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Abstract 

Spectrum sensing and transmit waveform frequency notching is a form of cognitive radar 

that seeks to reduce mutual interference with other spectrum users in a cohabitated band. With the 

reality of increasing radio frequency (RF) spectral congestion, radar systems capable of dynamic 

spectrum sharing are needed. The cognitive sense-and-notch (SAN) emission strategy is 

experimentally demonstrated as an effective way to reduce the interference that the spectrum 

sharing radar causes to other in-band users. The physical radar emission is based on a random FM 

waveform structure possessing attributes that are inherently robust to range-Doppler sidelobes. To 

contend with dynamic interference the transmit notch may be required to move during the coherent 

processing interval (CPI), which introduces a nonstationarity effect that results in increased 

residual clutter after cancellation. The nonstationarity effect, which otherwise distorts the range-

Doppler estimation, is characterized and compensated for using computationally efficient 

processing methods. The steps from initial analysis of cognitive system performance to 

implementation of sense-and-notch radar spectrum sharing in real-time are discussed. 
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Introduction 

 The pace of increasing spectral congestion creates a major challenge for radar systems, with traditional 

spectrum allocations inadequately supporting the competing demands for greater bandwidth [1-5]. The position of 

the US DoD Chief Information Officer is “spectrum sharing is the way ahead to maintain economic dominance” [6]. 

Consequently, radar spectrum sharing techniques are necessary to preserve acceptable performance amidst other 

active RF users. Of course, depending on the particular manner of spectrum sharing, potential pitfalls may exist [7]. 

Growing RF congestion represents a transition from the era of noise-limited legacy radar to interference-limited 

operation. When in-band RF interference (RFI) is dynamically changing during the radar’s coherent processing 

interval (CPI), one way this condition can be addressed is by enabling the radar to become similarly dynamic. 

 Cognitive radar, also known as fully adaptive radar, attempts to improve performance and efficiency by 

“learning” from a priori observations to supplement decision making from low-level (e.g., waveform 

selection/design) up to high-level tasks (e.g., mission-level command and control) [4]. The most common forms of 

cognitive radar in the literature include optimization/selection of transmit parameters, waveforms, or filters [8-11]). 

Due to increasing spectral congestion and competition [1], an important topic of research is the use of cognition in 

a spectrum sharing context [12] to modify the radar transmission according to sensed RF interference (RFI) in the 

band of interest. Essentially, these efforts are working to develop “good spectral neighbor” capabilities for the radar 

by mitigating the mutual interference to/from other spectrum users. The particular focus here is on the automated 

generation of physically realizable waveforms that possess spectral notches to avoid in-band interference. Such a 

condition is expected to become more problematic with the continued proliferation of 4G and 5G communication 

systems into radar bands. 

 The notion of spectrally notching radar waveforms as a means of radio frequency interference (RFI) 

avoidance has been considered by many, with a recent survey from an optimization theory perspective appearing in 

[13]. While the majority of such approaches involve spectral notching of a single waveform, or by extension the same 

waveform over the CPI, it was shown in [14] that doing so incurs a rather significant penalty in terms of increased 

radar range sidelobes. However, it was recently experimentally demonstrated that the spectral notching of random 
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FM waveforms partially avoids this limitation because the incoherent combining of range sidelobes across multiple 

unique pulsed waveforms in the coherent processing interval serves to reduce the resulting sidelobe level.  

Here, the random FM waveform spectral notching capability is incorporated into a cognitive radar framework that 

performs spectrum sensing on a per-pulse basis, estimates the spectral properties of any in-band interference, and 

then adjusts the notch locations and widths in an automated manner. For interference taking the form of frequency 

hopping OFDM communications, this overall cognitive strategy employs RFI sensing updates to inform the 

subsequent notching of random FM waveforms, with the ultimate goal of achieving real-time RFI avoidance.  

 The remainder of the document is parsed into two chapters. The former section discusses radar 

fundamentals that are key to understanding the behavior of spectrally notched waveform and filter design in the 

context of pulse-Doppler radar processing. Topics include hardware considerations for waveform design and 

experimental evaluation, the basics of radar electromagnetic modeling, waveform design theory in the context of 

correlation-based range processing, and slow time-Doppler processing considerations. From these fundamentals, 

important insights about the anticipated behaviors of the sense-and-notch cognitive radar performance are drawn. 

 The latter chapter regards multiple aspects of the cognitive sense-and-notch frameworks, wherein random 

FM waveforms are spectrally notched in reaction to the observed interference. In Section 2.1, relevant waveform 

design methods with incorporated spectral nulls are described. In Section 2.2, the spectrum sharing approach is 

evaluated via emulation in a semi-controlled environment for experimental evaluation. Section 2.3 evaluates an ad 

hoc post-processing technique to compensate for the clutter modulation distortion effect that occurs when dynamic 

spectral notches are present during the radar coherent processing interval. The fundamental dynamic range 

limitations while performing range correlation processing or joint range correlation processing and slow time-

Doppler processing with spectrally notched waveform/filter designs are examined in Section 2.4. Finally, both 

Sections 2.5 and 2.6 examine design tradeoffs and considerations for real-time implementation of cognitive sense-

and-notch radar for moving target indication (MTI) during different stages of development. The topics covered here 

extend from initial experimentation and fundamental theory, through to real-time implementation and 

development of cognitive sense-and-notch radar performance.
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1. CHAPTER I: FUNDAMENTALS 

 Radar technology is used for weather forecasting, autonomous vehicle operation, space observation, 

defense surveillance, medical imaging, and more. Radar systems consist of transmitters that emit electromagnetic 

waves and receivers that capture the waves scattered from a given physical environment. Attributes of scatterers 

are then determined based on the received wave characteristics. Four fundamental perspectives are considered 

here, including the radar 1) objective, 2) transmission mode, 3) orientation, and 4) dimensions. The fundamental 

background provides necessary radar systems and digital signal processing groundwork. Upon these fundamentals, 

aspects of radar spectrum sharing are explored. 

1.1.  RADAR OBJECTIVES 

 The objective defines the intended output measurements of the radar. Standard radar objectives include 

target detection, indication (or localization), tracking, classification (or identification), and imaging. Subtle 

differences exist between each objective: 

A) Detection determines whether a target is present but does not necessarily resolve target attributes of range, 

velocity, and spatial angle. 

B) Indication (or localization) determines whether a target is present, and additionally resolves target attributes of 

range, velocity, and spatial angle. 

C) Tracking determines whether a target is present, resolves target attributes of range, velocity, and spatial angle, 

and predicts the target’s future location based on prior observations. Parameters of the antennae or platform 

motion adjust to maintain target observation. 

D) Classification (or identification) determines the type of target present (e.g. drone versus bird) based on target-

specific scattering signatures. 

E) Imaging forms a picture of the target for visual interpretation by a human or machine. 
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Application-specific objectives include nonlinear target detection [15], moving target indication (MTI) [16], 

monopulse tracking [17, 18], micro-Doppler (MD) motion classification [19], synthetic aperture radar (SAR) imaging 

[20, 21] or single-pulse imaging (SPI) [22]. Applications are constrained by implicit platform/target motion, scene-

specific clutter/interference, and the degree of resolution required in various dimensions. Through-the-wall (TTW)  

radar [23, 24], sea-observation radar [25, 26], over-the-horizon (OTH) radar [27], and foliage/ground penetration 

(FOPEN/GPR) radar [28] contend with scene-specific clutter. 

1.2.  RADAR TRANSMISSION MODES 

 The transmission mode describes how the environment is illuminated electromagnetically for observation 

of subsequent scattering. Active radar systems may transmit continuous wave (CW) or pulsed wave emissions in a 

desired direction. Reflections from pulsed emissions can be processed on a single-pulse (e.g. SPI) or multi-pulse  

(e.g. SAR) basis, depending on the radar objective. The user may wish to remain silent and instead operate in a 

passive radar mode, utilizing emissions from other radio frequency (RF) users in the environment that then scatter 

from targets of interest towards the radar receiver. 

 

Figure 1: Radar transmission modes: The leftmost ship transmits active, multi-pulse emissions (yellow) towards other 

ships, which reflect and are captured for localization. The communications radio tower (which is agnostic of the 

ships) transmits CW waves (red), which reflect off a nearby surfaced submarine. Both ships passively receive the 

reflected waves and process them to detect the submarine. 
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1.3.  RADAR ORIENTATION 

 The orientation describes the positions of transmitters and receivers relative to one another. Various 

potential radar orientations are illustrated in Figure 2. Monostatic radar describes an orientation where a single 

transmitter and receiver are collocated and may (but need not) share the same antennae for electromagnetic 

transconductance via a microwave switch or circulator [29]. Monostatic radar processing is the least demanding with 

regards to scene geometry modeling and system synchronization, relying on electromagnetic wave backscattering 

phenomenology for target observation. Bistatic radar describes an orientation where a single transmitter and 

receiver are physically separated by a considerable distance. Bistatic orientation implies complex scene geometry, 

relying on electromagnetic wave backward and forward scattering phenomenology. Location, motion, and oscillator 

frequency of the transmitter and receiver must be jointly considered during radar processing to achieve phase 

coherence. Multistatic radar is an extension of bistatic radar, wherein multiple transmitters and receivers are 

distributed throughout the environment. Bistatic and multistatic radar are often referred to as distributed radar. 

 Multiple-input multiple-output (MIMO) radar characteristically has spatially diverse emissions that provide 

an enhanced spatial resolution capability [30, 31]. MIMO radar encompasses any radar orientation that applies 

spatial beamforming with multiple antenna elements to provide a spatial resolution enhancement [30]. MIMO radar 

encompasses both distributed radar techniques [31] and non-distributed transmit/receive array processing methods 

[32]. In contrast, simultaneous multifunction radars utilize emissions comprised of multiple antenna elements to 

execute multiple functions without necessarily achieving a spatial resolution improvement [30]. Other forms of 

simultaneous multifunction radar do not take advantage of antenna spatial orientation to achieve multiple 

objectives, but instead splice the “multifunction” aspect into radar dimensions such as the fast time-frequency 

spectrum [33-35]. 
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Figure 2: Illustration of radar orientations. Circles represent antennas, blocks of circles represent beamforming 

antenna arrays. 

1.4.  RADAR DIMENSIONS 

 The dimensions of the radar system describe which mathematically modeled phenomena are exploited to 

achieve the desired objective. Standard dimensions in radar systems include fast time-frequency, range, slow time-

frequency (Doppler), polarization, and space. Distinctions are made between each dimension for system modeling 

and optimization purposes. Model representation is critical to successfully optimize a desired objective [36].  

Non-traditional dimensions have likewise been examined (see [37-39]).  

 Radar phenomenology is described by continuous or discrete models. Continuous dimensions are modeled 

around reality-driven physical behaviors, which are sampled to obtain discrete dimensions. For example, the 

continuous time signal 𝑠(𝑡)  sampled every 𝑇s  seconds for 𝑁  samples forms the discrete time signal 𝑠(𝑛𝑇s)  for  

𝑛 ∈ [0 ⋯  𝑁 − 1], described by the discrete vector 𝐬 = [𝑠1  ⋯ 𝑠𝑁]𝑇. Continuous and discrete models are described 

hereafter for standard radar dimensions. 
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1.4.1.  TIME-FREQUENCY 

1.4.1.1. DEFINITIONS 

The time dimension is defined in terms of how modulated electromagnetic waves are A) received, recorded, & 

processed or B) designed, stored, & transmitted. 

A) To observe the electromagnetic environment on receive, variations of the environment over time are 

captured by an antenna at a probe point in space. The microwave system intended to record and process the signals 

over time operates with either analog or digital procedures. An analog receive chain will process the captured waves 

in the continuous dimension; the waves are physically processed near the speed of light using filters, mixers, lenses, 

slits, and other analog transforms to yield pertinent material information for the given objective. Some legacy radar 

systems exclusively used analog receive processing for objectives such as SAR imaging, but such systems are 

expensive, lack reconfigurability, and lie prone to machine miscalibration [16]. Digital receive chains use analog-to-

digital converters (ADCs) to sample continuous waves at set time intervals and record the measured samples for 

subsequent digital processing. Due to the limitations of ADC precision and sample rates relative to higher costs, 

modern radar systems use a hybrid of analog signal conditioning and digital processing to capture a signal of interest 

from the electromagnetic spectrum. 

B) Transmit electromagnetic waves are designed within an analog or digital transmit chain for controlled 

antenna emission into the RF environment. While transmit waveform characteristics can be modulated using analog 

devices such as surface acoustic wave (SAW) structures [40], modern systems typically design in a discrete dimension 

that subsequently translates to the continuous dimension using a digital-to-analog converter (DAC) to achieve more 

precise modulation and dynamic waveform generation capability [41]. The DAC analog output is then additionally 

modulated using analog components such as mixers, filters, and amplifiers to create an electromagnetic wave at the 

desired frequency, bandwidth, and transmit power in the band of system operation. 
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1.4.1.2. REVIEW OF DIGITAL SIGNAL THEORY 

 A brief review of digital signal theory is presented for subsequent relation to the transmit and receive design 

considerations for radar operation. If a continuous signal has a given maximum frequency 𝑓max  dictated by the 

distance between sinusoidal component peaks, the Nyquist sampling theorem in (1.1)  states that the uniform 

sample rate capturing measurements must be at least twice the maximum frequency of the continuous bandlimited 

signal being captured for subsequent perfect signal reconstruction. 

𝑓𝑠 ≥ 2𝑓max   

(1.1) 

Upon capturing an electromagnetic wave impinged on an antenna and temporally sampling at uniform intervals of 

𝑛𝑇s for a given sample frequency 𝑓s =
1

𝑇s
 where 𝑛 ∈ {0, 1, … , 𝑁 − 1}, the time sampling process imposes rectangular 

bounds in the frequency dimension in the set 𝑓 ∈ [−
𝑓s

2
,
𝑓s

2
). The rectangular frequency window restricted by the 

sampling process implies an assumption by Fourier definition that the continuous time dimension signal is composed 

of time-shifted sinc basis functions (as is only completely true for perfectly frequency bandlimited signals [42]).  

The sinc function is defined as sinc(𝑡) =
sin(𝜋𝑡)

𝜋𝑡
. The relationship between normalized frequency sample rate bounds 

and their corresponding implied sinc basis functions is illustrated in Figure 3. The critical Nyquist sampling rate is 

defined as 𝑓s
Nyquist

= 2𝑓max. 

 The Nyquist theorem can be understood intuitively from a time-dimension perspective by illustrating the 

attempted sinc reconstruction of a real continuous signal when sampled below, meeting, or exceeding the Nyquist 

sample rate, shown in the left column of Figure 4. Note that the signal being reconstructed is not truly bandlimited, 

but the Nyquist rate is chosen to be twice the maximum frequency 3-dB power of the signal. Reconstruction is 

performed using the Whittaker-Shannon interpolation theorem shown in (1.2). The sinc interpolation theorem 

describes the method by which Fourier sinc basis functions are used to reconstruct the continuous signal structure 

from a sampled bandlimited signal via discrete convolution.  
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Figure 3: Varied bandlimited sample rate windows in the frequency dimension (top) and the implied time dimension 

sinc basis functions assumed to compose any continuous signal within the bandlimited frequency window (bottom). 

𝑠(𝑡) =  ∑ 𝑠(𝑛𝑇s) sinc (
𝑡 − 𝑛𝑇s

𝑇s

) 

∞

𝑛=−∞

 

(1.2) 

The frequency dimension of each reconstructed signal is shown in the right column of Figure 4. When a continuous 

signal is not sampled at sufficiently frequent time intervals according to the Nyquist sample rate, the continuous 

signal structure cannot be reconstructed without error. Here, 𝑓max is selected as the highest frequency indicating a  

3-dB power drop-off. The error introduced by sampling a bandlimited signal below the Nyquist rate 𝑓s < 2𝑓max is 

referred to as aliasing and is shown in the bottom plots of Figure 4. When sampling below the Nyquist rate, the signal 

is improperly reconstructed. Even when the Nyquist rate is roughly met by 𝑓s = 2𝑓max the signal is not perfectly 

reconstructed because the original signal is not perfectly bandlimited in the frequency dimension. The 

reconstruction error is minimized, but not completely eliminated, only when the signal is oversampled 𝑓s ≫ 2𝑓max. 
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Figure 4: Discrete sampling of a continuous real signal of duration 𝑇p  with sinc reconstruction (left column) and  

the frequency dimension of the continuous and reconstructed signals (right column). Here 𝑓s = 5𝑓max ≫ 𝑓s
Nyquist

 

(top row),  𝑓s = 2𝑓max = 𝑓s
Nyquist

 (middle row),  𝑓s = 1.25𝑓max < 𝑓s
Nyquist

 (bottom row). 

 The fundamental relationship between real and complex signal notation is often overlooked. Only real 

signals exist in the physical world. Rather, complex notation captures two orthogonal basis components of a real 

modulated signal. Each basis component represents entirely unique information due to the orthogonality of the 

cosine and sine functions over all time 𝑡. Any physical signal can be represented as 

𝐴(𝑡) cos(𝜔c𝑡 + 𝜙(𝑡)) = 𝐴(𝑡) cos(𝜙(𝑡)) cos(𝜔c𝑡) − 𝐴(𝑡) sin(𝜙(𝑡)) sin(𝜔c𝑡)
    

       = 𝑠I(𝑡) cos(𝜔c𝑡) − 𝑠Q(𝑡) sin(𝜔c𝑡) ,
 

(1.3) 
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and can therefore be represented by the summation of two scaled basis components corresponding to the unique 

information captured in cos(𝜔c𝑡)  and sin(𝜔c𝑡) , where 𝜔c = 2𝜋𝑓𝑐 . Euler’s identity maps the orthogonal basis 

functions cosine and sine to an in-phase & quadrature (I/Q) representation, commonly illustrated by the complex 

unit circle. That is 

𝐴(𝑡)𝑒𝑗𝜙(𝑡) = 𝐴(𝑡) cos(𝜙(𝑡)) + 𝑗𝐴(𝑡) sin(𝜙(𝑡)) =  𝑠I(𝑡) + 𝑗 𝑠Q(𝑡) . 

(1.4) 

The I/Q representation can demonstrate relationships including 𝐴(𝑡) = √𝑠I
2(𝑡) + 𝑠Q

2(𝑡) and 𝜙(𝑡) = atan (
𝑠Q(𝑡)

𝑠I(𝑡)
). 

When 𝑠I(𝑡) and 𝑠Q(𝑡) arbitrarily scale their respective basis components cos(𝜔c𝑡) and sin(𝜔c𝑡) as in (1.3), the 

amplitude and phase of the constructed signal 𝐴(𝑡) cos(𝜔c𝑡 + 𝜙(𝑡)) are determinable from 𝑠I(𝑡) and 𝑠Q(𝑡). To 

enforce a signal to have constant amplitude (𝐴(𝑡) = 𝐴0 ∀ 𝑡) , the basis components 𝑠I(𝑡)  and 𝑠Q(𝑡)  must be 

orthogonal 𝑠I(𝑡) = 𝐴0
2 cos(𝜙(𝑡)) and 𝑠Q(𝑡) = 𝐴0

2 sin(𝜙(𝑡)) such that 𝐴(𝑡) = 𝐴0√cos2(𝜙(𝑡)) + sin2(𝜙(𝑡)) = 𝐴0. 

 The imaginary number 𝑗 is not truly “imaginary”, but rather is a mathematical definition that allows tracking 

the degree to which a modulated signal is composed of either the orthogonal basis functions cosine or sine.  

Carl Friedrich Gauss said “That this subject [imaginary numbers] has hitherto been surrounded by mysterious 

obscurity, is to be attributed largely to an ill adapted notation. If, for example, +1, -1, and √−1 had been called 

direct, inverse and lateral units, instead of positive, negative and imaginary, such an obscurity would have been out 

of the question.” Note that for purely real signals as shown in Figure 4, the frequency information is double-sided 

(symmetric about zero) because information pertaining to the cosine basis function is considered and information 

pertaining to the sine basis function is not considered (i.e. half the information has been disregarded by not capturing 

the unique information mapped from the orthogonal sine component of the signal). When a complex signal that 

captures both the sine and cosine phase basis function information is reconstructed in Figure 5 with temporal sinc 

basis functions according to (1.2), the real and imaginary portions of the signal experience similar error as that shown 

in Figure 4. 



10 

 

 

Figure 5: Discrete sampling of a continuous complex signal with sinc reconstruction (first & second column), the 

amplitude envelope of complex signals before and after sinc reconstruction (third column), and the frequency 

dimension of the original and reconstructed signals (fourth column); Here 𝑓s > 2𝑓max  (top row),  𝑓s = 2𝑓max  

(middle row),  𝑓s < 2𝑓max (bottom row). 

 Note in Figure 5 that the frequency dimension representation of the complex signal now occupies unique 

spectral information in the entire frequency band (“negative” frequencies are decoupled from the “positive” 

frequencies after discrete Fourier transformation), while still being sampled according to the original Nyquist rates. 

The available signal information is fully captured by sampling both cosine and sine basis components, in comparison 

to the information captured solely by the cosine basis component. This is mathematically represented by plugging 

the Fourier identities 
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cos(2𝜋𝑓0𝑡) =
1

2
[𝑒𝑗2𝜋𝑓0𝑡 + 𝑒−𝑗2𝜋𝑓0𝑡]    

ℱ
↔   

1

2
[𝛿(𝑓 + 𝑓0) + 𝛿(𝑓 − 𝑓0)] 

sin(2𝜋𝑓0𝑡) =
−𝑗

2
[𝑒𝑗2𝜋𝑓0𝑡 − 𝑒−𝑗2𝜋𝑓0𝑡]   

ℱ
↔   

−𝑗

2
[−𝛿(𝑓 + 𝑓0) + 𝛿(𝑓 − 𝑓0)] 

(1.5) 

into (1.4) to show the negative frequency components cancelling in (1.6). 

𝑒−𝑗2𝜋𝑓0𝑡 = cos(2𝜋𝑓0𝑡) − 𝑗 sin(2𝜋𝑓0𝑡) =
1

2
[𝑒𝑗2𝜋𝑓0𝑡 + 𝑒−𝑗2𝜋𝑓0𝑡] − 𝑗 (

−𝑗

2
 ) [𝑒𝑗2𝜋𝑓0𝑡 − 𝑒−𝑗2𝜋𝑓0𝑡]

                                                             =
1

2
[𝑒𝑗2𝜋𝑓0𝑡 + 𝑒−𝑗2𝜋𝑓0𝑡] −

1

2
 [𝑒𝑗2𝜋𝑓0𝑡 − 𝑒−𝑗2𝜋𝑓0𝑡]

 

         

  𝑒−𝑗2𝜋𝑓0𝑡  
ℱ
↔  

1

2
[𝛿(𝑓 + 𝑓(𝑡)) + 𝛿(𝑓 − 𝑓(𝑡))] − 𝑗 (

−𝑗

2
) [𝛿(𝑓 + 𝑓(𝑡)) − 𝛿(𝑓 − 𝑓(𝑡))]

               =  
1

2
[𝛿(𝑓 + 𝑓(𝑡)) + 𝛿(𝑓 − 𝑓(𝑡))] −

1

2
[−𝛿(𝑓 + 𝑓(𝑡)) + 𝛿(𝑓 − 𝑓(𝑡))]

     = 𝛿(𝑓 + 𝑓(𝑡))                                                                                            

 

(1.6) 

Negative frequency representations result from mathematical definitions, indicating the degree that a signal maps 

to the cosine or sine basis function for a given frequency. 

1.4.1.3. FAST TIME VERSUS SLOW TIME 

 Consider an active pulsed radar transmission emitted into free space. Time samples are coherently captured 

at a sampling interval 𝑇s  and sampling frequency 𝑓s = 1/𝑇s  over a given duration. The received signature is 

illustrated in Figure 6. The transmission consists of 𝑃  pulses, each emitted for duration 𝑇p . Sampling over the 

duration 𝑇p  yields 𝑁p = 𝑓s ∙ 𝑇p  samples. The time duration between consecutive pulses is the pulse repetition 

interval (PRI) 𝑇PRI, which recurs with a pulse repetition frequency (PRF) 𝑓PRF = 1/𝑇PRI. Sampling over the duration 

𝑇PRI yields 𝑁PRI = 𝑓s ∙ 𝑇PRI samples. The time windowed duration of the receive signature is the coherent processing 

interval (CPI) 𝑇CPI = 𝑃 ∙ 𝑇PRI . Sampling over the duration 𝑇CPI  yields 𝑁CPI = 𝑓𝑠 ∙ 𝑇CPI = 𝑃 ∙ 𝑁PRI  samples. It is 

generally true that 𝑇s ≪ 𝑇p ≤ 𝑇PRI ≪ 𝑇CPI and 𝑓PRF ≪ 𝑓s. 
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 The data set is segmented into 𝑃  pulse repetition intervals, each containing 𝑁PRI  discrete samples.  

The fast time dimension refers to the samples within a given PRI segment collected at sample intervals 𝑛 ∙ 𝑇s for  

𝑛 ∈ {0, 1, … ,𝑁PRI − 1}. The slow time dimension refers to the samples between PRI segments separated by pulse 

repetition intervals 𝑝 ∙ 𝑇PRI for 𝑝 ∈ {0, 1, … , 𝑃 − 1}. Note that uniform PRI segmentation of samples is not always 

used in practice [16]. Recent work has explored the use of random non-uniform (staggered) PRIs to glean additional 

information from the RF environment [43]. 

 The fast time-frequency dimension examines the frequency content across multiple contiguous fast time 

samples using the discrete Fourier transform. The instantaneous time-frequency dimension examines the sample-

to-sample frequency deviation occurring between two contiguous fast time samples (via differencing) and is a subset 

of the fast time-frequency dimension. The slow time-frequency dimension examines the frequency content across 

multiple contiguous slow time samples using the discrete Fourier transform. 

 

Figure 6: Fast time versus slow time representation, with temporal duration definitions. 
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1.4.1.4. DEFINITION OF BASEBAND AND PASSBAND FREQUENCY REPRESENTATIONS 

 Two common signal models are referred to as baseband and passband representation. The fast time-

frequency representations of a baseband versus passband representation are shown in Figure 7. 

 

Figure 7: Fast time-frequency representations of baseband signals versus passband signals. 

A passband representation refers to a real signal with center frequency 𝜔c = 2𝜋𝑓c, written as 

𝑠pb(𝑡) = 𝐴(𝑡) cos(𝜔c𝑡 + 𝜙(𝑡)) = 𝑠I(𝑡) cos(𝜔c𝑡) − 𝑠Q(𝑡) sin(𝜔c𝑡)  

(1.7) 

One may recognize this form as being equivalent to (1.3). All physically realizable electromagnetic waveforms that 

exist in reality have positive frequency content, which can be considered a mapping of 𝑠I(𝑡) and 𝑠Q(𝑡) when mixed 

with orthogonal basis components cos(𝜔c𝑡) and sin(𝜔c𝑡) to generate the purely real signal 𝐴(𝑡) cos(𝜔c𝑡 + 𝜙(𝑡)). 

Conveniently, (1.7) can be written as 

𝑠pb(𝑡) = 𝐴(𝑡) cos(𝜔c𝑡 + 𝜙(𝑡)) = 𝑠I(𝑡) cos(𝜔c𝑡) − 𝑠Q(𝑡) sin(𝜔c𝑡) 

                                                                                       = 𝑅𝑒 {(𝑠I(𝑡) + 𝑗 𝑠Q(𝑡)) (cos(𝜔c𝑡) + 𝑗 sin(𝜔c𝑡))}

                                                                      = 𝑅𝑒{(𝑠bb(𝑡))(cos(𝜔c𝑡) + 𝑗 sin(𝜔c𝑡))}

 

(1.8) 

Generation of a passband signal may be achieved either using analog or digital signal representations of 𝑠I(𝑡) and 

𝑠Q(𝑡), each with their own pitfalls. 
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 Baseband representation refers to the complex signal representation shown in (1.9), which only considers 

the portion of the passband signal that provides its amplitude and phase characteristics. One may recognize this 

form as being equivalent to (1.4). 

𝑠bb(𝑡) =  𝐴(𝑡) 𝑒𝑗𝜙(𝑡) = 𝐴(𝑡) cos(𝜙(𝑡)) + 𝑗𝐴(𝑡) sin(𝜙(𝑡)) = 𝑠I(𝑡) + 𝑗 𝑠Q(𝑡)  

(1.9) 

Frequency modulated (FM) signals have constant amplitude envelopes (𝐴(𝑡) = 𝐴0 ∀ 𝑡) and non-constant phase 

(𝜙(𝑡) ≠  𝜙0 ∀ 𝑡) over their duration. Amplitude modulated (AM) signals have non-constant amplitude envelopes 

(𝐴(𝑡) ≠ 𝐴0 ∀ 𝑡)  and constant phase (𝜙(𝑡) =  𝜙0 ∀ 𝑡) for their entire duration. Signals having both non-constant 

amplitude and phase characteristics (𝐴(𝑡) ≠ 𝐴0 ∀ 𝑡, 𝜙(𝑡) ≠  𝜙0 ∀ 𝑡)  are often also referred to as amplitude 

modulated (AM) signals to emphasize non-constant amplitude envelopes.  

For FM signals, only a single instantaneous frequency exists at a given time instant defined by  

𝑓i(𝑡) =
1

2𝜋
(
𝑑𝜙(𝑡)

𝑑𝑡
)  [44]. For AM signals, two or more instantaneous frequencies exist simultaneously, as the 

amplitude term 𝐴(𝑡) itself introduces a time varying frequency component. Instantaneous frequency definitions are 

explored for specific signal types in [44]. 

 A received passband signal can be demodulated to obtain its baseband signal representation (assuming 

adequate out-of-band interference rejection) by the process outlined hereafter. Consider the passband signal 

representation from (1.7) transmitted at a reference time 𝑡ref. 

𝑠pb(𝑡 − 𝑡ref)   = 𝐴(𝑡 − 𝑡ref) cos(𝜔c ∙ (𝑡 − 𝑡ref) + 𝜙(𝑡 − 𝑡ref))                                                                 

= 𝑠I(𝑡 − 𝑡ref) cos(𝜔c ∙ (𝑡 − 𝑡ref)) − 𝑠Q(𝑡 − 𝑡ref) sin(𝜔c ∙ (𝑡 − 𝑡ref)) 
 

(1.10) 
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In physical reality, the receive signal 𝑦(𝑡) will be a delayed copy of the transmitted signal due to the near speed of 

light (non-instantaneous) propagation delay 𝑡delay. 

𝑦(𝑡) = 𝑠pb(𝑡 − 𝑡ref − 𝑡delay)                                                                                                                                                               

 = 𝐴(𝑡 − 𝑡ref − 𝑡delay) cos (𝜔c ∙ (𝑡 − 𝑡ref − 𝑡delay) + 𝜙(𝑡 − 𝑡ref − 𝑡delay))                                                          

  = 𝑠I(𝑡 − 𝑡ref − 𝑡delay) cos (𝜔c ∙ (𝑡 − 𝑡ref − 𝑡delay)) − 𝑠Q(𝑡 − 𝑡ref − 𝑡delay) sin (𝜔c ∙ (𝑡 − 𝑡ref − 𝑡delay))    
 

 

(1.11) 

For convenience, assume no propagation delay 𝑡delay = 0  and transmit reference time 𝑡ref = 0  such that  

𝑦(𝑡) = 𝑠pb(𝑡). The received signal can be mixed with a single oscillator cos(𝜔c𝑡), or two independent orthogonal 

oscillator signals cos(𝜔c𝑡) and sin(𝜔c𝑡) (see 1.4.1.9). The latter configuration recovers the complex baseband signal 

without loss of information as in (1.12). Note that the imaginary component 𝑗 distinguishes the independent radio 

frequency channels of the cosine component cos(𝜔c𝑡) and the sine component sin(𝜔c𝑡). 

𝑦mix(𝑡) = 𝑦(𝑡) ∙ (cos(𝜔c𝑡) − 𝑗 sin(𝜔c𝑡))                                                                       

= 𝑠pb(𝑡) ∙ (cos(𝜔c𝑡) − 𝑗 sin(𝜔c𝑡))                                                     

= 𝐴(𝑡) cos(𝜔c𝑡 + 𝜙(𝑡)) ∙ (cos(𝜔c𝑡) − 𝑗 sin(𝜔c𝑡))                        

                                      =
1

2
𝐴(𝑡){ [cos(2𝜔c𝑡 + 𝜙(𝑡)) + cos(𝜙(𝑡))] + 𝑗 [− sin(2𝜔c𝑡 + 𝜙(𝑡)) + sin(𝜙(𝑡))] }

 

(1.12) 

Bandstop filtering the components at 2𝜔c𝑡 in both channels yields the complex baseband signal 

𝑠bb(𝑡) = 𝐴(𝑡){cos(𝜙(𝑡)) + 𝑗 sin(𝜙(𝑡))} = 𝐴(𝑡) 𝑒𝑗𝜙(𝑡) .  

(1.13) 

The same derivation can be equivalently shown using the inphase and quadrature signal representation as 

𝑦mix(𝑡)  = (𝑠I(𝑡) cos(𝜔c𝑡) − 𝑠Q(𝑡) sin(𝜔c𝑡)) ∙ cos(𝜔c𝑡)                            

                        +(𝑠I(𝑡) cos(𝜔c𝑡) − 𝑠Q(𝑡) sin(𝜔c𝑡)) ∙ (−𝑗 sin(𝜔c𝑡))                             

 = (𝑠I(𝑡) cos(𝜔c𝑡) cos(𝜔c𝑡) − 𝑠Q(𝑡) sin(𝜔c𝑡) cos(𝜔c𝑡))

 +𝑗(−𝑠I(𝑡) cos(𝜔c𝑡) sin(𝜔c𝑡) + 𝑠Q(𝑡) sin(𝜔c𝑡) sin(𝜔c𝑡))

 

(1.14) 
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Expanding via trigonometric identities 

𝑦mix(𝑡) = (𝑠I(𝑡) cos(𝜔c𝑡) cos(𝜔c𝑡) − 𝑠Q(𝑡) sin(𝜔c𝑡) cos(𝜔c𝑡))                                              

               +𝑗(−𝑠I(𝑡) cos(𝜔c𝑡) sin(𝜔c𝑡) + 𝑠Q(𝑡) sin(𝜔c𝑡) sin(𝜔c𝑡))                                                

= (
𝑠I(𝑡)

2
cos(2𝜔c𝑡) +

𝑠I(𝑡)

2
cos(0) −

𝑠Q(𝑡)

2
sin(2𝜔c𝑡) −

𝑠Q(𝑡)

2
sin(0))        

  +𝑗 (−
𝑠I(𝑡)

2
sin(2𝜔c𝑡) −

𝑠I(𝑡)

2
sin(0) −

𝑠Q(𝑡)

2
cos(2𝜔c𝑡) +

𝑠Q(𝑡)

2
cos(0))       

 

(1.15) 

and bandstop filtering the higher frequency component at 2𝜔c𝑡 in both channels yields the baseband signal 

𝑠bb(𝑡) =  𝑠I(𝑡) + 𝑗 𝑠Q(𝑡) .  

(1.16) 

1.4.1.5. AMPLIFIER EFFECTS ON TRANSMIT WAVEFORMS 

 A typical amplifier power characteristic curve is shown in Figure 8, here divided into linear and saturated 

regions. Class A amplifiers operate at relatively low power (in the linear region) and have low power efficiency.  

Class AB, B, and C amplifiers operate at relatively moderate-to-high power (in the saturated region) with high power 

efficiency, at the cost of inducing signal distortions [45]. 

 High-power amplifiers are often used for radar signal transmission. The input signal power to an HPA is 

driven far into the saturated region to maximize power efficiency and minimize heat dissipation. Hypothetical input 

(𝒫̅in) and output (𝒫̅out) power operating points for optimal high-power amplifier efficiency are indicated in Figure 8. 

Because HPAs often are biased to remain far in the saturated region, input AM waveforms would be afflicted by 

significant distortion as the input amplitude 𝐴(𝑡)  and corresponding instantaneous power 𝒫in(𝑡) traverses the 

nonlinear amplifier power curve. Moreso, HPAs are not designed to operate below the saturated region and power 

efficiency becomes poor in the linear region. Because the average input power of an AM waveform may be 

significantly less than that of an FM waveform, the amplifier may operate in an inefficient region and dissipate 

additional heat into the amplifier heat sink (which becomes significant when >1 kW output power is needed). 



17 

 

 

Figure 8: Amplifier power operating curve. 𝒫̅in and 𝒫̅out indicate hypothetical optimal power efficiency operating 

points for a high-power amplifier. For AM waveforms, the instantaneous power (red line) and peak power (yellow 

dot) deviate significantly from the average power (green dot). For FM waveforms, minimum deviation occurs and 

the amplifier is always saturated. Peak power must not exceed the maximum input power limitations of an amplifier.  

 Noting the significant deviation between peak and average power delivered for an AM waveform shown in 

Figure 8, the peak-to-average power ratio (PAPR) is a common metric gauging how efficiently an input signal can be 

amplified. PAPR is defined in (1.17) after normalization. Physical signals of non-zero frequency always experience a 

deviation between the peak and average power ratio of at least 2 . For example, an FM signal with constant 

amplitude 𝐴0 exhibits 𝒫max
pb

= 𝐴0
2 and 𝒫avg

pb
= 𝐴0

2/2. Baseband signals aren’t always perfectly recreated at passband, 

such that the baseband PAPR is approximately equal to the passband PAPR at the amplifier input (see 1.4.1.6).  

FM waveforms maintain an ideal (= 1) PAPR and meet the necessary signal input conditions for efficient amplifier 

operation, while AM waveforms have non-ideal (> 1) PAPR that causes heat dissipation and signal distortion. 

PAPR =
1

2

𝒫max
pb

𝒫avg
pb

=
1

2
(

max {|𝑠pb(𝑡)|
2
}

1
𝑇p

∫ |𝑠pb(𝑡)|
2
𝑑𝑡

𝑇p
0

) ≈
𝒫max

bb

𝒫avg
bb

= (
max{|𝑠bb(𝑡)|

2}

1
𝑇p

∫ |𝑠bb(𝑡)|
2𝑑𝑡

𝑇p
0

) 

(1.17) 
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 Spectral regrowth refers to undesired signal spectral characteristics that result from RF amplifier distortion. 

Spectral regrowth contaminates optimal waveform characteristics and impairs the transmission waveform spectral 

containment required to mitigate interference with other RF users. Amplifier nonlinear distortions are labeled in 

terms of specific components including harmonics, intermodulations (or cross-modulations), and memory effects 

[46-50]. Common models for nonlinear distortions include power series, memory polynomials, Volterra series, and 

Wiener-Hammerstein models [46-50]. The Matlab system identification toolbox provides functions and 

documentation to model a wide variety of nonlinear models [51]. Real-time hardware implementations for amplifier 

nonlinearity approximation have been implemented [52, 53]. 

 

Figure 9: Nonlinear amplifier distortions simulated using the power series model and enforcing amplifier bandpass 

filtering effects. The simulated distortions to an FM waveform (top) create harmonics only. The simulated distortions 

to an AM waveform (bottom) create harmonics and intermodulations, referred to as spectral regrowth. 

A

Intermodulations
(Spectral Regrowth)

Harmonics
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 The HPA nonlinearities are easily modeled via power series when limited to consideration of harmonics and 

intermodulations [30]. The fundamental signal represented in (1.3) is 𝐴(𝑡) cos(𝜔c𝑡 + 𝜙(𝑡)). The power series model 

represents a summation of memory-less polynomials of integer order 𝜉 forming the distorted signal 𝑠power(𝑡). 

𝑠power(𝑡) = ∑𝐴𝜉(𝑡) cos𝜉(𝜔c𝑡 + 𝜙(𝑡))

∞

𝜉=1

 

(1.18) 

Even order polynomials exclusively produce harmonics at frequency multiples of the fundamental signal, e.g. 

𝐴2(𝑡) cos2(𝜔c𝑡 + 𝜙(𝑡)) = 𝐴2(𝑡)(2 + 2 cos(2𝜔c𝑡 + 2𝜙(𝑡))) . Odd order polynomials produce harmonics at the 

fundamental frequency and multiples thereof, e.g. 𝐴3(𝑡) cos3(𝜔c𝑡 + 𝜙(𝑡)) = 𝐴3(𝑡) (
3

4
cos(𝜔c𝑡 + 𝜙(𝑡)) +

1

4
cos(3𝜔c𝑡 + 3𝜙(𝑡))). Examining the odd order polynomials, any amplitude modulation produced by the amplifier 

at the fundamental center frequency 𝐴𝜉(𝑡) cos(𝜔c𝑡 + 𝜙(𝑡)) will superimpose with the transmit signal and cause 

distortion [30]. FM waveforms mitigate amplifier distortion since 𝐴(𝑡) = 𝐴0 ∀ 𝑡, yielding the fundamental signal. 

 The source of spectral regrowth outside of the fundamental signal bandwidth becomes apparent after 

decomposing an AM waveform into instantaneous frequency components. The time-varying amplitude 𝐴(𝑡) and 

frequency cos(𝜔c𝑡) components imply that multiple instantaneous frequencies exist simultaneously [44]. Here, 

consider the AM waveform generated by the superposition of two or more FM waveforms. 

𝐴(𝑡) cos(𝜔c𝑡 + 𝜙(𝑡)) = ∑𝐴𝑖 cos(𝜔c𝑡 + 𝜙𝑖(𝑡))

∀𝑖

  

(1.19) 
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The simple case where two FM waveforms with different phases are superimposed [54] can be expressed as 

𝐴1 cos(𝜔c𝑡 + 𝜙1(𝑡)) + 𝐴2 cos(𝜔c𝑡 + 𝜙2(𝑡))

= √[𝐴1 cos(𝜙1(𝑡)) + 𝐴2 cos(𝜙2(𝑡))]
2 + [𝐴1 sin(𝜙1(𝑡)) + 𝐴2 sin(𝜙2(𝑡))]

2

∙ cos (𝜔𝑐𝑡 + tan−1 [
𝐴1 sin(𝜙1(𝑡)) + 𝐴2 sin(𝜙2(𝑡))

𝐴1 cos(𝜙1(𝑡)) + 𝐴2 cos(𝜙2(𝑡))
]) 

(1.20) 

By examination, the resulting amplitude and phase components when summing two FM waveforms are 

𝐴(𝑡) = √[𝐴1 cos(𝜙1(𝑡)) + 𝐴2 cos(𝜙2(𝑡))]
2 + [𝐴1 sin(𝜙1(𝑡)) + 𝐴2 sin(𝜙2(𝑡))]

2 

𝜙(𝑡) = tan−1 [
𝐴1 sin(𝜙1(𝑡)) + 𝐴2 sin(𝜙2(𝑡))

𝐴1 cos(𝜙1(𝑡)) + 𝐴2 cos(𝜙2(𝑡))
] 

(1.21) 

The superimposed signal will exhibit amplitude modulation (and therefore spectral regrowth) unless the comprising 

phases are equivalent 𝜙1(𝑡) = 𝜙2(𝑡). Furthermore, applying the power series model reveals the root source of 

spectral regrowth. Plugging (1.20) when 𝐴1 = 𝐴2 = 0.5  and 𝜙1(𝑡) ≠ 𝜙2(𝑡)  into (1.18) where 𝜉 = 3  yields  

harmonic terms (e. g.  cos(3𝜔c𝑡 + 3𝜙1(𝑡))  & cos(3𝜔c𝑡 + 3𝜙2(𝑡))) , in addition to intermodulation terms 

(e. g.  cos(𝜔c𝑡 + 2𝜙1(𝑡) − 𝜙2(𝑡))  & cos(𝜔c𝑡 − 𝜙1(𝑡) + 2𝜙2(𝑡)))  located near the fundamental frequency.  

The intermodulation terms indicate frequency expansion beyond the initial signal bandwidth. 

(0.5 cos(𝜔c𝑡 + 𝜙1(𝑡)) + 0.5 cos(𝜔c𝑡 + 𝜙2(𝑡)))
3
                                                                                                                        

= 0.219 cos(𝜔c𝑡 + 𝜙1(𝑡)) + 0.219 cos(𝜔c𝑡 + 𝜙2(𝑡)) + 0.031 cos(3𝜔c𝑡 + 3𝜙1(𝑡)) + 0.031 cos(3𝜔c𝑡 + 3𝜙2(𝑡))

+ 0.062 cos(𝜙1(𝑡)) + 0.062 cos(𝜙2(𝑡)) + 0.093 cos(𝜔c𝑡 + 2𝜙1(𝑡) − 𝜙2(𝑡))

+ 0.093 cos(𝜔c𝑡 − 𝜙1(𝑡) + 2𝜙2(𝑡)) + 0.062 cos(2𝜔c𝑡 + 𝜙1(𝑡) + 2𝜙2(𝑡))

+ 0.062 cos(2𝜔c𝑡 + 2𝜙1(𝑡) + 𝜙2(𝑡)) + 0.031 cos(3𝜔c𝑡 + 𝜙1(𝑡) + 2𝜙2(𝑡))

+ 0.031 cos(3𝜔c𝑡 + 2𝜙1(𝑡) + 𝜙2(𝑡)) 

(1.22) 
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1.4.1.6.  ANALOG UPCONVERSION 

 Two common methods exist to form a passband signal for subsequent transmission, which are analog 

upconversion and digital upsampling, interpolation & upconversion. The choice of analog or digital passband signal 

generation often amounts to which equipment is commercially available and sufficient for an engineering application 

given hardware costs. For instance, software-defined radios (SDR) often have built-in analog upconversion, while 

arbitrary waveform generators (AWG) often require digital passband signal generation. 

 Analog upconversion is illustrated in Figure 10 and Figure 11, where 𝜔, 𝑓 denotes analog frequency and 

𝑓s
DAC  is the digital-to-analog converter sample rate. To form the passband signal: A) the analog baseband 

components 𝑠I(𝑡)  and 𝑠Q(𝑡)  are generated by separate DACs and lowpass filtered to remove Nyquist spectral 

images, B) the filtered baseband components are respectively mixed with cos(𝜔c𝑡) and −sin(𝜔c𝑡) local oscillators 

for upconversion and summed using an analog combiner, C) the passband signal is bandpass filtered to enforce 

spectral containment. The basis component −sin(𝜔c𝑡) = cos (𝜔c𝑡 −
𝜋

2
)  is created by pushing the cos(𝜔c𝑡) 

oscillator through an analog 90° phase shifter to maintain phase coherence between channels. 

 I/Q imbalance exists when the upconverted inphase and quadrature channels have inequal scaling 

(𝑐I(𝑡) & 𝑐Q(𝑡)) due to RF fabrication variations, local oscillator (LO) amplitude variations, or crosstalk between the 

baseband and LO channels [55]. Crosstalk from the LO to the passband channels in the transmit chain, called transmit 

LO leakage, can be mathematically represented as a DC offset (𝑑I(𝑡) & 𝑑Q(𝑡)) of the baseband components 𝑠I(𝑡) 

and 𝑠Q(𝑡) [56]. If the I/Q imbalance or LO leakage is significant and uncompensated, the passband waveform may 

exhibit undesired amplitude and phase distortion. I/Q imbalance and LO leakage may drift over time with 

environmental factors. Mixers introduce errors due to frequency push-pull effects and intermodulations [57].  

The passband signal when incorporating non-ideal I/Q imbalance and LO leakage effects is represented as 

𝑠pb(𝑡) = 𝐴(𝑡) cos(𝜔c𝑡 + 𝜙(𝑡)) ≅ 𝑐I(𝑡)𝑠I(𝑡) cos(𝜔c𝑡) − 𝑐Q(𝑡)𝑠Q(𝑡) sin(𝜔c𝑡) + 𝑑I(𝑡) cos(𝜔c𝑡) − 𝑑Q(𝑡) sin(𝜔c𝑡)

                                  = 𝑐I(𝑡)(𝑠I(𝑡) + 𝑑I(𝑡)) cos(𝜔c𝑡) − 𝑐Q(𝑡) (𝑠Q(𝑡) + 𝑑Q(𝑡)) sin(𝜔c𝑡)
 

(1.23) 
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Figure 10: Analog upconversion RF chain. 

 

Figure 11: Analog upconversion stages: A) Form the I/Q baseband signal components on separate DACs and lowpass 

filter to remove the Nyquist spectral images, B) Mix the analog complex baseband waveform by either cos(𝜔c𝑡) or 

−sin(𝜔c𝑡), C) Sum the components using an analog combiner to form the passband signal and bandpass filter the 

signal to enforce spectral containment. 
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1.4.1.7. DIGITAL UPSAMPLING, INTERPOLATION, & UPCONVERSION 

 Digital upsampling, interpolation, and upconversion are illustrated in Figure 12 and Figure 13, where 𝜔, 𝑓 

denotes analog frequency, Ω denotes digital frequency, 𝑓s
TX is the initial baseband waveform transmit sample rate, 

and 𝑓s
DAC is the digital-to-analog converter sample rate. To form the passband signal: A) the digital baseband signal 

is formed, B) the number of complex baseband waveform samples is increased via upsampling & interpolation,  

C) the interpolated baseband waveform is digitally mixed with a complex carrier for upconversion, D) the real 

component of the upconverted waveform is extracted, E) the analog passband signal is formed with a high sample 

rate DAC and bandpass filtered to enforce spectral containment. 

 Consider a baseband signal designed with initial baseband transmit sample rate 𝑓s
TX, pulse duration 𝑇p, and 

𝑁p
TX = 𝑓s

TX ∙ 𝑇p samples. Digital upsampling and interpolation is necessary when the DAC sample rate is greater than 

the initial baseband transmit sample rate, 𝑓s
DAC = 𝛽 ∙ 𝑓s

TX > 𝑓s
TX , where 𝛽  is an integer upsampling factor. To 

maintain the desired pulse duration 𝑇p at the DAC sample rate 𝑓s
DAC, the number of waveform samples must be 

increased to 𝑁p
DAC = 𝑓s

DAC ∙ 𝑇p = 𝛽 ∙ 𝑓s
TX ∙ 𝑇p . Upsampling and interpolation increases the number of waveform 

samples while attempting to preserve amplitude and phase characteristics. The interpolation stage introduces non-

ideal distortions to 𝑠I(𝑛) and 𝑠Q(𝑛) (see 1.4.1.8), where the distorted baseband components are distinguished as 

𝑠̃I(𝑛)  and 𝑠̃Q(𝑛) . After analog conversion and bandpass filtering, the distorted baseband components are 

represented as 𝑠̃I(𝑡) and 𝑠̃Q(𝑡). The passband signal when incorporating non-ideal digital interpolation effects is 

represented as 

𝑠pb(𝑡) = 𝐴(𝑡) cos(𝜔c𝑡 + 𝜙(𝑡)) ≅ 𝑅𝑒 {(𝑠̃I(𝑡) + 𝑗 𝑠̃Q(𝑡)) (cos(𝜔c𝑡) + 𝑗 sin(𝜔c𝑡))}

                                          = 𝑅𝑒{(𝑠̃bb(𝑡))(cos(𝜔c𝑡) + 𝑗 sin(𝜔c𝑡))}

                                  =  𝑠̃I(𝑡) cos(𝜔c𝑡) − 𝑠̃Q(𝑡) sin(𝜔c𝑡)

 

(1.24) 
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Figure 12: Digital upsampling, interpolation, and upconversion chain. 

 

Figure 13: Digital upsampling, interpolation and upconversion stages: A) Form a complex baseband waveform,  

B) Upsample and interpolate the complex baseband waveform to expand the digital frequency space, C) Mix the 

digital complex baseband waveform with a complex sinusoid at frequency 𝑓c, D) Extract the real portion of the 

passband waveform E) Construct the analog passband signal using a DAC and bandpass filter the signal to enforce 

spectral containment. 

DAC
Bandpass 

Filter

+

+



25 

 

1.4.1.8. DIGITAL UPSAMPLING & INTERPOLATION METHODS 

 Digital upsampling & interpolation increases the number of samples in the vectorized signal 𝐬  while 

attempting to preserve amplitude and phase characteristics. Digital upsampling refers to the insertion of zero-

padding between existing signal samples to increase sample spacing. Digital interpolation refers to filtering an 

upsampled signal to form non-zero interior samples where zero-padding previously existed. Here, interpolation is 

considered in the fast time dimension or the phase angle dimension. 

 Digitally upsampling is defined mathematically in (1.25), where ⊗ is the Kronecker product and 𝛽 is an 

integer upsampling factor. 

𝐬 ⊗ [

1
0
⋮
0

]

𝛽 × 1

 

(1.25) 

Uniform temporal interpolation is defined mathematically in (1.26), where 𝐬̃ is the interpolated signal, 𝐇 is a filter 

bank, and 𝐬 is the signal-to-be-upsampled. 

𝐬̃ =  𝐇(𝐬 ⊗ [

1
0
⋮
0

]

𝛽 × 1

)  

(1.26) 

Here, the upsampling factor 𝛽 represents the frequency space expansion ratio between the initial baseband transmit 

sample rate 𝑓s
TX  and the digital-to-analog converter sample rate 𝑓s

DAC , such that 𝑓s
DAC = 𝛽 ∙ 𝑓s

TX . Equivalently 

stated from a temporal perspective, 𝑇s
TX = 𝛽 ∙ 𝑇s

DAC. 

 Whittaker-Shannon sinc reconstruction and associated bandlimited spectral assumptions are described in 

Section 1.4.1.2. Sinc reconstruction is a specific form of temporal interpolation derived from fundamental signal 

theory. The Whittaker-Shannon sinc reconstruction formula is restated in (1.27) for comparison to (1.26), though 

here specific time instances are evaluated and the signal 𝑠(𝑡) is not assumed perfectly bandlimited. 
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𝑠̃(𝑡)|𝑡=𝑛′𝑇𝑠
DAC = ∑ 𝑠(𝑛𝑇s

TX) sinc (
𝑛′𝑇s

DAC − 𝑛𝑇s
TX

𝑇s
TX

)

∞

𝑛=−∞

  

(1.27) 

By observation, (1.27) can be represented in the form of (1.26) for sinc reconstruction between uniform samples  

(i.e. when 𝑡 is evaluated at 𝑡 = 𝑛′𝑇s
DAC). The columns of 𝐇 consist of sinc functions with peaks incrementally offset 

by 𝛽 and sinc nulls every 𝛽 samples from the peak. Imperfect reconstruction via sinc interpolation of a constant 

amplitude signal when critically sampled creates significant amplitude dips (see Figure 5), implying that the resulting 

physical signal would not deliver constant average power to an amplifier and thus cause distortion (see  

Section 1.4.1.5). While temporal interpolation via sinc reconstruction is common, other interpolation filters are 

applicable [59]. Piecewise spline interpolation adaptively forms 𝜁th integer order polynomial interpolation estimates 

based on piecewise segments of 𝐬 . Cubic spline interpolation (𝜁 = 3)  minimizes mean squared error during 

reconstruction of imperfectly bandlimited signals (i.e. signals with spectral roll-off) [60]. Cubic spline interpolation is 

effective for temporal interpolation schemes. 

 For high power radar applications, it is desirable to transmit constant amplitude waveforms (see  

Section 1.4.1.5) which are written of the form 𝐬 = cos(𝛟) + 𝑗 sin(𝛟). A complex constant amplitude envelope can 

be enforced by applying Euler’s identity exp( 𝑗𝛟 ) = cos(𝛟) + 𝑗 sin(𝛟) , where 𝛟  is an arbitrary phase angle 

function. The angle of the signal-to-be-upsampled 𝐬 is extracted via the angle argument operator ∠( ∙ ), which 

calculates the phase as 𝛟 = atan (
𝐼𝑚{𝐬}

𝑅𝑒{𝐬}
). Interpolation is then performed on the phase angle of the baseband signal. 

After performing phase interpolation, the temporal signal is formed by complex exponentiation exp( 𝑗 ∙ )  to 

reconstruct a constant amplitude waveform. Phase interpolation is an inherently nonlinear operation. While the 

original samples of 𝐬  are preserved, the upsampled signal 𝐬̃  will have mildly distorted fast time-frequency 

characteristics with the benefit of having a constant complex amplitude envelope. Effective interpolation methods 

in the phase dimension include piecewise linear (𝜁 = 1) and piecewise cubic (𝜁 = 3) spline interpolation.  

 

 



27 

 

Uniform phase interpolation is defined mathematically in (1.28). 

𝐬̃ = exp

[
 
 
 
 

𝑗 𝐇

(

 
 

(∠𝐬) ⊗ [

1
0
⋮
0

]

𝛽 × 1
)

 
 

]
 
 
 
 

 

(1.28) 

The stages of temporal interpolation and phase interpolation are shown in Figure 14. A comparison between 

temporal interpolation and phase interpolation for a given transmit signal is shown in Figure 15 displaying 

corresponding effects on fast time-frequency and the amplitude envelope when 𝛽 = 10. Temporal interpolation 

distorts both amplitude and frequency characteristics (especially when extrapolating), though cubic spline 

interpolation introduces less amplitude distortion than sinc interpolation. Phase interpolation preserves a constant 

amplitude envelope with only minor frequency distortion. The distortions induced by each method are emphasized 

in the zoomed plots of Figure 15. Note that spline methods are not designed to extrapolate, potentially causing error 

at temporal edges. 

 

Figure 14: Stages of temporal interpolation and phase interpolation 

`

`
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Figure 15: Temporal and phase interpolation methods. Phase interpolation methods overlap the continuous signal 

with minimal error. 
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1.4.1.9. ANALOG DOWNCONVERSION 

 Two common methods exist to form a complex baseband signal from an electromagnetic wave captured at 

passband, which are analog downconversion and digital downconversion & decimation. The choice of analog or 

digital downconversion often amounts to which equipment is commercially available and sufficient for an 

engineering application given hardware costs. For instance, real-time spectrum analayzers (RSA) often have built-in 

analog downconversion, while high-speed oscilloscopes often require digital downconversion. 

 Analog downconversion is illustrated in Figure 16 and Figure 17, where 𝜔, 𝑓 denotes analog frequency and 

𝑓s
ADC is the analog-to-digital converter sample rate. To capture the baseband signal: A) the received passband signal 

is bandpass filtered to remove out-of-band interference, B) the filtered passband signal is mixed with either cos(𝜔𝑐𝑡) 

or −sin(𝜔c𝑡) on separate channels, C) the analog baseband signals are lowpass filtered to remove mixer output 

higher order products and sampled on ADCs. The basis component − sin(𝜔c𝑡) = cos (𝜔c𝑡 −
𝜋

2
)  is created by 

pushing the cos(𝜔c𝑡)  oscillator through a 90 °  phase shifter analog component to maintain phase coherence 

between channels. The ADC sample rate can be increased to mitigate the effects of aliasing due to imperfect signal 

spectral containment (with diminishing returns when 𝑓s
ADC ≫ 2𝑓max). 

 I/Q imbalance exists when the downconverted inphase and quadrature channels have inequal scaling 

(𝑐I(𝑡) & 𝑐Q(𝑡)) due to RF fabrication variations, local oscillator (LO) amplitude variations, or crosstalk from the 

passband channel to the LO channel [55]. Crosstalk from the LO to the passband channels in the receive chain, called 

receive LO leakage, can be mathematically represented as a DC offset (𝑑I(𝑡) & 𝑑Q(𝑡)) of the baseband components 

𝑠I(𝑡) and 𝑠Q(𝑡) [56]. If the I/Q imbalance or LO leakage is significant and uncompensated, the baseband waveform 

may exhibit undesired amplitude and phase distortion. I/Q imbalance and LO leakage may drift over time with 

environmental factors. Mixers introduce errors due to frequency push-pull effects and intermodulations [57]. The 

baseband signal when incorporating non-ideal I/Q imbalance and LO leakage effects is represented as 

𝑠bb(𝑡) = 𝑐I(𝑡)(𝑠I(𝑡) + 𝑑I(𝑡)) + 𝑗 𝑐Q(𝑡) (𝑠Q(𝑡) + 𝑑Q(𝑡)) 

(1.29) 
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Figure 16: Analog downconversion RF chain. 

 

Figure 17: Analog downconversion stages: A) Capture the passband signal and bandpass filter to remove out-of-band 

interference, B) Mix the filtered passband waveform by either cos(𝜔c𝑡)  or −sin(𝜔c𝑡) , C) Lowpass filter the 

baseband signals to remove undesired mixing products and sample using separate ADCs. 
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1.4.1.10. DIGITAL HILBERT TRANSFORM, DOWNCONVERSION, & DOWNSAMPLING 

 Digital Hilbert transformation, downconversion, & downsampling is illustrated in Figure 18 and Figure 19, 

where 𝜔, 𝑓 denotes analog frequency, Ω denotes digital frequency, 𝑓s
ADC is the analog-to-digital converter sample 

rate, and 𝑓s
RX is the desired baseband waveform sample rate (i.e. after downsampling). The baseband components 

are minimally distorted from digital processing, albeit the method is computationally expensive compared to analog 

downconversion. To capture the baseband signal: A) the received passband signal is bandpass filtered to remove 

out-of-band interference, B) the filtered passband signal is sampled with an ADC, C) the Hilbert transform is 

performed on the real passband samples to convert to complex notation, D) the complex passband signal is digitally 

mixed with a complex carrier for downconversion, E) the complex baseband signal is lowpass filtered to enforce 

band-limiting and then downsampled (keep every 𝛽th  time sample) to reduce the sample rate while sufficiently 

exceeding the Nyquist sample rate. 

 The real passband signal captured by an ADC must be sampled according to the Nyquist rate 𝑓s
ADC ≥ 2𝑓max. 

Upon bandpass filtering and sampling the real passband signal (having a symmetric frequency spectrum), the Hilbert 

transform is applied to cancel redundant negative frequencies, thereby converting samples to complex notation. 

The Hilbert transformed signal 𝑠H(𝑡) is defined as 

𝑠H(𝑡) = 𝑠pb(𝑡) + 𝑗 ℋ (𝑠pb(𝑡)) = 𝑠pb(𝑡) + 𝑗 (𝑠pb(𝑡) ∗
−1

𝜋𝑡
)                                                                                            

𝑠H(𝑓) = 𝑠pb(𝑓) + 𝑗 ℋ (𝑠pb(𝑓)) = 𝑠pb(𝑓) + 𝑗 (𝑠pb(𝑓) ∙ −𝑗 sgn(𝑓))                                                                               

                 = (𝑠pb
+ (𝑓) + 𝑠pb

− (𝑓)) + ((𝑠pb
+ (𝑓) + 𝑠pb

− (𝑓)) ∙ sgn(𝑓))

= (𝑠pb
+ (𝑓) + 𝑠pb

− (𝑓)) + (𝑠pb
+ (𝑓) − 𝑠pb

− (𝑓))    

= 2 𝑠pb
+ (𝑓)                                                                

 

(1.30) 

where 𝑠pb
+ (𝑓)  indicates positive frequencies and 𝑠pb

− (𝑓)  indicates negative frequencies of the passband signal.  

The signum function sgn(𝑓) is equal to +1 for positive frequencies, -1 for negative frequencies, and 0 at 𝑓 = 0.  

For FM signals, ℋ(𝐴 cos(𝜔c𝑡 + 𝜙(𝑡))) = 𝐴 sin(𝜔c𝑡 + 𝜙(𝑡))  and simplifies as in (1.6). Applying the Hilbert 

transform mitigates frequency aliasing in subsequent steps. 
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Figure 18: Digital Hilbert transform, downconversion, and downsampling chain. 

 

Figure 19: Digital Hilbert transformation, downconversion, & downsampling stages: A) Capture the passband signal 

and analog bandpass filter to remove out-of-band interference, B) Sample the filtered passband signal with an ADC,  

C) Apply the Hilbert transform to the real passband samples to convert to complex data representation 

D) Mix the digital complex baseband waveform with a complex sinusoid at frequency 𝑓c  for downconversion,  

E) Downsample the data for compression while still exceeding the Nyquist sample rate. 
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 Consider a passband signal captured with initial ADC sample rate 𝑓s
ADC. Digital downconversion converts 

the passband signal from center frequency 𝑓c to baseband representation. The resulting baseband signal is often 

oversampled relative to the Nyquist sample rate. Digital downsampling is beneficial when the ADC sample rate is 

unnecessarily greater than the desired baseband waveform sample rate, 𝑓s
ADC = 𝛽 ∙ 𝑓s

RX > 𝑓s
RX , where 𝛽  is an 

integer downsampling factor. Digital downsampling requires lowpass filtering to ensure the baseband signal is 

sufficiently bandlimited), then preserving every 𝛽 samples to reduce the incoming data rate. Cascaded integrator 

comb (CIC) filters and polyphase filter banks (PFBs) are computationally efficient implementations for digital 

downsampling [58]. 

1.4.1.11. SUB-NYQUIST SAMPLING 

 When the available ADC sample rate is less than the frequency of interest, sub-Nyquist sampling is suitable 

to capture the information. The sub-Nyquist sampling method exploits discrete frequency periodicity, wherein 

sampling a bandlimited signal produces spectral duplicates spaced at frequency integer multiples 𝜍 𝑓s
ADC .  

Sub-Nyquist sampling is often paired with analog frequency conversion, implemented in certain SDRs. 

 For example, consider the analog downconversion stages described in Section 1.4.1.9, though now with 

local oscillators tuned to an arbitrary frequency 𝜔0 = 2𝜋𝑓0. When 𝜔0 = 𝜔c, direct analog downconversion occurs 

as aforementioned. However, 𝜔0 may be tuned to convert the passband signal to an intermediate center frequency  

𝜔IF = 2𝜋𝑓IF, where 𝜔IF = 𝜔c − 𝜔0. The duplicate image of the discretized intermediate frequency signal spectrum 

is then captured at baseband center frequency 𝜔IF − 𝜍 𝑓s
ADC , where −𝑓s

ADC/2 < 𝜔IF − 𝜍 𝑓s
ADC < 𝑓s

ADC/2 

determines the integer 𝜍. The combined analog downconversion and sub-Nyquist sampling method is illustrated in 

Figure 20 and Figure 21, where 𝜔, 𝑓 denotes analog frequency and 𝑓s
ADC is the analog-to-digital converter sample 

rate. To capture the baseband signal: A) the received passband signal is bandpass filtered to remove out-of-band 

interference, B) the filtered passband signal is mixed with either cos(𝜔0𝑡) or −sin(𝜔0𝑡) on separate channels,  

C) the analog intermediate frequency signals are bandpass filtered to remove mixer products and enforce 

bandlimiting, then sub-Nyquist sampled on separate ADCs. 
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Figure 20: Combined analog downconversion RF chain and sub-Nyquist sampling. 

 

Figure 21: Combined analog downconversion and sub-Nyquist sampling stages: A) Capture the passband signal and 

bandpass filter to remove out-of-band interference, B) Mix the filtered passband waveform by either cos(𝜔0𝑡) or 

−sin(𝜔0𝑡), C) Bandpass filter the intermediate frequency signals to remove undesired mixing products and enforce 

bandlimiting, then sub-Nyquist sample using separate ADCs. 
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1.4.1.12. PHASE COHERENCE 

 Phase coherence refers to the degree of accuracy between the true phase and estimated phase of a given 

sinusoidal wave, relative to a given time-frequency reference point. The phase of a sinusoid cos(𝜔ref  ∙ (𝑡 − 𝑡ref)) 

depends on the true reference center frequency 𝜔ref  and reference time 𝑡ref. Multiple RF systems are mutually 

phase coherent when synchronized to the same time-frequency reference point within an acceptable uncertainty. 

For example, an analog downconverter (see 1.4.1.9) forms orthogonal inphase and quadrature baseband channels 

by mixing the passband signal with phase coherent oscillators cos(𝜔ref  ∙ (𝑡 − 𝑡ref)) and −sin(𝜔ref  ∙ (𝑡 − 𝑡ref)).  

If the oscillators are not phase coherent (e. g.  cos(𝜔1  ∙ (𝑡 − 𝑡1))  and − sin(𝜔2  ∙ (𝑡 − 𝑡2)) , 𝑡1 ≠ 𝑡2, 𝜔1 ≠ 𝜔2), 

then the baseband channels are no longer orthogonal and the generated baseband signal does not accurately 

represent the passband signal information. 

 Consider the phase coherence between a transmitter and receiver. A coherent radar system minimizes the 

uncertainty of the propagation delay 𝑡delay between the transmitter and receiver, thus allowing for accurate radar 

localization. For convenience, the time-frequency reference 𝑡ref and 𝜔ref  is set relative to the radar transmitter.  

The transmit signal 𝑠pb(𝑡) is emitted in a vacuum with center frequency 𝜔ref beginning at a time reference 𝑡ref  

𝑠pb(𝑡 − 𝑡ref) = 𝐴(𝑡 − 𝑡ref) cos(𝜔ref  ∙ (𝑡 − 𝑡ref) + 𝜙(𝑡 − 𝑡ref))  

(1.31) 

After a given time delay 𝑡delay traversed at the speed of light, the transmit signal is recorded by the receiver as  

𝑦(𝑡) = 𝐴(𝑡 − 𝑡ref − 𝑡delay) cos (𝜔ref  ∙ (𝑡 − 𝑡ref − 𝑡delay) + 𝜙(𝑡 − 𝑡ref − 𝑡delay))  

(1.32) 

To determine the propagation delay 𝑡delay, the receive signal 𝑦(𝑡) is mixed with oscillators to yield the receive signal 

𝑦mix(𝑡, 𝜔ref
′ , 𝑡ref

′ ), where 𝜔ref
′  and 𝑡ref

′  are the assumed (but potentially incorrect) time-frequency references.  
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𝑦mix(𝑡, 𝜔ref
′ , 𝑡ref

′ ) = 𝑦(𝑡) ∙ (cos(𝜔ref
′ ∙ (𝑡 − 𝑡ref

′ )) − 𝑗 sin(𝜔ref
′ ∙ (𝑡 − 𝑡ref

′ )))                                                                

    = 𝐴(𝑡 − 𝑡ref − 𝑡delay) cos (𝜔ref  ∙ (𝑡 − 𝑡ref − 𝑡delay) + 𝜙(𝑡 − 𝑡ref − 𝑡delay))

                               ∙ (cos(𝜔ref
′ ∙ (𝑡 − 𝑡ref

′ )) − 𝑗 sin(𝜔ref
′ ∙ (𝑡 − 𝑡ref

′ )))  
 

                          

   =
1

2
𝐴(𝑡 − 𝑡ref − 𝑡delay)                                                                                                                          

            ∙

{
  
 

  
 
       [

    cos (𝜔ref  ∙ (𝑡 − 𝑡ref − 𝑡delay) + 𝜔ref
′  ∙ (𝑡 − 𝑡ref

′ ) + 𝜙(𝑡 − 𝑡ref − 𝑡delay))

+ cos (𝜔ref  ∙ (𝑡 − 𝑡ref − 𝑡delay) − 𝜔ref
′  ∙ (𝑡 − 𝑡ref

′ ) + 𝜙(𝑡 − 𝑡ref − 𝑡delay))
]

− 𝑗 [
    sin (𝜔ref  ∙ (𝑡 − 𝑡ref − 𝑡delay) + 𝜔ref

′  ∙ (𝑡 − 𝑡ref
′ ) + 𝜙(𝑡 − 𝑡ref − 𝑡delay))

+ sin (𝜔ref  ∙ (𝑡 − 𝑡ref − 𝑡delay) − 𝜔ref
′  ∙ (𝑡 − 𝑡ref

′ ) + 𝜙(𝑡 − 𝑡ref − 𝑡delay))
]

 

}
  
 

  
 

 

(1.33) 

After mixing, the additive frequency component of 𝑦mix(𝑡, 𝜔ref
′ , 𝑡ref

′ ) is removed by filtering to yield 

 𝑦error(𝑡, 𝜔ref
′ , 𝑡ref

′ ) =
1

2
𝐴(𝑡 − 𝑡ref − 𝑡delay)                                                                                                                   

                           ∙ {
       cos (𝜔ref  ∙ (𝑡 − 𝑡ref − 𝑡delay) − 𝜔ref

′  ∙ (𝑡 − 𝑡ref
′ ) + 𝜙(𝑡 − 𝑡ref − 𝑡delay))

− 𝑗 sin (𝜔ref  ∙ (𝑡 − 𝑡ref − 𝑡delay) − 𝜔ref
′  ∙ (𝑡 − 𝑡ref

′ ) + 𝜙(𝑡 − 𝑡ref − 𝑡delay))
 }

 

(1.34) 

 

A perfectly coherent radar transmitter and receiver will allow for determination of the transmitted signal at a given 

delay in a vacuum, where 𝜔ref = 𝜔ref
′  and 𝑡ref = 𝑡ref

′ , shown in (1.35). Note that a phase shift 𝜔ref (−𝑡delay) is 

imposed on the resulting receive signal based on the frequency of operation (relative to wavelength) and the delay 

of the received signal 𝑡delay. 

𝑦coherent(𝑡) =
1

2
𝐴(𝑡 − 𝑡ref − 𝑡delay) ∙ {

       cos (𝜔ref (−𝑡delay) + 𝜙(𝑡 − 𝑡ref − 𝑡delay))

− 𝑗 sin (𝜔ref (−𝑡delay) + 𝜙(𝑡 − 𝑡ref − 𝑡delay))
 } 

(1.35) 

A radar system is non-coherent if the transmitter and receiver oscillator are not time/phase synchronous within a 

degree of acceptable uncertainty, where 𝜔ref ≠ 𝜔ref
′  and/or 𝑡ref ≠ 𝑡ref

′ . The time-frequency reference may drift 

over time due to oscillator phase noise and frequency drift from environmental factors. Frequency coherence error, 

where 𝜔ref ≠ 𝜔ref
′  and 𝑡ref = 𝑡ref

′ , leads to drift in temporal and phase estimates over time such that processing 

over slow time intervals is challenging without compensation.  
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𝑦noncoherent(𝑡, 𝜔ref
′ ) = 𝐴(𝑡 − 𝑡delay) [cos ((𝜔ref − 𝜔ref

′ ) ∙ (𝑡 − 𝑡delay) + 𝜙(𝑡 − 𝑡delay))]  

(1.36) 

Temporal coherence errors, where 𝜔ref = 𝜔ref
′  and 𝑡ref ≠ 𝑡ref

′ , leads to incorrect estimation of 𝑡delay . Defining 

∆𝑡ref = 𝑡ref − 𝑡ref
′ , the additional phase term 𝜔ref (−∆𝑡ref − 𝑡delay) imposes additional uncertainty in determining 

𝑡delay. Here, fine phase coherence errors occur when 𝜔ref (−∆𝑡ref) < 2𝜋 and coarse phase coherence errors occur 

when 𝜔ref (−∆𝑡ref) > 2𝜋. Practically, temporal coherence errors can be calibrated for by GPS or observance of 

strong scene reflections at known locations [20]. 

  𝑦noncoherent(𝑡, 𝑡ref
′ ) = 𝐴(𝑡 − ∆𝑡ref − 𝑡delay) [cos (𝜔ref  ∙ (−∆𝑡ref − 𝑡delay) + 𝜙(𝑡 − ∆𝑡ref − 𝑡delay))]  

(1.37) 

Illustrations of each coherence error are shown in Figure 22. All radar systems considered henceforth are assumed 

to be phase coherent systems, such that non-ideal range uncertainties are assumed negligible. 

 

Figure 22: Types of radar coherence errors, resulting in inaccuracies for target range/Doppler estimation and radar 

processing. Phase coherence between channels is dependent on the assumed center frequency, temporal 

synchronization (coarse tuning between fast time samples), and phase synchronization (fine tuning of phase relative 

to the center frequency). 
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1.4.1.13. REVIEW OF FOURIER TRANSFORMATIONS 

 Four flavors of Fourier notation include the Fourier Transform (FT), Fourier Series (FS), Discrete Time Fourier 

Transform (DTFT), and Discrete Fourier Transform (DFT). Each transform represents a transference between a 

discrete/continuous time dimension to a discrete/continuous frequency dimension for signals of periodic/aperiodic 

nature as summarized in Figure 23 [42]. While each Fourier representation has purpose, modern radar systems often 

implement discrete time processing. Consequently, the DFT and DTFT are of interest as transformations from 

discrete time to discrete/continuous frequency. The DFT assumes input signal periodicity, though the DFT is often 

applied to aperiodic input signals and the error is assumed negligible. 

 

Figure 23: Summary of Fourier methods. Periodicity is indicated by the  ∙ ̂ accent. 

The formal definition of the discrete Fourier transform (DFT) and inverse discrete Fourier transform (IDFT) is 

𝑠(𝑚) = ∑ 𝑠(𝑛)𝑒− 
𝑗2𝜋𝑚𝑛

𝑀

𝑁−1

𝑛=0

   

𝑠(𝑛) =
1

𝑀
∑ 𝑠(𝑚)𝑒

𝑗2𝜋𝑚𝑛
𝑁

𝑀−1

𝑚=0

 

(1.38) 
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The DFT and IDFT are defined over discrete time 𝐧 = [0 ⋯ 𝑁 − 1]𝑇  and frequency 𝐦 = [0 ⋯ 𝑀 − 1]𝑇 .  

The square DFT matrix 𝐀 and IDFT matrix 𝐀𝐻 are defined with equal dimensions (𝑁 = 𝑀). 

𝐀 = 𝑒−𝑗2𝜋(𝐦 𝐧𝑇)/𝑁                         
𝐬f = 𝐀𝐬                                             

        𝐬 = (
1

𝑁
)𝐀𝐻𝐬f                                        

 𝐬 = (
𝐀𝐻𝐀

𝑁
)𝐬 = (𝐈)𝐬                     

 

(1.39) 

The square transformation matrix 𝐓 applies a DFT circular shift vector rearrangement. The operation 𝐓𝐬f swaps the 

former length ⌈𝑁/2⌉ and latter length ⌊𝑁/2⌋ halves of the vector 𝐬f , where ⌈ ∙ ⌉ is the ceil operator and ⌊ ∙ ⌋ is the 

floor operator. The transformation matrix 𝐓𝑇  applies an IDFT circular shift vector rearrangement. The operation 

𝐓𝑇𝐬f  swaps the former length ⌊𝑁/2⌋   and latter length ⌈𝑁/2⌉  halves of the vector 𝐬f , undoing the DFT shift.  

For convenience, the matrices 𝐀̅ = 𝐀𝐓𝑇 and 𝐀̅𝐻 = 𝐓𝐀𝐻  are defined. 

1.4.1.14. PARSEVAL’S THEOREM  AND THE 𝐿𝓅-NORM 

Parseval’s theorem formally states the unitary transformation property of the Fourier transform, which 

defines that the time and frequency representations have equal energy. Here, ‖ ∙ ‖2
  is the 𝐿2-norm operation. 

∫|𝑠(𝑡)|2𝑑𝑡

∞

−∞

= ‖𝑠(𝑡)‖2
2 = ∫|𝑠(𝑓)|2𝑑𝑡

∞

−∞

= ‖𝑠(𝑓)‖2
2 

(1.40) 

Parseval’s theorem is valid for the discrete Fourier transform, though the frequency vector “energy” must be scaled 

by the number of DFT samples in accordance with (1.38). 

∑|𝑠(𝑛)|2
𝑁−1

𝑛=0

= 𝐬𝐻𝐬 = ‖𝐬‖2
2 =

1

𝑀
∑|𝑠(𝑚)|2
𝑀−1

𝑚=0

=
𝐬f
𝐻𝐬f

𝑁
=

‖𝐬f‖2
2

𝑁
  

(1.41) 
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The 𝐿𝓅 -norm of the continuous signal 𝑠(𝑡) or the discrete vector 𝐬 is formally defined as 

‖𝑠(𝑡)‖𝓅
 = ( ∫|𝑠(𝑡)|𝑝 𝑑𝑡

∞

−∞

)

1/𝓅

 

‖𝐬‖𝓅
 = (∑|𝑠(𝑛)|𝓅

𝑁−1

𝑛=0

)

1/𝓅
 

(1.42) 

As 𝓅 → ∞ , the norm determines the signal maximum magnitude (where 𝓅 = 8  is a sufficient approximation). 

Additionally, 𝓅 = 2 determines the signal root-mean squared magnitude (called the Euclidean norm) and 𝓅 = 1 

determines the signal mean magnitude. 

1.4.1.15. ADDITIVE WHITE GAUSSIAN NOISE (AWGN) 

Additive white Gaussian noise (AWGN) refers to the background radiation of the universe, which temporally 

exhibits zero-mean Gaussian distribution due to the statistical central limit theorem amidst extraterrestrial sources 

[61]. Noise perturbations are frequency indiscriminate, exhibiting a uniform power spectrum as the observation 

interval increases. The ratio of the average signal power 𝒫s  to the expected noise power 𝒫v  over the interval 𝑇p  

is called the unprocessed signal-to-noise ratio (SNR). The additive noise 𝑣(𝑡) has an expected power E{|𝑣(𝑡)|2} 

equal to the variance 𝜎v
2 for the mean-ergodic, zero-mean Gaussian process [61]. 

SNRinit =
𝒫s

𝒫v

=
𝒫s

Ev{|𝑣(𝑡)|2}
=

𝒫s

𝜎v
2
=

1
𝑇p

∫ |𝑠(𝑡)|2𝑑𝑡
𝑇p
0

lim
𝑇→∞

{
1
𝑇 ∫ |𝑣(𝑡)|2𝑑𝑡

𝑇

0
}

 

(1.43) 

Upon sampling the random process 𝑣(𝑡), the sample values are determined. The discrete initial SNR is expressed as 

SNRinit =
𝒫s

𝒫v

=
𝒫s

Ev{|𝑣(𝑛)|2}
=

𝒫s

𝜎v
2
=

1
𝑁p

∑ |𝑠(𝑛)|2 
∀𝑛

lim
𝑁→∞

{
1
𝑁

∑ |𝑣(𝑛)|2 
∀𝑛 }

≈
‖𝐬‖2

2

‖𝐯‖2
2  . 

(1.44) 
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1.4.2.  RANGE 

 The fast time dimension refers to unprocessed data collected over the radar CPI, whereas the range 

dimension refers to processed data that provides ranging information about the illuminated scene. Here, a simple 

RF scattering environment is considered to define fundamental phenomenology. The transmit signal is assumed to 

be frequency modulated, in consideration of amplifier power efficiency and distortions, such that the waveform 

instantaneous frequency is 𝑓i(𝑡) =
1

2𝜋
(
𝑑𝜙(𝑡)

𝑑𝑡
). 

1.4.2.1. ELECTROMAGNETIC FUNDAMENTALS 

 The fundamentals of electromagnetic scattering are briefly discussed here to establish a physical context 

for range dimension modeling. The reader is referred to [62] for additional details on electromagnetic theory and 

antenna considerations. First, electromagnetic equations are defined to describe radiation from a source located at 

the coordinate origin. Second, electromagnetic equations are defined to describe radiation from a source located at 

an arbitrary position. Third, Maxwell’s wave equation and the Green’s function are defined.  The Green’s function 

substantiates that electromagnetic scattering can be modeled as convolution between the transmit signal and point 

scatterers in the environment. Fourth, the Borne approximation is defined to establish the assumptions involved 

when modeling electromagnetic scattering as a linear process. 

 Consider a time-harmonic signal traveling in a free space vacuum. An ideal antenna located at position 𝑟̅ 

receives the electromagnetic fields emitted from a source located at the origin. The electric field strength 

𝐄⃑ (𝑟̅, 𝑡) [V/m]  and magnetic field strength 𝐇⃑⃑ (𝑟̅, 𝑡) [A/m]  form the magnitude power density as 𝐖⃑⃑⃑ (𝑟̅) [W/m2] .  

The wave intensity 𝑈(𝜃, 𝜑) [W/steradian]  describes the power density normalized relative to a 4𝜋  steradian 

spherical spreading loss, which characteristically drops off with range between two points as 1/𝑟2. Note that the 

Poynting vector 𝐖⃑⃑⃑ (𝑟̅) is not a function of time, as the fields 𝐄⃑ (𝑟̅, 𝑡) and 𝐇⃑⃑ (𝑟̅, 𝑡) are spatially orthogonal fields for all 

time and thus deliver constant power at a given spatial position (consider the analogous time dimension description 

from Section 1.4.1.4). The electromagnetic definitions from (1.45)-(1.49) are written with respect to a transmission 

source located at the origin to provide the simplest basis coordinates, which are then generalized. 
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𝐄⃑ (𝑟̅, 𝑡) =
1

𝑟
(𝐸𝜃(𝒓̂(𝜃, 𝜑))𝜽̂ + 𝐸𝜑(𝒓̂(𝜃, 𝜑))𝝋̂)𝑒−𝑗𝑘0(𝑡)𝑟𝑒𝑗(𝜔c𝑡+𝜙(𝑡))           (Extended Notation) 

             =
1

𝑟
𝐞⃑ (𝒓̂(𝜃, 𝜑))𝑒−𝑗𝑘0(𝑡)𝑟𝑒𝑗(𝜔c𝑡+𝜙(𝑡))                                                     (Vector Notation) 

             =
1

𝑟
|𝐞⃑ (𝒓̂(𝜃, 𝜑))| 𝐞̂(𝒓̂(𝜃, 𝜑))𝑒−𝑗𝑘0(𝑡)𝑟𝑒𝑗(𝜔c𝑡+𝜙(𝑡))                             (Magnitude/Polarization Notation) 

(1.45) 

𝐇⃑⃑ (𝑟̅, 𝑡) =
1

−𝑗𝜔𝜇0

(∇ × 𝐄⃑ (𝑟̅, 𝑡)) 

(1.46) 

𝐖⃑⃑⃑ (𝑟̅) =
1

2
𝑅𝑒{𝐄⃑ (𝑟̅, 𝑡)  × 𝐇⃑⃑ (𝑟̅, 𝑡)} 

            =  
(|𝐸𝜃(𝒓̂(𝜃, 𝜑))|

2
+ |𝐸𝜑(𝒓̂(𝜃, 𝜑))|

2
)

2𝜂0

𝐫̂(𝜃, 𝜑)

𝑟2
                                (Extended Notation) 

            =
|𝐞⃑ (𝒓̂(𝜃, 𝜑))|

2

2𝜂0

𝐫̂(𝜃, 𝜑)

𝑟2
                                                                          (Vector Notation) 

            = 𝑈(𝒓̂(𝜃, 𝜑))
𝐫̂(𝜃, 𝜑)

𝑟2
                                                                              (Intensity Notation) 

(1.47) 

𝑟̅ = 𝑟 sin(𝜃) 𝑐𝑜𝑠(𝜑)𝐱̂ + 𝑟 sin(𝜃) 𝑠𝑖𝑛(𝜑)𝐲̂ + 𝑟𝑐𝑜𝑠(𝜃)𝐳̂                              (Spherical to Cartesian Mapping) 

(1.48) 

𝒓̂(𝜃, 𝜑) =
𝑟̅(𝜃, 𝜑)

|𝑟̅(𝜃, 𝜑)|
=  

𝑟̅(𝜃, 𝜑)

𝑟
                                                                        (Normalized Direction Unit Vector) 

(1.49) 

The value 𝜇0  is the magnetic permeability of free-space, 𝜂0  is the intrinsic impedance of free-space, and  

𝑘0(𝑡) =
2𝜋(𝑓𝑐+𝑓i(𝑡))

𝑐
=

(𝜔𝑐+
𝑑𝜙(𝑡)

𝑑𝑡
)

𝑐
=

2𝜋

𝜆(𝑡)
 is the wavenumber in the direction of propagation.  

The wavenumber 𝑘0(𝑡)  is often assumed constant (i.e. 𝑘0(𝑡) = 𝑘0  and 𝜆(𝑡) = 𝜆𝑐 ) to decouple the space-time 

dimensions (implying that the waveform has narrow bandwidth). Coupling exists when the instantaneous frequency 

𝑓i(𝑡) significantly deviates from the center frequency 𝑓𝑐 (implying that the waveform has wide bandwidth).  

𝐸𝜃  and 𝐸𝜑  are components of the electric field vector 𝐞⃑  defined in the 𝜽̂ and 𝝋̂ spherical unit vector directions.  

The electric field vector 𝐞⃑  is decomposed into magnitude |𝐞⃑ (𝒓̂(𝜃, 𝜑))| and polarization 𝐞̂(𝒓̂(𝜃, 𝜑)) components. 

The term 𝑒−𝑗𝑘0(𝑡)𝑟  describes the wavefront phase with respect to spatial position. The term 𝑒𝑗(𝜔c𝑡+𝜙(𝑡)) describes 

the phase with respect to time, independent of spatial position 𝑟. 
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Figure 24: Spherical coordinate system electromagnetic definitions. 

 The equations outlined in (1.50)-(1.55) are a generalization of (1.45)-(1.49). Two ideal antennas located at 

arbitrary locations 𝑟̅ and 𝑟̅’ receive and transmit electromagnetic fields, respectively. The electric field strength 

𝐄⃑ (𝑘̅, 𝑡) [V/m]  and magnetic field strength 𝐇⃑⃑ (𝑘̅, 𝑡) [A/m]  form a magnitude power density 𝐖⃑⃑⃑ (𝑘̅) [W/m2] .  

The wave intensity 𝑈(𝜃, 𝜑) [W/steradian]  describes the power density normalized relative to a 4𝜋  steradian 

spherical spreading loss, which characteristically drops off with range between two points as 1/ 𝑅2 , where  

𝑅 = 𝑟 − 𝑟′ . Notice that 𝒌̂ is defined between two arbitrary positions 𝑟̅  and 𝑟̅ ’. Because 𝒌̂ is dependent on two 

arbitrary positions, the electric field is now defined in terms of vector components that are orthogonal to 𝒌̂, namely 

the horizontal 𝒉̂ and vertical  𝒗̂ vector components. The polarization components in 𝐞̂(𝒌̂) are likewise defined by 

the horizontal 𝒉̂ and vertical  𝒗̂ vector components. 

 

 

 

 

 



44 

 

𝐄⃑ (𝑟̅, 𝑡) =
1

|𝑅|
(𝐸𝐻(𝒌̂)𝒉̂ + 𝐸𝑉(𝒌̂)𝒗̂)𝑒−𝑗𝑘0(𝑡)|𝑅|𝑒𝑗(𝜔c𝑡+𝜙(𝑡)) =  

1

|𝑅|
(𝐸𝐻(𝒌̂)𝒉̂ + 𝐸𝑉(𝒌̂)𝒗̂)𝑒−𝑗𝑘0(𝑡) 𝒌̂ ∙(𝑟̅−𝑟̅′)𝑒𝑗(𝜔c𝑡+𝜙(𝑡)) 

             =
1

|𝑅|
(𝐸𝐻(𝒌̂)𝑒+𝑗𝑘̅(𝑡) ∙ 𝑟̅′ 𝒉̂ + 𝐸𝑉(𝒌̂)𝑒+𝑗𝑘̅(𝑡) ∙ 𝑟̅′ 𝒗̂)𝑒−𝑗𝑘̅(𝑡) ∙ 𝑟̅𝑒𝑗(𝜔c𝑡+𝜙(𝑡))      (Extended Notation) 

             =
1

|𝑅|
𝐞⃑ (𝒌̂, 𝑡)𝑒−𝑗𝑘̅(𝑡) ∙ 𝑟̅𝑒𝑗(𝜔c𝑡+𝜙(𝑡))                                                                     (Vector Notation) 

             =
1

|𝑅|
|𝐞⃑ (𝒌̂)| 𝐞̂(𝒌̂, 𝑡)𝑒−𝑗𝑘̅(𝑡) ∙ 𝑟̅𝑒𝑗(𝜔c𝑡+𝜙(𝑡))                                                       (Magnitude/Polarization Notation) 

(1.50) 

𝐇⃑⃑ (𝑟̅, 𝑡) =
1

−𝑗𝜔𝜇0

(∇ × 𝐄⃑ (𝑟̅, 𝑡)) 

(1.51) 

𝐖⃑⃑⃑ (𝑟̅) =
1

2
𝑅𝑒{𝐄⃑ (𝑟̅, 𝑡)  × 𝐇⃑⃑ (𝑟̅, 𝑡)} 

            =  
(|𝐸𝐻(𝒌̂)|

2
+ |𝐸𝑉(𝒌̂)|

2
)

2𝜂0

𝐤̂

|𝑅|2
                                                                        (Extended Notation) 

            =
|𝐞⃑ (𝒌̂)|

2

2𝜂0

𝐤̂

|𝑅|2
                                                                                                      (Vector Notation) 

            = 𝑈(𝒌̂)
𝐤̂

|𝑅|2
                                                                                                          (Intensity Notation) 

(1.52) 

𝑟̅ = 𝑟 sin(𝜃) 𝑐𝑜𝑠(𝜑)𝐱̂ + 𝑟 sin(𝜃) 𝑠𝑖𝑛(𝜑)𝐲̂ + 𝑟𝑐𝑜𝑠(𝜃)𝐳̂ 

𝑟̅′ = 𝑟′ sin(𝜃′) 𝑐𝑜𝑠(𝜑′)𝐱̂ + 𝑟′ sin(𝜃′) 𝑠𝑖𝑛(𝜑′)𝐲̂ + 𝑟′𝑐𝑜𝑠(𝜃′)𝐳̂  

(1.53) 

𝒌̂(𝜃, 𝜑) =
𝑟̅(𝜃, 𝜑) − 𝑟̅′(𝜃, 𝜑)

|𝑟̅(𝜃, 𝜑) − 𝑟̅′(𝜃, 𝜑)|
 

𝑘̅(𝑡) = 𝑘0(𝑡)𝒌̂  

(1.54) 

𝒉̂ =
𝒛̂  ×  𝒌̂

|𝒛̂  ×  𝒌̂|
                                          (Orthogonal to 𝒌̂ 𝑎𝑛𝑑 𝒛̂, horizontal polarization cross 𝒛̂ direction) 

𝒗̂ = 𝒌̂  ×  𝒉̂                                             (Orthogonal to 𝒌̂ 𝑎𝑛𝑑 𝒉̂, vertical polarization in 𝒛̂ direction) 

(1.55) 

𝐸𝐻 and 𝐸𝑉  are components of the electric field vector 𝐞⃑  defined in the horizontal 𝒉̂ and vertical 𝒗̂ unit vector 

directions. The electric field vector 𝐞⃑  is decomposed into magnitude |𝐞⃑ (𝒌̂)| and polarization 𝐞̂(𝒌̂, 𝑡) components.  
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Figure 25: Generalized coordinate system electromagnetic definitions. 

Electromagnetic propagation in a vacuum is constituted from Maxwell’s electromagnetic wave equation.  

It can be shown [63] that the electric field 𝐆⃑⃑ (𝑟̅ − 𝑟̅′, 𝑡) originating from an arbitrary source 𝐒 (𝑟̅′, 𝑡) transmitting at 

location 𝑟̅′ is determined by solving Maxwell’s electromagnetic wave equation shown in (1.56). 

−∇ ∙ ∇𝐆⃑⃑ (𝑟̅ − 𝑟̅′, 𝑡) +
1

𝑐2

𝜕2𝐆⃑⃑ (𝑟̅ − 𝑟̅′, 𝑡)

𝜕𝑡2
= 𝐒 (𝑟̅′, 𝑡) 

(1.56) 

Assuming 𝐒 (𝑟̅′, 𝑡) takes the form of an impulse (i.e. 𝐒 δ
 (𝑟̅′, 𝑡) = 𝛿(𝑟̅′)𝛿(𝑡)) , then the transfer function response of 

the differential equation in (1.56) can be determined, and is referred to as the Green’s function in (1.57). 

𝐆⃑⃑ δ
 (𝑟̅ − 𝑟̅′, 𝑡) =

𝛿 (𝑡 −
|𝑟̅ − 𝑟̅′|

𝑐
)

4𝜋|𝑟̅ − 𝑟̅′|
 

(1.57) 
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Importantly, the wave equation in (1.56) is a linear differential equation. From the impulse transfer function listed 

in (1.57), the general expression for 𝐆⃑⃑ (𝑟̅ − 𝑟̅′, 𝑡) is written as a convolution between the arbitrary electric field and 

the impulse response of the system [64]. Conveniently, because the transfer function is simply an impulse response 

in delayed time and range, the convolution (∗) results in an attenuated and delayed copy of the source 𝐒 (𝑟̅′, 𝑡). 

  

𝐆⃑⃑ (𝑟̅ − 𝑟̅′, 𝑡) = 𝐒 (𝑟̅′, 𝑡) ∗ 𝐆⃑⃑ δ
 (𝑟̅ − 𝑟̅′, 𝑡) = 𝐒 (𝑟̅′, 𝑡) ∗

𝛿 (𝑡 −
|𝑟̅ − 𝑟̅′|

𝑐
)

4𝜋|𝑟̅ − 𝑟̅′|

                                                         

 

=
𝐒 (𝑟̅′, 𝑡 −

|𝑟̅ − 𝑟̅′|
𝑐

)

4𝜋|𝑟̅ − 𝑟̅′|

 

(1.58) 

The impinging electromagnetic field 𝐆⃑⃑ (𝑟̅ − 𝑟̅′, 𝑡)  reflects on a composite scatterer located at 𝑟̅ = 𝑟̅′′ .  

The Borne approximation [63] asserts that the incident electromagnetic field is the single driving field at each point 

in the composite scatterer (signifying a collection of point scatterers). The Borne approximation enforces that  

the waveform is linearly scattered from the environment, where each reflection is deemed independent.  

The reflected wave 𝐆⃑⃑ ref is modeled as a reemission of the incident wave 𝐆⃑⃑ inc scaled by the scattering term 𝛾. 

𝐆⃑⃑ ref(𝑟̅
′′ − 𝑟̅′, 𝑡) = 𝛾𝐆⃑⃑ inc(𝑟̅

′′ − 𝑟̅′, 𝑡) 

(1.59) 

Significant error results when extended scatterers or excessive multipath (wave bounces between scatterers before 

reflecting towards the receiver) are present, as scatterer reflections are no longer independent. The approximation 

is effective when the scattered field has significantly less power density than the incident field, so multipath becomes 

sufficiently attenuated. 
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1.4.2.2. RECEIVED SCATTERING FROM A STATIONARY SCENE 

Consider a monostatic radar emitting the passband signal 𝑠pb(𝑡)  with narrow bandwidth assumed.  

The transmit signal propagates towards scatterers, reflects from the scene, then propagates back to the radar 

receiver for downconversion to baseband. Consider a scene model containing a single stationary point scatterer 

located at a distance 𝑅  from the radar. From the Green’s function and the Borne approximation, the received 

backscatter signal from a single point scatterer 𝑦pb
single

(𝑡) is a scaled and delayed copy of the transmit signal 𝑠pb(𝑡). 

The electromagnetic wave has a two-way propagation delay 𝜏 = 2𝑅/𝑐  when traveling at the speed of light 𝑐 .  

Assume that additive white Gaussian noise (AWGN) is captured at passband, represented by 𝑣pb(𝑡). 

𝑦pb
single(𝑡) = 𝑠pb(𝑡) ∗ (𝛾 𝛿(𝑡 − 𝜏)) + 𝑣pb(𝑡) = 𝛾𝑠pb(𝑡 − 𝜏) + 𝑣pb(𝑡) 

(1.60) 

Attenuation from spherical spreading loss is subsumed into the complex scattering term 𝛾. An implicit assumption 

is that the scattering term 𝛾 is independent of transmit frequency, however, atmospheric effects [65] and frequency 

dependent scattering [16, 23-28] must be considered in scene specific radar design. The passband signal 𝑦pb
single

(𝑡) 

is demodulated to form the baseband signal 𝑦bb
single(𝑡), where 𝑠pb(𝑡) = 𝑠bb(𝑡)𝑒

𝑗2𝜋𝑓c𝑡 and 𝑣pb(𝑡) = 𝑣bb(𝑡)𝑒
𝑗2𝜋𝑓c𝑡. 

𝑦bb
single(𝑡) = 𝛾[𝑠pb(𝑡 − 𝜏) + 𝑣pb(𝑡)]𝑒

−𝑗2𝜋𝑓c𝑡 

                   = 𝛾[𝑠bb(𝑡 − 𝜏)𝑒𝑗2𝜋𝑓c(𝑡−𝜏) + 𝑣bb(𝑡)𝑒
𝑗2𝜋𝑓c𝑡]𝑒−𝑗2𝜋𝑓c𝑡  

                   = 𝛾 𝑠bb(𝑡 − 𝜏)𝑒−𝑗2𝜋𝑓c𝜏 + 𝑣bb(𝑡) = 𝛾 𝑠bb (𝑡 −
2𝑅

𝑐
) 𝑒

−𝑗(
4𝜋𝑅
𝜆c

)
+ 𝑣bb(𝑡) 

                   = 𝑠bb(𝑡) ∗ (𝛾 𝛿(𝑡 − 𝜏)𝑒−𝑗2𝜋𝑓c𝜏) + 𝑣bb(𝑡) = 𝑠bb(𝑡) ∗ (𝛾 𝛿 (𝑡 −
2𝑅

𝑐
) 𝑒

−𝑗(
4𝜋𝑅
𝜆c

)
) + 𝑣bb(𝑡) 

(1.61) 

Consider multiple scatterers present in the scene. Due to the linearity of Maxwell’s wave equation, the reflected 

electromagnetic waves are superimposed to form the passband receive signal 𝑦pb
multi(𝑡) or demodulated baseband 

receive signal 𝑦bb
multi(𝑡). The ideal superposition of multiple scatterer echoes is shown in Figure 26. 
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𝑦pb
multi(𝑡) =  ∑𝛾𝑖  𝑠pb(𝑡 − 𝜏𝑖)

∀𝑖

+ 𝑣pb(𝑡) 

                  = 𝑠pb(𝑡) ∗ (∑𝛾𝑖  𝛿(𝑡 − 𝜏𝑖)

∀𝑖

) + 𝑣pb(𝑡)                                                                                                                  

𝑦bb
multi(𝑡) =  ∑𝛾𝑖  𝑠bb(𝑡 − 𝜏𝑖)𝑒

−𝑗2𝜋𝑓c𝜏𝑖

∀𝑖

+ 𝑣bb(𝑡) = ∑𝛾𝑖  𝑠bb (𝑡 −
2𝑅𝑖

𝑐
) 𝑒

−𝑗(
4𝜋𝑅𝑖
𝜆c

)

∀𝑖

+ 𝑣bb(𝑡) 

                 =  𝑠bb(𝑡) ∗ (∑𝛾𝑖  𝛿(𝑡 − 𝜏𝑖)𝑒
−𝑗2𝜋𝑓c𝜏𝑖

∀𝑖

) + 𝑣bb(𝑡) =  𝑠bb(𝑡) ∗ (∑𝛾𝑖  𝛿 (𝑡 −
2𝑅𝑖

𝑐
) 𝑒

−𝑗(
4𝜋𝑅𝑖
𝜆c

)

∀𝑖

) + 𝑣bb(𝑡) 

(1.62) 

 

Figure 26: Ideal superposition of multiple equidistant scatterer reflections 

The continuum of point scatterers ∑ (𝛾𝑖  𝛿(𝑡 − 𝜏𝑖))∀𝑖→∞  forms the range profile 𝛾(𝑡). The passband receive signal 

𝑦pb
cont(𝑡) is modeled as a convolution of the transmission 𝑠pb(𝑡) and the range profile 𝛾(𝑡). The passband signal 

𝑦pb
cont(𝑡) is then demodulated to form the baseband signal 𝑦bb

cont(𝑡). 

𝑦pb
cont(𝑡) = ∫𝛾(𝜏) 𝑠pb(𝑡 − 𝜏) 𝑑𝜏 + 𝑣pb(𝑡)                                                                                                             

                = 𝑠pb(𝑡) ∗  𝛾(𝑡) + 𝑣pb(𝑡) 

𝑦bb
cont(𝑡) = ∫𝛾(𝜏) 𝑠bb(𝑡 − 𝜏)𝑒−𝑗2𝜋𝑓c𝜏 𝑑𝜏 + 𝑣bb(𝑡) = ∫𝛾(𝜏) 𝑠bb (𝑡 −

2𝑅(𝜏)

𝑐
) 𝑒

−𝑗(
4𝜋𝑅(𝜏)

𝜆c
)
𝑑𝜏 + 𝑣bb(𝑡) 

                = 𝑠bb(𝑡) ∗ (𝛾(𝑡)𝑒−𝑗2𝜋𝑓c𝑡) + 𝑣bb(𝑡) = 𝑠bb(𝑡) ∗ 𝛾̅(𝑡) + 𝑣bb(𝑡) 

(1.63) 
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Assume that a single point scatterer is present in the scene, such that 𝛾(𝑡)𝑒−𝑗2𝜋𝑓c𝑡 = 𝛾𝛿(𝑡 − 𝜏) . 

The ideal radar return is described as a scaled and delayed copy of the transmit signal, with no AWGN present.  

Note that the characteristics of the transmit signal 𝑠(𝑡) significantly impact the received radar response. 

𝑦ideal(𝑡) = 𝑠(𝑡) ∗ 𝛾𝛿(𝑡 − 𝜏) = 𝛾 𝑠(𝑡 − 𝜏) 

(1.64) 

Consequently, observations can be made about desirable radar waveform traits. Radar processing is applied to the 

baseband receive signal for subsequent detections of scatterers in the scene. 

The continuous scattering model from (1.63) is discretized, where 𝐬  is the length (𝑁p × 1)  waveform 

representing 𝑠bb(𝑡), 𝛄 is the length (𝑁γ × 1) scatterer range profile representing 𝛾̅(𝑡). 

𝐲 = 𝐬 ∗ 𝛄 + 𝐯 = 𝐒𝛄 + 𝐯 

(1.65) 

Convolution may also be expressed through the convolution matrix 𝐒 of size (𝑁p + 𝑁γ − 1 × 𝑁γ), which contains 

time-shifted versions of the vector 𝐬. 

𝐒 =

[
 
 
 
 
 
 

 

𝑠1    𝟎

⋮ 𝑠1   

𝑠𝑁p
⋮   

 𝑠𝑁p
⋱ 𝑠1

   ⋮

𝟎   𝑠𝑁p

 

]
 
 
 
 
 
 

 

(1.66) 
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1.4.2.3.  THE PULSE COMPRESSION MATCHED FILTER, AUTOCORRELATION 

A standard radar processing technique in the range dimension is pulse compression. Pulse compression 

involves filtering the received signal containing scattered echoes 𝑦(𝑡) with a selected filter 𝑤(𝑡) that compresses 

signal power to better estimate the illuminated scene characteristics 𝛾(𝑡). The continuous representation of pulse 

compression is written as a cross-correlation (⋆) between the received signal and the pulse compression filter. 

𝛾(𝑡) = 𝑤(𝑡) ⋆ 𝑦(𝑡) = ∫ 𝑤∗(𝜏) 𝑦(𝑡 + 𝜏) 𝑑𝜏

∞

−∞

= ∫ 𝑤∗(𝜏 − 𝑡) 𝑦(𝜏) 𝑑𝜏

∞

−∞

  

(1.67) 

Recall the similar definition for linear convolution (∗) is 

𝛾(𝑡) = 𝑤(𝑡) ∗ 𝑦(𝑡) = ∫ 𝑤(𝜏) 𝑦(𝑡 − 𝜏) 𝑑𝜏

∞

−∞

= ∫ 𝑤(𝑡 − 𝜏) 𝑦(𝜏) 𝑑𝜏

∞

−∞

 .  

(1.68) 

Pulse compression via correlation (⋆) can be equivalently expressed as a convolution (∗) between the received 

signal 𝑦(𝑡) and the time reversed, conjugated pulse compression filter 𝑤∗(−𝑡), shown by applying substitutions 

where 𝜏′ = −𝜏,     𝑑𝜏′ = −𝑑𝜏,     𝜏′ = 𝜏′′ − 𝑡,     𝑑𝜏′ = 𝑑𝜏′′. 

𝛾(𝑡) = 𝑤∗(−𝑡) ∗ 𝑦(𝑡) = ∫ 𝑤∗(−𝜏) 𝑦(𝑡 − 𝜏) 𝑑𝜏

∞

−∞

= ∫ 𝑤∗(𝜏′) 𝑦(𝑡 + 𝜏′) (−𝑑𝜏′)

−∞

∞

= ∫ 𝑤∗(𝜏′) 𝑦(𝑡 + 𝜏′) 𝑑𝜏′

∞

−∞

      = ∫ 𝑤∗(𝜏′′ − 𝑡) 𝑦(𝑡 + 𝜏′′ − 𝑡) 𝑑𝜏′′

∞

−∞

= ∫ 𝑤∗(𝜏′′ − 𝑡) 𝑦(𝜏′′) 𝑑𝜏′′

∞

−∞ 
= 𝑤(𝑡) ⋆ 𝑦(𝑡)                                                                                          

 

(1.69) 
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The most broadly applied pulse compression filter is the matched filter, which has been proven to maximize 

the signal-to-noise ratio (SNR) of a receive signal in the presence of additive white Gaussian noise (AWGN) [66, 67]. 

The continuous representation of the normalized pulse compression matched filter is 

𝑤mf(𝑡) =
𝑠(𝑡)

∫ |𝑠(𝑡)|2
∞

−∞
𝑑𝑡

=
𝑠(𝑡)

‖𝑠(𝑡)‖2
2  , 

(1.70) 

where the denominator power normalizes the matched filtered estimate 𝛾mf(𝑡). Application of the normalized pulse 

compression matched filter via cross-correlation is expressed as 

𝛾mf(𝑡) = 𝑤mf(𝑡) ⋆ 𝑦(𝑡) =
𝑠(𝑡)

‖𝑠(𝑡)‖2
2 ⋆ 𝑦(𝑡) =

1

‖𝑠(𝑡)‖2
2 ∫ 𝑠∗(𝜏 − 𝑡) 𝑦(𝜏) 𝑑𝜏

∞

−∞

  .  

(1.71) 

The matched filtered estimate is related to the autocorrelation function for deterministic signals. Recall the  

ideal receive signal model from (1.64), expressed as a scaled and delayed copy of the transmit signal.  

For demonstrative purposes, assume that the transmit signal is not attenuated (𝛾 = 1)  and ignore the wave 

propagation delay (𝛿(𝑡 − 𝜏) = 𝛿(𝑡)) so the ideal receive signal model becomes 𝑦ideal(𝑡) =  𝑠(𝑡). Consequently, 

the normalized matched filtered estimate of (1.71) yields 

𝛾mf
ideal(𝑡) = 𝑤mf(𝑡) ⋆ 𝑦ideal(𝑡) =

𝑠(𝑡)

‖𝑠(𝑡)‖2
2 ⋆ 𝑠(𝑡) =

1

‖𝑠(𝑡)‖2
2 ∫ 𝑠∗(𝜏 − 𝑡) 𝑠(𝜏) 𝑑𝜏

∞

−∞

  . 

(1.72) 

The autocorrelation function 𝑟(𝑡) of the deterministic signal 𝑠(𝑡) is defined as 

𝑟(𝑡) = 𝑠(𝑡) ⋆ 𝑠(𝑡) = ∫ 𝑠∗(𝜏 − 𝑡) 𝑠(𝜏) 𝑑𝜏

∞

−∞

  . 

(1.73) 
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The ideal normalized matched filtered estimate from (1.72) is equivalent to the normalized autocorrelation function 

of the deterministic signal 𝑠(𝑡). The normalized autocorrelation function 𝑟̌(𝑡) is defined as 

𝑟̌(𝑡) =
𝑠(𝑡) ⋆ 𝑠(𝑡)

‖𝑠(𝑡)‖2
2 =

1

‖𝑠(𝑡)‖2
2 ∫ 𝑠∗(𝜏 − 𝑡) 𝑠(𝜏) 𝑑𝜏

∞

−∞

  . 

( 1.74 ) 

The Wiener-Khinchin autocorrelation theorem states that the signal autocorrelation 𝑟(𝑡) is related via the Fourier 

transform to the signal absolute power spectrum 𝑟(𝑓) , as expressed in (1.75) [61]. Recalling the relationship 

between correlation and convolution from (1.69), the Weiner-Khinchin theorem is directly related to the Fourier 

transform pair between temporal convolution and frequency multiplication. 

𝑟(𝑡) = 𝑠(𝑡) ⋆ 𝑠(𝑡)  = 𝑠∗(−𝑡) ∗ 𝑠(𝑡)  
 

      
↔
ℱ

       𝑟
(𝑓) = 𝑠∗(𝑓)𝑠(𝑓) = |𝑠(𝑓)|2

 
 

(1.75) 

Pulse compression may likewise be expressed in discrete dimensions. Recall the discrete radar receive signal 

model expressed in (1.65). The (𝑁w × 1)  pulse compression filter 𝐰  is correlated with the (𝑁p + 𝑁γ − 1 × 1) 

receive vector 𝐲, which determines the (𝑁w + 𝑁p + 𝑁γ − 2 × 1) range profile estimate 𝛄̂ with convolutional tails. 

The convolutional tails of the range profile estimate 𝛄̂, consisting of the leading and trailing (𝑁w + 𝑁p)/2 samples, 

are removed to examine the relevant (𝑁γ × 1)  scene for comparison to the true range profile 𝛄 .  

The convolution matrix 𝐖 of size (𝑁p + 𝑁γ − 1) × (𝑁w + 𝑁p + 𝑁γ − 2) contains time-shifted versions of the pulse 

compression filter 𝐰. The Hermitian transposed matrix 𝐖𝐻 exhibits conjugation and vector reversal of the filter 𝐰, 

consequently applying the cross-correlation operator. 

𝛄̂ = 𝐰 ⋆ 𝐲 = 𝐖𝐻𝐲 = 𝐖𝐻(𝐒𝛄 + 𝐯) = 𝐖𝐻𝐒𝛄 + 𝐖𝐻𝐯 

(1.76) 
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The convolution matrix 𝐖 is expressed in (1.77). 

𝐖 =

[
 
 
 
 
 

 

𝑤𝑁w
… 𝑤1   𝟎

 𝑤𝑁w
… 𝑤1   

   ⋱   

𝟎   𝑤𝑁w
… 𝑤1

 

]
 
 
 
 
 

, 𝐖𝐻 =

[
 
 
 
 
 
 

 

𝑤𝑁w
∗    𝟎

⋮ 𝑤𝑁w
∗   

𝑤1
∗ ⋮   

 𝑤1
∗ ⋱ 𝑤𝑁w

∗

   ⋮

𝟎   𝑤1
∗

 

]
 
 
 
 
 
 

 

(1.77) 

While analog matched filtering may be performed using SAW filters for repeating pulsed waveforms [40],  

matched filtering is typically performed after analog-to-digital conversion using the baseband model. The discrete 

normalized pulse compression matched filter 𝐰mf is expressed in (1.78), where the denominator power normalizes 

the matched filtered estimate 𝛄̂mf.  

𝐰mf =
𝐬

(𝐬𝐻𝐬)
=

𝐬  

‖𝐬‖2
2 

(1.78) 

The normalized matched filter estimation is written in terms of the linear model expressed by (1.76).  

The matched filter vector 𝐰mf forms the convolution matrix 𝐖mf. The matched filter convolution matrix is often 

expressed instead as an extended, normalized signal convolution matrix 𝐖mf =
1

‖𝐬‖2
2 𝐒̃. 

𝛄̂mf = 𝐰mf ⋆  𝐲 =  
𝐬 ⋆ 𝐲

𝐬𝐻𝐬
= 𝐖mf

𝐻 𝐒𝛄 + 𝐖mf
𝐻 𝐯 =

𝟏

‖𝐬‖2
2 (𝐒̃𝐻𝐒𝛄 + 𝐒̃𝐻𝐯)  

(1.79) 

The ideal normalized matched filter estimate is expressed from (1.79), where the ideal range profile 𝛄 
ideal = [1] is 

a unit scalar. The ideal received signal 𝐲ideal is the transmit signal 𝐬 with no propagation delay and no noise present. 

𝛄̂mf
ideal = 𝐰mf ⋆ 𝐲ideal = 

𝐬  

‖𝐬‖2
2 ⋆ 𝐲ideal =

𝐬  

‖𝐬‖2
2 ⋆ 𝐬 =  𝐖mf

𝐻 𝐒𝛄ideal = 𝐖mf
𝐻 𝐬 =

1

‖𝐬‖2
2 𝐒̃𝐻𝐬 

(1.80) 
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The autocorrelation function 𝐫 of the deterministic signal 𝐬 is defined as 

𝐫 = 𝐬 ⋆ 𝐬 = 𝐒̃𝐻𝐬  . 

(1.81) 

The ideal normalized match filtered estimate from (1.80) is equivalent to the normalized autocorrelation function of 

the deterministic signal 𝐬. The normalized autocorrelation function 𝐫̌ of the deterministic signal 𝐬 is defined as 

𝐫̌ =
𝐬 ⋆ 𝐬  

‖𝐬‖2
2 =

1

‖𝐬‖2
2 𝐒̃𝐻𝐬 . 

(1.82) 

The discrete Wiener-Khinchin autocorrelation theorem is defined in (1.83), demonstrating the relationship between 

the deterministic signal 𝐬, the signal frequency 𝐬̅f , the autocorrelation 𝐫, and the absolute power spectrum 𝐫f .  

The DFT matrix 𝐀 and shifted DFT matrix 𝐀̅ are defined in Section 1.4.1.13. By discrete definition, the correlation 

expressed in (1.82) between two vectors 𝐬  of equal length 𝑁p  results in the vector 𝐫  of length 𝑁r = 2𝑁p − 1 .  

To achieve the defined autocorrelation vector length, 𝐬  is zero-padded to length 𝑁r  forming 𝐬̅  prior to Fourier 

transformation. The operator ⊙ is the elementwise multiply Hadamard product. 

𝐬̅ = [
 𝐬             
 𝟎𝑁p−1 ×1

 ] 

𝐫f = |𝐬̅f|
2 = |𝐀𝐬̅|2 = 𝐀𝐬̅ ⊙ (𝐀𝐬̅)∗ = 𝐀̅𝐫 

𝐫 = 𝐬 ⋆ 𝐬 = (
1

𝑁r

) 𝐀̅𝐻(𝐀𝐬̅ ⊙ (𝐀𝐬̅)∗) = (
1

𝑁r

) 𝐀̅𝐻𝐫f 

(1.83) 
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Standard Fourier relations hold based on the Weiner-Khinchine autocorrelation theorem. For instance, 

broadening of the rectangular signal power spectrum (wider 3-dB bandwidth 𝐵3dB ) results in narrowing of the 

autocorrelation response (finer fast time resolution ∆𝑡res = 1/𝐵3dB ). Assuming a single scatterer is present,  

the peak-to-null range resolution achieved by matched filtering is ∆𝑟 =
c∆𝑡res

2
=

𝑐

2𝐵3dB
. The total amount of gain 

achieved by pulse compression for scatterer localization (assuming the signal is FM to deliver constant power) is 

determined as 𝐺pc ≈ 𝐵3dB𝑇p , referred to as the time-bandwidth product or pulse compression gain ratio.  

The relationships between power spectrum and autocorrelation, fast time resolution, and time-bandwidth product 

are summarized in Figure 27. The relationship between the signal power spectrum bandwidth and the corresponding 

range resolution achieved is often described as ∆𝑟 ≈
𝑐

2𝐵3dB
. The range resolution estimate ∆𝑟 ≈

𝑐

2𝐵3dB
 holds for 

waveforms that have a clearly defined (near rectangular) 3-dB bandwidth [41]. 

 

Figure 27: Relationship between autocorrelation and power spectrum, time-bandwidth product gain, and fast time 

pulse compressed resolution (for 𝐵3dB𝑇p = 1000 or 30 dB). 
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Figure 28: Various autocorrelation responses and power spectrum shapes, related by the Fourier transform. 

The range sidelobe level must be considered for waveforms having a non-contiguous power spectrum such as the 

Gaussian with frequency null shown in Figure 28, which demonstrates significant sidelobes below the -13 dB marker. 

The pulse compression gain ratio metric alone does not describe the power in the autocorrelation sidelobes. 

Consider the matched filtered output when a large scatterer reflection is temporally overlapping a small scatterer 

reflection. The matched filtered sidelobes of the large scatterer estimate may mask the small scatterer estimate, 

depending on the signal power spectrum shape, as shown in Figure 29.  
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Figure 29: The dangers of autocorrelation sidelobes - The matched filtered output of a Gaussian spectrally shaped 

signal can distinguish the small scatterer. However, the matched filtered output of a Gaussian with frequency null 

spectrally shaped signal cannot distinguish the small scatterer due to sidelobe masking. 

The pulse compression gain ratio does not capture the degree of waveform out-of-band spectral energy. 

Waveform spectral containment is needed to avoid interfering with other users (and thus meet FCC regulations). 

The ideal autocorrelation response is often considered to be an impulse response, having a mainlobe peak and  

no sidelobes, 𝐞 = [0 ⋯ 0 1 0 ⋯ 0]𝑇. To achieve the ideal autocorrelation response, many phase coded 

waveform sequences (see Section 1.4.2.6.3) have been formulated to achieve theoretically zero sidelobes. Based on 

the Fourier relationship between the autocorrelation and power spectrum, any waveform achieving an impulse 

response autocorrelation 𝐞 must exhibit the power spectrum 𝐞f having theoretically infinite bandwidth, as shown in 

Figure 30. If the transmit waveform is not bandlimited (i.e. attempts to achieve a perfect autocorrelation response), 

then the transmission will likely interfere with other radio frequency users occupying nearby frequency bands.  

Other RF user transmissions would mutually interfere with the radar receive echoes, degrading scatterer detection 

capability. 
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Figure 30: Nonideal versus ideal autocorrelation (left) and bandlimited versus band-unlimited power spectra (right), 

related by the Fourier transform. 

 Transmission spectral containment to a bandwidth 𝐵3dB is necessary to avoid interfering with other users. 

The range resolution achieved is dependent on the utilized bandwidth ∆𝑡res = 1/𝐵3dB. Correlation sidelobes that 

lie outside of the expected resolution cell width ∆𝑡res are commonly characterized by two metrics, known as the 

integrated sidelobe level (ISL) and peak sidelobe level (PSL).  The modified generalized integrated sidelobe level 

(GISL) metric may determine both the ISL and PSL metrics as 

GISL = ‖𝐰sl ⊙ 𝐫̌‖𝓅 

(1.84) 

where 𝐰sl  is the sidelobe selector mask with value 1 in the sidelobe region and value 0 in the mainlobe region.  

When the GISL metric is tuned for 𝓅 = 2, the sidelobe root-mean-squared absolute value determines the ISL, 

whereas tuning for 𝓅 = 8  well-approximates the sidelobe maximum absolute value determines the PSL.  

The GISL metric extends to the normalized cross-correlation metric for pulse compression mismatched filters. 
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1.4.2.4.  THE LEAST-SQUARES MISMATCHED FILTER, CROSS-CORRELATION 

 A pulse compression mismatched filter is any pulse compression filter that is not the matched filter.  

Pulse compression mismatched filters invoke the tradeoff between reduced range sidelobes and degraded  

signal-to-noise ratio (relative to the matched filter). The continuous representation of pulse compression is written 

as a cross-correlation (⋆) between the received signal 𝑦(𝑡) and the pulse compression filter 𝑤(𝑡) to compress the 

signal power for better estimation of the illuminated scene characteristics 𝛾(𝑡). 

𝛾(𝑡) = 𝑤(𝑡) ⋆ 𝑦(𝑡) = ∫ 𝑤∗(𝜏) 𝑦(𝑡 + 𝜏) 𝑑𝜏

∞

−∞

= ∫ 𝑤∗(𝜏 − 𝑡) 𝑦(𝜏) 𝑑𝜏

∞

−∞

  

(1.85) 

When 𝑦ideal(𝑡) = 𝑠(𝑡) to represent an ideal scatterer reflection, the pulse compressed estimate from (1.85) yields 

𝛾 
ideal(𝑡) = 𝑤(𝑡) ⋆ 𝑦ideal(𝑡) = 𝑤(𝑡) ⋆ 𝑠(𝑡) = ∫ 𝑤∗(𝜏 − 𝑡) 𝑠(𝜏) 𝑑𝜏

∞

−∞

  . 

(1.86) 

Note that the representation in (1.86) is equivalent to the cross-correlation function 𝑐(𝑡) between the deterministic 

signal 𝑠(𝑡) and pulse compression filter 𝑤(𝑡). Generally, the pulse compression filters 𝑤(𝑡) are designed to provide 

accurate range profile estimates 𝛾(𝑡) without additional normalization required. 

𝑐(𝑡) = 𝑤(𝑡) ⋆ 𝑠(𝑡) = ∫ 𝑤∗(𝜏 − 𝑡) 𝑠(𝜏) 𝑑𝜏

∞

−∞

  

(1.87) 

Pulse compression mismatched filters invoke the tradeoff between range sidelobe levels and degraded 

signal-to-noise ratio (relative to the matched filter, which maximizes SNR). The estimation power loss is caused by 

decorrelation between 𝑤(𝑡) and 𝑠(𝑡). The degree of SNR degradation, called mismatch loss, is characterized by the 

Cauchy-Schwarz inequality [68] in (1.88). 
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|∫ 𝑤∗(𝜏) 𝑠(𝜏) 𝑑𝜏
∞

−∞
|
2

(∫ 𝑤∗(𝜏) 𝑤(𝜏) 𝑑𝜏
∞

−∞
)(∫ 𝑠∗(𝜏) 𝑠(𝜏) 𝑑𝜏

∞

−∞
)
=

|∫ 𝑤∗(𝜏) 𝑠(𝜏) 𝑑𝜏
∞

−∞
|
2

‖𝑤(𝑡)‖2
2 ‖𝑠(𝑡)‖2

2 ≤ 1 

(1.88) 

The pulse compression mismatch loss is written generally as 

𝜎mml =
|∫ 𝑤∗(𝜏) 𝑠(𝜏) 𝑑𝜏

∞

−∞
|
2

‖𝑤(𝑡)‖2
2 ‖𝑠(𝑡)‖2

2 =
max{|𝑐(𝑡)|2}

‖𝑤(𝑡)‖2
2 ‖𝑠(𝑡)‖2

2 ,     0 ≤ 𝜎mml ≤ 1  . 

(1.89) 

The mismatch loss 𝜎mml  determines the degree of estimation power loss when the filter 𝑤(𝑡)  and signal 𝑠(𝑡) 

centrally overlap to form a pulse compression peak. The matched filter 𝑤mf(𝑡) yields no mismatch loss (𝜎mml = 1), 

whereas all other mismatched filters yield mismatch loss (0 ≤ 𝜎mml < 1). Incorporating mismatch loss into the  

cross-correlation definition, the normalized cross-correlation function 𝑐̌(𝑡)  is useful for comparison of pulse 

compression filters 𝑤(𝑡) with respect to a given signal 𝑠(𝑡). When 𝑤(𝑡) is selected as the matched filter 𝑤mf(𝑡),  

the normalized cross-correlation 𝑐̌(𝑡) simplifies to the normalized autocorrelation 𝑟̌(𝑡). 

𝑐̌(𝑡) =
∫ 𝑤∗(𝜏 − 𝑡) 𝑠(𝜏) 𝑑𝜏

∞

−∞

‖𝑤(𝑡)‖2
  ‖𝑠(𝑡)‖2

   

(1.90) 

The Wiener-Khinchin cross-correlation theorem states that the cross-correlation 𝑐(𝑡)  is related via the Fourier 

transform to the cross-power spectrum 𝑐(𝑓) , as expressed in (1.91) [61]. Recalling the relationship between 

correlation and convolution from (1.69), the Weiner-Khinchin theorem is directly related to the Fourier transform 

pair between temporal convolution and frequency multiplication. 

𝑐(𝑡) = 𝑤(𝑡) ⋆ 𝑠(𝑡) = 𝑤∗(−𝑡) ∗ 𝑠(𝑡)  
 

↔
ℱ

   𝑐(𝑓) = 𝑤∗(𝑓)𝑠(𝑓)
 

 

(1.91) 
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Recall that pulse compression may also be expressed in discrete dimensions. The discrete pulse 

compression model described in (1.76) is restated here, for reference. The pulse compression filter 𝐰 is correlated 

with the receive vector 𝐲, which determines the range profile estimate 𝛄̂ with convolutional tails. 

𝛄̂ = 𝐰 ⋆ 𝐲 = 𝐖𝐻𝐲 = 𝐖𝐻(𝐒𝛄 + 𝐯) = 𝐖𝐻𝐒𝛄 + 𝐖𝐻𝐯 

(1.92) 

When the ideal range profile 𝛄 
ideal = [1]  is a unit impulse scalar with no propagation delay, the ideal pulse 

compression output 𝛄̂ideal  is expressed as the cross-correlation function between the transmit signal 𝐬 and the 

mismatched filter 𝐰. The ideal received signal 𝐲ideal  is the transmit signal 𝐬 with no propagation delay or noise 

present. 

𝛄̂ideal = 𝐰 ⋆ 𝐲ideal = 𝐰 ⋆ 𝐬 =  𝐖𝐻𝐒𝛄ideal = 𝐖𝐻𝐬 

(1.93) 

The cross-correlation function 𝐜 is similarly expressed as 

𝐜 = 𝐰 ⋆ 𝐬 = 𝐖𝐻𝐬  . 

(1.94) 

The degree of SNR degradation is characterized by the Cauchy-Schwarz inequality [68] in (1.95). 

|𝐰𝐻𝐬|2

‖𝐰‖2
2 ‖𝐬‖2

2 ≤ 1 

(1.95) 

The pulse compression mismatch loss (SNR degradation relative to matched filtering) is written generally as 

𝜎mml =
|𝐰𝐻𝐬|2

‖𝐰‖2
2 ‖𝐬‖2

2 =
max{|𝐜|2}

‖𝐰‖2
2 ‖𝐬‖2

2 , 0 ≤ 𝜎mml ≤ 1  . 

(1.96) 
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The mismatch loss 𝜎mml determines the degree of estimation power loss when the filter 𝐰 and signal 𝐬 centrally  

overlap to form a pulse compression peak. Incorporating mismatch loss into the cross-correlation definition,  

the normalized cross-correlation function 𝐜̌ is useful for comparison of pulse compression filters 𝐰 with respect to 

a given signal 𝐬. When 𝐰 is selected as the matched filter 𝐰mf, the normalized cross-correlation 𝐜̌ simplifies to the 

normalized autocorrelation 𝐫̌. 

𝐜̌ =
𝐖𝐻𝐬  

‖𝐰‖2
  ‖𝐬‖2

  

(1.97) 

The discrete Wiener-Khinchin cross-correlation theorem is defined in (1.98), demonstrating the relationship 

between the signal 𝐬 and filter 𝐰, the signal frequency 𝐬̅f and filter frequency 𝐰̅f, the cross-correlation 𝐜, and the 

complex cross-power spectral density 𝐜f. The DFT matrix 𝐀 and shifted DFT matrix 𝐀̅ are defined in Section 1.4.1.13.  

By discrete definition, the correlation expressed in (1.94) between vectors 𝐬 and 𝐰 of lengths 𝑁p and 𝑁w results in 

the vector 𝐜 of length 𝑁c = 𝑁p + 𝑁w − 1. To achieve the defined cross-correlation vector length, 𝐬 and 𝐰 are each 

symmetrically zero-padded to length 𝑁c  prior to Fourier transformation. Because the vectors 𝐬  and 𝐰  aren’t 

necessarily equal length, symmetric zero padding enforces a pulse compression mainlobe peak located at their 

central overlap. The zero padded symmetry is dependent on whether 𝑁p and 𝑁w are odd or even valued, requiring 

the symmetry term 𝒩 = (𝑁p mod 2)(1 − (𝑁w mod 2)). The operator ⊙ is the elementwise multiply Hadamard 

product, ⌊ ∙ ⌋ applies the floor operator, and mod applies the modulo operator. 

𝐬̅ = [

𝟎⌊𝑁w/2 ⌋−𝒩 ×1            
𝐬                                 
𝟎𝑁w−⌊𝑁w/2 ⌋−1 +𝒩 ×1

],    𝐰̅ = [

𝟎⌊𝑁p/2 ⌋×1           

𝐰                         
𝟎𝑁p−⌊𝑁p/2 ⌋−1 ×1

]  

𝐜f = 𝐰̅f
∗ ⊙ 𝐬̅f = (𝐀𝐰̅)∗ ⊙ (𝐀𝐬̅) = 𝐀̅𝐜 

𝐜 = 𝐰 ⋆ 𝐬 = (
1

𝑁c

) 𝐀̅𝐻(𝐰̅f
∗ ⊙ 𝐬̅f) = (

1

𝑁c

) 𝐀̅𝐻((𝐀𝐰̅)∗ ⊙ (𝐀𝐬̅)) 

(1.98) 
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Linear algebra expressions can be formed and optimized to achieve a desired pulse compression response. 

One such optimization problem is least squares regression. The objective function for least squares regression takes 

the general form of (1.99) where 𝐘 is the desired complex output, 𝐗 is the given complex input, and 𝐁 is optimized 

to minimize the difference between 𝐘 and 𝐗. The operation ‖ ∙ ‖2 denotes the Euclidean 2-norm. 

min
𝐁

‖𝐘 − 𝐗𝐁‖2
2

 
 

(1.99) 

Expanding the least squares regression objective function, taking the gradient, and setting the gradient equal to zero 

(to determine objective function inflection points) allows for calculation of a closed form solution. Here, 

complex valued 𝐘 , 𝐗 , and 𝐁  are considered. The gradient can be calculated using matrix derivatives [69] and 

Wirtinger calculus [70] as in (1.100). For Wirtinger calculus, complex 𝐁 and 𝐁∗ are treated as independent variables 

(orthogonal by definition), such that 
𝜕

𝜕𝐁∗
(𝐁) = 0 and 

𝜕

𝜕𝐁
(𝐁∗) = 0. 

‖𝐘 − 𝐗𝐁‖2
2 = (𝐘 − 𝐗𝐁)𝐻(𝐘 − 𝐗𝐁) = 𝐘𝐻𝐘 − 𝐘𝐻𝐗𝐁 − 𝐁𝐻𝐗𝐻𝐘 + 𝐁𝐻𝐗𝐻𝐗𝐁

𝜕

𝜕𝐁∗
‖𝐘 − 𝐗𝐁‖2

2 = −𝐗𝐻𝐘 + 𝐗𝐻𝐗𝐁                                                                                           

𝜕

𝜕𝐁∗
‖𝐘 − 𝐗𝐁‖2

2 = −𝐗𝐻𝐘 + 𝐗𝐻𝐗𝐁 = 0 → 𝐗𝐻𝐗𝐁 =  𝐗𝐻𝐘                                                

𝐁 = (𝐗𝐻𝐗)−1𝐗𝐻𝐘                                                                    

  

(1.100) 

Using least squares regression, it is feasible to determine the pulse compression filter 𝐰 that correlates with the 

signal 𝐬 to achieve a desired cross-correlation response 𝐝. Recall that correlation and convolution are related via  

𝑤(𝑡) ⋆ 𝑠(𝑡) = 𝑤∗(−𝑡) ∗ 𝑠(𝑡) . The discrete relationship between correlation and convolution is expressed as  

𝐰 ⋆ 𝐬 = (𝐓R𝐰)∗ ∗ 𝐬 = 𝐰̆ ∗ 𝐬, where the transformation matrix 𝐓R reverses the elements of 𝐰. In matrix notation,  

𝐰 ⋆ 𝐬 = 𝐖𝐻𝐬 = 𝐰̆ ∗ 𝐬 = 𝐒𝐰̆, where here the signal convolution matrix 𝐒 has dimensions (𝑁w + 𝑁p − 1) × (𝑁w).  

The filter 𝐰̆ is optimized via least squares regression using the convolutional model (𝐒𝐰̆). The filter 𝐰̆ is transformed 

via 𝐰 = (𝐓R𝐰̆)∗ to instead apply the correlational model (𝐖𝐻𝐬). 
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The least squares regression objective function is revised to achieve a desired pulse compression response. 

The least squares optimal filter 𝐰̆ls that minimizes the difference between the cross-correlation 𝐜 = 𝐒𝐰̆ls and the 

desired pulse compression response 𝐝 is determined by minimizing the objective function 

min
𝐰̆ls

‖𝐝 − 𝐒𝐰̆ls‖2
2

 
 

(1.101) 

where the solution to the pulse compression problem [71] is written as 

𝐰̆ls = (𝐒𝐻𝐒 + ∆𝐈)−1𝐒𝐻𝐝  . 

(1.102) 

Note that the addition of the term ∆𝐈 within the matrix inverse, referred to as a regularization term, enforces that 

the matrix-to-be-inverted is full rank and thus invertible. Figure 31 depicts the least squares optimization, where  

𝐝 is the desired response (the impulse response 𝐞 = [0 ⋯ 0 1 0 ⋯ 0]𝑇 is selected here), 𝐜 = 𝐒𝐰̆ls is the 

least squares filter cross-correlation function, and 𝐫̌ = 𝐒𝐰̆mf  is the normalized matched filter autocorrelation 

function listed for comparison. 

 

Figure 31: Illustration of least squares regression optimization to achieve a desired cross-correlation response. 
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Super-resolution occurs when the pulse compressed range resolution is finer than the signal 3-dB 

bandwidth resolution, i.e. ∆𝑡res < 1/𝐵3dB . Achieving super-resolution via mismatched filtering invokes the 

additional tradeoff between range resolution, range sidelobes, and mismatch loss. Enforcing a finer resolution 

∆𝑡res < 1/𝐵3dB  implies that the cross-power spectrum (𝐜f = 𝐰̅f
∗ ⊙ 𝐬̅f) bandwidth is broadened relative to the 

signal power spectrum (𝐫f = 𝐬̅f
∗ ⊙ 𝐬̅f) bandwidth. With this intent, the mismatched filter spectrum 𝐰̅f

∗ effectively 

“amplifies” portions of the signal spectrum 𝐬̅f . As the mismatched filter spectrum 𝐰̅f
∗ becomes more dissimilar from 

signal spectrum 𝐬̅f  , the mismatch loss degrades (𝜎mml → 0)  due to declining correlation between 𝐰  and 𝐬 .  

Recall that the transmit signal 𝐬 must be bandlimited to avoid interfering with other users upon transmission, as 

illustrated in Figure 30. 

Applying the least squares optimal filter 𝐰ls  to the bandlimited signal 𝐬  could potentially impose 

considerable mismatch loss (without regularization ∆  or further modification) if the desired response is the  

band-unlimited impulse 𝐝 = 𝐞, as illustrated in Figure 32. In this example, the signal 𝐬 has a bandlimited Gaussian 

power spectrum |𝐬̅f|
2  and normalized autocorrelation 𝐫̌ . To achieve the impulse desired response 𝐝 = 𝐞, then 

theoretically infinite spectrum is required by Fourier definition. When no regularization is applied (∆= 0) ,  

the mismatched filter spectrum 𝐰̅f
∗  inverts the signal spectrum 𝐬̅f  to enforce a flat cross-power spectrum  

𝐜f = 𝐰̅f
∗ ⊙ 𝐬̅f . However, the degree of mismatch loss significantly degrades due to declining correlation between 

𝐰  and 𝐬  (for example, 𝜎mml = 0.12  corresponds to −9 dB  mismatch loss). The example mismatched filter 

minimizes the objective function, but limited degrees of freedom are available to here achieve super-resolution and 

minimize sidelobes. Remnant error exists and the resulting cross-correlation response may be less than desirable. 

Super-resolution achieved by linear filtering may be less desirable in scenarios where high SNR is necessary. 
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Figure 32: Example correlation responses (left) and power spectra (right). If the least squares filter 𝐰ls is applied to 

the bandlimited signal 𝐬 to achieve super-resolution, significant mismatch loss occurs (for example, 𝜎mml = 0.12).  

The filter spectrum 𝐰̅f  is mismatched from the signal spectrum 𝐬̅f  to form the cross-power spectrum 𝐜f  .  

Sidelobe level and mismatch loss performance are degraded in trade to achieve significant super-resolution. 

Formulations to robustly determine the least squares filter exist. Consider the least squares filter solution. 

For large ∆, the matrix-to-be-inverted is approximately (𝐒𝐻𝐒 + ∆𝐈) ≈ ∆𝐈, so the mismatched filter simplifies to 

𝐰̆ls = (∆𝐈)−1𝐒𝐻𝐝 = (1/∆)𝐈𝐒𝐻𝐝 = (1/∆)𝐒𝐻𝐝. The desired response 𝐝 may be selected as the impulse response 𝐞. 

For large ∆ values, when 𝐝 ≈ 𝐞 and 𝑁w = 𝑁p, the least squares optimal filter simplifies to the matched filter as 

𝐰̆ls = (1/∆)(𝐒𝐻𝐞) = (1/∆)𝐬̆ = 𝐰̆mf. By observation, the variable ∆ allows for tuning between the least squares 

filter and matched filter when 𝐝 ≈ 𝐞. Consequently, increasing the regularization ∆ minimizes the mismatch loss 

𝜎mml inflicted by tuning closer to the matched filter solution, in exchange for degraded resolution or range sidelobe 

performance as illustrated in Figure 33. 
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Figure 33: Example correlation responses (left) and power spectra (right). If the regularization ∆ is increased to form 

the least squares filter 𝐰ls, which is then applied to the bandlimited signal 𝐬 to achieve super-resolution, moderate 

mismatch loss occurs (for example, 𝜎mml = 0.33). Range resolution is degraded in trade to mitigate mismatch loss 

and improve the sidelobe level performance, though moderate super-resolution is still achieved. 

 Another method to counteract super-resolution effects is to simply reduce constraints around the 

correlation mainlobe within the least squares formulation. Consider the impulse 𝐞ℓ = [0 ⋯ 0 1 0 ⋯ 0]𝑇 , 

having a mainlobe peak (located at the ℓth sample) and no sidelobes. When the desired response is selected 𝐝 = 𝐞ℓ, 

the cross-correlation 𝐒𝐰̆ls aims to achieve the ideal impulse response. The 𝐿̅ rows above and below the ℓth row in 𝐒 

(corresponding to the mainlobe resolution) may be zeroed, effectively removing constraints on the cross-correlation 

mainlobe resolution. The method of reducing resolution to compensate for other performance metrics is known as 

beamspoiling. Consequently, range resolution beamspoiling minimizes the mismatch loss 𝜎mml  inflicted and 

improves range sidelobe performance as illustrated in Figure 34. 
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Figure 34: Example correlation responses (left) and power spectra (right). If range resolution beamspoiling is 

incorporated to form the least squares filter 𝐰ls , which is then applied to the bandlimited signal 𝐬, then slight 

mismatch loss occurs (for example, 𝜎mml = 0.99). Super-resolution is waived in trade to mitigate mismatch loss and 

improve the sidelobe level performance. 

In summary, the least squares optimal filter formulation may be adjusted to control the degree of mismatch 

loss, super-resolution, and sidelobe levels achieved. For the least squares formulations described thus far, the 

desired response 𝐝  is selected as the impulse response 𝐞  to provide insight regarding the algorithm behavior. 

However, a variety of templates may be selected for the desired response 𝐝 [72,73]. Importantly, the degree of 

mismatch loss is minimized when the waveform spectrum 𝐬̅f minimally deviates from the filter spectrum 𝐰̅f
∗ [73]. 

By extension, the degree of mismatch loss is minimized when the signal power spectrum minimally deviates from 

the cross-power spectrum 𝐫f ≈ 𝐜f  [73]. The desired correlation 𝐝  and desired power spectrum 𝐝f  are a Fourier 

transform pair according to the Wiener-Khinchin theorem, expressed as 𝐝f = 𝐀̅𝐝.  When the signal spectrum 𝐫f and  

cross-power spectrum 𝐜f are each designed to exhibit the same desired spectrum 𝐝f, the mismatch loss is minimized. 
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Correlation-based pulse compression via matched or mismatched filtering relies on linear time invariant 

(LTI) processing to achieve the desired radar performance. Data-driven nonlinear processing techniques exist that 

likewise achieve super resolution in various radar dimensions [74-76]. For instance, adaptive pulse compression 

(APC) [74] forms multiple range-dependent filters (called a filter bank) that update based on the observed data 

statistics. For adaptive algorithms, sensitivity to imprecise model estimation may potentially cause false alarms, 

though incorporating robustness into adaptive algorithms mitigates undesirable effects [76]. 

1.4.2.5. PERCENT BANDWIDTH DEFINITION (NARROWBAND, WIDEBAND, ULTRA-WIDEBAND) 

 A definition for the size of bandwidth utilized relative to a wavelength is listed in (1.103). The bandwidth 

size used is important, as many assumptions are made depending on the bandwidth size relative to a wavelength. 

The narrowband assumption is often invoked to simplify processing. Definitions of narrowband, wideband, and ultra-

wideband are defined in [77] based on the percent bandwidth utilized relative to the transmit center frequency. 

%BW =
𝐵3dB

𝑓c
 

(1.103) 

Table 1: Narrowband, Wideband, Ultra-Wideband Definitions. 

Narrowband %BW Wideband %BW Ultra-Wideband %BW 

<1% 1% - 25% >25% 

 

1.4.2.6. WAVEFORM TYPES 

The waveform types discussed here include unmodulated tones, linear frequency modulated (LFM) & nonlinear 

frequency modulated (NLFM) waveforms, phase coded & angle modulated waveforms, and polyphase coded 

frequency modulated (PCFM) waveforms. For further waveform analysis, the reader is directed to [41, 78, 79]. 

Keep in mind, the waveform power spectral density (PSD) 𝑟(𝑓) impacts the waveform autocorrelation function 𝑟(𝑡). 
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1.4.2.6.1. UNMODULATED PULSE (SINUSOIDAL TONES) 

 Sinusoidal tones have no modulated bandwidth and the range resolution achieved depends entirely on the 

duration 𝑇p of the pulse. The 3-dB bandwidth of a tone having duration 𝑇p is observed as 𝐵tone ≈ 1/𝑇p, due to the 

Fourier transform pair between the temporal rectangular function and frequency sinc function. The duration of the 

temporal rectangular window determines the sinc 3-dB bandwidth in frequency. The bandwidth 𝐵tone determines 

the achievable range resolution Δ𝑟tone =
𝑐

2𝐵tone
=

𝑐𝑇p

2
. The range resolution Δ𝑟tone of an unmodulated pulse is called 

the Rayleigh resolution [77]. Stepped frequency radar involves sequential transmission of tones with incrementing 

frequency to form bandwidth across slow time, which is used for ultra-wideband radar [80, 81]. 

𝑠tone(𝑡) = 𝑒𝑗2𝜋𝑓c𝑡 

(1.104) 

 

Figure 35: Unmodulated sinusoidal waveform in fast time-frequency 
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1.4.2.6.2. CHIRP WAVEFORMS 

 Most legacy radar systems transmit linear frequency modulated (LFM) or nonlinear frequency modulated 

(NLFM) chirp waveforms due to their simplicity in design by chirp rate modulation to shape the spectrum [67, 82]. 

Transmission of chirp waveforms generally implies pulse or CW segment repetition and a predictable instantaneous 

frequency modulation 𝑓i(𝑡) . Linear FM waveforms have a linear instantaneous frequency function, which 

corresponds to a quadratic instantaneous phase function. The mathematical description of an LFM waveform is 

𝑠LFM(𝑡) = 𝑒
𝑗2𝜋(𝑓1𝑡+0.5(

𝐵
𝑇p

)𝑡2)
          𝑡 ∈ (0, 𝑇p)  . 

(1.105) 

Nonlinear FM waveforms are often designed using the principle of stationary phase (POSP) to determine the 

instantaneous frequency function 𝑓i(𝑡) to achieve a desired PSD shape 𝑟(𝑓), originally detailed in [67].  

The closed-form instantaneous frequency functions 𝑓i(𝑡) of numerous NLFM waveforms [79, 83-100] are 

listed in Section 4.1. The power spectra 𝑟(𝑓)  and autocorrelations 𝑟(𝑡)  of [79, 83-96] are shown in Figure 36.  

Other NLFM waveform optimizations do not have closed-form solutions [101-111]. The instantaneous frequency 

functions 𝑓i(𝑡) may be numerically determined to achieve a desired PSD shape 𝑟(𝑓), detailed in [112]. Methods for 

wideband synthesis of nonlinear FM waveforms are outlined in [113, 114]. NLFM waveforms has been applied in 

airborne SAR [108-111], and recent work used neural networks to select the NLFM instantaneous frequency 

functions based on the estimated scene [115]. Note that NLFM waveforms may be designed to arbitrary spectrum 

shapes [112], including those having spectral nulls [116]. 
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Figure 36: Various nonlinear FM waveform (top) power spectra, (middle) autocorrelations, and (bottom) 

instantaneous frequencies over time  [79, 83-96] for 𝐵3dB𝑇p ≈ 500. When tuned appropriately, the performances 

achieved are quite similar. 
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1.4.2.6.3. PHASE CODED WAVEFORMS & ANGLE MODULATED WAVEFORMS 

 Phase coded waveforms [79] and angle modulated waveforms [117] have equivalent continuous 

representations 𝑠ϕ(𝑡) , despite maintaining important distinctions. Here 𝜙𝑛  indicates the 𝑛𝑡ℎ  of 𝑁ϕ  phase chips,  

𝑇ϕ is the time interval between adjacent phase chips, and ℎϕ(𝑡) is a selected temporal shaping filter. 

𝑠ϕ(𝑡) = ℎϕ(𝑡) ∗ [∑ 𝛿(𝑡 − (𝑛 − 1)𝑇ϕ)

𝑁ϕ

𝑛=1

𝑒𝑗𝜙𝑛] 

(1.106) 

The resulting waveform spectrum 𝑠ϕ(𝑓) is represented by the multiplication between the shaping filter spectrum 

ℎϕ(𝑓) and the frequency representation of the phase chip impulse train. 

𝑠ϕ(𝑓) = ℎϕ(𝑓) ∙ [∑ 𝑒−𝑗2𝜋𝑓((𝑛−1)𝑇ϕ)

𝑁ϕ

𝑛=1

𝑒𝑗𝜙𝑛] 

(1.107) 

The temporal shaping filter ℎϕ(𝑡) imposes the frequency spectrum shape ℎϕ(𝑓), but may also introduce amplitude 

modulation to the waveform 𝑠ϕ(𝑡) depending on the selected shaping filter.  

The rectangular temporal shaping filter ℎϕ(𝑡) = rect(
𝑡−𝑇ϕ/2

𝑇ϕ
)  is often examined because the resulting 

waveform 𝑠ϕ(𝑡) maintains constant amplitude, but forms the frequency mask ℎϕ(𝑓) = 𝑇ϕ sinc(𝑓𝑇ϕ) 𝑒−𝑗2𝜋𝑓(𝑇ϕ/2).   

In contrast, the sinc temporal shaping filter ℎϕ(𝑡) = sinc(
𝑡

𝑇ϕ
)  imposes amplitude modulation upon the waveform 

𝑠ϕ(𝑡), while forming the rectangular frequency mask ℎϕ(𝑓) = 𝑇ϕ rect(𝑓𝑇ϕ). The rectangular and sinc temporal 

shaping filters are applied to generate waveforms 𝑠ϕ(𝑡) having uniformly distributed phase chips 𝜙𝑛 ∈ [−𝜋, 𝜋], and 

the resulting waveform characteristics are shown in Figure 37. 
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Figure 37: Amplitude envelopes |𝑠ϕ(𝑡)|
2

 and power spectra |𝑠ϕ(𝑓)|
2
 of phase coded waveforms having uniformly 

distributed phase chips 𝜙𝑛 ∈ [−𝜋, 𝜋], applying either the shaping filter ℎϕ(𝑡) = rect(
𝑡−𝑇ϕ/2

𝑇ϕ
) or ℎϕ(𝑡) = sinc(

𝑡

𝑇ϕ
). 

The distinction between “phase coded” and “angle modulated” waveforms is subtle, but significant.  

Both are designed with a phase chip structure to modulate 𝑠ϕ(𝑡)  – with the caveat that, when applying the 

rectangular shaping filter ℎϕ(𝑡) = rect(
𝑡−𝑇ϕ/2

𝑇ϕ
) , angle modulated waveforms exhibit spectral containment and 

phase coded waveforms do not exhibit spectral containment. Rather, phase coded waveforms require  

non-rectangular shaping filters ℎϕ(𝑡) ≠ rect(
𝑡−𝑇ϕ/2

𝑇ϕ
)  to enforce spectral containment (as illustrated in Figure 37).  

In short, angle modulated waveforms simultaneously preserve an FM structure and spectral containment, whereas  

phase coded waveforms must trade between the degree of amplitude modulation and spectral containment. 
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 The rectangular shaping filter ℎϕ(𝑡) = rect(
𝑡−𝑇ϕ/2

𝑇ϕ
) models the sample-and-hold configuration utilized for 

DAC signal reconstruction to generate analog waveforms in RF transmit chains [42]. Applying the rectangular shaping 

filter to emulate DAC signal reconstruction, phase coded waveforms exhibit poor spectral containment due to 

unconstrained instantaneous frequency. Angle modulated waveforms exhibit adequate spectral containment due 

to frequency restrictions imposed during optimization. 

Figure 38 illustrates the spectral containment of phase coded waveforms and angle modulated waveforms 

when the rectangular shaping filter is applied. By definition of the DTFT, an aperiodic discrete temporal signal results 

in a periodic continuous frequency spectrum (with spectral repetitions centered at 𝑓/𝑓s
DAC = ±1,±2,… ) .  

Due to the rectangular shaping filter, the spectral images of the angle modulated waveform become attenuated by 

the arising sinc spectral mask nulls. By observation, bandlimited waveforms are produced with greater accuracy by 

sample-and-hold DACs. The 3-dB oversampling ratio 𝜅3dB = 𝑓s
DAC/𝐵3dB is one indicator of spectral containment. 

 

Figure 38: Power spectrum |𝑠ϕ(𝑓)|
2

 of a phase coded waveform and an angle modulated waveform, after applying 

the temporal shaping filter ℎϕ(𝑡) = rect(
𝑡−𝑇ϕ/2

𝑇ϕ
) that imposes the mask ℎϕ(𝑓) = 𝑇ϕ sinc(𝑓𝑇ϕ) 𝑒−𝑗2𝜋𝑓(𝑇ϕ/2). 
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When the baseband waveform 𝑠ϕ(𝑡) is uniformly sampled at intervals 𝑡 = (𝑛/𝛽ϕ)𝑇ϕ, the waveform model 

is defined by (1.108). The truncated convolution matrix 𝐇ϕ of size 𝑁p × 𝛽ϕ𝑁ϕ contains time-shifted versions of the 

shaping filter 𝐡ϕ. The phase chips in 𝛟 = [𝜙1 𝜙2 ⋯ 𝜙𝑁ϕ]
𝑇

 of size 𝑁ϕ × 1 determine the waveform properties.  

The upsampling factor 𝛽ϕ  describes the factor of interpolated samples 𝑁p = 𝛽ϕ𝑁ϕ  imprinted by the temporal 

shaping filter 𝐡ϕ between sample intervals 𝑛𝑇ϕ. 

𝐬ϕ = 𝐇ϕ

(

 𝑒𝑗𝛟 ⊗ [

1
0
⋮
0

]

𝛽ϕ × 1)

  

(1.108) 

However, the waveform model is typically simplified. Assume each phase chip is sampled only once (e.g.  𝛽ϕ = 1). 

Consequently, the shaping filter 𝐇ϕ reduces to the identity matrix 𝐈. The discrete waveform model then becomes 

𝐬ϕ = 𝑒𝑗𝛟 . 

(1.109) 

Various forms of angle modulated waveforms exist [117-121]. Pseudo-random optimized frequency modulated 

(PRO-FM) waveforms are constructed with an alternating projection optimization, which leverages the waveform 

model 𝐬 = 𝑒𝑗𝛟  [120-121]. The 𝑝𝑡ℎ  of 𝑃  waveforms is initialized with phase chips drawn from the uniform 

distribution 𝜙𝑛 ∈ [−𝜋, 𝜋] to form the signal 𝐬0,𝑝. The PRO-FM algorithm performs the 𝑘𝑡ℎ of 𝐾 alternating iterations 

𝐬̇𝑝
(𝑘+1)

= 𝐀̃𝐻{𝐝f
1/2

⊙ exp(𝑗∠𝐀̃𝐬𝑝
(𝑘)

)} 

𝐬𝑝
(𝑘+1)

= 𝐮 ⊙ exp(𝑗∠𝐬̇𝑝
(𝑘+1)

) 

(1.110) 

where 𝐀̃ is the 𝑀 × 𝑁 truncated DFT matrix with 𝑀 ≥ 2𝑁−1, HA  is the  𝑁 × 𝑀 truncated IDFT matrix, 𝐝f is the 

𝑀 × 1 desired PSD, 𝐮 is the 𝑁 × 1 desired amplitude envelope, and ∠( ∙ ) extracts the argument phase.  
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Figure 39 illustrates the PRO-FM waveform characteristics, for 𝑃 = 10 randomly initialized waveforms and 

𝐾 = 200 alternating projection iterations. The desired PSD 𝐝f is selected to have a super-Gaussian spectral shape 

[121] and 𝐮 is constant amplitude. Due to random initializations, each PRO-FM waveform has an entirely unique 

instantaneous frequency structure. While the PRO-FM waveforms exhibit moderate instantaneous frequency 

compactness, notable deviations occur about the spectral band edges [122]. 

 

Figure 39: Various randomly initialized PRO-FM waveforms (top) power spectra, (middle) autocorrelations, and  

(bottom) instantaneous frequencies over time for 𝐵3dB𝑇p ≈ 500, for 𝑃 = 10 waveforms and 𝐾 = 200 iterations.  
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1.4.2.6.4. POLYPHASE CODED FREQUENCY MODULATION (PCFM) 

 Polyphase coded frequency modulated (PCFM) waveforms [123, 124] are mathematically defined to 

explicitly restrict the phase transition size between adjacent samples, which imparts innate spectral containment. 

PCFM waveforms are constructed by 𝑁α  instantaneous frequency values 𝛼𝑛 , which are interpolated via the 

frequency shaping filter ℎα(𝑡)  and then integrated to form a continuous phase term. PCFM waveforms are 

intrinsically constant modulus, and therefore amenable to high-power amplification. The PCFM waveform structure 

has been optimized to achieve a variety of objectives [123-132] 

𝑠α(𝑡) = exp {𝑗 (∫ℎα(𝜏) ∗ [∑ 𝛼𝑛𝛿(𝜏 − (𝑛 − 1)𝑇α)

𝑁α

𝑛=1

] 𝑑𝜏

𝑡

0

)} 

                  = exp {𝑗 (∫ [∑ 𝛼𝑛ℎα(𝜏 − (𝑛 − 1)𝑇α)

𝑁α

𝑛=1

] 𝑑𝜏

𝑡

0

)} 

                  = exp {𝑗 (∑ 𝛼𝑛 ∫ℎα(𝜏 − (𝑛 − 1)𝑇α)

𝑡

0

𝑁α

𝑛=1

𝑑𝜏)} 

(1.111) 

When the frequency shaping filter ℎα(𝑡) is defined only for positive time, such that ℎα(𝑡 < 0) = 0, then the integral 

is shift-invariant [133] and may be expressed instead by the phase shaping filter 𝑏α(𝑡) = ∫ ℎα(𝜏)
𝑡

0
𝑑𝜏 .  

The relationship between ℎα(𝑡) and 𝑏α(𝑡) is illustrated in Figure 40, when ℎα(𝑡) =
1

𝑇α
rect(

𝑡−𝑇α/2

𝑇α
). 

𝑠α(𝑡) = exp {𝑗 (∑ 𝛼𝑛 ∫ℎα(𝜏 − (𝑛 − 1)𝑇α)

𝑡

0

𝑁α

𝑛=1

𝑑𝜏)} = exp {𝑗 (∑ 𝛼𝑛𝑏α(𝑡 − (𝑛 − 1)𝑇α)

𝑁α

𝑛=1

)} 

           = exp {𝑗 (𝑏α(𝑡) ∗ [∑ 𝛼𝑛𝛿(𝑡 − (𝑛 − 1)𝑇α)

𝑁α

𝑛=1

])} 

(1.112) 
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Figure 40: Relationship between the frequency shaping filter ℎα(𝜏 − (𝑛 − 1)𝑇α)   and the phase shaping filter  

𝑏α(𝑡 − (𝑛 − 1)𝑇α), where ℎα(𝑡) =
1

𝑇α
rect(

𝑡−𝑇α/2

𝑇α
) and 𝑏α(𝑡) = ∫ ℎα(𝜏)

𝑡

0
𝑑𝜏. 

When the baseband waveform 𝑠α(𝑡) is uniformly sampled at intervals = (𝑛/𝛽α)𝑇α , the waveform model 

is defined by (1.113). The truncated convolution matrix 𝐁 of size 𝑁p × 𝑁α contains time-shifted versions of the phase 

shaping filter 𝐛α . The instantaneous frequencies in 𝛂 = [𝛼1 𝛼2 ⋯ 𝛼𝑁α]𝑇  of size 𝑁α × 1  determine the 

waveform properties. The upsampling factor 𝛽α  describes the factor of phase interpolated samples 𝑁p = 𝛽α𝑁α 

imprinted by the phase shaping filter 𝐛 between sample intervals 𝑛𝑇α. 

𝐬α = 𝑒𝐁𝛂 

(1.113) 

0
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When the frequency shaping filter ℎα(𝜏) is selected as the rectangular function ℎα(𝑡) =
1

𝑇α
rect(

𝜏−𝑇α/2

𝑇α
)  

the resulting phase shaping filter 𝑏α(𝑡) = ∫ ℎα(𝜏)
𝑡

0
𝑑𝜏 becomes the ramp-and-hold function, which behaves similar 

to linear phase interpolation. The upsampling factor 𝛽α = 𝑁p/𝑁α  effectively limits the largest phase transition 

between adjacent waveform samples. Consequently, the upsampling factor 𝛽α and the 6-dB oversampling ratio 𝜅6dB 

are approximately equivalent 𝜅6dB = 𝑓s
DAC/𝐵6dB ≈ 𝛽α as shown in Figure 42. The inherent spectral containment of 

PCFM waveforms minimizes distortion caused during sample-and-hold DAC reconstruction. 

 

Figure 41: Mean power spectrum of 𝑃 = 1000 unoptimized PCFM waveforms for upsampling factors 𝛽α = 2, 4, 8. 

The 6-dB oversampling ratio 𝜅6dB is approximately equal to the upsampling factor 𝛽α. The instantaneous frequency 

values are drawn from a uniform distribution 𝛼𝑛 ∈ [−𝜋, 𝜋]. 

Figure 42 illustrates unoptimized PCFM waveform characteristics, where the instantaneous frequency 

values are drawn from a uniform distribution 𝛼𝑛 ∈ [−𝜋, 𝜋] to generate 𝑃 = 10 waveforms. The unoptimized PCFM 

waveforms exhibit innate spectral containment via the upsampling factor 𝛽α for virtually no computational cost, 

yielding compact instantaneous frequencies while maintaining constant amplitude temporal envelopes. 

Optimization can improve the degree of spectral containment or reduce autocorrelation sidelobes [123-132]. 
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Figure 42: Various unoptimized PCFM waveforms (top) power spectra, (middle) autocorrelations, and  

(bottom) instantaneous frequencies over time for 𝐵3dB𝑇p ≈ 500, for 𝑃 = 10 waveforms and factor 𝛽α = 2. 
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1.4.2.7. RANGE AMBIGUITIES AND PULSE ECLIPSING 

 Consider a waveform set transmitted in a uniform pulsed manner. Upon transmitting a given pulse 𝑠𝑝(𝑡),  

the received returns are range unambiguous if the electromagnetic scattering arrives at time delays that are  

non-overlapping with the returns from other pulse transmissions 𝑠𝑝(𝑡). In contrast, the received returns are range 

ambiguous if the scattering from pulse 𝑠𝑝(𝑡)  temporally overlaps with the scattering from other pulses 𝑠𝑝(𝑡) .  

Pulse eclipsing occurs when the scattered returns temporally overlap with the pulse transmission, wherein the 

receiver is switched off, thus concealing a portion of the scattered return. Due to the propagation power drop-off,  

the scattered signal from 𝑠𝑝(𝑡)  is assumed negligible relative to the noise floor over sufficient distance.  

These scenarios are illustrated in Figure 43. 

 

Figure 43: Range Unambiguous, Ambiguous, and Eclipsed Returns. 
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1.4.2.8. SIGNAL-TO-NOISE RATIO, PULSE COMPRESSION GAIN & COHERENT INTEGRATION  

 The impact of pulse compression and slow time processing on signal-to-noise ratio (SNR) is considered in 

the presence of additive white Gaussian noise (AWGN), represented by the random process 𝑣(𝑡). Consider the 

receive signal model 𝑦(𝑡) =  𝑠(𝑡) + 𝑣(𝑡). The pulse compression estimate becomes 

𝛾(𝑡) = 𝑤(𝑡) ⋆ 𝑦(𝑡) = 𝑤(𝑡) ⋆ 𝑠(𝑡) + 𝑤(𝑡) ⋆ 𝑣(𝑡) . 

(1.114) 

The noise 𝑣(𝑡) is spectrally filtered by 𝑤(𝑡), preserving a Gaussian distribution after the linear transformation [61]. 

The deterministic filter 𝑤(𝑡)  and the random process 𝑣(𝑡)  are uncorrelated in the expectation, such that 

𝐸{|𝑤(𝑡) ⋆ 𝑣(𝑡)|2} = ‖𝑤(𝑡)‖2
2 E{|𝑣(𝑡)|2}. The pulse compression gain 𝐺pc and filter mismatch loss 𝜎mml determine 

the peak power of the pulse compression estimate 𝛾(𝑡).  The pulse compressed SNR is 

SNRpc =
max{|𝑤(𝑡) ⋆ 𝑠(𝑡)|2}

𝐸{|𝑤(𝑡) ⋆ 𝑣(𝑡)|2}
=

(𝜎mml𝐺pc)𝒫s

‖𝑤(𝑡)‖2
2 E{|𝑣(𝑡)|2}

=
(𝜎mml𝐺pc) (

1
𝑇 ∫ |𝑠(𝑡)|2𝑑𝑡

𝑇

0
)

‖𝑤(𝑡)‖2
2  lim

𝑇→∞
{
1
𝑇 ∫ |𝑣(𝑡)|2𝑑𝑡

𝑇

0
}
= (

𝜎mml𝐺pc

‖𝑤(𝑡)‖2
2) SNRinit  . 

(1.115) 

Further SNR improvement to improve estimation accuracy is achieved by coherent integration across  

slow time pulse returns. Coherent integration requires that the radar transmitter and receiver are phase coherent. 

Assume that the given signal 𝑠(𝑡)  is pulsed for 𝑃  uniform pulse repetition intervals (PRI). Furthermore,  

assume scatterers are stationary to temporarily ignore Doppler effects. The range profile estimate 𝛾𝑝(𝑡) is formed 

by correlating the filter 𝑤(𝑡) and the 𝑝𝑡ℎ received signal 𝑦𝑝(𝑡). Coherent integration is expressed as 

𝛾𝑝(𝑡) = 𝑤(𝑡) ⋆ 𝑦𝑝(𝑡) = 𝑤(𝑡) ⋆ 𝑠(𝑡) + 𝑤(𝑡) ⋆ 𝑣𝑝(𝑡) 

𝛾int(𝑡) = ∑𝛾𝑝(𝑡)

∀𝑝

= ∑(𝑤(𝑡) ⋆ 𝑠(𝑡) + 𝑤(𝑡) ⋆ 𝑣𝑝(𝑡))

∀𝑝

= 𝑃(𝑤(𝑡) ⋆ 𝑠(𝑡)) + ∑𝑤(𝑡) ⋆ 𝑣𝑝(𝑡)

∀𝑝

 

(1.116) 
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The noise signal 𝑣𝑝(𝑡)  captured during the 𝑝𝑡ℎ  received signal 𝑦𝑝(𝑡)  is assumed independent and identically 

distributed, relative to noise signals 𝑣𝑝(𝑡) captured during other pulse repetition intervals. The expected noise 

power after coherent integration is then expressed as 

𝐸 {|∑𝑤(𝑡) ⋆ 𝑣𝑝(𝑡)

∀𝑝

|

2

} = 𝐸 {(∑𝑤(𝑡) ⋆ 𝑣𝑝(𝑡)

∀𝑝

)(∑𝑤(𝑡) ⋆ 𝑣𝑝(𝑡)

∀𝑝

)

∗

} = 𝑃 ‖𝑤(𝑡)‖2
2 𝜎v

2 . 

(1.117) 

The pulse compressed, coherently integrated SNR becomes 

𝑆𝑁𝑅int =
max {|𝑃(𝑤(𝑡) ⋆ 𝑠(𝑡))|

2
}

𝐸 {|∑ 𝑤(𝑡) ⋆ 𝑣𝑝(𝑡)∀𝑝 |
2
}

=
𝑃2 ∙ (𝜎mml𝐺pc)𝒫s

𝑃 ∙ ‖𝑤(𝑡)‖2
2 E{|𝑣(𝑡)|2}

= 𝑃 ∙ SNRpc = 𝑃 (
𝜎mml𝐺pc

‖𝑤(𝑡)‖2
2) SNRinit . 

(1.118) 

The coherent integration across 𝑃 pulse compressed LFM waveforms with AWGN present is shown in Figure 44. 

 

Figure 44: Coherent integration across 𝑃 pulse compressed, identical LFM chirp waveforms with AWGN present. 
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1.4.2.9. COHERENT INTEGRATION RANGE SIDELOBE REDUCTION FOR NON-REPEATING WAVEFORMS, 

RANGE SIDELOBE MODULATION (RSM) 

 Nonrepeating waveforms, when optimized with unique initializations, tend towards different local minima 

within an objective function. For instance, the angle modulated waveform denoted PRO-FM are shaped to a desired 

power spectrum template, however, each PRO-FM waveform exhibits unique instantaneous frequency structures. 

Assume that the unique signals 𝑠𝑝(𝑡) are pulsed for 𝑃 uniform PRIs. Furthermore, assume scatterers are stationary 

to temporarily ignore Doppler effects. Recall the ideal receive signal model 𝑦𝑝
ideal(𝑡) =  𝑠𝑝(𝑡), here indicating the 

𝑝𝑡ℎ received signal 𝑦𝑝(𝑡) from the 𝑝𝑡ℎ unique transmission 𝑠𝑝(𝑡). The ideal pulse compression estimate becomes 

𝛾𝑝(𝑡) = 𝑤𝑝(𝑡) ⋆ 𝑦𝑝(𝑡) = 𝑤𝑝(𝑡) ⋆ 𝑠𝑝(𝑡) = 𝑐𝑝(𝑡) . 

(1.119) 

The range profile estimate 𝛾𝑝(𝑡) is formed by correlating the 𝑝𝑡ℎ filter 𝑤(𝑡) and received signal 𝑦𝑝(𝑡), which under 

ideal conditions forms the 𝑝𝑡ℎ cross correlation function 𝑐𝑝(𝑡). Coherent integration is then expressed as 

𝛾𝑝(𝑡) = 𝑤𝑝(𝑡) ⋆ 𝑦𝑝(𝑡) = 𝑤𝑝(𝑡) ⋆ 𝑠𝑝(𝑡) 

𝛾int(𝑡) = ∑𝛾𝑝(𝑡)

∀𝑝

= ∑𝑤𝑝(𝑡) ⋆ 𝑠𝑝(𝑡)

∀𝑝

= ∑𝑐𝑝(𝑡)

∀𝑝

 

(1.120) 

Importantly, note that the coherently averaged cross-correlation ∑ 𝑐𝑝(𝑡)
 
∀𝑝  and mean cross-power spectrum 

∑ 𝑐𝑝(𝑓) 
∀𝑝  are Fourier transform pairs, proven by operation linearity as  

∑ 𝑐𝑝(𝑡)
 

∀𝑝
= ∑ ℱ−1{𝑐𝑝(𝑓)}

 

∀𝑝
= ℱ−1 {∑ 𝑐𝑝(𝑓)

 

∀𝑝
}  . 

(1.121) 

When the filter 𝑤𝑝(𝑡) is selected as the 𝑝𝑡ℎ matched filter, the statement is extended to the Fourier relationship 

between the coherently averaged autocorrelation ∑ 𝑟𝑝(𝑡)
 
∀𝑝  and mean power spectrum ∑ 𝑟𝑝(𝑓) 

∀𝑝 . 
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∑ 𝑟𝑝(𝑡)
 

∀𝑝
= ∑ ℱ−1{𝑟𝑝(𝑓)}

 

∀𝑝
= ℱ−1 {∑ 𝑟𝑝(𝑓)

 

∀𝑝
}  . 

(1.122) 

The pulse compressed sidelobes of unique nonrepeating waveforms exhibit noise-like characteristics, with 

approximately complex Gaussian distributions due to the central limit theorem, as detailed in [134].  

The correlation mainlobe remains coherent while the sidelobes decohere, which inherently reduces the coherently 

averaged pulse compression estimate sidelobe levels. The coherent sidelobe reduction applied to uniquely 

optimized PRO-FM waveforms when no AWGN is present is illustrated in Figure 45.  

 

Figure 45: Sidelobe reduction from coherently integrating non-identical PROFM autocorrelations, with no AWGN. 

Note that coherent sidelobe reduction of nonrepeating waveforms does not improve SNR, but rather reduces the 

pulse compression estimate sidelobe levels for improved detection of small scatterers. Range sidelobes fluctuations 

occur with increasing integration, due to the randomness of the correlation sidelobes. The correlation sidelobe 

phenomena of nonrepeating waveforms is called range sidelobe modulation (RSM). 



87 

 

1.4.3.  DOPPLER FREQUENCY 

 The Doppler effect occurs when scatterers are moving throughout the illuminated scene, which distorts the 

scattered electromagnetic wavefront. The Doppler effect is dependent on the scatterer velocity relative to the speed 

of light 𝑐  and the operating wavelength 𝜆(𝑡). Here, the fundamental physics describing the Doppler effect are 

examined with respect to the fast time and slow time radar dimensions. 

1.4.3.1. THE DOPPLER EFFECT 

 The Doppler effect is a distortion of electromagnetic wave time-frequency characteristics when moving 

scatterers are present in the observed scene, as explained by the theory of relativity [77]. The Doppler effect impacts 

the perceived time and frequency characteristics of the reflected pulse. When scatterers travel radially towards or 

away from the monostatic radar with constant velocity 𝑣r, the reflected pulse is distorted temporally as 

𝑇p
′ = (

𝑐 − 𝑣r

𝑐 + 𝑣r

) 𝑇p =
𝑇p

𝜓
 

(1.123) 

The instantaneous frequency 𝑓i(𝑡) = 𝑓c +
1

2𝜋

𝑑𝜙(𝑡)

𝑑𝑡
 of the frequency modulated electromagnetic wave becomes 

inversely distorted as 

𝑓i
′(𝑡) = (

𝑐 + 𝑣r

𝑐 − 𝑣r

) 𝑓i(𝑡) = 𝜓𝑓i(𝑡) 

(1.124) 

The Doppler distortion imposed by a moving scatterer is approximated by geometric expansion when 𝑣r ≪ 𝑐 as 

𝑇p
′ = (

𝑐 − 𝑣r

𝑐 + 𝑣r

) 𝑇p     ≈ (1 −
2𝑣𝑟

𝑐
) 𝑇p                                                         

𝑓i
′(𝑡) = (

𝑐 + 𝑣r

𝑐 − 𝑣r

) 𝑓i(𝑡) ≈ (1 +
2𝑣r

𝑐
) 𝑓i(𝑡) = 𝑓i(𝑡) +

2𝑣r

𝜆(𝑡)
= 𝑓i(𝑡) + 𝑓d(𝑡) 

(1.125) 
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The narrowband assumption imposes that the expected Doppler response 𝑓d(𝑡)  from the scatterer with velocity 𝑣r 

is invariant over time. The Doppler frequency is expressed as 

𝑓d(𝑡) = 𝑓i
′(𝑡) − 𝑓i(𝑡) = (

2𝑣r

𝑐
) 𝑓i(𝑡)             (Wideband) 

       𝑓d ≈ 𝑓i
′ − 𝑓c = (

2𝑣r

𝑐
) 𝑓c                           (Narrowband) 

(1.126) 

When a single scatterer traveling with radial velocity 𝑣r imposes the Doppler effect, the passband receive signal 

under the narrowband assumption is modeled as 

𝑦pb(𝑡) =  𝛾𝑠pb (𝜓 ∙ (𝑡 −
2𝑅

𝑐 + 𝑣r

)) =  𝛾𝑠pb (𝜓𝑡 −
2𝑅

𝑐 − 𝑣r

) 

             =  𝛾 𝑅𝑒 {𝑠bb (𝜓𝑡 −
2𝑅

𝑐 − 𝑣r

) 𝑒
𝑗2𝜋𝑓c(𝜓𝑡−

2𝑅
𝑐−𝑣r

)
} 

             = 𝛾 𝑅𝑒 {𝑠bb (𝜓𝑡 −
2𝑅

𝑐 − 𝑣r

) 𝑒𝑗2𝜋𝑓c𝜓𝑡𝑒
−𝑗4𝜋𝑓c(

𝑅
𝑐−𝑣r

)
} . 

(1.127) 

When the scatterer velocity is considerably less than the speed of light 𝑣r ≪ 𝑐, the passband receive model under 

the narrowband assumption is approximated as 

𝑦pb(𝑡) ≈ 𝛾 𝑅𝑒 {𝑠bb ((1 +
2𝑣r

𝑐
) 𝑡 −

2𝑅

𝑐 − 𝑣r

) 𝑒𝑗2𝜋(𝑓c+𝑓d)𝑡𝑒
−𝑗4𝜋𝑓c(

𝑅
𝑐−𝑣𝑟

)
} . 

(1.128) 

With sufficiently small velocity 𝑣r the passband signal is further reduced to 

𝑦pb(𝑡) ≈ 𝛾 𝑅𝑒 {𝑠bb (𝑡 −
2𝑅

𝑐
) 𝑒𝑗2𝜋(𝑓c+𝑓d)𝑡𝑒−𝑗4𝜋𝑓c(

𝑅
𝑐
)}  . 

(1.129) 
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 Subsuming miscellaneous terms into 𝛾, the passband model is simplified to 

                  𝑦pb(𝑡) ≈ 𝛾 𝑅𝑒 {𝑠bb (𝑡 −
2𝑅

𝑐
) 𝑒𝑗2𝜋(𝑓c+𝑓d)𝑡} 

                                = 𝛾𝑠pb (𝑡 −
2𝑅

𝑐
) 𝑒𝑗2𝜋𝑓d𝑡  . 

(1.130) 

The baseband receive signal representation is similarly represented as 

𝑦bb(𝑡) = 𝛾𝑠pb(𝑡 − 𝜏)𝑒𝑗2𝜋𝑓d𝑡𝑒−𝑗2𝜋𝑓c𝑡 

             = 𝛾𝑠bb(𝑡 − 𝜏)𝑒𝑗2𝜋𝑓c(𝑡−𝜏)𝑒𝑗2𝜋𝑓d𝑡𝑒−𝑗2𝜋𝑓c𝑡 

             = 𝛾 𝑠bb(𝑡 − 𝜏)𝑒−𝑗2𝜋𝑓c𝜏𝑒𝑗2𝜋𝑓d𝑡 = 𝛾 𝑠bb (𝑡 −
2𝑅

𝑐
) 𝑒

−𝑗(
4𝜋𝑅
𝜆c

)
𝑒𝑗2𝜋𝑓d𝑡 

(1.131) 

Assume a single point target is present in the scene where 𝛾(𝑡)𝑒−𝑗2𝜋𝑓c𝑡 = 𝛾𝛿(𝑡 − 𝜏). The ideal Doppler-shifted 

receive signal is expressed as 

𝑦ideal
 (𝑡) = 𝛾 𝑠 (𝑡 −

2𝑅

𝑐
) 𝑒𝑗2𝜋𝑓d𝑡 = (𝑠(𝑡) ∗ 𝛾𝛿 (𝑡 −

2𝑅

𝑐
)) 𝑒𝑗2𝜋𝑓d𝑡 

(1.132) 

1.4.3.2. THE AMBIGUITY FUNCTION 

 When moving targets are present in the illuminated scene, the reflected signal is frequency shifted due to 

the Doppler effect. When the received signal from a single pulse is Doppler-shifted by frequency 𝑓d, but the pulse 

compression filter is tuned assuming the scattered return has no Doppler shift (𝑓d = 0), the pulse compression 

estimate varies with the degree of Doppler shift 𝑓d. Consider the pulse compression filter 𝑤(𝑡) applied to the ideal 

Doppler-shifted signal 𝑦ideal
 (𝑡). 
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𝛾(𝑡) = ∫ 𝑤∗(𝜏 − 𝑡) 𝑦ideal(𝜏) 𝑑𝜏

∞

−∞

= ∫ 𝑤∗(𝜏 − 𝑡)𝑠 (𝜏 −
2𝑅

𝑐
) 𝑒𝑗2𝜋𝑓d(𝜏−

2𝑅
𝑐

)𝑑𝜏

∞

−∞

 

(1.133) 

The narrowband (or Woodward’s) ambiguity function defined in (1.134) is constructed from matched filter estimates 

of the ideal Doppler-shifted baseband or passband signal 𝑦ideal
 (𝑡) assuming no range delay, swept over every 

possible Doppler shift 𝑓d. 

𝜒(𝑡, 𝑓d) = ∫ 𝑤mf
∗ (𝜏 − 𝑡) 𝑦ideal(𝜏) 𝑑𝜏

∞

−∞

=
1

‖𝑠(𝑡)‖2
2 ∫ 𝑠∗(𝜏 − 𝑡)(𝑠(𝜏) 𝑒𝑗2𝜋𝑓d𝜏) 𝑑𝜏

∞

−∞

 

(1.134) 

The ambiguity function of an LFM waveform and a PROFM waveform are shown in Figure 46. The LFM waveform is 

called Doppler tolerant because a strong matched filter response exists across all Doppler frequencies.  

The PROFM waveforms are called Doppler selective (or Doppler intolerant) because the matched filter response 

rapidly drops off at significant Doppler shifts. Ambiguity function waveform metrics are discussed further in [135]. 

 

Figure 46: Ambiguity function |𝜒(𝑡, 𝑓d)|
2 of an up-chirped LFM waveform (left) and a single PROFM waveform (right), 

with time-bandwidth product 𝐵3dB𝑇p = 100. 
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1.4.3.3. RANGE-DOPPLER PROCESSING, THE POINT SPREAD FUNCTION 

 Fast time-Doppler and slow time-Doppler are distinct only with respect to the examined time scale.  

Fast time-Doppler refers to Doppler shifts induced within a single pulse, elicited by high velocity scatterers.  

Slow time-Doppler refers to Doppler shifts induced across multiple pulses, elicited by low velocity scatterers. 

Consider the pulse train 𝑠train(𝑡)  formed by the 𝑝𝑡ℎ  of 𝑃  pulses 𝑠𝑝(𝑡) , which are uniformly spaced by the PRI 

duration 𝑇PRI ≫ 𝑇p. 

𝑠train(𝑡) =  ∑ 𝑠𝑝(𝑡 − 𝑝𝑇PRI)
𝑃−1

𝑝=0
 

(1.135) 

The ideal baseband or passband scatterer response from the pulse train is then 

𝑦ideal
 (𝑡) = (∑ 𝑠𝑝 (𝑡 − 𝑝𝑇PRI −

2𝑅

𝑐
)

𝑃−1

𝑝=0
) 𝑒𝑗2𝜋𝑓d𝑡  . 

(1.136) 

The 𝑝𝑡ℎ pulse compression filter 𝑤𝑝(𝑡) is applied to the listening interval of the 𝑝𝑡ℎ pulse repetition interval to form 

the range estimate 𝛾𝑝(𝑡). 

𝛾𝑝(𝑡) = ∫ 𝑤𝑝
∗(𝜏 − 𝑡) 𝑠𝑝 (𝜏 − 𝑝𝑇PRI −

2𝑅

𝑐
) 𝑒𝑗2𝜋𝑓d𝜏  𝑑𝜏

(𝑝+1)𝑇PRI

𝑝𝑇PRI

 

(1.137) 

The set of range estimates over the entire coherent processing interval (CPI) becomes 

𝛾(𝑡) = ∑ ∫ 𝑤𝑝
∗(𝜏 − 𝑡) 𝑠𝑝 (𝜏 − 𝑝𝑇PRI −

2𝑅

𝑐
) 𝑒𝑗2𝜋𝑓d𝜏 𝑑𝜏

(𝑝+1)𝑇PRI

𝑝𝑇PRI

𝑃−1

𝑝=0

 

(1.138) 
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The stop-and-hop assumption imposes that the fast time-Doppler shift is negligible within the scattered pulse 

duration. The scatterer is assumed to have constant velocity over the entire CPI, and to not traverse a significant 

distance within the CPI. The Doppler shift is uniformly sampled every 𝑝𝑇PRI  seconds at delay bin 2𝑅/𝑐 .  

For slow moving scatterers 𝑓d ≪ 1/𝑇p, the introduced error is negligible. 

𝛾 (𝑡 +
2𝑅

𝑐
) = ∑ ( ∫ 𝑤𝑝

∗ (𝜏 − (𝑡 +
2𝑅

𝑐
)) 𝑠𝑝 (𝜏 − 𝑝𝑇PRI −

2𝑅

𝑐
) 𝑒𝑗2𝜋𝑓d∙(𝑝𝑇PRI) 𝑑𝜏

(𝑝+1)𝑇PRI

𝑝𝑇PRI

)

𝑃−1

𝑝=0

 

                     = ∑ ( ∫ 𝑤𝑝
∗ (𝜏 − 𝑡 −

2𝑅

𝑐
) 𝑠𝑝 (𝜏 − 𝑝𝑇PRI −

2𝑅

𝑐
)  𝑑𝜏

(𝑝+1)𝑇PRI

𝑝𝑇PRI

)𝑒𝑗2𝜋𝑓d∙(𝑝𝑇PRI)

𝑃−1

𝑝=0

 

                    = ∑ 𝑐𝑝(𝑡 − 𝑝𝑇pri)𝑒
𝑗2𝜋(

𝑓d
𝑓PRF

)𝑝

𝑃−1

𝑝=0

 

                    = ∑ 𝑐𝑝(𝑡 − 𝑝𝑇pri)𝑒
𝑗2𝜋𝜛𝑝

𝑃−1

𝑝=0

 

(1.139) 

The pulse compression estimate of the ideal Doppler shifted return becomes the time-delayed cross-correlation 

responses, phase shifted by the slow time Doppler phasor 𝑒𝑗2𝜋𝜛𝑝 under the stop-and-hop assumption. The Doppler 

response of the scatterer is sampled every 𝑝𝑇pri seconds, which is considered sampling across pulses (or slow time) 

with pulse repetition frequency 𝑓PRF . The sampling bounds of the uniform slow time-Doppler dimension are 

determined by the Nyquist theorem as 

  𝑓PRF ≥ 2𝑓d = 2(
2𝑣r

𝑐
) 𝑓c 

→ 𝑣r ≤ ±
1

4
(
𝑐

𝑓c
) 𝑓PRF = ±

𝜆c𝑓PRF

4
   . 

(1.140) 
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The slow time-Doppler phase response of the scattering scene is “sampled” across 𝑃 pulses. The received 

fast time response 𝐲𝑝 from the 𝑝th transmit pulse is modeled under the stop-and-hop assumption with AWGN as 

𝐲𝑝 = ∑𝐒𝑝𝛄(𝜛)𝑒𝑗2𝜋𝜛𝑝

∀𝜛

+ 𝐯 

(1.141) 

where 𝛄(𝜛) is the scattering range profile corresponding to the normalized Doppler shift 𝜛, 𝐒𝑝 is the convolution 

matrix of the 𝑝th pulse, and 𝐯 is noise. The slow time-Doppler phase progression (or steering vector) 𝐮(𝜛) for the 

normalized Doppler-shift 𝜛 is expressed as 

𝐮(𝜛) = [𝑒𝑗2𝜋𝜛(0) ⋯ 𝑒𝑗2𝜋𝜛(𝑃−1)]𝑇 

(1.142) 

Pulse compression is applied to the 𝑝𝑡ℎ receive vector to form the range estimate 𝛄̂𝑝 wherein moving scatterers 

having Doppler-shift 𝜛  may be present at the ℓ𝑡ℎ  range bin. 𝐖𝑝  is the convolution matrix of the 𝑝th  pulse 

compression filter 𝐰𝑝. 

𝛄̂𝑝 = 𝐰𝑝 ⋆ 𝐲𝑝 = 𝐖𝑝
𝐻𝐲𝑝 = 𝐖𝑝

𝐻 (∑𝐒𝑝𝛄(𝜛)𝑒𝑗2𝜋𝜛𝑝

∀𝜛

+ 𝐯) = 𝐖𝑝
𝐻 (∑𝐒𝑝𝛄(𝜛)𝑒𝑗2𝜋𝜛𝑝

∀𝜛

) + 𝐖𝑝
𝐻𝐯 

(1.143) 

Each range estimate from the 𝑝𝑡ℎ PRI is stacked horizontally to form the fast/slow time matrix 𝚼̂ = [𝛄̂0 ⋯ 𝛄̂𝑃−1]. 

 To determine the Doppler content in the pulse compressed data matrix 𝚼̂ , the Doppler filter bank  

𝐔 = [𝐮∗(𝜛0) ⋯ 𝐮∗(𝜛𝑃−1)]  hypothesizes various normalized slow-time Doppler shifts 𝜛  that are uniformly 

spaced over the set 𝜛 ∈ [−0.5, 0.5). The Doppler filter bank 𝐔 correlates the data matrix 𝚼̂ with each possible 

Doppler steering vector 𝐮∗(𝜛), applied along the slow time dimension as 

𝚼̂d = 𝚼̂𝐔  

(1.144) 
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Noting that the pulse repetition intervals 𝑝 and hypothesized Doppler shifts 𝜛 are each uniformly sampled, the 

Doppler filter bank now takes the form of a DFT matrix 𝐀̅  with dimension 𝑃 × 𝑃  (which can be efficiently 

implemented with an FFT). Consequently, (1.144) may be rewritten as  

𝚼̂d = 𝚼̂𝐀̅  

(1.145) 

 Now, assume a single point scatterer is present with no range delay and no Doppler shift. The set of 𝑃 

waveform/filter cross-correlation functions 𝐜𝑝 are concatenated to form the matrix 𝐂 = [𝐜0 𝐜1 ⋯ 𝐜𝑃−1]. The 

DFT applied to the cross-correlation fast time dimension of 𝐂 forms the set of waveform cross-power spectra 𝐂f.  

𝐂f = 𝐀̅1𝐂 

 𝐂 = (
1

𝑁c

) 𝐀̅1
𝐻𝐂f  

(1.146) 

The DFT applied to the slow time dimension of 𝐂 forms the point spread function ℧. 

℧ = 𝐂𝐀̅2 = (
1

𝑁c

) 𝐀̅1
𝐻𝐂f𝐀̅2 

(1.147) 

For the case of matched filter pulse compression, the point spread function (PSF) may be expressed more specifically. 

℧ = (
1

∑ ‖𝐬p‖2

2
∀𝑝

)𝐑𝐀̅2 = (
1

𝑁r ∑ ‖𝐬p‖2

2
∀𝑝

) 𝐀̅1
𝐻𝐑f𝐀̅2 

(1.148) 

The PSF may be determined in a vectorized form by applying the Kronecker product identity [69]. 

vec(℧) = vec(𝐀̅1
𝐻𝐑f𝐀̅𝟐) = (𝐀̅2

𝑇 ⊗ 𝐀1
𝐻)vec(𝐑f) 

(1.149) 
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The PSF of a repeated LFM waveform set and a non-repeated PRO-FM waveform set is shown in Figure 47.  

The range sidelobe modulation (RSM) observed for non-repeating waveforms is visible across slow time-Doppler. 

The SNR and sidelobe decoherence benefits of coherent integration apply in the slow time-Doppler dimension. 

 

Figure 47: Comparison of point spread functions ℧ for LFM waveforms (left) and PROFM waveforms (right) for  

𝑃 = 100 pulse repetition intervals. 
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2. CHAPTER II: COGNITIVE RADAR AND SPECTRUM SHARING 

 The RF spectrum is becoming congested due to the proliferation of wireless devices, wideband 5G 

communications, and the internet of things [1, 3]. As a result of RF spectrum auctioning, radar users are becoming 

secondary users in frequency bands that they previously had sole ownership of. Various methods now exist to 

contend with operation of radar and communications users operating within the same RF bands, including dual-

function radar communications (DFRC) [33], cognitive (or fully adaptive) radar [136-138], and spectrum management 

by time-frequency scheduling. Spectrum sharing technology offers the opportunity for radar to dynamically access 

the spectrum and mitigate mutual interference [2]. The cognitive perception-action cycle (PAC) involves sensing the 

environment, deciding upon an appropriate action, and subsequent system adaptation. 

 

Figure 48: Perception-action cycle (PAC) concept for radar [136]. 

The PAC is considered for radar waveform adaptation to the observed RF interference environment, with intent to 

perform pulse-Doppler radar for moving target indication (MTI). The RF bands of interest are assumed narrowband.  

Spectrum sensing and transmit waveform frequency notching is a form of cognitive radar that seeks to reduce 

mutual interference with other spectrum users in a cohabitated band. The cognitive sense-and-notch emission 

strategy is experimentally demonstrated as an effective way to reduce interference caused to other in-band users. 

The physical radar emission is based on a random FM waveform structure possessing attributes that are inherently 

robust to range sidelobes. One or more spectral nulls are reactively incorporated into the radar waveform to occupy 

as much available bandwidth possible within a band-of-interest. 

Radar 
Perception / Action

Cycle (PAC)

Learn & 
Decide

2
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1
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Recent work examined the sense-and-avoid (SAA) cognitive approach [139, 140], which gleans information 

from spectrum measurements of potential interferers and modifies the waveform center frequency and bandwidth 

to occupy the largest available contiguous band. The sense-and-notch (SAN) cognitive approach likewise employs 

spectrum measurements to identify interferers, however, the waveform incorporates spectral nulls collocated with 

the RF interferers to realize wider bandwidths and maximize spectrum occupancy (e.g. [141-152]). The efficacy of 

adapting waveform spectral notches dynamically in reaction to interference is explored, with the ultimate goal of 

achieving real-time sense-and-notch mutual interference mitigation. 

The “learn and decide” stage of the PAC is performed with the fast spectral sensing (FSS) algorithm  

[153, 154], which quickly determines the occupied frequency band locations from the “sensed” receive data.  

Waveform spectral nulls must coincide with the identified interference regions to diminish mutual interference. 

Based on the perceived interference bands, the frequency notch locations are “adaptively” incorporated into the 

random FM waveform design [150-152]. The random FM (RFM) waveform class exhibits pseudo-random phase while 

maintaining an FM temporal structure, subsuming both the angle modulation and PCFM waveform subclasses. 

Orthogonal frequency division multiplexing (OFDM) is a communication system design concept applied in long-term 

evolution (LTE) networks. Due to the modern prevalence of 5G LTE networks, OFDM-structured waveforms such as 

quadrature amplitude modulation (QAM) are considered as the primary observed interference source.  

Decision latency is vitally important because the RF interference (RFI) environment may change instantaneously. 

Figure 49 illustrates experimental measurements of RFM waveforms designed in response to OFDM interference. 

 The emulation and analysis performed here is unique compared to previously explored forms of mutual 

interference mitigation. For foliage penetration (FOPEN) radar, spectral notches were incorporated into an LFM 

waveform to avoid interfering with local communications bands, although the spectral notch was stationary for the 

entire coherent processing interval and did not require real-time reaction [28]. Interference avoidance was 

investigated for stepped frequency radar; however, the tones did not exhibit fast time-frequency bandwidths [80]. 

Of course, dynamic interference requires dynamic radar waveform design. 

 



98 

 

 

Figure 49: Experimental measurements of PRO-FM waveforms, designed with or without a spectral null collocated 

with observed OFDM interference. 

2.1.  SPECTRALLY NOTCHED RADAR WAVEFORM DESIGN 

Recall the pseudo-random optimized FM (PRO-FM) algorithm, which produces spectrally shaped angle 

modulated radar waveform. The 𝑝𝑡ℎ of 𝑃 PRO-FM waveforms is initialized with phase chips drawn from the uniform 

distribution 𝜙𝑛 ∈ [−𝜋, 𝜋] to form the signal 𝐬0,𝑝. The PRO-FM algorithm performs the 𝑘𝑡ℎ of 𝐾 alternating iterations 

𝐬̇𝑝
(𝑘+1)

= 𝐀̃𝐻{𝐝f
1/2

⊙ exp(𝑗∠𝐀̃𝐬𝑝
(𝑘)

)} 

𝐬𝑝
(𝑘+1)

= 𝐮 ⊙ exp(𝑗∠𝐬̇𝑝
(𝑘+1)

) 

(2.1) 

where 𝐀̃ is the 𝑀 × 𝑁 truncated DFT matrix with 𝑀 ≥ 2𝑁−1, HA  is the  𝑁 × 𝑀 truncated IDFT matrix, 𝐝f is the 

𝑀 × 1  desired PSD, 𝐮  is the 𝑁 × 1  desired amplitude envelope, and ∠( ∙ )  extracts the argument phase.  

Spectral nulls may be incorporated into the desired PSD 𝐝f over the set of frequency indices to null Λ by enforcing 

𝑑f,𝑚 = 0   for 𝑚 ∈ Λ . 

(2.2) 
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Inclusion of rectangular notches in the spectrum has been shown [148] to induce degraded range sidelobe roll-off 

in the autocorrelation. However, inclusion of a taper in the spectral region surrounding the notches via 

𝑑f,𝑚 = {

ℎL,𝑚   for 𝑚 ∈ ΛL  

0         for 𝑚 ∈ Λ    
ℎU,𝑚   for 𝑚 ∈ ΛU 

 

(2.3) 

has been demonstrated to be an effective solution [149]. The frequency intevals ΛL and ΛU indicate the lower and 

upper frequency regions adjacent to the notch, to which are applied the tapers ℎL,𝑚  and ℎU,𝑚 , respectively.  

A gradual transition between a notch and its local power spectrum is attained by forcing each tapered region to be 

continuous with its surrounding power spectrum. The shape of the taper regions can be arbitrary, but it has been 

observed that the Tukey taper well-compensates for the sidelobe degradation [149]. 

PRO-FM waveforms can achieve spectral notch depths of ~20 dB relative to the peak spectral power with 

sufficient iterations 𝐾. Waveform spectrum nulling algorithms [155-159] have been experimentally demonstrated 

to deepen spectral notches, while simultaneously maintaining a constant temporal amplitude. If deeper spectral 

notches are desired, the reiterative uniform weight optimization (RUWO) technique [156, 157] has been  

shown to attain appreciably deeper notches when applied after the optimization process above. 

The final signal vector 𝐬𝑝
(𝐾)

 from (2.1) is used to initialize the RUWO algorithm. The RUWO algorithm performs the 

the 𝑞𝑡ℎ  of 𝑄 iterations to deepen the waveform spectral notches. In the RUWO formulation, the frequency null 

intervals Λ are denoted by the 𝑀Λ discretized frequency values 𝑓m, such that the 𝑁p × 𝑀Λ matrix 𝐁Λ comprised of 

frequency steering vectors is formed as 

𝐁Λ =

[
 
 
 
 

 

1 1 ⋯ 1

𝑒𝑗2𝜋𝑓0 𝑒𝑗2𝜋𝑓1 ⋯ 𝑒𝑗2𝜋(𝑓𝑀Λ−1)

⋮ ⋮ ⋱ ⋮

𝑒𝑗2𝜋𝑓0(𝑁p−1) 𝑒𝑗2𝜋𝑓1(𝑁p−1) ⋯ 𝑒𝑗2𝜋(𝑓𝑀Λ−1)(𝑁p−1)

 

]
 
 
 
 

 

(2.4) 
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An 𝑁p × 𝑁p structured matrix is subsequently obtained by 

𝐖Λ = 𝐁Λ𝐁Λ
𝐻 + ∆𝐈 

(2.5) 

where 𝐈 is an 𝑁p × 𝑁p identity matrix and ∆ is a diagonal loading term. The RUWO algorithm is performed for 𝑄 

iterations to deepen the spectral notch obtained via the PRO-FM process. 

𝐬𝑝
(𝑞)

= exp(𝑗∠ 𝐖Λ
−1𝐬𝑝

(𝑞−1)
) 

(2.6) 

The mean power spectrum and coherently averaged autocorrelations of 𝑃 = 2500  full-band waveforms and  

𝑃 = 2500  spectrally notched waveforms are illustrated in Figure 50, where 𝐾 = 200  PRO-FM iterations and  

𝑄 = 100 RUWO iterations are applied. 

 

Figure 50: The coherently averaged waveform autocorrelations ∑ 𝐫𝑝
𝑃
𝑝=1  and mean waveform power spectra 

∑ 𝐫f,𝑝
𝑃
𝑝=1  for 2500 full-band PROFM and 2500 spectrally notched PROFM waveforms, transmitted on an arbitrary 

waveform generator and received on a real-time spectrum analyzer. Here 𝐾 = 200  PRO-FM iterations and  

𝑄 = 100 RUWO iterations are applied. 
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2.2.  EXPERIMENTAL EMULATION 

 The interference spectrum of OFDM experimental loopback measurements is determined by FSS to inform 

the null locations of frequency notched PROFM waveforms, which are subsequently transmitted in a separate  

free-space radar measurement. The synthetic combination of the closed-loop and free-space collections is examined 

to evaluate the impact to the radar performance. It is demonstrated that reactive spectral notching provides a 

significant signal to interference plus noise ratio (SINR) enhancement for moving target indication (MTI) via  

pulse-Doppler processing. The SINR improvement is degraded when an adaptation latency occurs between 

observance of interference and updating spectral notch locations within the radar waveform.  

2.2.1.  FAST SPECTRUM SENSING (FSS) ALGORITHM 

 The fast spectrum sensing (FSS) algorithm is a rapid band aggregation method that identifies the locations 

and widths of spectral regions requiring nulling for interference mitigation with other users. Here the FSS algorithm 

is used to identify the locations and widths of spectral regions that require notching in an efficient manner by 

reducing the number of frequency bins needed to analyze the spectrum. Frequency bins (ϑ) undergo a spectrum 

power threshold to produce alternating groups of low and high power “meso-bands (Ψ)” [182]. The meso-bands 

are then merged according to a minimum meso-bandwidth requirement 𝐵min to form the final merged sub-bands 

(Φ) where notches are needed. 

 For the given discrete observed spectrum Θ = {ϑ1 … ϑ𝑀}  with frequency discretization Δ𝑓  between 

samples, the FSS approach operates by first applying threshold 𝑇f  to label frequency samples as occupied or 

unoccupied. Define the set of 𝒬 ≤ 𝑀 intermediate meso-bands as Ψ = {Ψ1 … Ψ𝒬}, where meso-band 𝓆 contains  

Ψ𝓆 = {ϑ𝑆́(𝓆), … , ϑ𝐸́(𝓆)}, for 𝑆́(𝓆) and 𝐸́(𝓆) the start and end frequency indices composing a contiguous band of 

occupied or unoccupied bands. A low-power meso-band requires that 𝜗𝑚 ≤ 𝑇𝑓  while a high-power meso-band has 

𝜗𝑚 > 𝑇𝑓  for all 𝑚 ∈ {𝑆́(𝓆), … , 𝐸́(𝓆) }.  
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 Meso-bands are merged according to rules governing the minimum allowable meso-bandwidth 𝐵min 

(corresponding to a discrete length 𝐿min = ⌈𝐵min/Δ𝑓⌉) so the radar spectrum does not become too fragmented, as 

there is a need for a gradual transition into each notch to constrain the range sidelobe levels [149]. A low-power 

meso-band is merged with a high-power meso-band when 𝐿́(𝓆) = (𝐸́(𝓆) − 𝑆́(𝓆) + 1) < 𝐿𝑚𝑖𝑛  is satisfied.  

Define the set of ℛ ≤ 𝒬 ≤ 𝑀  merged meso-bands as Φ = {Φ1, … ,Φℛ}, where merged meso-band 𝓇  contains 

Φ𝓇 = {Ψ𝑆(𝓇), … ,Ψ𝐸(𝓇)} , for 𝑆(𝓇) and 𝐸(𝓇) the start and end frequency indices composing a contiguous band.  

The number of samples in each Φ𝓇  band is 𝐿(𝓇) = 𝐸(𝓇) − 𝑆(𝓇) + 1. The length of each merged meso-band Φ𝓇  

defines its bandwidth 

𝐵(𝓇) = 𝐿(𝓇)Δ𝑓 

(2.7) 

 

Figure 51: FSS-determined sub-bands for two OFDM signals, where {Φ1, Φ3, Φ5} represent unoccupied sub-bands 

and {Φ2, Φ4} represent occupied sub-bands. 
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2.2.2.  COGNITIVE RADAR EMULATION 

 Consider the situation in which OFDM interference is cohabitating the bandwidth occupied by the radar.  

To simplify analysis, a stationary monostatic radar performing moving target indication (MTI) is considered, for which 

the range-Doppler response can be accurately modeled by the point spread function. The performance of the radar 

is evaluated experimentally when in the presence of the communications RFI and with/without the use of cognitive 

spectral notching. To isolate the impact of the spectral notch and the presence of the interference separately,  

the communication signal measurement and the free-space radar measurement are collected separately and then 

combined synthetically. Notch-free, full-band waveforms are included to provide a performance baseline. 

 To fully characterize the interaction of sense-and-notch cognitive radar with the in-band interference, 

different interference arrangements are generated and the FSS algorithm is applied on a per-pulse basis to identify 

the occupied RFI bands. Each pulsed radar waveform is then designed to notch the regions of occupied spectrum. 

The waveforms are transmitted to collect free-space measurements of moving vehicles. The loopback 

measurements of interference and the free-space radar measurements are then combined synthetically in MatlabTM 

to determine how well notching mitigates the interference. The radar measurements are also evaluated individually 

(without interference included) to assess the trade-off notching imposes. 

Three RFI scenarios are considered here: 

• Case 1: the RFI is stationary in frequency over the CPI.  

• Case 2: the RFI hops to a random center frequency every four PRIs and the radar waveform adapts 

without latency.  

• Case 3: the RFI hops to a random center frequency every four PRIs and the radar waveform adapts with 

a latency of 𝑇PRI. 
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 The OFDM interference is modeled either as a single band consisting of eight adjacent subcarriers 

comprising a single contiguous bandwidth of 10 MHz, or two disjoint bands consisting of four adjacent subcarriers 

comprising separate contiguous bandwidths of 5 MHz .  Each subcarrier is modulated by a random stream of 

quadrature amplitude modulated (QAM) symbols from a 4-QAM constellation at a symbol rate of 1 MHz. Example 

power spectra for both RFI models are shown in Figure 52. The width of the observed notches arises because FSS 

identified the OFDM spectral roll-off as an occupied region. The sharp roll-off of the measured spectrum is caused 

by the limited analysis bandwidth (160 MHz) of the real-time spectrum analyzer. Note that the OFDM signals are not 

spectrally well-contained, which means that leakage interference will occur despite the waveform spectral notches.  

If the interference possessed better spectral containment the leakage degradation would largely be avoided. 

 

Figure 52: Example power spectra of measured OFDM interference, spectrally notched PROFM (adapted using FSS), 

and full-band PROFM waveforms. The RF interference either has a single contiguous bandwidth of 10 MHz (left) or 

two disjoint bands comprising separate contiguous bandwidths of 5 MHz (right). 

The experimental timing diagrams for each case are illustrated in Figure 53 and Figure 54. Note that the full-band 

PROFM waveform and the notched PROFM waveform are interleaved such that both illuminate the same moving 

target scene for comparison. Note that in instances where the disjoint RFI bands hop near one another, FSS may 

combine the identified meso-bands into a single sub-band for subsequent notching. 
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Figure 53: Experimental timing diagram for the single contiguous RFI band scenario: Case 1 - the interference and 

the radar notch is stationary; Case 2 - the radar adapts new notches instantly when the interference location changes 

(no latency); Case 3 - the radar adapts new notches with a delay 𝑇PRI when the interference location changes.  

 

Figure 54: Experimental timing diagram for the two disjoint contiguous RFI bands scanario. Case 1 - the interference 

and the radar notches are stationary; Case 2 - the radar adapts new notches instantly when the interference location 

changes (no latency); Case 3 - the radar adapts new notches with delay 𝑇PRI when the interference location changes. 
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 To facilitate the synthetic combination of communication and radar data, the OFDM signal is generated in 

MatlabTM and the FSS algorithm is applied to the communication signal on a per-PRI basis to identify the occupied 

RFI band using a minimum continuous-band grouping 𝐵min  requirement of either 8 MHz for a single contiguous 

band, or 4 MHz for two disjoint contiguous bands. For all cases, the FSS algorithm is used to identify the spectrum 

users with a power threshold 𝑇f  set to be 15 dB below the average peak power of the OFDM subcarriers.  

The results obtained from FSS are used to adapt the notched PROFM waveforms according to the latency incurred. 

Each OFDM signal is captured in a loopback configuration using RF test equipment consisting of a Tektronix arbitrary 

waveform generator and a Rohde & Schwarz real-time spectrum analyzer. The set of notched PROFM waveforms 

dictated by FSS were then transmitted (using the test setup in Figure 55) from the roof of Nichols Hall on the KU 

campus to illuminate the intersection of 23rd St. and Iowa St. in Lawrence, KS. These open-air measurements were 

combined synthetically with the loopback-measured communication signals to assess overall performance.  

The baseband waveforms are transferred to passband via digital upsampling, interpolation, and upconversion. 

 For each case a total of 5000 interleaved pulses were transmitted, with 2500 each for full-band and 

frequency notched PROFM. Accounting for the interleaving, the PRI is defined as the time interval between each 

pair of pulses and is set to 𝑇PRI = 40 μs. Each pulse has a duration of 𝑇p = 2 μs and bandwidth 𝐵3dB = 100 MHz.  

Both sets of radar waveforms have individual time-bandwidth products 𝑇p𝐵3dB = 200 . The total CPI for each 

waveform set is 𝑇CPI = 100 ms. The OFDM signals and radar emissions were each generated at a center frequency 

of 3.55 GHz and the resulting I/Q data was captured at a sample rate of 𝑓𝑠 = 200 MHz for loopback and open-air 

measurements, respectively. For radar receive processing, pulse compression matched filtering is performed using 

loopback captured versions of the emitted waveforms (also at 𝑓𝑠 = 200 MHz sampling rate) to account for hardware 

imperfections. Since there was no platform motion, clutter cancellation was performed by a simple projection of the 

zero-Doppler response and a Taylor taper was applied across Doppler. Platform motion effects such as angle-Doppler 

coupling of clutter and changing RFI spatial direction need not be addressed here. 



107 

 

  

Figure 55: Open-air hardware setup. 

2.2.3.  CASE 1: STATIONARY INTERFERENCE 

 As a baseline, Figure 56 shows the measured range-Doppler response after clutter cancellation for the  

full-band PROFM waveform, prior to synthetic RFI injection. Multiple automobiles were traversing the intersection, 

which are clearly visible here as moving targets. Note that different traffic patterns are observed for the single-notch 

and multi-notch transmission, though the same intersection is probed. It is useful to compare the full-band result 

against the notched PROFM radar measurement without the inclusion of RFI, as depicted in Figure 57.  

A spreading in range is observed due to the presence of the stationary notch that degrades the range sidelobe levels. 

 

Figure 56: Range-Doppler plot of full-band PRO-FM with no injected RFI, intended as the baseline comparison,  

for the single-notch data collect (left) and multi-notch data collect (right). Case 1. 
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Figure 57: Range-Doppler plot of notched PRO-FM with no injected RFI, possessing a stationary spectral notch,  

for the single notch data collect (left) and multi-notch data collect (right). Case 1. 

 The OFDM RFI measured in loopback is power-scaled and then synthetically combined with the free-space 

test measurements. It is assumed that the measured clutter power is sufficiently greater than the noise power for 

the latter to be neglected. The “received” unprocessed signal to interference ratio (SIR) is defined as the  

average power of the received radar backscatter signal (excluding direct path) divided by the average power of the 

OFDM interference, within the time interval that the backscatter was received. Figure 58 and Figure 59 show the 

range-Doppler plots for the full-band and notched PRO-FM when RFI is injected that is 20 dB greater than the radar 

receive echoes (i.e. a received SIR of −20 dB). The notched waveforms experience some degradation due to an 

increased background response, caused by interference leakage. In contrast, the full-band waveforms are greatly 

affected by the interference, so much so that the moving targets are essentially obscured beyond recognition. 

Qualitatively, the baseline case for full-band PROFM when interference is injected shown in Figure 58 will be the 

same regardless of the interference hopping pattern and therefore will not be shown redundantly. 
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Figure 58: Range-Doppler plot of full-band PROFM with injected stationary RFI of received SIR = −20 dB, for the 

single notch data collect (left) and multi-notch data collect (right). Case 1. 

 

Figure 59: Range-Doppler plot of notched PROFM with injected stationary RFI of received SIR = −20 dB, for the single 

notch data collect (left) and multi-notch data collect (right). Case 1. 
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 A useful metric to assess the impact of interference that is facilitated by this synthetic combination, along 

with the individual impact of hopping notches, is 

∆̅=
𝐼meas

𝐼baseline

 

(2.8) 

where 𝐼meas is the average power measured for each scenario in the range/Doppler regions that do not contain 

discernible targets or the clutter notch. The value 𝐼baseline  is then the particular value of 𝐼meas  for the full-band,  

no RFI scenario (e.g. Figure 56). Consequently, the metric in (2.8) represents the change in the background response 

induced by RFI or spectral notches that would impact downstream CFAR (constant false alarm rate) detection. 

Table 2 shows that, compared to the full-band scenario, the stationary notch of Case 1 incurs around 1 dB of 

degradation in terms of an increased noise floor when no RFI is present. When RFI is present the full-band waveforms 

realize a 23 dB sensitivity degradation, while the notched waveforms only suffer 11 dB, a net difference of 12 dB. 

Table 2: Impact of interference and notching for Case 1, when a single RFI or two disjoint RFI bands are present. 

 𝐼meas, single ∆̅, single 𝐼meas, multi ∆̅, multi 

Full-band, no RFI (baseline) −120.3 dB -- −119.8 dB -- 

Notched, no RFI −119.5 dB +0.8 dB −118.7 dB +1.1 dB 

Full-band, with RFI −96.8 dB +23.5 dB −96.1 dB +23.7 dB 

Notched, with RFI −109.0 dB +11.3 dB −108.2 dB +11.6 dB 
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2.2.4.  CASE 2: HOPPED INTERFERENCE, NO LATENCY 

 The hopped interference and notched waveforms in this case follow the timing arrangement when there is 

no adaptation latency between the interference changing (every four PRIs) and when the notch location adjusts in 

response. Figure 60 and Figure 61 show the full-band and notched PRO-FM responses when the RFI is not present. 

 

Figure 60: Range-Doppler plot of full-band PRO-FM with no injected RFI, intended as the baseline comparison,  

for the single notch data collect (left) and multi-notch data collect (right). Case 2. 

 

Figure 61: Range-Doppler plot of notched PRO-FM with no injected RFI, possessing a spectral notch hopped every 

four PRIs, for the single notch data collect (left) and multi-notch data collect (right). Case 2. 
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 Moving the frequency notch location during the CPI introduces a Doppler smearing effect, due to innately 

varying range sidelobe modulation from pulse-to-pulse. When the hopped RFI is present, again with a received SIR 

of −20 dB, the notched PROFM responses in Figure 62 is realized.  Per Table 3, it is interesting to observe that the 

hopping notch (without RFI) yields a nearly 7 dB increase in the noise floor, which is actually uncanceled clutter 

sidelobes distributed across range and Doppler. When frequency hopping RFI is present, again with a received SIR 

of −20 dB, the full-band response (not shown) experiences the same 23 dB degradation as before. In contrast,  

the MTI performance of the notched waveforms realizes ∆̅ = 12 dB, only 1 dB worse than the stationary RFI case. 

 

Figure 62: Range-Doppler plot of notched PROFM with injected frequency hopping RFI of received SIR = −20 dB, 

reacting with no adaptation latency, for the single notch data collect (left) and multi-notch data collect (right).  

Case 2. 

Table 3: Impact of interference and notching for Case 2, when a single RFI or two disjoint RFI bands are present. 

 𝐼meas, single ∆̅, single 𝐼meas, multi ∆̅, multi 

Full-band, no RFI (baseline) −120.8 dB -- −120.3 dB -- 

Notched, no RFI −113.8 dB +7 dB −113.4 dB +6.9 dB 

Full-band, with RFI −97.0 dB +23.8 dB −96.7 dB +23.6 dB 

Notched, with RFI −108.1 dB +12.7 dB −108.4 dB +11.9 dB 
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2.2.5.  CASE 3: HOPPED INTERFERENCE, 1 PRI  LATENCY 

The scenario is examined where there is a latency of duration 𝑇PRI before the location of the spectral notch can be 

determined and the waveform is adapted. The fullband and notched PROFM range-Doppler maps prior to  

RFI injection are depicted in Figure 63 and Figure 64, respectively, and are qualitatively the same as seen in Case 2.  

 

Figure 63: Range-Doppler plot of full-band PRO-FM with no injected RFI, intended as the baseline comparison,  

for the single notch data collect (left) and multi-notch data collect (right). Case 3. 

 

Figure 64: Range-Doppler plot of notched PRO-FM with no injected RFI, possessing a spectral notch hopped every 

four PRIs, for the single notch data collect (left) and multi-notch data collect (right). Case 3. 
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Upon adding interference, Figure 65 depicts the notched PROFM responses with adaptation latency effects.  

Due to the perception-action cycle latency, the notched case now experiences about  ∆̅= 18 dB because 1 PRI out 

of every 4 pulses is corrupted by interference. This result emphasizes the importance of adapting the waveform to 

changing RFI as quickly as possible. 

 

Figure 65: Range-Doppler plot of full-band PROFM with injected frequency hopping RFI of received SIR = −20 dB, 

reacting with adaptation latency 𝑇PRI, for the single notch data collect (left) and multi-notch data collect (right).  

Case 3. 

Table 4: Impact of interference and notching for Case 3, when a single RFI or two disjoint RFI bands are present. 

 𝐼meas, single ∆̅, single 𝐼meas, multi ∆̅, multi 

Full-band, no RFI (baseline) −120.9 dB -- −120.6 dB -- 

Notched, no RFI −113.9 dB +7.0 dB −113.6 dB +7.0 dB 

Full-band, with RFI −97.2 dB +23.7 dB −97.0 dB +23.6 dB 

Notched, with RFI −102.3 dB +18.6 dB −102.3 dB +18.3 dB 
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2.2.6.  CONCLUSIONS 

 It has been experimentally demonstrated using the synthetic combination of open-air radar measurements 

and loopback measurements of OFDM communication interference that cognitive spectrum sensing and notching 

can provide proactive interference mitigation. Compared to stationary interference, when frequency hopping of the 

interference occurs during the radar CPI, a range sidelobe modulation (RSM) induced Doppler response is observed. 

Latency to adjust the notch location(s) will further degrade the output SINR.  Practical factors contribute to the 

efficacy of this approach, such as Doppler smearing caused by notch hopping to address changing RFI.  

The matched filter response of spectrally notched waveforms provides significant RFI suppression. 
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2.3.  CLUTTER RANGE SIDELOBE MODULATION COMPENSATION 

 Cognitive spectral notching of FM noise waveforms on transmit is shown to be an effective means to 

mitigate in-band interference. However, to contend with dynamic interference, the transmit notch may be required 

to move during the CPI, which introduces a nonstationarity effect across slow time that results in increased RSM 

after slow time-Doppler processing and cancellation. The degradation is linked to a distortion of the delay/Doppler 

point spread function. The least square optimal mismatched filtering (LS-MMF) can partially mitigate this 

degradation while maintaining the necessary spectral notch for interference mitigation [160].  

 An approach to compensate for the nonstationarity is proposed that borrows the missing portion of the 

clutter frequency response (due to notching) from another pulsed response (having a notch in a different location) 

[161]. By using this borrowed response to fill in the notched clutter, subsequent clutter cancellation minimizes the 

RSM residue effect. It is shown using measured data that the combination of the clutter filling approach with notched  

LS-MMFs realizes clutter cancellation performance on par with full-band waveforms that do not possess notches. 

 To that end, an ad hoc approach denoted as devoid clutter capture and filling (DeCCaF) is proposed whereby 

the clutter frequency response from a different pulse is bandpass filtered (BPF) commensurate with the notch 

location in the present pulse, and then subsequently added to the clutter response for the present pulse.  

Measured data collected using waveforms having moving spectral notches is used to assess the efficacy of this 

approach. For application to cognitive RFI avoidance, each unique LS-MMF must also contain spectral notches that 

align with the given notched waveform. Care must be taken so that the inverse nature of the LS-MMF does not invert 

the desired spectral notch, but instead preserves sufficient notch depth for interference suppression on receive. 
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2.3.1.  DEVOID CLUTTER CAPTURE AND FILLING 

 Moving spectral notches during the CPI (due to dynamic RFI) hinders clutter cancellation because the 

changing notch locations introduce significant deviations from the mean power spectrum of the waveform set, 

inflicting time-varying RSM structure. Modest variation of the spectral density already occurs for notch-free RFM 

waveforms, though the application of LS-MMFs has been found to compensate to a sufficient degree [72].  

The presence of moving notches requires more substantial steps to homogenize the individual spectral densities 

across the CPI. 

 Consider a set of 𝑃 random FM waveforms denoted 𝑠𝑝(𝑡) that possess the same general power spectrum 

aside from a) modest variation due to their random nature and b) spectral notch locations that may change on a 

pulse-to-pulse basis. For ease of explanation, the case in which only a single notch is present for each pulse is 

considered, though the proposed compensation approach can be applied to the case of multiple notches.  

The received response after transmitting this sequence of waveforms can be expressed as 

𝑦𝑝(𝑡) =  𝑠𝑝(𝑡) ∗ 𝛾𝑝(𝑡) + 𝑣𝑝(𝑡) 

(2.9) 

where ∗  is the convolution operation, 𝛾𝑝(𝑡)  is the impulse response of the environment during the 𝑝𝑡ℎ  PRI,  

and 𝑣𝑝(𝑡) is additive noise. One can generally expect the stationary (𝑓d ≈ 0) clutter component of 𝛾𝑝(𝑡) to be 

essentially unchanged over the CPI. Pulse compression of (2.9) is then performed via 

𝛾𝑝(𝑡) = 𝑤𝑝(𝑡) ⋆ 𝑦𝑝(𝑡) 

(2.10) 

for 𝑤𝑝(𝑡) the matched filter or LS-MMF of the 𝑝𝑡ℎ waveform. Normally, Doppler processing and clutter cancellation 

would then be performed across the set of 𝑃 responses from (2.10). However, when frequency hopping waveform 

spectral notches are present during the CPI, an RSM effect causing residual clutter sidelobes is observed. 
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 Consider the same experimentally measured data collected from a stationary platform observing moving 

vehicles leaving/entering an intersection in Lawrence, KS. The residual clutter response due to RSM, which takes the 

form of the large streaks across Doppler, is caused by the slow time nonstationarity introduced by moving the 

spectral notches. The DeCCaF approach seeks to compensate for this residual clutter effect via an ad hoc  

“clutter filling” solution. While the notion of estimation/interpolation of static spectral notches are used for 

wideband radar applications to compensate/enhance image quality (e.g. [163, 164]), the distinction here is that the 

intent is to mitigate clutter residuals by reducing range-Doppler sidelobes and better facilitate clutter cancellation. 

 If the 𝑝𝑡ℎ waveform contains a spectral notch at a given location, a similar spectral portion of the clutter is 

borrowed from the response generated by a different waveform that does not have a notch in that same location. 

Denoting the index of that other waveform as 𝑝 and 𝑤𝑝(𝑡) as a bandpass filter (BPF) whose passband aligns with the 

notch location of the 𝑝𝑡ℎ waveform, the borrowed clutter component is 

𝛾𝑝,𝑝
filt(𝑡) = 𝑤𝑝(𝑡) ∗ 𝛾𝑝(𝑡) 

(2.11) 

Thus, the DeCCaF response is obtained by simply combining the original response with the borrowed clutter via 

𝛾̃𝑝(𝑡) = 𝛾p(𝑡) + 𝛾𝑝,𝑝
filt(𝑡) 

(2.12) 

Subsequent Doppler processing and clutter cancellation is then performed on the spectrally homogenized estimate. 

As an illustration of the concept, Figure 66 depicts the closed-loop measured spectra for a full-band waveform, a 

notched waveform, and the BPF version of the full-band waveform corresponding to spectral notch location.  

These full-band and notched RFM waveforms were obtained from completely independent initializations and 

optimization processes, and thus the only thing they have in common is the same general spectrum shape.  

While the DeCCaF combination of the notched and BPF waveforms would not yield a spectrum that is identical to 

that of the full-band waveform, the resulting shape is rather close. Further, since convolution is a linear operation, 

consideration of Figure 66 in the context of (2.9) and (2.12) implies that this approach should do well to recapture 

the missing clutter component as long as the clutter phenomenology is sufficiently stationary. 
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Figure 66: Loopback measured spectra for a full-band waveform, a notched waveform, and a BPF version of the  

full-band waveform 

 To establish a baseline for achievable performance using this clutter borrowing/filling approach, two sets 

of unique RFM waveforms were transmitted in an open-air setting with an interleaved arrangement (see Figure 67). 

Both sets were generated according to the PROFM scheme. One set contains 2500 full-band waveforms that are all 

independently initialized and optimized. The other set likewise contains 2500 independent waveforms, which 

contain a spectral notch moving to a new random location within the 3-dB bandwidth after every fourth pulse.  

This waveform arrangement is clearly not suitable for actual cognitive interference avoidance due to the presence 

of the interleaved full-band waveform but is used here to provide a controlled experiment regarding the utility of 

borrowed clutter responses. Consequently, two different cases are considered in extension of section 2.2,  

both illuminating the same intersection of 23rd and Iowa.  

• Case 4: RFM waveforms with moving notches where DeCCaF is applied using interleaved full-band 

responses to performing clutter filling 

• Case 5: The full-band responses are disregarded and the borrowed clutter responses are taken from 

other notched waveform responses.  
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Figure 67: Timing diagram of the waveform arrangement used for experimental evaluation of DeCCaF. Full-band and 

notched waveforms are interleaved, with the borrowed clutter taken from an adjacent full-band response 

 The last of these represents the operating arrangement one would expect in practice. Both the matched 

filter (MF) and the least squares mismatched filter (LS-MMF) are applied for each case. It is important to note that, 

while the primary purpose of this manner of cognitive operation is to mitigate mutual RFI between the radar and 

other in-band spectrum users, the following results contain the associated spectral notches but not the RFI itself. 

The degradation from RFI was shown to be significantly reduced in section 2.2, which is especially true when the RFI 

possesses good spectral containment. Consequently, the RSM limitation imposed by the moving spectral notches 

(which provide the mutual RFI suppression) is considered here. The LS-MMF was constructed with a length that is 

3 that of the MF length (𝑁w = 3𝑁p) and with sufficient diagonal loading to avoid notch inversion and minimize 

mismatch loss. Beamspoiling is not applied in the LS-MMF formulation, as it was found to degrade the spectral 

homogenization across range estimates and thus sustain the clutter range-Doppler sidelobes. 
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 Figure 68 show the matched filtered full-band PRO-FM responses when the RFI is not present for baseline 

comparison, repeated from Case 2. Figure 69 illustrates the degradation that arises for the MF and LS-MMF when 

notched PRO-FM waveforms are employed and the notch locations move dynamically during the CPI. The streaks 

observed in Figure 69 are clutter sidelobes that could not be cancelled due to the nonstationarity induced by 

changing notch locations. The use of notched LS-MMFs provides some compensation for this effect. 

 

Figure 68: Range-Doppler plot of full-band PRO-FM with no injected RFI, intended as the baseline comparison,  

applying the matched filter to the single notch data collect. Repeated from Case 2. 

 

Figure 69: Measured range-Doppler response from 2500 PRO-FM waveforms with dynamic spectral notches, 

applying the matched filter (left) and least squares mismatched filter (right), for the single notch data collect. 
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2.3.2.  CASE 4: HOPPED INTERFERENCE, NO LATENCY,  CLUTTER FILLING BY TEMPORALLY 

ADJACENT FULL-BAND WAVEFORMS 

 Figure 70 shows the MF and notched LS-MMF range-Doppler responses for the same set of notched 

waveforms when DeCCaF is applied using the borrowed clutter estimate elicited by the adjacent full-band 

waveforms.  Recall the metric for interference impact ∆̅, where 𝐼meas  is the average power measured for each 

scenario in the range/Doppler regions that do not contain discernible targets or the clutter notch. The value 𝐼baseline 

is then the particular value of 𝐼meas for the full-band, no RFI scenario (e.g. Figure 68). Without application of DeCCaF, 

the matched filter estimate is degraded by ∆̅= 7.0 dB and the mismatched filter estimate is degraded by ∆̅= 3.8 dB, 

demonstrating a slight improvement. The addition of DeCCaF before Doppler processing improves the background 

floor, where the matched filter estimate is degraded by ∆̅= 2.7 dB, demonstrating an improvement of 4.3 dB of the 

uncompensated counterpart. Applying DeCCaF in addition to the LS-MMF achieve ∆̅= 0.8 dB, which is near the level 

achieved by the baseline. In other words, this combination of approaches seems to have come rather close to 

completely compensating for degradation imposed by spectral notches that address dynamic RFI. 

 

Figure 70: Measured range-Doppler response from 2500 PRO-FM waveforms with dynamic spectral notches, 

applying interleaved & spectrally-filtered full-band responses for clutter filling via the matched filter & DeCCaF (left) 

or the mismatched filter & DeCCaF (right). 
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Table 5: Impact of notching, MF or LS-MMF estimation, and DeCCaF using temporally adjacent full-band estimates, 

for Case 4, when a single RFI band is present. 

 𝐼meas, single ∆̅, single 

Full-band, no RFI, MF (baseline) −120.8 dB -- 

Notched, no RFI, MMF −117.0 dB +3.8 dB 

Notched, no RFI, MF −113.8 dB +7.0 dB 

Notched, no RFI, DeCCaF, MMF −120.0 dB +0.8 dB 

Notched, no RFI, DeCCaF, MF −118.1 dB +2.7 dB 

 

2.3.3.  CASE 5: HOPPED INTERFERENCE, NO LATENCY,  CLUTTER FILLING BY TEMPORALLY 

ADJACENT NOTCHED WAVEFORMS 

 Having established the performance enhancement of DeCCaF when the borrowed clutter responses are 

taken from the separate (interleaved) set of full-band waveforms, now consider the impact of borrowing clutter 

from other notched pulses within the same CPI. The BPF clutter is borrowed from the temporally nearest notched 

waveform that has a non-overlapping notch location relative to the pulse under consideration, as shown in  

Figure 71. The resulting DeCCaF response therefore involves the re-use of clutter and noise from elsewhere in the 

CPI, as opposed to the statistically independent instantiations considered in the previous interleaved case, which 

would likely not be realistic. Some degradation in the degree of residual clutter compensation is expected. 
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Figure 71: Timing diagram of the waveform arrangement used to evaluate the operationally useful form of DeCCaF. 

The borrowed clutter is taken from temporally adjacent, spectrally non-overlapping notched responses. 

 Figure 72 shows the MF and MMF range-Doppler responses for this arrangement. Compared to Figure 70,  

the residual clutter floor is slightly increased, though the overall performance improvement relative to Figure 69 

without DeCCaF is still quite clear. The addition of DeCCaF before Doppler processing improves the background floor, 

where the matched filter estimate is degraded by ∆̅= 4.4 dB, demonstrating an improvement of 2.6 dB of the 

uncompensated counterpart. Applying DeCCaF in addition to the LS-MMF achieve ∆̅= 1.7 dB, which is still near the 

level achieved by the baseline. 

 

 



125 

 

 

Figure 72: Measured range-Doppler response from 2500 PRO-FM waveforms with moving spectral notches, applying 

adjacent spectrally-filtered notched waveform responses for clutter filling via the matched filter & DeCCaF (left) or 

the mismatched filter & DeCCaF (right). 

Table 6: Impact of notching, MF or LS-MMF estimation, and DeCCaF using temporally adjacent notched estimate, 

for Case 5, when a single RFI band is present. 

 𝐼meas, single ∆̅, single 

Full-band, no RFI, MF (baseline) −120.8 dB +0.9 dB 

Notched, no RFI, MMF −117.0 dB +3.8 dB 

Notched, no RFI, MF −113.8 dB +7.0 dB 

Notched, no RFI, DeCCaF, MMF −119.1 dB +1.7 dB 

Notched, no RFI, DeCCaF, MF −116.4 dB +4.4 dB 
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 For a different perspective on how DeCCaF is compensating for notch-induced clutter modulation,  

the mean PSD of the MF range estimate across the CPI in slow-time are examined. The PSD having moving notches 

exhibits a noticeable deviation from the PSD when full-band waveforms are used, as shown in Figure 73.  

However, refilling the missing clutter response via DeCCaF returns the mean PSD closely to the full-band case.  

Figure 74 shows the PSDs of the MF range estimates, indexed over the 𝑝𝑡ℎ  pulse of the CPI, before and  

after applying DeCCaF. 

 

Figure 73: Mean power spectra of the matched filtered range profile estimate ∑ |𝛾𝑝(𝑓)|
2 

∀𝑝  over the given CPI for  

Case 1 (full-band) and Case 2 (notched without clutter filling). The mean compensated range profile estimate 

∑ |𝛾̃𝑝(𝑓)|
2 

∀𝑝  after applying DeCCaF for Case 5 (notched, clutter filling with other notched responses) is quite similar 

the full-band response. 
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Figure 74: Power spectra of the matched filtered range profile estimate |𝛾𝑝(𝑓)|
2
 for the 𝑝𝑡ℎ pulse before applying 

DeCCaf (top) and the compensated range profile estimates |𝛾̃𝑝(𝑓)|
2
 after applying DeCCaF (bottom) 

2.3.4.  CONCLUSIONS 

 An ad hoc approach denoted as devoid clutter capture and filling (DeCCaF) has been proposed and 

demonstrated on measured data as a means to address the nonstationarity that arises when spectral notches must 

move during the CPI to mitigate interference with dynamic RFI. When DeCCaF is combined with appropriately 

notched optimal mismatched filtering the result is nearly indistinguishable from the case in which no spectral 

notches are employed. 
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2.4.  NOTCHED POWER SPECTRA FOR OPTIMAL SIDELOBE REDUCTION 

 Designing radar waveforms with notched spectral regions can mitigate mutual interference with other 

proximate RF users. However, this capability comes at the cost of degraded range-Doppler sidelobe performance. 

To evaluate the limitations of correlation-based processing in the range dimension, the null-constrained power 

spectral density that globally minimizes correlation sidelobe levels is determined for comparison with waveform and 

pulse compression filter design methods. Existence of the least-squares global optimum indicates a fundamental 

dynamic range limitation for notched power spectra (notwithstanding further receive compensation such as DeCCaF 

or range resolution spoiling). By extension, the limitations of combined pulse compression and slow time-Doppler 

processing are assessed by determining the null-constrained set of power spectral densities that globally minimizes 

the range-Doppler sidelobes indicated by the point spread function (PSF). 

 Section 2.1 examined spectrally notched random FM (RFM) waveform design where ad-hoc tapering was 

incorporated into the null shape as a heuristic means of reducing range sidelobes. Here, waveforms designed 

according to the optimal null-constrained spectral template are demonstrated to have improved sidelobe 

performance after pulse compression and slow-time processing. Further, because these waveforms are designed 

according to the least squares optimal spectral template, application of the least squares mismatched filter provides 

additional sidelobe reduction (toward the global limit) with minimal mismatch loss. 

2.4.1.  GLOBAL MINIMUM POWER SPECTRUM FOR RANGE SIDELOBE REDUCTION 

 To gain insight about the behavior of spectrally notched power spectra when attempting to minimize 

correlation sidelobes, it is interesting to first examine solutions to a well-posed (less constrained) objective 

statement. The waveform power spectral density (PSD) 𝐫f  and autocorrelation 𝐫  are a Fourier transform pair; 

therefore, waveforms designed to conform to a desired PSD template 𝐝f  can be directly optimized for both 

autocorrelation and spectral properties. Moreover, doing so while constraining spectral null locations provides 

global minimum boundaries for waveform/filter spectral notches due to convexity. 
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Consider the optimization problem to design the desired PSD template 𝐝f, which can be written as 

       min
𝐝f

 ‖𝐞 − 𝐀̅𝐻𝐝f ‖2
2 

        s. t.   𝑑f,𝑚 ≤ 𝜀𝑚   for 𝑚 ∈ Λ                                      

                 0 ≤ 𝑑f,𝑚      for 𝑚 = 0,1, …𝑀d − 1     

(2.13) 

where 𝐝f is the 𝑀d × 1 discretized PSD template with 𝑑f,𝑚  as the 𝑚𝑡ℎ  element, 𝐀̅𝐻  is an 𝑀d × 𝑀d  shifted inverse 

discrete Fourier transform (IDFT) matrix, 𝐞 is the ideal impulse autocorrelation response, ( ∙ )∗  denotes complex 

conjugation, ‖ ∙ ‖2 is the 2-norm operator, and 𝜀𝑚 is the constrained maximum value for the associated 𝑑f,𝑚 and for 

𝑚  in the subset Λ  (i.e. null constraints).  Each element of 𝐝f  must be non-negative by definition of the PSD.  

The objective function in (2.13) therefore determines 𝐝f such that the corresponding autocorrelation (via IDFT) has 

a minimized integrated sidelobe level (ISL), subject to spectral null constraints. 

 The problem formulation in (2.13) is a hybrid of non-negative LS and boxed LS, each being convex and having 

unique global solutions if 𝐀̅𝐻 has full column rank (true for the DFT matrix) [165]. Different degrees of beamspoiling 

[71] can be achieved by replacing 𝐿̅ rows of 𝐀̅𝐻 (corresponding to autocorrelation mainlobe roll-off) with zeros, thus 

permitting different mainlobe widths and achievable sidelobe levels. The resulting beam-spoiled matrix still 

maintains full column rank; therefore, (2.13) is convex and yields the globally optimal solution 𝐝̂f. 

 For convenience, (2.13) is solved using the MatlabTM fmincon optimization toolkit [166]. The resulting 

optimal PSD templates for minimizing ISL, and their associated autocorrelation structures with various degrees of 

beamspoiling, are shown in Figure 75. The spectral window length is chosen to be 𝑀d = 200  samples.  

Notches are imposed at the band edges for containment, and an additional notch is imposed off-center from 

normalized frequencies -0.2 to -0.1. For all illustrated cases, each notch occupies 10% of the band with an enforced 

relative depth of 40 dB. The autocorrelation mainlobe resolution is defined by the ratio (%) of beamspoiled rows in 

𝐀̅𝐻 relative to the total spectral window length 𝑀d. 
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 A notable characteristic of the power spectra in Figure 75 is that the larger primary band (between digital 

frequencies −0.1 and +0.4) maintains a majority of the power, with the smaller supplementary band (between digital 

frequencies −0.4 and −0.2) used to improve resolution. In fact, for the 6% beamspoiling case, the supplementary 

band is hardly occupied, implying that a sense-and-avoid [140] approach may be suitable depending on the desired 

resolution and sidelobe levels. Prior findings [150] that spectral notching near the band center degrades the 

achievable range sidelobe level is also confirmed in Figure 76. Compared to traditional windowing methods [167], 

the least squares optimal spectral templates are rather custom-designed via (2.13) to include spectral notches based 

on a prior spectrum-sensing process. 

 

 

Figure 75: Optimum desired power spectrum templates 𝐝̂f  and autocorrelation responses 𝐝̂  with minimized 

autocorrelation ISL according to (2.13), for 40 dB spectral null and varied beamspoiling ratios of 1%, 2%, 4%, 6% 

relative to total window length 
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Figure 76: Optimum desired power spectrum templates 𝐝̂f  and autocorrelation responses 𝐝̂  with minimized 

autocorrelation ISL according to (2.13), for 40 dB spectral nulls (at different locations) and beamspoiling ratio of 2% 

relative to total window length. 

The cost function in (2.13) can be readily generalized to a 𝓅-norm framework 

       min
𝐝f

 ‖𝐞 − 𝐀̅𝐻𝐝f‖𝓅
𝓅

 

        s. t.   𝑑f,𝑚 ≤ 𝜀𝑚   for 𝑚 ∈ Λ                                      

                 0 ≤ 𝑑f,𝑚      for 𝑚 = 0,1, …𝑀r − 1     

(2.14) 

with sufficiently large 𝓅 well-approximating the peak sidelobe level (PSL) metric. The 𝓅 -norm version still maintains 

convexity, so therefore global optimality is likewise preserved. The gradient of (2.14) is 

∇𝐫f
‖𝐞 − 𝐀̅𝐻𝐝f‖𝓅

𝓅
= −𝓅 𝑅𝑒{𝐀̅(|𝐞 − 𝐀̅𝐻𝐝f|

𝓅−2 ⊙ (𝐞 − 𝐀̅𝐻𝐝f))} 

(2.15) 

where 𝑅𝑒{ ∙ } extracts the real part of the argument.  
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 For example, the resulting optimal PSD templates 𝐝̂f and their corresponding autocorrelations 𝐝̂ for various 

degrees of beamspoiling are shown in Figure 77 for 𝓅 = 8. The same constraints are enforced as in Figure 75 for the 

ISL case. Interestingly, these PSDs exhibit ridged structures at low resolutions. Similar to the ISL case, as the degree 

of beamspoiling is increased (relaxing autocorrelation mainlobe width) the sidelobe floor is correspondingly reduced. 

This interplay between sidelobe level and mainlobe resolution is a fundamental trade-space for this design.  

A given degree of beamspoiling is necessary to achieve a desired dynamic range (i.e. sidelobe level); though 

increasing the beamspoiling factor does reduce 3-dB bandwidth and therefore degrades mainlobe resolution. 

 

Figure 77: Optimum desired power spectrum templates 𝐝̂f  and autocorrelation responses 𝐝̂  with minimized 

autocorrelation PSL (𝓅 = 8) according to (2.14), for 40 dB spectral null and varied beamspoiling ratios of 1%, 2%, 

4%, 6% relative to total window. 
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2.4.2.  GLOBAL MINIMUM POWER SPECTRUM FOR RANGE-DOPPLER SIDELOBE REDUCTION 

 While the global minimum template for range sidelobe reduction provides insight regarding the per-pulse 

limitation of correlation-based processing (i.e. assuming 𝑓d = 0 ) for arbitrary notch depths and locations, 

consideration must be taken regarding range-Doppler sidelobes resulting from a non-stationary spectral notch. 

Recall from (1.149) that the range-Doppler point spread function may be expressed (excluding normalizations) as 

℧ = 𝐀̅1
𝐻𝐑f𝐀̅𝟐 

(2.16) 

The ideal range-Doppler point spread function is the two-dimensional impulse function 𝐄 having a mainlobe peak 

and no range-Doppler sidelobes. The set of waveform PSDs 𝐑f  and the point spread function ℧ are a  

two-dimensional Fourier transform pair; therefore, waveforms designed to conform to the desired PSD template set 

𝐃f = [𝐝f,0 𝐝f,2 ⋯ 𝐝f,𝑃−1] can be directly optimized for both range-Doppler and spectral properties. Moreover, 

doing so while constraining spectral null locations provides global minimum boundaries for waveform/filter spectral 

notches due to convexity. Of course, knowledge of future notch locations would require precise knowledge of future 

interference spectral patterns which is rarely had, and the range-Doppler optimum is intended here for analytical 

purposes. Consider the optimization problem to design the PSD template set 𝐃f written as 

      min
𝐃f

 ‖vec(𝐄) − vec(𝐀̅1
𝐻𝐃f𝐀̅𝟐)‖𝓅

𝓅
= ‖vec(𝐄) − (𝐀̅2

𝑇 ⊗ 𝐀1
𝐻)vec(𝐃f)‖𝓅

𝓅
 

        s. t.   𝑑f,𝑚,𝑝 ≤ 𝜀𝑚,𝑝   for 𝑚, 𝑝 ∈ Λ                                      

                 0 ≤ 𝑑f,𝑚,𝑝        for 𝑚 = 0,1, …𝑀d − 1;  𝑝 = 0,1, … , 𝑃 − 1 

(2.17) 

where 𝐃f is the 𝑀d × 𝑃 discretized PSD template set with 𝑑f,𝑚,𝑝 as the 𝑚𝑡ℎ element of the 𝑝𝑡ℎ spectral template, 

𝐀̅1
𝐻  is an 𝑀d × 𝑀d  shifted IDFT matrix, 𝐀̅2  is an 𝑃 × 𝑃  shifted DFT matrix, 𝐄  is the ideal impulse point spread 

function, and 𝜀𝑚,𝑝 is the constrained maximum value for the associated 𝑑f,𝑚,𝑝 and for 𝑚 in the subset Λ (i.e. null 

constraints). Each element of 𝐃f must be non-negative by definition of the PSD.  
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 The objective function in (2.17) therefore determines 𝐃f such that the corresponding point spread function 

has minimized integrated sidelobe levels (ISL) or peak sidelobe levels (PSL) inside the constrained range-Doppler 

region, subject to spectral null constraints. Different degrees of range beamspoiling or Doppler beamspoiling [71] 

can be achieved by replacing 𝐿̅  rows of 𝐀̅1
𝐻  (spanning the autocorrelation mainlobe roll-off) or 𝑃̅  columns of 𝐀̅2

  

(spanning to the Doppler mainlobe roll-off) with zeros, thus permitting different mainlobe widths and achievable 

sidelobe levels. The resulting beam-spoiled matrix (𝐀̅2
𝑇 ⊗ 𝐀1

𝐻) maintains full column rank; therefore, (2.17) is convex 

and yields the globally optimal solution 𝐃̂f. 

 The objective function must include an appended set of linear constraints to ensure that the total power in 

each PSD is uniform across all pulses. Linear constraints maintain objective function convexity, under the condition 

that the constraints are not disjoint [168]. The constraints are appended as 

      min
𝐃f

 ‖vec(𝐄) − vec(𝐀̅1
𝐻𝐃f𝐀̅𝟐)‖𝓅

𝓅
= ‖vec(𝐄) − (𝐀̅2

𝑇 ⊗ 𝐀1
𝐻)vec(𝐃f)‖𝓅

𝓅
 

        s. t.   𝑑f,𝑚,𝑝 ≤ 𝜀𝑚,𝑝   for 𝑚, 𝑝 ∈ Λ                                      

                 0 ≤ 𝑑f,𝑚,𝑝        for 𝑚 = 0,1, …𝑀d − 1;  𝑝 = 0,1, …𝑃 − 1 

                 𝟏𝑇𝐝f,𝑝 = 1      for 𝑝 = 0,1, …𝑃 − 1 

(2.18) 

Because the optimization is extended to a two-dimensional problem space, the spectral notch constraints become 

time-varying and numerous possible variants would result in different global minima. Here, three representative 

notch patterns are demonstrated, and the corresponding PSDs and PSFs after optimizing point spread function ISL 

are illustrated. The spectral window length is chosen to be 𝑀d = 200 samples and the pulse number is selected as  

𝑃 = 50 . Note that the number of optimizable parameters becomes 𝑀d ∙ 𝑃 , thus signifying a rapidly growing 

computational cost as variable size increases. Notches are imposed at the band edges for containment.  

For all illustrated cases, each notch occupies 10% of the band with an enforced relative depth of 40 dB.  

The range mainlobe resolution is defined by the ratio (%) of beamspoiled rows in 𝐀̅1
𝐻 relative to the total spectral 

window length 𝑀d . The Doppler mainlobe resolution is defined by the ratio (%) of beamspoiled columns in 𝐀̅2 

relative to the total number of pulses 𝑃. 
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 Consider a stationary spectral notch from normalized frequency -0.2 to -0.1 over the CPI duration, 

optimized when 𝓅 = 2 , enforcing the 2% range beamspoiling ratio and 4% Doppler beamspoiling ratio.  

The resulting optimal PSD templates that minimize point spread function ISL according to (2.18), and the 

corresponding PSF, are shown in Figure 78. The power spectrum set 𝐃̂f remains mostly unchanged across pulses, 

with minor deviations present, which indicates that maintaining a homogenous spectrum across slow time minimizes 

range-Doppler sidelobes. For comparison, the same interference pattern is used to optimize autocorrelation ISL on 

a per-pulse basis via (2.14), illustrated in Figure 79. When the RF interference is stationary, only minor differences 

are observed between the PSF-optimized and autocorrelation-optimized solution. 

 

Figure 78: Optimum desired power spectrum template set 𝐃̂f and point spread function responses ℧ with minimized 

point spread function ISL (𝓅 = 2)  according to (2.18), for 40 dB spectral nulls and enforcing the 2% range 

beamspoiling ratio relative to the window length 𝑀d and 4% Doppler beamspoiling ratio relative to the number of 

pulses 𝑃. The spectral notches are stationary across all pulses. 



136 

 

 

Figure 79: Desired power spectrum set 𝐃f and point spread function responses ℧ with minimized autocorrelation 

ISL (𝓅 = 2) determined on a per-pulse basis according to (2.14), for 40 dB spectral nulls and enforcing the 2% range 

beamspoiling ratio relative to the window length 𝑀d. The spectral notches are stationary across all pulses. 

 Now consider when the spectral notch deviates by small steps throughout the CPI duration. The resulting 

optimal set of PSDs that minimizes point spread function ISL, and the corresponding PSF, are shown in Figure 80. 

The power spectrum set 𝐃̂f  allocates power across slow time pulses in spectral regions having the fewest total 

notches, further revealing that maintaining a homogenous spectrum across slow time minimizes range-Doppler 

sidelobes. Interestingly, the reduction in point spread function ISL causes power to smear, forming a background 

pedestal in the PSF. In contrast, the same interference pattern is used to optimize autocorrelation sidelobes on a 

per-pulse basis via (2.14), illustrated in Figure 81.  Because the impact of slow time spectrum deviation is not 

considered in the per-pulse autocorrelation optimization, range-Doppler sidelobes appear in a concentrated band 

neighboring the zero-range cut. However, the sidelobe power outside of banded region is significantly reduced, 

posing an interesting performance tradeoff regarding the expected sparsity of the ensuing range-Doppler sidelobes. 
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Figure 80: Optimum desired power spectrum template set 𝐃̂f and point spread function responses ℧ with minimized 

point spread function ISL (𝓅 = 2)  according to (2.18), for 40 dB spectral nulls and enforcing the 2% range 

beamspoiling ratio relative to the window length 𝑀d and 4% Doppler beamspoiling ratio relative to the number of 

pulses 𝑃. The spectral notches drift slowly across pulses in a semi-deterministic pattern. 
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Figure 81: Desired power spectrum set 𝐃f and point spread function responses ℧ with minimized autocorrelation 

ISL (𝓅 = 2) determined on a per-pulse basis according to (2.14), for 40 dB spectral nulls and enforcing the 2% range 

beamspoiling ratio relative to the window length 𝑀d . The spectral notches drift slowly across pulses in a  

semi-deterministic pattern. RSM appears in the zero-range cut due to slow time spectral deviations. 

 The spectral notch is now made to deviate randomly throughout the CPI duration. The resulting optimal 

PSDs that minimize point spread function ISL, and the corresponding PSF, are shown in Figure 82. An important 

takeaway is that, regardless of the notch locations across pulses, the PSF-optimal power spectrum set  𝐃̂f  always 

allocates power over the entire available bandwidth. Rather, regions exhibiting multiple spectral notches across slow 

time are distributed less (though non-zero) power to minimize range-Doppler sidelobes, verifying the necessity for 

the sense-and-notch paradigm. Once more, the resulting PSF exhibits a background pedestal. In contrast, the same 

interference pattern is used to optimize autocorrelation sidelobes on a per-pulse basis via (2.14), illustrated in Figure 

83.  Significant range-Doppler sidelobes appear within a concentrated band neighboring the zero-range cut.  
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Figure 82: Optimum desired power spectrum template set 𝐃̂f and point spread function responses ℧ with minimized 

point spread function ISL (𝓅 = 2)  according to (2.18), for 40 dB spectral nulls and enforcing the 2% range 

beamspoiling ratio relative to the window length 𝑀d and 4% Doppler beamspoiling ratio relative to the number of 

pulses 𝑃. The spectral notch randomly hops within the radar operational band over the CPI. Interestingly, the optimal 

power spectrum templates exhibit a bimodal distribution. 
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Figure 83: Desired power spectrum set 𝐃f and point spread function responses ℧ with minimized autocorrelation 

ISL (𝓅 = 2) determined on a per-pulse basis according to (2.14), for 40 dB spectral nulls and enforcing the 2% range 

beamspoiling ratio relative to the window length 𝑀d . The spectral notch randomly hops within the  

radar operational band over the CPI. 
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2.4.3.  APPLICATION OF OPTIMAL TEMPLATE FOR SPECTRAL SHAPING 

 Achieving real-time reactivity on a practical time scale can make optimal solutions impractical, though the 

evaluation of optimality (for a given metric [36]) is still beneficial to determine bounds on performance. Specifically, 

in [149] a heuristic method was introduced that mitigates correlation sidelobes arising from waveform spectral nulls. 

That method attempted to reduce sidelobes by spectral shaping with templates having tapered spectral null borders, 

which thereby softened sharp transitions, within the context of PRO-FM waveforms. While PRO-FM does involve 

optimization (via alternating time/frequency projections) the computational cost is low and therefore realizable in 

real-time. However, the heuristic approach in [149] does not guarantee optimality. 

 Here, PRO-FM is likewise used, but in conjunction with the optimal least squares (LS) null-constrained 

power spectrum that minimizes autocorrelation sidelobe levels (based on matched filtering). The sidelobe level is 

then further reduced using LS mismatched filtering that was previously shown to be effective while maintaining 

spectral notches [160]. Since both the waveforms and mismatched filters are shaped according to the LS optimal 

power spectrum, their combination improves sidelobe performance with only rather modest mismatch loss. 

 We compare the PRO-FM waveform spectra using two different desired templates 𝐝f, both intended to 

reduce autocorrelation sidelobes in the context of spectral nulls. The desired templates are selected to be the  

ISL-optimal PSD template determined via (2.14) and the ad hoc tapered template determined via (2.2) and (2.3), 

where the latter was shown to be an effective (though suboptimal) solution. For this comparison, both templates 

have the same nulled region(s) defined by Λ , with the range-optimal template based on the constrained LS 

framework and the ad hoc template adhering to a notched Gaussian shape (same as [149]).  After PRO-FM 

optimization, the nulls of either spectrum may not achieve an acceptable depth; therefore, subsequent application 

of the zero-order reconstruction of waveforms (ZOROW) algorithm [159] reinforces spectral notching while 

maintaining constant amplitude. The ZOROW algorithm operates on the phase values of the converged PRO-FM 

waveform, then minimizing spectral power in designated null Λ regions. See Section 2.5 for additional details. 
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 Consider the case where 𝑃 = 1000 waveforms are generated by sequentially applying the PRO-FM and 

ZOROW algorithms to adhere with the optimal PSD template and the ad hoc template from [149]. The PRO-FM and 

ZOROW algorithms were implemented for 𝐾 = 200  and 𝑄 = 1000  iterations, respectively, to ensure full 

convergence. The number of waveform parameters 𝑁p = 200 is held constant. The spectrum template size is set to  

𝑀d = 4𝑁p − 1. Spectral nulls for both templates are placed at both band edges and at a single off-center location, 

with each null occupying a normalized spectral width of 0.1𝑓s (so 0.3𝑓s in total). 

 For the ad hoc spectral template, 𝐝f  has a Gaussian shape with normalized 3-dB bandwidth 𝐵 = 0.5𝑓𝑠 , 

which imposes low range sidelobes before spectral notches are inserted. The additional tapering of sharp nulls takes 

the form of a raised-cosine function spanning 𝑓s/16 at each null transition (one at each band edge and one either 

side of the off-center null, totaling four and spanning 0.25𝑓𝑠).  

 The resulting mean power spectrum and averaged autocorrelation responses over all 1000 waveforms for 

the ad-hoc case are shown in Figure 84. The optimum PSD template (with beamspoiling ratio of 2%) is included for 

reference. While the ad hoc spectral template is clearly different from the optimal template (top panel), it does 

provide a reasonable approximation, with the resulting mean waveform PSD yielding a good match to the heuristic 

design. The coherently averaged (CA) autocorrelation computed over the waveform set (bottom panel) 

demonstrates the expected incoherent sidelobe averaging reduction [41] due to the non-repeating nature of RFM 

waveforms. While approaching the optimum, the ad hoc autocorrelation response does experience some mainlobe 

broadening and “shoulder” lobes. 
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Figure 84: Notched PRO-FM mean PSD ∑ 𝐫f,𝑝
 
∀𝑝  and coherently averaged autocorrelation ∑ 𝐫𝑝

 
∀𝑝  from applying an  

ad-hoc tapered [149] spectral template determined via (2.2) and (2.3). The optimum template 𝐝̂f  determined 

according to (2.14) is included for comparison. 

 Now consider waveform design using the autocorrelation-optimal template as shown in Figure 85, which is 

based on the 2-norm version from (2.14). Clearly the mean PSD across the waveform set is closer to optimality than 

in the ad hoc case, and likewise for the ensuing CA autocorrelation. Of course, some deviation is also observed 

because perfect time-limited waveform spectrum shaping is not possible. Consequently, shoulder lobes are 

noticeably lower, yet are still present. However, the mainlobe broadening is essentially avoided. The sidelobe 

response is modestly lower than in the ad hoc case, though neither reach the optimal sidelobe roll-off. 
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Figure 85: Notched PRO-FM mean PSD ∑ 𝐫f,𝑝
 
∀𝑝  and coherently averaged autocorrelation ∑ 𝐫𝑝

 
∀𝑝  from applying the 

least-squares optimal spectral template that minimizes autocorrelation ISL determined via (2.14). The optimum 

template 𝐝̂f determined according to (2.14) is included for comparison. 

 Because the optimum spectral template is based on LS in a 2-norm sense, it is logical to apply the LS 

mismatched filter (LS-MMF) to these same waveform sets. Here the desired correlation response in the LS-MMF 

formulation is the IDFT of the globally optimum desired spectrum 𝐝̂ = 𝐀̅𝐻𝐝̂f. The optimal power spectrum 𝐝̂f has 

length 𝑀d = 4𝑁p − 1 and the LS-MMF has length 𝑁w = 3𝑁p, such that 𝑀d = 𝑁p + 𝑁w − 1. The diagonal loading 

term Δ is set to 1% of the maximum eigenvalue of 𝐒𝐻𝐒 to bias the LS-MMF towards the matched filter, reducing 

spectral notch degradation [160]. 
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Figure 86: Notched PRO-FM mean PSD ∑ 𝐫f,𝑝
 
∀𝑝  and coherently averaged autocorrelation ∑ 𝐫𝑝

 
∀𝑝  from applying an  

ad-hoc tapered [149] spectral template determined via (2.2) and (2.3). The coherently averaged LS-MMF  

cross-correlations ∑ 𝐜𝑝
 
∀𝑝  are shown along with their mean cross-power spectrum ∑ 𝐜f,𝑝

 
∀𝑝 . The optimum template 

𝐝̂f is included for comparison. The mean signal and filter PSDs are complementary, forming the desired cross-PSD. 

 For the ad hoc case, Figure 86 depicts the mean signal and filter PSDs, their mean cross-PSD, and the 

optimum PSD template. The LS-MMF elicits an average mismatch loss of 2.59 dB, but the signal/filter combination 

also almost perfectly overlaps with the optimal response. Consequently, the sidelobes likewise reach nearly to the 

optimum level. The LS-MMF also mitigates the notch degradation observed in [160]. Figure 87 then shows the 

optimal template case, where we see the filter and cross-PSDs now align well with the optimal PSD and the mismatch 

loss is now 1.37 dB, a 1.22 dB improvement over the ad hoc case. Of course, mismatch loss for both could be reduced 

by increasing the diagonal loading Δ, though doing so will increase deviation from the optimal sidelobe level. 
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Figure 87: Notched PRO-FM mean PSD ∑ 𝐫f,𝑝
 
∀𝑝  and coherently averaged autocorrelation ∑ 𝐫𝑝

 
∀𝑝  from applying the 

LS optimal spectral template determined via (2.14). The coherently averaged LS-MMF cross-correlations ∑ 𝐜𝑝
 
∀𝑝  are 

shown along with their mean cross-power spectrum ∑ 𝐜f,𝑝
 
∀𝑝 . The optimum template 𝐝̂f is included for comparison. 

The mean signal and filter PSDs are near the global optimum, with the cross-PSD in close agreeance. 

2.4.4.  CONCLUSIONS 

 The globally optimum power spectrum for correlation sidelobe reduction and for range-Doppler sidelobe 

reduction is determined when portions of the spectrum are null constrained. By designing waveforms so that their 

spectrum closely matches the optimum, their attendant sidelobes likewise approach the optimum level. Application 

of the least-squares mismatched filter then closes much of the remaining sidelobe difference with mismatch loss in 

trade. Importantly, it is found that a previous ad hoc approach involving simple tapering of notch edges achieves 

near-optimal performance with a computational cost that is low enough for real-time implementation. 
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2.5.  REAL TIME IMPLEMENTATION OF SENSE-AND-NOTCH RADAR (EARLY DEVELOPMENT)  

 With the reality of increasing radio frequency (RF) spectral congestion, radar systems capable of dynamic 

spectrum sharing are needed. Recent work has demonstrated a real-time cognitive capability on a software defined 

radio (SDR) by generating pulse-agile LFM chirps that vary their center frequency and bandwidth to avoid dynamic 

interference on a per-pulse basis. Separately, spectral notching of random FM waveforms was developed and 

experimentally evaluated as another means with which to mitigate emulated interference, though real-time 

operation had not yet been demonstrated. 

 Here the operational framework of the former is combined with the waveform agility of the latter to 

facilitate real-time generation of notched, random FM waveforms as part of an integrated cognitive SDR 

architecture. The early development of the sense-and-notch radar supported pulse repetition frequencies up to  

2.2 kHz for on-the-fly waveform synthesis, could incorporate multiple spectral notches per waveform, and achieve 

notch depths of 25 dB relative to peak power (with greater depth possible given greater computational resources). 

Performance examples are illustrated along with implementation decisions and design trade-offs [169]. 

 Cognitive radar, also known as fully adaptive radar, is generally understood to refer to systems that in some 

sense learn and subsequently respond to attributes of their operational environment [11, 170]. Due to increasing 

spectral congestion and competition [1], an important topic of research is the use of cognition in a spectrum sharing 

context [171] to modify the radar’s physical emission structure according to sensed RF interference (RFI) in the band 

of interest. Essentially, these efforts are working to develop “good spectral neighbor” capabilities for the radar by 

mitigating the mutual interference to/from other spectrum users. 

 A separate, yet related, research direction has focused on the radar utilization of emerging software-

defined radio (SDR) platforms (e.g.  [172, 173]) due to their cost-effectiveness, scalability, and the prospect of rapid 

prototyping. Specifically, a growing body of work is devoted to the application of SDRs to realize real-time cognitive 

radar capabilities (e.g. [140, 174-176]). For example, it was recently shown that by utilizing a rapid band-aggregation 

method [154] to monitor RFI and select appropriate usable subbands, subsequent LFM waveforms could be 

generated via direct digital synthesis (DDS) on an Ettus x310 SDR to avoid interferers in real-time [140]. 
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 The purpose of this paper is to demonstrate how another cognitive radar capability for spectrum sharing 

can likewise be deployed for real-time mutual interference mitigation. Where the approach in [140] involves a sense-

and-avoid (SAA) strategy, this other approach [152] employs a sense-and-notch (SAN) strategy that leverages 

spectrally-shaped, random FM waveforms to place in-band spectral notches on a per-waveform basis in response to 

dynamic RFI. Based on emulated (i.e. not real-time) RFI it was previously experimentally shown using test equipment 

that spectral notches having better than 50 dB in depth (relative to the peak spectrum power) can be achieved for 

these physically realizable waveforms [152]. 

 It was noted in [174] that a key enabler to realizing spectral notching that is responsive on a per-pulse 

timescale is implementation of waveform generation on the field-programmable gate array (FPGA) of the SDR.  

When in-band RFI is dynamically changing during the radar’s coherent processing interval (CPI), these SAA or SAN 

capabilities must likewise perform at the rate of the pulse repetition frequency (PRF). Consequently, here the SAN 

method [151-154], which also leverages aspects of the SAA deployment from [140], is implemented on the FPGA of 

an Ettus x310 SDR and demonstrated for real-time operation. 

 In [152] it was experimentally demonstrated, albeit not yet at real-time, that random FM waveforms 

possessing deep spectral notches could be physically realized according to the available in-band spectrum 

determined using the fast spectrum sensing (FSS) method of [153]. It has been observed that changing the radar 

emission structure during the CPI in response to dynamic RFI does introduce a significant clutter modulation effect 

[152]. That said, a variety of recent receive processing methods have been developed and experimentally 

demonstrated to compensate for this effect with varying efficacy [160, 161, 177, 178]. 
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2.5.1.  COGNITIVE SPECTRAL NOTCHING ON SOFTWARE-DEFINED RADAR 

 Implementation of the SAN capability on an SDR platform is accomplished by sequentially applying two 

random FM waveform generation methods. First, the PRO-FM approach is employed to produce a transmitter-

suitable waveform that possesses a desirable overall power spectrum shape (Gaussian is useful for this purpose) and 

containing spectral notches based on the RFI determination from FSS. However, because PRO-FM generally cannot 

achieve very significant notch depths by itself (20 dB at best), further notch suppression is required.  

In [152] it was shown that the reiterative uniform weighted optimization (RUWO) method [156] could accomplish 

this task, though the attendant computation cost is rather high. Then in [158] the analytical spectrum notching 

(ASpeN) approach was developed and experimentally demonstrated using a high-fidelity arbitrary waveform 

generator (AWG) to achieve notch depths better than 50 dB. Most recently, ASpeN has been modified for use on the 

more modest digital-to-analog conversion (DAC) rates, and thus lower fidelity, available in SDRs. The resulting zero-

order reconstruction optimization of waveforms (ZOROW) method [159] accounts for much, though not all, of the 

distortion arising from this lower fidelity, which is particularly important when attempting to form spectral notches. 

The notched waveform generation approach implemented on the SDR’s FPGA is summarized as follows. 

Recall the pseudo-random optimized FM (PRO-FM) algorithm, which produces spectrally shaped angle modulated 

radar waveform. The 𝑝𝑡ℎ of 𝑃 PRO-FM waveforms is initialized with phase chips drawn from the uniform distribution 

𝜙𝑛 ∈ [−𝜋, 𝜋] to form the signal 𝐬0,𝑝. The PRO-FM algorithm performs the 𝑘𝑡ℎ of 𝐾 alternating iterations 

𝐬̇𝑝
(𝑘+1)

= 𝐀̃𝐻{𝐝f
1/2

⊙ exp(𝑗∠𝐀̃𝐬𝑝
(𝑘)

)} 

𝐬𝑝
(𝑘+1)

= 𝐮 ⊙ exp(𝑗∠𝐬̇𝑝
(𝑘+1)

) 

(2.19) 

where 𝐀̃ is the 𝑀 × 𝑁 truncated DFT matrix with 𝑀 ≥ 2𝑁−1, HA  is the  𝑁 × 𝑀 truncated IDFT matrix, 𝐝f is the 

𝑀 × 1  desired PSD, 𝐮  is the 𝑁 × 1  desired amplitude envelope, and ∠( ∙ )  extracts the argument phase.  

Spectral nulls may be incorporated into the desired PSD 𝐝f over the set of frequency indices to null Λ by enforcing 
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𝑑f,𝑚 = 0   for 𝑚 ∈ Λ . 

(2.20) 

The desired PSD  𝐝f is not otherwise reshaped, due to considerations of increasing computational cost for real-time 

implementation. Imposing the null constraint in (2.20) via the alternating projections of (2.19) can produce spectral 

notches with depths up to 20 dB. Moreover, this process can require hundreds of iterations that would generally 

preclude real-time operation. Therefore, in this implementation notched PRO-FM via (2.19) and (2.20) is used to 

roughly shape the entire waveform spectrum, including the formation of shallow notches, and then ZOROW [159] is 

applied to complete the notching process. It has been found that at least initiating notch formation with PRO-FM 

facilitates faster convergence for subsequent ZOROW application, which is likewise iterative. 

 The ZOROW formulation operates on the version of the discretized waveform at the 𝑘 = 𝐾  terminal  

PRO-FM iteration, which we shall denote as  

𝐬𝑝 = 𝑒𝑗𝛟𝑝  

𝛟𝑝 = [𝜙1,𝑝 𝜙2,𝑝 ⋯ 𝜙𝑁p,𝑝]
𝑇

 

(2.21) 

This signal representation conforms to the zero-order hold model employed by the SDR DAC, in which the DAC input 

sample is held constant for 𝑇s  seconds. The resulting analog signal is then fed through a reconstruction filter to 

suppress the repeated images outside the fundamental frequency interval of [−𝑓s/2 , +𝑓s/2]. It was shown in [158] 

that perfect Nyquist reconstruction can be realized for a pulsed (i.e. time-limited) signal given sufficient sampling of 

the analytical spectrum. For the ZOROW waveform representation [159], this sampled analytical spectrum has the 

form 

𝑆𝑝(𝑓𝑚, 𝛟𝑝) =
sin(𝜋𝑓𝑚𝑇𝑠)

𝜋𝑓𝑚
∑ exp (−𝑗(2𝜋𝑓𝑚(𝑛 − .5)𝑇𝑠 + 𝜙𝑛,𝑝))

𝑁

𝑛=1

 

(2.22) 
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where 𝑓𝑚 = 𝑚Δ𝑓 for integer 𝑚 on the interval −∞ < 𝑚 < ∞ as long as Δ𝑓 ≤ 1/(2𝑇). Noting that (2.22) takes the 

form of a discrete Fourier transform (DFT) with an imposed sinc( ∙ ) envelope, it can be calculated efficiently using 

a fast Fourier transform (FFT). The ZOROW formulation [159] then employs the cost function 

𝐽 = min
𝛟

∑|𝑆𝑝(𝑓𝑚, 𝛟𝑝)|
2

𝑚∈Λ

 

(2.23) 

where the summation corresponds to the frequency interval(s) Λ for which notching is required. The gradient of  

(2.23) with respect to 𝛟𝑝 is then determined for use in gradient-descent optimization as 

𝛟𝑝
(𝑞+1)

= 𝛟𝑝
(𝑞)

+ 𝜇𝑞𝐠̃𝑝
(𝑞)

 

(2.24) 

where 𝜇𝑞 is the step-size based on a simple back-tracking technique [179] and 

𝐠̃𝑝
(𝑞)

= {
−𝐠0                               when 𝑞 = 0

𝐠𝑝
(𝑞)

+ 𝜌𝐠̃𝑝
(𝑞−1)

         otherwise
 

(2.25) 

is the search direction at the 𝑞𝑡ℎ iteration. Here 0 < 𝜌 < 1 dictates the type of gradient-descent being used and it 

can be shown that (2.25) can be efficiently computed via 

𝐠𝑝
(𝑞)

= 2 𝐼𝑚 {𝐀̃𝐻 ((𝐀̃𝐬𝑝
(𝑞)

) ⊙ 𝐰sinc) ⊙ 𝐬𝑝
∗(𝑞)

} 

(2.26) 

Here 𝐼𝑚{ ∙ }  extracts the imaginary part of the argument, 𝐀̃𝐻  is the 𝑀 × 𝑁  truncated inverse DFT matrix, (∙)∗ 

denotes complex conjugation, 𝐬𝑝
(𝑞)

 is the discrete signal vector from (2.21) at the 𝑞𝑡ℎ  iteration of ZOROW, and  

𝐰sinc is the length 𝑀 vector representing the sinc( ∙ ) envelope in (2.22) with the unnotched portions replaced by 

zeros. With the gradient expressed in this manner it can be efficiently computed using FFTs [13, 180]. 
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 The gradient-descent implementation in [158, 159] relies on a “heavy ball” framework [181] with a 

backtracking technique [179] to select the step-size. However, backtracking involves determination of cost function 

values that can be inefficient to compute on an FPGA. That said, it has been observed for this formulation that the 

use of standard steepest descent (𝜌 = 0) combined with backtracking via a simple line-search method tends to 

converge quickly to a constant step-size value. Thus 𝜇𝑞 is set to 1 for this FPGA implementation, which has been 

found to be less than the smallest optimized step-size obtained by backtracking.  

 As an example, Figure 88 illustrates the mean power spectra of 𝑄 = 1000  random FM waveforms 

containing a central spectral notch location spanning 10% of the band. These waveforms were generated using only 

𝐾 = 2  PRO-FM iterations and either 𝑄 = 6 or 1000  ZOROW iterations. Significant notch depth can clearly be 

achieved via 𝑄 = 1000 iterations, though the 𝑄 = 6 case is applied for FPGA implementation. Figure 89 compares 

this particular implementation in terms of convergence over 1000 iterations to other gradient-descent approaches 

[182] when a spectral notch is placed in the center of the spectrum. While the heavy ball scheme (yellow trace) is 

the best overall after 1000 iterations, this simple approach involving straightforward steepest descent (SD) without 

backtracking yields the best performance after the first 100 iterations. Since real-time operation limits the number 

of feasible iterations, this streamlined approach is clearly an attractive solution. 

 

Figure 88: Mean power spectra of PRO-FM / ZOROW waveform sets for a central notch location spanning 10% of the 

band after 𝐾 = 2 PRO-FM iterations and 𝑄 = 6 and 1000 ZOROW iterations. Per [159], notches are also placed at 

the band edges to facilitate spectral containment prior to DAC reconstruction. 

𝑄

𝑄
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Figure 89: Comparison of cost-function (2.23) minimization for various gradient-descent methods 

2.5.2.  IMPLEMENTATION CONSIDERATIONS 

 A block diagram of the SDR cognitive radar architecture during early development is shown in Figure 90. 

The RF environment is sensed at the receive port of the SDR, where the signal is frequency down-converted and 

quantized into in-phase & quadrature channels at 100 MSamples/s, processed by a high throughput FFT performed 

on the FPGA, and then continuously streamed to the host computer. Here FSS [154] is performed on the host 

computer to identify the spectral locations of RFI within the 100 MHz band during the radar listening periods.  

The identified RFI spectral locations are returned to the SDR, where the PRO-FM / ZOROW notched waveform 

generation process is performed.  

 

Figure 90: Cognitive radar architecture on the SDR during early development. See [140] for further details. 

𝑞
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The maximum time 𝑇PRI required to generate each waveform establishes the minimum feasible pulse repetition 

interval (PRI) and thus the maximum PRF for cognitive operation. However, a latency also exists between the 

observance of changes in the RFI and when FSS responds with the appropriate notch locations, which currently 

establishes the minimum adaptation interval 𝑇adapt .  Consequently, while a new waveform is generated on a  

per-PRI basis, the notch locations for each waveform are currently updated by FSS at a rate of once every ℛ PRIs 

(depending on the PRF employed). Figure 91 exemplifies a timing diagram of the SDR operation where the RFI 

changes every 4 PRIs, but the radar adaptation latency is ℛ = 3 PRIs. 

 

Figure 91: Timing diagram of SAN cognitive radar adjusting a spectral notch location to coincide with dynamic RFI, 

where 𝑇adapt = 3𝑇PRI for this example. 
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 The FPGA code architecture was developed such that board resources are conservatively utilized, timing 

constraints imposed by the PRI (< 1ms desired) are met, and notch depths in the waveform are maximized under 

these conditions. As such, 𝐾 = 2 iterations of PRO-FM was deemed sufficient to impose a preliminary spectral shape 

followed by 𝑄 = 6  iterations of ZOROW, thereby realizing ~25 dB of notch depth relative to peak power.  

As illustrated in Figure 88, greater notch depth could be achieved on the SDR, though doing so would alter the 

response time trade-space. With this parameterization, the SDR supports cognitive spectral notching at a  

PRF up to 2.2 kHz, a minimum adaptation interval of 𝑇adapt = 3ms, and can incorporate multiple spectral notches 

per waveform. Thus, the adaptation rate ℛ  is 7 PRIs at the highest PRF supported during early development.  

All FPGA processing, including the implementations of PRO-FM and ZOROW for notched waveform generation,  

is performed using FFTs, inverse FFTs, multiplies, and additions in a burst streaming format compatible with a 

commercial off-the-shelf (COTS) SDR. The final FPGA resource utilization was at ~30%, thereby providing the 

possibility for additional upgrades. 

2.5.3.  EVALUATION OF REAL-TIME OPERATION 

 To characterize the behavior of the real-time cognitive SAN architecture on the SDR, various RFI patterns 

were generated and resulting performance assessed. The SDR operates at a center frequency of 2 GHz and measures 

complex baseband data after receive analog down-conversion based on a 100 MHz sample clock. The SAN 

implementation has an adaptation interval of ℛ = 7 PRIs, a pulse duration of 𝑇p = 2.56μs, and PRI duration of 

𝑇PRI = 450.6μs. The RFI test cases include  

• Case 1: Three swept-frequency tones with 15 ms or 5 ms dwell times 

• Case 2: Three independent 5 MHz bands of OFDM subcarriers randomly hopping with dwell times of  

15 ms 

• Case 3: One contiguous 40 MHz band of OFDM subcarriers randomly hopping with a dwell time of  

15 ms 

An independent arbitrary waveform generator (AWG) is used to generate the RFI scenarios that are combined with 

the radar transmissions in closed loop for subsequent cognitive radar performance testing. 
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 Figure 92 shows a spectral capture of three independent frequency tones (Case 1) as well as a 

corresponding notched random FM waveform generated by the SDR. Figure 93 shows a waterfall spectrogram 

(frequency content versus time) when the RFI dwell time is 15 ms. With a response time of 𝑇adapt = 3ms the SAN 

cognitive radar is able to respond relatively quickly and form multiple notches that coincide with the sensed RFI. 

 

Figure 92: (Case 1) Spectrum capture showing three tonal interferers (red) and the SAN radar spectrum (blue) with 

collocated notches. 
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Figure 93: (Case 1a) Waterfall spectrogram versus time for RFI comprised of three stepped tones (vertical pink bars) 

and the SAN radar spectrum (horizontal yellow lines) with notches. The RFI changes every 15 ms. 

 For the same case, when the dwell time of the three swept tones is commensurate with the adaptation speed 

of this SAN implementation, notching alignment accuracy is observed to degrade rather significantly, as in Figure 94. 

For this reason, ongoing work investigated how adaptation latency can be further reduced. For environments in which 

the RFI exhibits observable patterns, prediction was explored as means to anticipate where notching is likely to be 

required so that corresponding waveform generation can be initiated earlier [183]. The concept of meta-cognition 

has been investigated to examine when operational cognitive schemes may function optimally [184-186]. 
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Figure 94: (Case 1b) Waterfall spectrogram versus PRI time for RFI comprised of three stepped tones (vertical pink 

bars) and the SAN radar spectrum (horizontal yellow lines) with notches. The RFI changes every 5 ms. 

 Figure 95 shows a scenario in which the RFI consists of three 5 MHz bands comprised of OFDM subcarriers 

(Case 2) that change spectral locations randomly every 15 ms. The same 7-PRI latency is again observed, with the 

notch widths and locations adjusting according to the observed RFI. For randomly changing RFI, presuming no 

discernible pattern is available, this manner of reactive mode is more appropriate than a predictive mode like [183]. 

Moreover, while the persistent RFI around −33 MHz is a random occurrence in these results, such an outcome could 

occur more frequently in practice if the RFI is likewise employing some form of dynamic spectrum access. Specifically, 

the two systems could potentially achieve a steady-state condition in which it is more beneficial from a mutual signal-

to-interference-plus-noise (SINR) perspective for both the radar and the other user to maintain the same spectral 

disposition. Of course, this manner of “locked in” behavior may not require spectral maneuver freedom.  
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 Finally, Figure 96 shows the cognitive SAN radar adapting to a single 40 MHz band of OFDM subcarriers  

(Case 3) that changes spectral locations randomly every 15 ms. The 7-PRI adaptation latency is once again observed. 

However, this result highlights the fact that, while transmit spectral notching generally permits more overall 

bandwidth to be preserved and is more robust to clutter modulation relative to a sense-and-avoid (SAA) mode  

[140, 152], the SAA may still be preferred in some instances. Specifically, the time interval from 210 to 223 ms in 

Figure 96 illustrates that SAN provides access to both sides of the remaining bandwidth. However, when significant 

RFI content is present in an off-center portion of the available band (223 to 240 ms and beyond in Figure 96) the SAA 

approach would realize essentially the same spectral content as SAN at a lower computational cost, which would 

translate into lower response latency. 

 

Figure 95: (Case 2) Waterfall spectrogram versus PRI time for RFI comprised of three 5 MHz bands of OFDM 

subcarriers (vertical pink bars) and the SAN radar spectrum (horizontal yellow lines) with notches. The RFI changes 

every 15 ms. 
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Figure 96: (Case 3) Waterfall spectrogram versus PRI time for RFI comprised of one 40 MHz band of OFDM subcarriers 

(vertical pink bar) and the SAN radar spectrum (horizontal yellow lines) with notches. The RFI changes every 15 ms. 

2.5.4.  CONCLUSIONS 

 A sense-and-notch (SAN) cognitive radar approach involving the use of spectrally notched, random FM 

waveforms has been implemented and demonstrated for real-time operation on a COTS SDR. The waveform 

generation process only requires simple FPGA resource blocks including FFTs, multiplications, and additions. The 

early development SDR architecture supported PRFs up to 2.2 kHz, can incorporate multiple spectral notches per 

waveform, and achieves notch depths of 25 dB relative to peak power. This capability for operational radar modes 

such as moving target indication (MTI) in the presence of dynamic RFI is evaluated next. To improve the adaptation 

latency, the FSS algorithms is offloaded from the host computer to the FPGA. 
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2.6.  REAL TIME IMPLEMENTATION OF SENSE-AND-NOTCH RADAR (LATE DEVELOPMENT)  

 Here we demonstrate the final cognitive evaluation step in which the sense-and-notch SDRadar operates 

in real-time in an open-air setting, performing moving target indication (MTI) processing (except for clutter 

cancellation) in the presence of a dynamically hopping interferer. This implementation is shown to support pulse 

repetition frequencies (PRFs) up to 4.4 kHz, meaning new interference-responsive waveforms can be produced at 

that rate, while achieving a transmit notch depth of 25 dB relative to peak power (greater depth is possible with 

additional computational resources).  

 This work represents the culmination of a multi-year effort to achieve a real-time sense-and-notch radar 

capability that can contend with highly dynamic spectrum users. It consequently involves the intersection of practical 

waveform design, a novel method for efficient spectral notch generation, RF systems engineering for physical 

deployment, field-programmable gate array (FPGA) implementation for real-time processing, and assessment of a 

performance vs. computation trade-space. 

 Specifically, the FPGA of an Ettus x310 SDR was used to implement this SDRadar capability, consisting of 

the fast spectrum sensing (FSS) [154] algorithm to quickly assess the portions of the band occupied by other users 

on a per-pulse basis, followed by incorporation of corresponding spectral notches within a nonrepeating RFM 

waveform and the subsequent open-air transmission. Aspects of this approach were previously assessed in [152] 

using open-air measurements, though notched waveform generation was not yet real-time, and in [169] at real-time 

speeds, though not yet in an open-air setting. Here these attributes are combined to realize full sense-and-notch 

functionality in real-time for an MTI application. 
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2.6.1.  REDUCING THE ADAPTATION LATENCY 

 The stages within this sense-and-notch method are outlined in Table 7, which also includes the latency of 

each stage when implemented on the FPGA of the SDR. The first stage is clearly the spectrum sensing process, which 

uses the FSS algorithm from [154] that quickly identifies and aggregates a “good enough” partitioning of the 

operating band into appropriately sized subbands, which either do or do not contain a meaningful amount of RFI. 

The spectral locations and widths of the RFI-occupied subbands, collected in Λ, then inform where spectral notching 

is necessary. 

Table 7: Sense-and-notch stages with latencies 

Algorithm Latency 

Fast Spectral Sensing (FSS) 120 μs 

Pseudo-Random Optimized FM  
(PRO-FM) 

28 μs / 
iteration 

Zero-Order Reconstruction 
Optimization of Waveforms (ZOROW) 

28 μs / 
iteration 

 

 A block diagram of the SDRadar cognitive radar architecture is shown in Figure 97. The RF environment is 

sensed at the receive port of the SDRadar, where the signal is frequency down-converted and quantized into  

in-phase & quadrature channels at 100 MSamples/s, processed by a high-throughput FFT performed on the FPGA, 

and then continuously streamed to the host computer. Relative to [169], in which the latency of FSS on the host PC 

was 𝑇FSS = 3.1ms and therefore served as the bottleneck in RFI identification, it has now been integrated onto the 

FPGA to operate in 120 μs, a 25 reduction. 
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Figure 97: Cognitive radar architecture on the SDRadar 

The overall adaptation time 𝑇adapt dictates how quickly the overall implementation can identify available spectrum 

and synthesize waveforms in reaction to environmental changes. It can be expressed as 

𝑇adapt = 𝑇FSS + 𝑇PRO + 𝑇ZOROW 

            = 120 + 28𝐾 + 28𝐿 μs 

(2.27) 

where the lower line captures the currently achievable process times as implemented on the x310 FPGA, for  

𝐾 and 𝑄 the respective number of iterations for PRO-FM and ZOROW. Here 𝐾 = 2 and 𝑄 = 6 iterations are used, 

still realizing 25dB spectral notches relative to peak power. Consequently, the adaptation delay is 𝑇adapt = 344 μs. 

 In [169], a PRF of 2.22 kHz (𝑇PRI = 550.6 μs) was used. Software modification in the FPGA since then to 

operate the clock at twice the rate (from 100 to now 200 MHz), permits PRF values up to 4.4 kHz (𝑇PRI = 225.3μs). 

Therefore, while the implementation in [169] incurred a 7-pulse latency (𝑇adapt = 3.1ms) at the lower PRF, the new 

instantiation could either update with no latency at the 2.22 kHz PRF or with a 1-pulse latency at the 4.44 kHz PRF. 

Here the latter is examined, meaning that as the rate of RFI hopping increases there will be a growing number of 

pulses in which the RFI and notch locations are mismatched (i.e. “collisions”). The reason for choosing this 

arrangement is because, in reality, there would be a degree of randomness that would almost certainly lead to some 

percentage of pulses with collisions. If further latency is acceptable, based on an expectation of little/no RFI hopping, 

then deeper notches are also achievable via additional ZOROW iterations. Moreover, as SDR and RF-SoC technology 

progresses, these limits will become less restrictive. 
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2.6.2.  REAL-TIME COGNITIVE SENSE-AND-NOTCH MOVING TARGET INDICATION 

 In [152] an open-air MTI test was performed based on prior observation and determination of notched 

waveforms, i.e. not reacting in real-time. Here the test is repeated using the SDRadar, along with the procedure 

outlined above, to generate new notched waveforms in real-time as the RFI moves around in frequency. As before, 

this open-air test took place on the roof of Nichols Hall on the University of Kansas campus, observing the 

intersection of 23rd and Iowa streets roughly 1.1 km away.  Figure 98 provides a block diagram of test setup 

components, while Figure 99 and Figure 100 respectively show photos of the SDRadar (using separate 

transmit/receive antennas) and the location of the nearby RFI source. 

 

Figure 98: Test setup overview, with sense-and-notch radar (top) and dynamic interferer (bottom) 

 

Figure 99: Open-air test setup: Ettus x310 SDRadar (white oval) and illuminated traffic intersection (green oval) 
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Figure 100: Open-air test setup: interference source (red oval) 

 The SDRadar operates at 3.5 GHz and measures complex baseband data after receive down-conversion 

based on a 100 MHz sample clock. The pulse duration is 𝑇p = 2.56μs, which corresponds to a duty cycle of about 

1.2 percent at the 4.44 kHz PRF. Each CPI comprises 𝑃 = 1000 unique pulsed waveforms. The RFI source is produced 

by a Tektronix AWG connected to a quad-ridge horn antenna, which transmits a single contiguous signal comprised 

of OFDM subcarriers having a 10 MHz bandwidth that randomly hops in frequency over the operating band at time 

intervals of 𝑇RFI  , which corresponds to a hopping rate of 𝑓RFI = 1/𝑇RFI  . In addition to a stationary RFI case, 

interference dwell times of 𝑇RFI = 50 ms, 10 ms  and 0.6 ms  are considered, which correspond to  

𝑓RFI = 20 Hz, 100 Hz and 1.66 kHz. A full-band RFM waveform case with no interference present is included for 

comparison. For 𝑇PRI = 225.3μs, these cases amount to hopping of roughly 5, 23, and 375 times during the CPI  

(the RFI and SDRadar are not synchronized so the precise number could vary). While only a single hopping RFI source 

is considered here, no change is needed to realize an arbitrary number of RFI sources/notches. Of course, further 

degradation is expected due to less available bandwidth for the radar to operate. Moreover, because the focus here 

is to demonstrate real-time notched waveform design/generation, clutter cancellation has not yet been 

incorporated. 
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 To establish a baseline case, Figure 101 illustrates the range/ Doppler response for a CPI of full-band  

PRO-FM waveforms when no interference is present. Movers are clearly detectable against the background. 

However, once the RFI is turned on (Figure 102), the movers are no longer visible. When sense-and-notch operation 

is engaged for this stationary RFI case, movers once again become visible (Figure 103). While arguably not necessary 

in this case, each notched waveform in the CPI is produced according to real-time sensing of RFI on a per-pulse basis. 

Comparison of the background responses in Figure 101 and Figure 103 shows an increase of a few dB for the latter, 

which is due to notch depth being limited to 25 dB here as a trade-off for real-time responsiveness. 

 

Figure 101: Range-Doppler plot of full-band PRO-FM without RFI, intended as the baseline comparison. All radar 

operations are performed in real-time via the SDRadar. 
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Figure 102: Range-Doppler plot of full-band PRO-FM with stationary RFI, intended as the baseline comparison.  

All radar operations are performed in real-time via the SDRadar. 

 

Figure 103: Range-Doppler plot for sense-and-notch PRO-FM with stationary RFI. All radar operations are performed 

in real-time via the SDRadar. 
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The RFI is now allowed to change dynamically at different rates, as illustrated in Figure 104 through Figure 106.  

It is observed that hopping every 50 ms in Figure 104 is qualitatively the same as Figure 103 because the RFI hopping 

rate is slow enough that additional clutter modulation induced by dynamic notching remains below the background 

response from RFI leakage. As the hopping rate increases to occurring every 10 ms in Figure 105, clutter modulation 

begins to arise that can mask movers if not properly compensated. However, the many movers are still visible. 

Finally, when the hopping increases again to changing every 0.6 ms, Figure 106 shows that clutter modulation has 

now grown to mask the movers. Moreover, with the PRI interval of 𝑇PRI = 225.3μs relative to the RFI hopping every  

𝑇RFI = 600μs, the number of latency-induced collisions grows significant. In short, there is a need for further 

reduction of the adaptation latency 𝑇adapt if RFI becomes more dynamic. 

 

Figure 104: Range-Doppler plot for sense-and-notch PRO-FM with RFI hopping every 50ms. All radar operations are 

performed in real-time via the SDRadar. 
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Figure 105: Range-Doppler plot for sense-and-notch PRO-FM with RFI hopping every 10ms. All radar operations are 

performed in real-time via the SDRadar. 

 

Figure 106: Range-Doppler plot for sense-and-notch PRO-FM with RFI hopping every 0.6ms. All radar operations are 

performed in real-time via the SDRadar. 
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2.6.3.  CONCLUSIONS 

 A real-time open-air experimental demonstration of a cognitive sense-and-notch radar capability has been 

shown to have practical feasibility. This approach addresses the limiting factors of physical generation of on-the-fly 

notched waveform design, hardware fidelity effects, and acceptable latency for response time. Of course, the 

increasing complexity of the RF environment, including a multiplicity of distributed and dynamic spectrum users, will 

continue to drive the need for faster responses of higher quality (in this context, deeper) notches. As required 

adaptation rates are driven faster by greater congestion, techniques to mitigate clutter modulation effects also 

become critical. 

2.7.  FINAL REMARKS 

 With the available spectrum becoming increasingly congested, spectrum sharing is inevitable. From the 

radar perspective, significant fundamental challenges must be addressed to be a “good spectral neighbor” while 

simultaneously achieving sufficient scatterer detection performance. Foremost, the radar adaptation latency is the 

major driving factor towards mitigating interference between the radar and other spectral users. If an LTE signal is 

frequency hopping within an operational band, the radar may be required to spectrally null the transmission in a 

time-varying pattern within a coherent processing interval, which creates fundamental dynamic range limitations 

when applying standard range-Doppler processing. Additional post-processing methods (such as DeCCaF) are critical 

to achieve sense-and-notch radar performance requiring large dynamic ranges over extended processing intervals. 

 The global bounds have been determined for both range sidelobe and range-Doppler sidelobe minimization 

when waveform/filter spectral notches are present in the CPI. Designing waveforms to the global optimum power 

spectrum template, followed by subsequent least squares mismatched filtering, was shown to achieve the global 

optimum bound after coherent integration with modest mismatch loss. However, for real-time implementation,  

sub-optimal solutions are required to meet timing requirements and rapidly react to the presence of RF users.  

The sense-and-notch radar prototype implementation presented demonstrates the capability to achieve real-time 

interference avoidance for spectrum sharing applications using commercial-of-the-shelf (COTS) hardware.  

Spectral coexistence is quite feasible. 
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4. APPENDIX 

4.1.  TABLE OF NONLINEAR FM WAVEFORMS 

The desired starting and stopping frequencies are 𝑓1 and 𝑓2, the center frequency is 𝑓𝑐 =
𝑓2−𝑓1

2
+ 𝑓1, the approximate 

swept bandwidth is 𝐵 = 𝑓2 − 𝑓1, and the pulse width is 𝑇p. The arbitrary factors are in the ranges of 𝑐1 ∈ (0,1), 

𝑐2 ∈ (0,
π

2
) , 𝑐3 ∈ (0,∞), 𝑐4 ∈ (1,∞), 𝑐5 ∈ (1,2].  

For the piecewise defined functions, −0.5 < 𝑓1 < 𝑓1
′ < 0 < 𝑓2

′ < 𝑓2 < 0.5 are intermediate frequencies such that 

𝐵2 = 𝑓2 − 𝑓2′, 𝐵1 = 𝑓2′ − 𝑓1′, and 𝐵0 = 𝑓1
′ − 𝑓1.  

Table 8: Nonlinear FM Waveform Equations 

𝑠LFM(𝑡) = 𝑒
𝑗2𝜋(𝑓1𝑡+0.5(

𝐵
𝑇p

)𝑡2)
 

𝑡 ∈ (0, 𝑇p) [79] 

𝑠price(𝑡) = 𝑒
𝑗2𝜋(𝑓c(𝑡+

𝑇p
2

)+∫ 𝑓i(𝑡)
𝑡
0 𝑑𝑡)

 

𝑓i(𝑡) = (𝑡/𝑇p)(𝐵 + 𝐵1

1

√1 − 4𝑐1(𝑡/𝑇p)
2
 ) 

𝑡 ∈ (−
𝑇p

2
,
𝑇p

2
) 

[79] 

𝑠cosh(𝑡) = 𝑒

𝑗2𝜋

(

 𝑓c(𝑡+
𝑇p
2

)+
𝑐1𝑐3
2𝜋

cosh(
(𝑡/𝑇p)

𝑐3
)+

(1−𝑐1)(𝑡/𝑇p)2

√𝑐4−4(𝑡/𝑇p)2 
)

 

 

𝑡 ∈ (−
𝑇p

2
,
𝑇p

2
) 

[83] 

𝑠pw(𝑡) = 𝑒𝑗2𝜋(𝑓c𝑡+𝜙(𝑡)) 

𝜙(𝑡) =

{
 
 
 

 
 
 𝑓1𝑡 +

𝐵0

𝑇1

(
𝑡2

2
)                                      0 ≤ 𝑡 ≤ 𝑇1

𝑓1′𝑡 +
𝐵1

𝑇2 − 𝑇1

(
𝑡2

2
− 𝑇1𝑡)              𝑇1 ≤ 𝑡 ≤ 𝑇2

𝑓2′𝑡 +
𝐵2

𝑇p − 𝑇2

(
𝑡2

2
− 𝑇2𝑡)              𝑇2 ≤ 𝑡 ≤ 𝑇p

 

𝑡 ∈ (0, 𝑇p) 

𝑇1 = 𝑇p − 𝑇2 

𝑓1
′ = −𝑓2′ 

[84, 85] 
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𝑠ddfc(𝑡) = 𝑒
𝑗2𝜋(𝑓c(𝑡+

𝑇p
2

)+∫ 𝑓i(𝑡)
𝑡
0 𝑑𝑡)

 

𝑓i(𝑡) =

{
  
 

  
  (

𝐵1

𝑇2 − 𝑇1
) 𝑡 − (

2𝑇edge(𝑓1 − ∆𝑓)𝑓1
′

2(𝐵0 + ∆𝑓)𝑡 + (𝐵0 + ∆𝑓)𝑇p − 2𝑇edge𝑓1
′ + 𝑓1

′)      −
𝑇p

2
≤ 𝑡 ≤ 𝑇1

(
𝐵1

𝑇2 − 𝑇1
) 𝑡                                                                                                         𝑇1 < 𝑡 < 𝑇2

(
𝐵1

𝑇2 − 𝑇1
) 𝑡 + (

2𝑇edge(𝑓2 + ∆𝑓)𝑓2
′

−2(𝐵2 + ∆𝑓)𝑡 + (𝐵2 + ∆𝑓)𝑇p + 2𝑇edge𝑓2
′ − 𝑓2

′)      𝑇2 ≤ 𝑡 ≤
𝑇p

2

 

∆𝑓 =
𝑓1

′(2𝑇edge)

𝑇2 − 𝑇1
=

−𝑓2
′(2𝑇edge)

𝑇2 − 𝑇1
           𝑇edge =

𝑇p

2
− 𝑇2 

𝑡 ∈ (−
𝑇p

2
,
𝑇p

2
) 

𝑇1 = −𝑇2 

𝑓1
′ = −𝑓2

′ 

𝑇1 < 0 

𝑇2 > 0 

𝑓2 > |∆𝑓| 

[86, 87] 

𝑠viz−1(𝑡) = 𝑒
𝑗2𝜋(𝑓𝑐(𝑡+

𝑇p
2

)+∫ 𝑓i(𝑡)
𝑡
0 𝑑𝑡)

 

𝑓i(𝑡) =

{
  
 

  
 𝑓1

′ +
2

𝜋
𝐵0 asin (

𝑡 − 𝑇1

𝑇1

)                                                               0 ≤ 𝑡 ≤ 𝑇1

(
𝐵1

𝑇2 − 𝑇1

) (𝑡 −
𝑇p

2
)                                                                       𝑇1 < 𝑡 < 𝑇2

𝑓2
′ +

2

𝜋
𝐵2 asin (

𝑡 − 𝑇2

𝑇p − 𝑇2

)                                                             𝑇2 ≤ 𝑡 ≤ 𝑇p

 

𝑡 ∈ (0, 𝑇p) 

𝑇1 = 𝑇p − 𝑇2 

𝑓1
′ = −𝑓2′ 

0 < 𝑇1 < 0.5 

0.5 < 𝑇2 < 𝑇p 

[88] 

𝑠viz−2(𝑡) = 𝑒
𝑗2𝜋(𝑓𝑐(𝑡+

𝑇p
2

)+∫ 𝑓i(𝑡)
𝑡
0 𝑑𝑡)

 

𝑓i(𝑡) =

{
  
 

  
 𝑓1

′ − 𝐵0 + 𝐵0 (
𝑡

𝑇1

)
𝑐1

                                                                     0 ≤ 𝑡 ≤ 𝑇1

(
𝐵1

𝑇2 − 𝑇1

) (𝑡 −
𝑇p

2
)                                                                      𝑇1 < 𝑡 < 𝑇2

𝑓2
′ + 𝐵2 − 𝐵2 (

𝑇p − 𝑡

𝑇p − 𝑇2

)

𝑐1

                                                         𝑇2 ≤ 𝑡 ≤ 𝑇p

 

𝑡 ∈ (0, 𝑇p) 

𝑇1 = 𝑇p − 𝑇2 

𝑓1
′ = −𝑓2′ 

0 < 𝑇1 < 0.5 

0.5 < 𝑇2 < 𝑇p 

[88] 

          𝑠tan(𝑡) = 𝑒
𝑗2𝜋(𝑓c(𝑡+

𝑇p
2

)+ 𝐵(
ln|sec(2𝑐2(𝑡/𝑇p))|

4𝑐2 tan(𝑐2)
))

 

𝑡 ∈ (−
𝑇p

2
,
𝑇p

2
) 

[89, 90] 

𝑠sec(𝑡) = 𝑒

𝑗2𝜋(𝑓c(𝑡+
𝑇p
2

)+
𝑐3𝐵 sec(2 atan(

𝜋
2𝑐3

)(𝑡/𝑇p))

2𝜋 atan(
𝜋

2𝑐3
) sec(atan(

𝜋
2𝑐3

))
)

 

𝑡 ∈ (−
𝑇p

2
,
𝑇p

2
) 

[91] 
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𝑠opfs(𝑡) = 𝑒
𝑗2𝜋(𝑓c(𝑡+

𝑇p
2

)+∫ 𝑓i(𝑡)
𝑡
0 𝑑𝑡)

 

𝑓i(𝑡) = 𝑐3𝐵 ∑ 𝐾𝑛 (
2𝑡

𝑇p

)

𝑁−𝑛𝑁

𝑛=1

 

 

𝑡 ∈ (−
𝑇p

2
,
𝑇p

2
) 

[92, 93] 

𝑠ate(𝑡) = 𝑒
𝑗2𝜋(𝑓c(𝑡+

𝑇p
2

)+∫ 𝑓i(𝑡)
𝑡
0 𝑑𝑡)

 

𝑓i(𝑡) =

{
 
 
 
 

 
 
 
 
𝐵

2
(
2 (𝑡 +

𝑇p

2
)

𝑇p

)

𝑐5−1

−
𝐵

2
                                   − 𝑇p/2 ≤ 𝑡 < 0

𝐵

2
−

𝐵

2
(
2 (

𝑇p

2
− 𝑡)

𝑇p

)

𝑐5−1

                                       0 ≤ 𝑡 ≤ 𝑇p/2

 

𝑡 ∈ (−
𝑇p

2
,
𝑇p

2
) 

[92] 

𝑠tan2(𝑡) = 𝑒
𝑗2𝜋(𝑓c(𝑡+

𝑇p
2

)+∫ 𝑓i(𝑡)
𝑡
0 𝑑𝑡)

 

𝑓i(𝑡) =
𝐵

2
(

𝑐1 tan (
2𝑐2𝑡
𝑇p

)

tan(𝑐2)
+

2(1 − 𝑐1)𝑡

𝑇p

) 

𝑡 ∈ (−
𝑇p

2
,
𝑇p

2
) 

[94] 

𝑠millet(𝑡) = 𝑒
𝑗2𝜋(𝑓c(𝑡+

𝑇p
2

)+∫ 𝑓i(𝑡)
𝑡
0 𝑑𝑡)

 

−𝑇p [
𝑓i
𝐵

+
1

2𝜋
(
1 − 𝑐1
1 + 𝑐1

) sin (
2𝜋𝑓i
𝐵

)] − 𝑡 = 0                                      (Use nonlinear solver) 

𝑡 ∈ (−
𝑇p

2
,
𝑇p

2
) 

[95, 96] 

𝑠cook(𝑡) = 𝑒
𝑗2𝜋(𝑓c(𝑡+

𝑇p
2

)+∫ 𝑓i(𝑡)
𝑡
0 𝑑𝑡)

 

−𝑇p [
𝑓i
𝐵

+
1

2𝜋
sin (

2𝜋𝑓i
𝐵

)] − 𝑡 = 0                                                       (Use nonlinear solver) 

−𝑇p [
𝑓i
𝐵

+
1

2𝜋
sin (

2𝜋𝑓i
𝐵

) +
2

3𝜋
cos (

𝜋𝑓i
𝐵

)
3

sin (
𝜋𝑓i
𝐵

)] − 𝑡 = 0                                                   

𝑡 ∈ (−
𝑇p

2
,
𝑇p

2
) 

[96] 
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𝑠poly(𝑡) = 𝑒

𝑗 2𝜋

(

 
 

𝑓c𝑡+(𝑐3−((𝑐3)𝑐4− (𝑐3 
2𝑡
𝑇p

)
𝑐4

)

1
𝑐4

)

)

 
 

 

𝑡 ∈ (−
𝑇p

2
,
𝑇p

2
) 

[97] 

𝑠HFM(𝑡) = 𝑒
𝑗2𝜋(𝑓c𝑡+

𝑓1𝑓2
𝑓1−𝑓2

 ∙ ln(1+
(𝑓1−𝑓2)

𝑓2
(

𝑡
𝑇p

)))

 

𝑡 ∈ (0, 𝑇p) 

𝑓1 > 0 

𝑓2 > 0 

[98, 99] 

𝑠TEFM(𝑡) = 𝑒𝑗2𝜋(𝑓c𝑡+∫ 𝑓i(𝑡)
𝑡
0 𝑑𝑡) 

𝑓i(𝑡) = 𝑓1 + 𝐵 (
𝑡

𝑇p

)

 𝑐4−1

 

𝑡 ∈ (0, 𝑇p) 

 

[100] 

𝑠SEFM(𝑡) = 𝑒𝑗2𝜋(𝑓c𝑡+∫ 𝑓i(𝑡)
𝑡
0 𝑑𝑡) 

𝑓i(𝑡) = 𝑓1 + 𝐵 sin𝑐3 (
𝑡

𝑇p

(
𝜋

2
)) 

𝑡 ∈ (0, 𝑇p) 

 

[100] 
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