 -48.4 -44.6 -46.4 -47.6 -48.4

7 -44.7 -46.4 -47.6 -48.4 -44.6 -46.4 -47.6 -48.4

8 -44.7 -46.4 -47.6 -48.4 -44.6 -46.4 -47.6 -48.4

G

1 -41.3 -42.0 -42.2 -42.3 -41.3 -42.0 -42.2 -42.3

2 -42.3 -42.5 -42.6 -42.6 -42.3 -42.5 -42.6 -42.6

3 -42.5 -42.6 -42.6 -42.6 -42.5 -42.6 -42.6 -42.6

4 -42.5 -42.6 -42.6 -42.6 -42.5 -42.6 -42.6 -42.6

5 -42.5 -42.6 -42.6 -42.6 -42.5 -42.6 -42.6 -42.6

6 -42.6 -42.6 -42.6 -42.6 -42.6 -42.6 -42.6 -42.6

7 -42.6 -42.6 -42.6 -42.6 -42.6 -42.6 -42.6 -42.6

8 -42.6 -42.6 -42.6 -42.6 -42.6 -42.6 -42.6 -42.6

Table B.11: CW-StoWGe EFTE optimized cost function values for various combinations of pa-
rameters and initializations for a desired rectangular spectrum which is oversampled by a factor of
2 with respect to its 3 dB bandwidth (K = 2)
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Rectangular (K = 4)
p X

(x
) g0: RECT EXP

L Ts: 2 4 6 8 2 4 6 8

D
U

2

1 -38.3 -46.2 -40.5 -41.2 -38.3 -46.2 -40.5 -41.2

2 -40.0 -48.8 -41.6 -39.7 -40.0 -48.8 -41.6 -39.7

3 -40.1 -49.1 -44.9 -49.0 -40.1 -49.1 -44.9 -44.3

4 -40.3 -49.7 -44.2 -49.2 -40.3 -49.7 -44.2 -50.2

5 -40.3 -49.7 -46.6 -50.2 -40.3 -49.7 -46.6 -49.2

6 -40.3 -50.0 -45.4 -50.3 -40.3 -50.0 -45.4 -45.4

7 -40.3 -50.0 -45.4 -50.3 -40.3 -50.0 -45.4 -49.4

8 -40.3 -50.1 -45.6 -50.3 -40.3 -50.1 -45.6 -52.8

C
U

1 -38.1 -41.3 -41.8 -43.0 -38.1 -41.3 -41.8 -43.0

2 -39.5 -41.6 -42.5 -43.3 -39.5 -41.5 -42.5 -43.3

3 -39.7 -41.6 -42.7 -43.3 -39.7 -41.6 -42.6 -43.3

4 -39.7 -41.7 -42.7 -43.3 -39.7 -41.7 -42.6 -43.3

5 -39.7 -41.7 -42.7 -43.3 -39.7 -41.7 -42.6 -43.3

6 -39.7 -41.7 -42.7 -43.3 -39.7 -41.7 -42.6 -43.3

7 -39.7 -41.7 -42.7 -43.3 -39.7 -41.7 -42.6 -43.3

8 -39.7 -41.7 -42.7 -43.3 -39.7 -41.7 -42.6 -43.3

G

1 -37.8 -38.9 -39.0 -39.2 -37.8 -38.9 -39.0 -39.2

2 -38.8 -39.4 -39.5 -39.5 -38.8 -39.4 -39.5 -39.5

3 -39.2 -39.5 -39.5 -39.6 -39.2 -39.5 -39.5 -39.6

4 -39.4 -39.5 -39.6 -39.6 -39.4 -39.5 -39.6 -39.6

5 -39.4 -39.6 -39.6 -39.6 -39.4 -39.6 -39.6 -39.6

6 -39.5 -39.6 -39.6 -39.6 -39.5 -39.6 -39.6 -39.6

7 -39.5 -39.6 -39.6 -39.6 -39.5 -39.6 -39.6 -39.6

8 -39.5 -39.6 -39.6 -39.6 -39.5 -39.6 -39.6 -39.6

Table B.12: CW-StoWGe EFTE optimized cost function values for various combinations of pa-
rameters and initializations for a desired rectangular spectrum which is oversampled by a factor of
2 with respect to its 3 dB bandwidth (K = 4)
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