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Abstract

Spectrum sensing and transmit waveform frequency notching is a form of cognitive radar
that seeks to reduce mutual interference with other spectrum users in a cohabitated band. With the
reality of increasing radio frequency (RF) spectral congestion, radar systems capable of dynamic
spectrum sharing are needed. The cognitive sense-and-notch (SAN) emission strategy is
experimentally demonstrated as an effective way to reduce the interference that the spectrum
sharing radar causes to other in-band users. The physical radar emission is based on a random FM
waveform structure possessing attributes that are inherently robust to range-Doppler sidelobes. To
contend with dynamic interference the transmit notch may be required to move during the coherent
processing interval (CPI), which introduces a nonstationarity effect that results in increased
residual clutter after cancellation. The nonstationarity effect, which otherwise distorts the range-
Doppler estimation, is characterized and compensated for using computationally efficient
processing methods. The steps from initial analysis of cognitive system performance to

implementation of sense-and-notch radar spectrum sharing in real-time are discussed.



~ In loving memory of my mother ~



Acknowledgments

Foremost, I’d like to thank my advisor Dr. Shannon Blunt and the Radar Systems
Laboratory (RSL) faculty including Dr. Chris Allen, Dr. Jim Stiles, and Dr. Patrick McCormick
for their outstanding guidance. I offer thanks to my fellow graduate students, specifically Brandon
Ravenscroft, Christian Jones, Daniel Herr, Charles Mohr, Lu Harnett, and Matthew Heintzelman,
all of whom have entertained numerous crazy research ideas. Thank you to everyone at the Army
Research Laboratory that supervised and assisted with the development of the cognitive spectrum

sharing framework, especially Ben Kirk, Kelly Sherbondy, Anthony Martone, and Kyle Gallagher.

To my mother and father, your persistent love and encouragement made this journey
possible and will be remembered always. To my siblings, I appreciate you being there for me.
I am grateful to my friends and the Lawrence Tango community for keeping me sensible. Jennifer,

thank you for being patient, caring, and kind during this undertaking.

This work was supported by the U.S. Army Research Office under grant # W911NF-15-2-0063

and by the Office of Naval Research under contract # N00014-16-C-2029



Journal Papers

. R.J. Chang, C. C. Jones, J. W. Owen and S. D. Blunt, “Gradient-Based Optimization of
Pseudo-Random PRI Staggering,” IEEE Transactions on Radar Systems.

. J. Quirk, R. Chang, J. W. Owen, S. D. Blunt, P. M. McCormick, “A Simple yet Effective
Metric for Assessing Doppler Tolerance,” IEEE Transactions on Radar Systems, vol. 1,
pp 12-20, 2023.

. A. F. Martone, K. Sherbondy, J. Kovarskiy, B. Kirk, R. Narayanan, C. Thornton, R. M.
Buehrer, J. W. Owen, B. Ravenscroft, S. Blunt, A. Egbert, A. Goad, C. Baylis, “Closing
the Loop on Cognitive Radar for Spectrum Sharing,” IEEE Aerospace and Electronic
Systems Magazine, vol. 36, no. 9, pp. 44-55, 1 Sept. 2021.

. S. D. Blunt, J. Jakabosky, C. Mohr, P. McCormick, J. W. Owen, et al., “Principles and
Applications of Random FM Radar Waveform Design,” in IEEE Aerospace and
Electronic Systems Magazine, vol. 35, no. 10, pp. 20-28, 1 Oct. 2020.

. B. Ravenscroft, J. W. Owen, J. Jakabosky, S. D. Blunt, A. F. Martone, K. D. Sherbondy,
“Experimental Demonstration and Analysis of Cognitive Spectrum Sensing & Notching
for Radar,” IET Radar, Sonar & Navigation, vol. 12, no. 12, pp. 1466-1475, December
2018.

Conference Papers

. J. W. Owen, P. M. McCormick, C. Jones, S. Blunt, “On the Optimality of Spectrally
Notched Radar Waveform & Filter Designs”, 2023 IEEE Radar Conference, San
Antonio, TX, 2023.

. M. Heintzelman, J. W. Owen, S. Blunt, B. Maio, Eric Steinbach, “Practical

Considerations for Optimal Mismatched Filtering of Nonrepeating Waveforms”, 2023
IEEE Radar Conference, San Antonio, TX, 2023.

. R. Chang, D. Herr, J. W. Owen, P. M. McCormick, S. Blunt, J. Stiles, “On the
Relationship Between PRI Staggering and Sparse Arrays”, 2023 IEEE Radar Conference,
San Antonio, TX, 2023.

. J. W. Owen, C. Mohr, B. Ravenscroft, S. Blunt, B. Kirk, A. Martone, “Real-Time

Experimental Demonstration and Evaluation of Open-Air Sense-and-Notch Radar,” IEEE
Radar Conference, New York City, NY, March 2022.

C. Jones, Z. Gannon, D. DePardo, J. W. Owen, S.D. Blunt, C. Allen, B. Kirk,
“Development & experimental assessment of robust direction finding and self-
calibration,” IEEE Radar Conference, New York City, NY, March 2022.

. J. W. Owen, C. A. Mohr, B. H. Kirk, S. D. Blunt, A. F. Martone and K. D. Sherbondy,
“Demonstration of Real-time Cognitive Radar using Spectrally-Notched Random FM
Waveforms,” 2020 IEEE International Radar Conference (RADAR), Washington, DC,
USA, 2020.

vi



7.

10.

11

12.

13.

14.

15.

16.

17.

C. A. Mohr, J. W. Owen, S. D. Blunt and C. T. Allen, “Zero-Order Reconstruction
Optimization of Waveforms (ZOROW) for Modest DAC Rates,” 2020 IEEE
International Radar Conference (RADAR), Washington, DC, USA, 2020.

B. Ravenscroft, J. W. Owen, et al., “Experimental Assessment of Joint Range-Doppler
Processing to Address Clutter Modulation from Dynamic Radar Spectrum Sharing,” 2020
IEEE International Radar Conference (RADAR), Washington, DC, USA, 2020.

J. A. Kovarskiy, J. W. Owen, R. M. Narayanan, S. D. Blunt, A. F. Martone and K. D.
Sherbondy, “Spectral Prediction and Notching of RF Emitters for Cognitive Radar
Coexistence,” 2020 IEEE International Radar Conference (RADAR), Washington, DC,
USA, 2020.

A. F. Martone, K. Sherbondy, J. Kovarskiy, B. Kirk, C. Thornton, J. W. Owen, et al.,
“Metacognition for Radar Coexistence,” 2020 IEEE International Radar Conference
(RADAR), Washington, DC, USA, 2020.

. A. F. Martone, K. Sherbondy, J. Kovariskiy, B. Kirk, J. W. Owen, et al., “Practical

Aspects of Cognitive Radar,” 2020 IEEE Radar Conference (RadarConf20), Florence,
Italy, 2020.

J. W. Owen, B. Ravenscroft, S. D. Blunt, “Devoid Clutter Capture and Filling (DeCCaF)
to Compensate for Intra-CPI Spectral Notch Variation,” SEE International Radar
Conference, Toulon, France, 23-27 Sep. 2019.

B. Ravenscroft, J. W. Owen, S. D. Blunt, A. F. Martone, K. D. Sherbondy, “Optimal
Mismatched Filtering to Address Clutter Spread from Intra-CPI Variation of Spectral
Notches,” IEEE Radar Conference, Boston, MA, 22-26 Apr. 2019.

J. W. Owen, C. Mohr, S. D. Blunt, K. Gallagher, “Nonlinear Radar via Intermodulation
of Jointly Optimized FM Noise Waveform Pairs,” IEEE Radar Conference, Boston, MA,
22-26 Apr. 2019.

J. W. Owen, B. Ravenscroft, B. H. Kirk, S. D. Blunt, C. T. Allen, A. F. Martone, K. D.
Sherbondy, R. M. Narayanan, “Experimental Demonstration of Cognitive Spectrum
Sensing & Notching for Radar,” IEEE Radar Conference, Oklahoma City, OK, 23-27
Apr. 2018.

B. H. Kirk, K. A. Gallagher, J. W. Owen, R. M. Narayanan, A. F. Martone and K. D.
Sherbondy, “Cognitive software defined radar: A reactive approach to RFI avoidance,”
IEEE Radar Conference, Oklahoma City, OK, 23-27 Apr. 2018.

J. W. Owen, S. D. Blunt, K. Gallagher, P. McCormick, C. Allen and K. Sherbondy,
“Nonlinear radar via intermodulation of FM noise waveform pairs,” IEEE Radar
Conference, Oklahoma City, OK, 23-27 Apr. 2018.

vii



Honors and Awards

Ist Alternate in the Student Paper Competition (out of 84), First Author, for "On the
Optimality of Spectrally Notched Radar Waveform & Filter Designs", 2023 IEEE Radar
Conference

Ist Place in the Student Paper Competition (out of 71), First Author, for "Real-Time
Experimental Demonstration and Evaluation of Open-Air Sense-and-Notch Radar", 2022
IEEE Radar Conference

. 2nd Place in the Student Paper Competition (out of 71), Fourth Author, for "Development
& experimental assessment of robust direction nding and self-calibration", 2022 IEEE
Radar Conference

The IET Radar, Sonar & Navigation Premium Award, Joint Author, for "Experimental
demonstration and analysis of cognitive spectrum sensing and notching for radar”,
Volume 12, Issue 12, December 2018, p. 1466-1475

. Army Research Laboratory Director's Commendation Award, 3rd place (out of 1000),
2019 CCDC-ARL Summer Student Symposium Competition

. Army Research Laboratory SEDD Director's Commendation Award, 1st Place
(out of 100), 2019 Sensors & Electron Devices Directorate (SEDD) Student Symposium
Competition

Ist Alternative Top 5 Finalist in the Student Paper Competition, Second Author, for
"Optimal Mismatched Filtering to Address Clutter Spread from Intra-CPI Variation of
Spectral Notches", 2019 IEEE Radar Conference

viii



1.

Table of Contents

Chapter I: Fundamentals wo 1
0 B 2 T bl @ o) o1 5 AR 1
1.2.  Radar TransSmiSSI0n MOAES ........cc.eeiiiiriiiiiiiiieeiieite ettt 2
1.3, RaAdar OTIENEALION ....oouiiiiiieiieiieei ettt ettt ettt ettt e st eebe e bt e eabeesaeeenbeesaeas 3
1.4, Radar DIMENSIONS. ...ccouiiiiieiieeiieiie ettt ettt ettt te st e st te e bt e eee st e e s st e eabeesseesaseesaeeenseenneas 4

141, TIME-FrEQUENCY ...ccoueiiiiiiiieiiieee ettt ettt et st e st eeabeesneeenneens 5

R O R B 1) 14 VU (0 ) OSSP PSP 5

1.4.1.2.  Review of Digital Signal Theory .........coceviiiiriiniiiiniinieiceeceeeeee 6

1.4.1.3.  Fast time vVersus SIOW tIMe.......cc.ceruiiriiiiiieiiieiie ettt 11

1.4.1.4. Definition of Baseband and Passband Frequency Representations ................... 13

1.4.1.5.  Amplifier Effects on Transmit Waveforms..........c..cceceeverviiniinennininencneene. 16

1.4.1.6.  ANalog UPCONVETSION. ... .ecuiruiitiriinieenieeiteeitente ettt ettt ae et ees 21

1.4.1.7. Digital Upsampling, Interpolation, & Upconversion...........ceceeveeevueenueeeneennee. 23

1.4.1.8.  Digital Upsampling & Interpolation Methods ...........cccceeveniininiininincnnene. 25

1.4.1.9.  Analog DOWNCONVEISION.....cc.iiriiiiiriiiieiieeitenieete ettt 29

1.4.1.10. Digital Hilbert Transform, Downconversion, & Downsampling...................... 31

1.4.1.11.  Sub-Nyquist SAMPING .......cociiriiieiiieiieiie et 33

1.4.1.12. Phase CONETENCE .....c..cevueruiiriiiiiiieniierieee ettt 35

1.4.1.13. Review of Fourier Transformations ............cceceeveriereeninienienenieneeeeeeeene 38

1.4.1.14. Parseval’s Theorem and the L,-NOIm ..........cccooooiiiiiiiiininiiiie 39

1.4.1.15. Additive White Gaussian NOiS€ (AWGN) .....ccceevviieiiieeiieeeiieeeree e 40



1.4.2.1. Electromagnetic Fundamentals ............c.cccoouieiiiieiiiiiiciieee e 41
1.4.2.2. Received Scattering from a Stationary SCene ...........ccccveeevvveeriieenreeecree e, 47
1.4.2.3. The Pulse Compression Matched Filter, Autocorrelation.............cccceeveeeneennnee. 50
1.4.2.4. The Least-Squares Mismatched Filter, Cross-correlation.............c.cceeveeeneennnee. 59
1.4.2.5. Percent Bandwidth Definition (Narrowband, Wideband, Ultra-Wideband)...... 69
1.4.2.6.  Waveform TYPeS .....ccveviiiiiiiiiieieeeestee ettt st 69
1.4.2.6.1. Unmodulated Pulse (Sinusoidal TONes).........ccceevueerieriiieniiiiiienieeiiesieeene 70
1.4.2.6.2.  Chirp WavefOrmS..........cooiiiiiuiiiiieiiie ettt sttt et 71
1.4.2.6.3. Phase Coded Waveforms & Angle Modulated Waveforms ...........c.cccc.ce..... 73
1.4.2.6.4. Polyphase Coded Frequency Modulation (PCFM)........ccccceevviiiiiiianinnnenn. 78
1.4.2.7. Range Ambiguities and Pulse EclipSing ...........cccccoeiiiiiiiiiiniiiiiiiieceeeee 82
1.4.2.8.  Signal-to-Noise Ratio, Pulse Compression Gain & Coherent Integration......... 83

1.4.2.9. Coherent Integration Range Sidelobe Reduction for Non-repeating Waveforms,

Range Sidelobe Modulation (RSM).......cccoeiiiiiiiiiiiiiiiieeeee e 85

1.4.3. Doppler FTEQUENCY......couiiiiiiiiiiiericeceet ettt 87
1.4.3.1.  The Doppler Effect ..ot 87
1.4.3.2.  The Ambiguity FUNCLION ......c.cooiiiiiiiiiiiiiiiciccce e 89
1.4.3.3.  Range-Doppler Processing, The Point Spread Function...........coccceceevevicnnenne. 91
Chapter II: Cognitive Radar and Spectrum Sharing...........eeeecsseecsenssnecseecseeenens 96
2.1.  Spectrally Notched Radar Waveform Design ...........ccccceeviiiiiiiniieiiienieeieeieeeese e 98
2.2, Experimental EMUlation .........ccccoociiiiiiiiiiiiieiieceee et 101



2.2.1.  Fast Spectrum Sensing (FSS) Algorithm..........ccccoeeiiiiiiiiiiiiiece e, 101
2.2.2. Cognitive Radar EMulation............ccccviieiiiiiiiieiiiecieeeeeee e 103
2.2.3. Case 1: Stationary INterference.........ccceevuireiiieeiiieeciie e 107
2.2.4. Case 2: Hopped Interference, No LatencCy........ccoveeviieeiiieeiieeeiie e 111
2.2.5. Case 3: Hopped Interference, 1 PRI Latency........ccccoveeiiieecieeeciieeeie e, 113
2.2.60.  CONCIUSIONS .....tiiiiiiiiieiie ettt et ettt et e st e bt e eabe e bt e et e e sbeeenbeesseeeabeens 115
2.3. Clutter Range Sidelobe Modulation COmpensation ...........c.cceceereereenieneeneeneneeneennens 116
2.3.1. Devoid Clutter Capture and FillINg..........ccccoevveviriiniininiinieiineeeeeceeceee 117

2.3.2. Case 4: Hopped Interference, No Latency, Clutter Filling by Temporally Adjacent
Full-Band Wavetforms..........cocuooiiiiiiiiieeieeeee e 122

2.3.3. Case 5: Hopped Interference, No Latency, Clutter Filling by Temporally Adjacent
Notched WavefOImS ........cooiiiiiiiiieiieeee ettt 123
234, CONCIUSIONS .....eiiiiiiiiieiiieitete ettt sttt ettt et enae e 127
2.4. Notched Power Spectra for Optimal Sidelobe Reduction .........c..cccceevueviiniiicniinennns 128
2.4.1. Global Minimum Power Spectrum for Range Sidelobe Reduction........................ 128
2.4.2. Global Minimum Power Spectrum for Range-Doppler Sidelobe Reduction ......... 133
2.4.3. Application of Optimal Template for Spectral Shaping ..........ccccevcveveriiniincnnne 141
244, CONCIUSIONS .....eiitiiiiiiieriieieete ettt sttt sttt et e nae e 146
2.5. Real Time Implementation of Sense-and-Notch Radar (Early Development).............. 147
2.5.1.  Cognitive Spectral Notching on Software-Defined Radar............c.ccooeeininninenn. 149
2.5.2. Implementation CONSIAETAtIONS .......cccveeruiiriiieniieeiieniiesieenieeebee e eeeesieeeaeeseneeseens 153
2.5.3. Evaluation of Real-Time Operation...........ccceveeeiierieiiiienieeiiesieeieesiie e seeeeens 155
254, CONCIUSIONS......couiiiiiiiiieiieecie ettt 160



2.6. Real Time Implementation of Sense-and-Notch Radar (Late Development) ............... 161

2.6.1. Reducing the Adaptation LatenCy.......cccccueeeiiieeiiieeiiieeieeeie et e 162
2.6.2. Real-Time Cognitive Sense-and-Notch Moving Target Indication........................ 164
2.0.3.  CONCIUSIONS ettt e e e e e e e e e e e e e e e e e e e e e e e e e aaaeeeeeeeanenans 170
2.7, FINAL REMATKS ..o e e e e e e e e e e e e e e e eraaaeaeeas 170
References...cceeeeneeceeeeneeeeeennes 171
APPENdiX..ouvereeessrereecscsansecsans 186
4.1. Table of Nonlinear FIM WaVETOTINS ... ..ceeeeeeeieeee e ee e e e e e e e e eeeeeeaaeeeeeeeneaes 186

xii



Table of Figures

Figure 1: Radar transmisSion MOAES.........cecueeriieiiieriieiieeieeiteete et eive et e seae e e eaeenseessaeenseessee e 2
Figure 2: [llustration of radar orientations ............ccueeeviieiiiieciie et eee e e evee e e e eree e 4
Figure 3: Bandlimited sample rate frequency windows and temporal sinc basis functions............ 7
Figure 4: Discrete sampling of a continuous real signal with sinc reconstruction ...........c...cc.c..... 8
Figure 5: Discrete sampling of a continuous complex signal with sinc reconstruction................ 10
Figure 6: Fast time versus slow time representation, with temporal duration definitions............ 12
Figure 7: Fast time-frequency representations of baseband signals versus passband signals. ..... 13
Figure 8: Amplifier pOWEr OPErating CUIVE ........cccuievuieriiiriieiiieiie ettt ettt 17

Figure 9: Nonlinear amplifier distortions simulated using the power series model and enforcing

amplifier bandpass filtering €ffeCtS.........coviviiiiriiiii e 18
Figure 10: Analog upconversion RF chain ........cocccoiiiiiiiiiiiiiiiccceceece e, 22
Figure 11: Analog UpCONVEISION STAZES ....ccvuuiriiiriiiiieniieeite ettt ettt ettt e st e e 22
Figure 12: Digital upsampling, interpolation, and upconversion chain..........c..cceccevevveneenennene 24
Figure 13: Digital upsampling, interpolation and upconversion Stages...........coceeveereeeneenueennne. 24
Figure 14: Stages of temporal interpolation and phase interpolation .............ccccceevieriienieeneenee. 27
Figure 15: Temporal and phase interpolation methods............ccocveveriiiniininiinieneeeecee 28
Figure 16: Analog downconversion RF chain ..., 30

xiii



Figure 17: Analog dOWNCONVEISION StAZES .......vieivieeiiiieiiieeciiieerireeeieeeeieeesaeeesseeesreeessseesnnseeens 30

Figure 18: Digital Hilbert transform, downconversion, and downsampling chain...................... 32
Figure 19: Digital Hilbert transformation, downconversion, & downsampling stages ................ 32
Figure 20: Combined analog downconversion RF chain and sub-Nyquist sampling................... 34
Figure 21: Combined analog downconversion and sub-Nyquist sampling stages ....................... 34
Figure 22: Types of radar CORETENCE EITOTS .......cciuieiiieiiiiiieeieeie ettt 37
Figure 23: Summary of Fourier methods..........c.coiiviiiiiiiniiiiicieeeccecece e 38
Figure 24: Spherical coordinate system electromagnetic definitions ..........c.ccecveveeverieneeniennene. 43
Figure 25: Generalized coordinate system electromagnetic definitions.........c...cccceveeveneencnnnene. 45
Figure 26: Ideal superposition of multiple equidistant scatterer reflections...........ccceceeveeeiennen. 48

Figure 27: Relationship between autocorrelation and power spectrum, time-bandwidth product

gain, and fast time pulse compressed reSOIUtION.........c.evviviiiiiiiiiiiiiiec e 55
Figure 28: Various autocorrelation responses and power spectrum shapes ..........cccocceeeeveeeennennne 56
Figure 29: The dangers of autocorrelation sidelobes............cocevviriiiiniiniiiiniincccecce 57

Figure 30: Nonideal versus ideal autocorrelation, and bandlimited versus band-unlimited power

spectra, related by the Fourier transform. ..........ccooooiiiiieiiiiiiee e 58

Figure 31: Illustration of least squares regression optimization to achieve a desired cross-

COTTEIAtION TESPOTISE ...vvieeiiieeiiieeiieeeitteeeseteeestteeessreeesseeeseeesssaeessseeessseeensseeensseesasseeessseesnsseesnsseeans 64

Xiv



Figure 32: Example correlation responses and power spectra, when the least squares filter is

applied to the bandlimited signal to achieve super-resolution...........cceeeevveerieeenciieenciie e 66

Figure 33: Example correlation responses and power spectra, when the least squares filter formed

with regularization is applied to the bandlimited signal to achieve super-resolution................... 67

Figure 34: Example correlation responses and power spectra, when the least squares filter formed
with beamspoiling is applied to the bandlimited signal. Super-resolution is waived in trade to

mitigate mismatch loss and improve the sidelobe level performance ............ccceevveeiienieeieennen. 68

Figure 35: Unmodulated sinusoidal waveform in fast time-frequency ..........cccceceevericneencnnene. 70

Figure 36: Various nonlinear FM waveform power spectra, autocorrelations, and instantaneous

TTEQUETICIES ..eeievieeiieeeiee et ettt ettt e et e e e tte e e taeeeataeesasaeesssaeesssaeessseeessseeesseeesseeesseesnsseessseeans 72

Figure 37: Amplitude envelopes and power spectra of phase coded waveforms having uniformly

distributed phase chips applying either the rectangular or sinc temporal shaping filter............... 74

Figure 38: Power spectrum of a phase coded waveform and an angle modulated waveform, after

applying the rectangular temporal shaping filter ..........cocooiiiiiiiiiniiniieee, 75

Figure 39: Various randomly initialized PRO-FM waveforms power spectra, autocorrelations,

and INStantan@ouUS fIEQUEINCIES. .....cc.ueruiriiriiiiieieeitete ettt sttt ettt ae e naes 77

Figure 40: Relationship between the rectangular frequency shaping filter and the ramp phase

Y E2 o111 Tl L TR 79

Figure 41: Mean power spectrum of P = 1000 unoptimized PCFM waveforms for upsampling

FACTOTS By T 2,4, Bttt e e e st e e b e e re e e tae e e tbae e e areeeeareeearreeans 80

XV



Figure 42: Various unoptimized PCFM waveforms power spectra, autocorrelations, and

INStANtANCOUS FIEQUETICIES ...eiiviiieiiieesiiieesieeecteeesteeeteeeteeesteeessseeessbeeessseeessseeessseeensseeesseesnsseeens 81

Figure 43: Range Unambiguous, Ambiguous, and Eclipsed Returns............ccoceveeverienienennene. 82

Figure 44: Coherent integration across P pulse compressed, identical LFM chirp waveforms with

AWGN PIESCNL......eiiiieiiiiie ettt e et ee e et e e e ettt e e e ettt e e esabeeeeesssaeeesesssaeeeaanssaeeeenssseeesanssneesannsseeens 84

Figure 45: Sidelobe reduction from coherently integrating non-identical PROFM

autocorrelations, With N0 AWGN PIESENL.........coiuiiiiiiiiiiiiiieiie ettt 86

Figure 46: Ambiguity function of an up-chirped LFM waveform and a PROFM waveform ...... 90

Figure 47: Point spread functions of LFM waveforms and PROFM waveforms for P = 100

PuUlSe TEPELItION INEETVALS. ..ouviiiiiiiieiie ettt e et e e tee e et e e ebae e sabeeesareeesasesenseeensneas 95

Figure 48: Perception-action cycle (PAC) concept for radar...........ccoeoveevivenieeiiienieenieeieeieeee, 96

Figure 49: Experimental measurements of PRO-FM waveforms, designed with or without a

spectral null collocated with observed OFDM interference. ..........ccceeevvveeeciveeniieeniieeniee e 98

Figure 50: The coherently averaged waveform autocorrelations and mean waveform power
spectra for 2500 full-band PROFM and 2500 spectrally notched PROFM waveforms, transmitted

on an arbitrary waveform generator and received on a real-time spectrum analyzer ................. 100

Figure 51: FSS-determined occupied and unoccupied sub-bands for two OFDM signals......... 102

Figure 52: Example power spectra of measured OFDM interference, spectrally notched PROFM

(adapted using FSS), and full-band PROFM waveforms ..........c.ccccoecveeriiieenciieeniie e, 104

Figure 53: Experimental timing diagram for the single contiguous RFI band scenario............. 105

XVi



Figure 54: Experimental timing diagram for the two disjoint contiguous RFI bands scanario.. 105

Figure 55: Open-air hardWare SETUD ........cceeoveriiriiiieniieieeiesteteee sttt 107

Figure 56: Range-Doppler plot of full-band PRO-FM with no injected RFI, intended as the

baseline compPariSON, CASE 1 ......cc.cecuiiiiiiiieiiieieeie ettt te et e et e saeebeesaeeesseessnesnsaens 107

Figure 57: Range-Doppler plot of notched PRO-FM with no injected RFI, possessing a stationary

SPECIal NOLCH, CASE L. .ouviiiiiiieciie ettt e et e et e e s teeessbeeessseeessseeensseeennseeans 108

Figure 58: Range-Doppler plot of full-band PROFM with injected stationary RFI, Case 1...... 109

Figure 59: Range-Doppler plot of notched PROFM with injected stationary RFI, Case 1........ 109

Figure 60: Range-Doppler plot of full-band PRO-FM with no injected RFI, intended as the

baseline compPariSON, CASE 2 ........cccuiieriuieieiieeiieeesieeesteeerreeestaeesraeesseeesseeessseeessseeessseeanssesannns 111

Figure 61: Range-Doppler plot of notched PRO-FM with no injected RFI, possessing a spectral

notch hopped every four PRIS, Case 2.......cccuioiiiiiiiiiieiieeieee et 111

Figure 62: Range-Doppler plot of notched PROFM with injected frequency hopping RFI,

reacting with no adaptation latency, Case 2.........cccceevciiieiiieeiieeeieeeeee e e 112

Figure 63: Range-Doppler plot of full-band PRO-FM with no injected RFI, intended as the

baseline compPariSON, CASE 3. ........oeiuiiiiieiieeie ettt ettt ettt e st stte et esteesbe e aeeenbeesanesseens 113

Figure 64: Range-Doppler plot of notched PRO-FM with no injected RFI, possessing a spectral

notch hopped every four PRIS, Case 3.......ccoiiiiiiiiiiieieeieee et 113

Figure 65: Range-Doppler plot of full-band PROFM with injected frequency hopping RFI,

reacting with adaptation latency Tpry, Cas€ 3...ieiiiiiiiiiiiiiieeiee e 114

XVii



Figure 66: Loopback measured spectra for a full-band waveform, a notched waveform, and a

BPF version of the full-Dand WaveTOII........cooee e e e e e e e aeeeaees 119

Figure 67: Timing diagram of the waveform arrangement used for experimental evaluation of
DeCCaF. Full-band and notched waveforms are interleaved, with the borrowed clutter taken

from an adjacent full-band rESPONSE ........ccvuieriiiiiiiiieieee e e 120

Figure 68: Range-Doppler plot of full-band PRO-FM with no injected RFI, intended as the

baseline comparison, applying the matched filter to the single notch data collect..................... 121

Figure 69: Measured range-Doppler response from 2500 PRO-FM waveforms with dynamic
spectral notches, applying the matched filter and least squares mismatched filter, for the single

NMOTCHL ALA COLLECT. et e e e e e e ettt e e e e e e e e e e e e aeeeeeeeeeaaaaaeeeaeeraees 121

Figure 70: Measured range-Doppler response from 2500 PRO-FM waveforms with dynamic
spectral notches, applying interleaved & spectrally-filtered full-band responses for clutter filling

via the matched filter & DeCCaF or the mismatched filter & DeCCaF .......cccovvvvvvveeiieeeaeeneannn. 122

Figure 71: Timing diagram of the waveform arrangement used to evaluate the operationally
useful form of DeCCaF. The borrowed clutter is taken from temporally adjacent, spectrally non-

overlapping NOtChEd TESPONSES ......veieriiieeiiieeiiie ettt eeteeeee et e e sbe e e eesbeeesaseeennaeeenaeeeneeas 124

Figure 72: Measured range-Doppler response from 2500 PRO-FM waveforms with dynamic
spectral notches, applying adjacent spectrally-filtered notched waveform responses for clutter

filling via the matched filter & DeCCaF or the mismatched filter & DeCCaF ................c......... 125

Xviii



Figure 73: Mean power spectra of the matched filtered range profile estimate over the given CPI
for Case 1 (full-band) and Case 2 (notched without clutter filling). The mean compensated range
profile estimate after applying DeCCaF for Case 5 (notched, clutter filling with other notched

responses) is quite similar the full-band response. .........ccccveeevieeiiiieiiieceece e 126

Figure 74: Power spectra of the matched filtered range profile estimate for the pth pulse before

applying DeCCaf and the compensated range profile estimates after applying DeCCaF ......... 127

Figure 75: Optimum desired power spectrum templates and autocorrelation responses with
minimized autocorrelation ISL according to ( 6.13 ), for 40 dB spectral null and varied

beamspoiling ratios of 1%, 2%, 4%, 6% relative to total window length ................cocceiiniien. 130

Figure 76: Optimum desired power spectrum templates and autocorrelation responses with
minimized autocorrelation ISL according to ( 6.13 ), for 40 dB spectral nulls (at different

locations) and beamspoiling ratio of 2% relative to total window length. ............cccoccenininins 131

Figure 77: Optimum desired power spectrum templates and autocorrelation responses with
minimized autocorrelation PSL p = 8 according to ( 6.14 ), for 40 dB spectral null and varied

beamspoiling ratios of 1%, 2%, 4%, 6% relative to total WIndow. ...........ccceeveveeeriiieeniieeenieenne, 132

Figure 78: Optimum desired power spectrum template set and point spread function responses
with minimized point spread function ISL p = 2 according to ( 6.18 ), for 40 dB spectral nulls
and enforcing the 2% range beamspoiling ratio relative to the window length My and 4%
Doppler beamspoiling ratio relative to the number of pulses P. The spectral notches are

stationary across all PUISES. ......ceiviiiiiiieciie e e e ea 135

Xix



Figure 79: Desired power spectrum set and point spread function responses with minimized
autocorrelation ISL p = 2 determined on a per-pulse basis according to ( 6.14 ), for 40 dB
spectral nulls and enforcing the 2% range beamspoiling ratio relative to the window length M.

The spectral notches are stationary across all pulSes. ..........ccceeevieriieniiinienieeeese e 136

Figure 80: Optimum desired power spectrum template set and point spread function responses
with minimized point spread function ISL p = 2 according to ( 6.18 ), for 40 dB spectral nulls
and enforcing the 2% range beamspoiling ratio relative to the window length My and 4%
Doppler beamspoiling ratio relative to the number of pulses P. The spectral notches drift slowly

across pulses in a semi-determiniStic PAttEIN. ........cccveeruieriieriieeieeriieere e ete et see e eeeeeaee e 137

Figure 81: Desired power spectrum set and point spread function responses with minimized
autocorrelation ISL p = 2 determined on a per-pulse basis according to ( 6.14 ), for 40 dB
spectral nulls and enforcing the 2% range beamspoiling ratio relative to the window length M.
The spectral notches drift slowly across pulses in a semi-deterministic pattern. RSM appears in

the zero-range cut due to slow time spectral deviations. ..........cccccveevvieriieeniieenie e 138

Figure 82: Optimum desired power spectrum template set and point spread function responses
with minimized point spread function ISL p = 2 according to ( 6.18 ), for 40 dB spectral nulls
and enforcing the 2% range beamspoiling ratio relative to the window length My and 4%
Doppler beamspoiling ratio relative to the number of pulses P. The spectral notch randomly hops

within the radar operational band over the CPI............ccccoooiieiiiiiiieee e 139

XX



Figure 83: Desired power spectrum set and point spread function responses with minimized
autocorrelation ISL p = 2 determined on a per-pulse basis according to ( 6.14 ), for 40 dB
spectral nulls and enforcing the 2% range beamspoiling ratio relative to the window length M.

The spectral notch randomly hops within the radar operational band over the CPL.................. 140

Figure 84: Notched PRO-FM mean PSD and coherently averaged autocorrelation from applying

an ad-hoc tapered spectral template determined via (6.2 ) and ( 6.3 )..ccceeevvveeeieeeciieeieeeen. 143

Figure 85: Notched PRO-FM mean PSD and coherently averaged autocorrelation from applying
the least-squares optimal spectral template that minimizes autocorrelation ISL determined via

(.14 ) oo eee e e ee e e ettt ee st ee e eeeee 144

Figure 86: Notched PRO-FM mean PSD and coherently averaged autocorrelation from applying
an ad-hoc taperedspectral template determined via ( 6.2 ) and ( 6.3 ). The coherently averaged

LS-MMF cross-correlations are shown along with their mean cross-power spectrum ............. 145

Figure 87: Notched PRO-FM mean PSD and coherently averaged autocorrelation from applying
the LS optimal spectral template determined via ( 6.14 ). The coherently averaged LS-MMF

cross-correlations are shown along with their mean cross-power spectrum...........ccccceeeeuveenee. 146

Figure 88: Mean power spectra of PRO-FM / ZOROW waveform sets for a central notch
location spanning 10% of the band after K = 2 PRO-FM iterations and Q = 6 and 1000

ZIOROW TEETATIONS .eeveeeeeeeeeeeeeeeeeeeeeeeeeeeee e eeeeeeeeeeeeeeeaeeaseseseseeesesasesasenenesesssenssnnenennnnsnnnnnnnnnnnnns 152

Figure 89: Comparison of cost-function (2.23) minimization for various gradient-descent

XXi



Figure 91: Timing diagram of SAN cognitive radar adjusting a spectral notch location to

coincide with dynamic RFI with adaptation [atency..........cccccveeeiiiiecieierieecee e 154

Figure 92: Spectrum capture showing three tonal interferers and the SAN radar spectrum with

COLLOCAtEd NOTCIES, CASE L...oiiiiiiiiiieiiiieee ettt e e e e ettt e e e e e s e et aeeeeeesesseaanaees 156

Figure 93: Waterfall spectrogram versus time for RFI comprised of three stepped tones and the

SAN radar spectrum with notches, where the RFI changes every 15 ms, Case la...................... 157

Figure 94: Waterfall spectrogram versus PRI time for RFI comprised of three stepped tones and

the SAN radar spectrum with notches, where the RFI changes every 5 ms, Case 1b.................. 158

Figure 95: Waterfall spectrogram versus PRI time for RFI comprised of three 5 MHz bands of
OFDM subcarriers and the SAN radar spectrum with notches, where the RFI changes every

IS NS, CASE 2 oottt e e e ettt et e e e e e e et b e e e e e e e e eeeetbaaaaraaeeeeeeeartraaaeaaaeeeannnrraees 159

Figure 96: Waterfall spectrogram versus PRI time for RFI comprised of one 40 MHz band of

OFDM subcarriers and the SAN radar spectrum with notches, where the RFI changes every

L5 NS, CASC 3 oottt e e et e e e e e e e et a e e e e e e eee et taaaaaaeeeeeeeetrrraaaaaaeeeaanns 160
Figure 97: Cognitive radar architecture on the SDRadar during Late Development ................. 163
Figure 98: Test setup overview, with sense-and-notch radar and dynamic interferer-................ 164
Figure 99: Open-air test setup: Ettus x310 SDRadar and illuminated traffic intersection ......... 164
Figure 100: Open-air test setup: INterference SOUICE ........ccueevuiiriieerieeiieniienieeniee e 165

Figure 101: Range-Doppler plot of full-band PRO-FM without RFI, intended as the baseline

comparison. All radar operations are performed in real-time via the SDRadar. ........................ 166

XXii



Figure 102: Range-Doppler plot of full-band PRO-FM with stationary RFI, intended as the

baseline comparison. All radar operations are performed in real-time via the SDRadar. ......... 167

Figure 103: Range-Doppler plot for sense-and-notch PRO-FM with stationary RFI. All radar

operations are performed in real-time via the SDRadar. ...........cccocceeveiiiiiiniiiinieiiceeee, 167

Figure 104: Range-Doppler plot for sense-and-notch PRO-FM with RFI hopping every 50ms.

All radar operations are performed in real-time via the SDRadar. .........ccccooceevirieniininiencnnen, 168

Figure 105: Range-Doppler plot for sense-and-notch PRO-FM with RFI hopping every 10ms.

All radar operations are performed in real-time via the SDRadar. ............ccoccooviiiiiinininnee 169

Figure 106: Range-Doppler plot for sense-and-notch PRO-FM with RFI hopping every 0.6ms.

All radar operations are performed in real-time via the SDRadar. ............coccoviiiiinninnnnen 169

xxiii



Introduction

The pace of increasing spectral congestion creates a major challenge for radar systems, with traditional
spectrum allocations inadequately supporting the competing demands for greater bandwidth [1-5]. The position of
the US DoD Chief Information Officer is “spectrum sharing is the way ahead to maintain economic dominance” [6].
Consequently, radar spectrum sharing techniques are necessary to preserve acceptable performance amidst other
active RF users. Of course, depending on the particular manner of spectrum sharing, potential pitfalls may exist [7].
Growing RF congestion represents a transition from the era of noise-limited legacy radar to interference-limited
operation. When in-band RF interference (RFI) is dynamically changing during the radar’s coherent processing

interval (CPl), one way this condition can be addressed is by enabling the radar to become similarly dynamic.

Cognitive radar, also known as fully adaptive radar, attempts to improve performance and efficiency by
“learning” from a priori observations to supplement decision making from low-level (e.g., waveform
selection/design) up to high-level tasks (e.g., mission-level command and control) [4]. The most common forms of
cognitive radar in the literature include optimization/selection of transmit parameters, waveforms, or filters [8-11]).
Due to increasing spectral congestion and competition [1], an important topic of research is the use of cognition in
a spectrum sharing context [12] to modify the radar transmission according to sensed RF interference (RFI) in the
band of interest. Essentially, these efforts are working to develop “good spectral neighbor” capabilities for the radar
by mitigating the mutual interference to/from other spectrum users. The particular focus here is on the automated
generation of physically realizable waveforms that possess spectral notches to avoid in-band interference. Such a
condition is expected to become more problematic with the continued proliferation of 4G and 5G communication

systems into radar bands.

The notion of spectrally notching radar waveforms as a means of radio frequency interference (RFI)
avoidance has been considered by many, with a recent survey from an optimization theory perspective appearing in
[13]. While the majority of such approaches involve spectral notching of a single waveform, or by extension the same
waveform over the CPI, it was shown in [14] that doing so incurs a rather significant penalty in terms of increased

radar range sidelobes. However, it was recently experimentally demonstrated that the spectral notching of random
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FM waveforms partially avoids this limitation because the incoherent combining of range sidelobes across multiple
unique pulsed waveforms in the coherent processing interval serves to reduce the resulting sidelobe level.
Here, the random FM waveform spectral notching capability is incorporated into a cognitive radar framework that
performs spectrum sensing on a per-pulse basis, estimates the spectral properties of any in-band interference, and
then adjusts the notch locations and widths in an automated manner. For interference taking the form of frequency
hopping OFDM communications, this overall cognitive strategy employs RFl sensing updates to inform the

subsequent notching of random FM waveforms, with the ultimate goal of achieving real-time RFI avoidance.

The remainder of the document is parsed into two chapters. The former section discusses radar
fundamentals that are key to understanding the behavior of spectrally notched waveform and filter design in the
context of pulse-Doppler radar processing. Topics include hardware considerations for waveform design and
experimental evaluation, the basics of radar electromagnetic modeling, waveform design theory in the context of
correlation-based range processing, and slow time-Doppler processing considerations. From these fundamentals,

important insights about the anticipated behaviors of the sense-and-notch cognitive radar performance are drawn.

The latter chapter regards multiple aspects of the cognitive sense-and-notch frameworks, wherein random
FM waveforms are spectrally notched in reaction to the observed interference. In Section 2.1, relevant waveform
design methods with incorporated spectral nulls are described. In Section 2.2, the spectrum sharing approach is
evaluated via emulation in a semi-controlled environment for experimental evaluation. Section 2.3 evaluates an ad
hoc post-processing technique to compensate for the clutter modulation distortion effect that occurs when dynamic
spectral notches are present during the radar coherent processing interval. The fundamental dynamic range
limitations while performing range correlation processing or joint range correlation processing and slow time-
Doppler processing with spectrally notched waveform/filter designs are examined in Section 2.4. Finally, both
Sections 2.5 and 2.6 examine design tradeoffs and considerations for real-time implementation of cognitive sense-
and-notch radar for moving target indication (MTI) during different stages of development. The topics covered here
extend from initial experimentation and fundamental theory, through to real-time implementation and

development of cognitive sense-and-notch radar performance.
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CHAPTER |I: FUNDAMENTALS

Radar technology is used for weather forecasting, autonomous vehicle operation, space observation,
defense surveillance, medical imaging, and more. Radar systems consist of transmitters that emit electromagnetic
waves and receivers that capture the waves scattered from a given physical environment. Attributes of scatterers
are then determined based on the received wave characteristics. Four fundamental perspectives are considered
here, including the radar 1) objective, 2) transmission mode, 3) orientation, and 4) dimensions. The fundamental
background provides necessary radar systems and digital signal processing groundwork. Upon these fundamentals,

aspects of radar spectrum sharing are explored.

1.1. RADAR OBJECTIVES

The objective defines the intended output measurements of the radar. Standard radar objectives include
target detection, indication (or localization), tracking, classification (or identification), and imaging. Subtle

differences exist between each objective:

A) Detection determines whether a target is present but does not necessarily resolve target attributes of range,

velocity, and spatial angle.

B) Indication (or localization) determines whether a target is present, and additionally resolves target attributes of

range, velocity, and spatial angle.

C) Tracking determines whether a target is present, resolves target attributes of range, velocity, and spatial angle,
and predicts the target’s future location based on prior observations. Parameters of the antennae or platform

motion adjust to maintain target observation.

D) Classification (or identification) determines the type of target present (e.g. drone versus bird) based on target-

specific scattering signatures.

E) Imaging forms a picture of the target for visual interpretation by a human or machine.



Application-specific objectives include nonlinear target detection [15], moving target indication (MTI) [16],
monopulse tracking [17, 18], micro-Doppler (MD) motion classification [19], synthetic aperture radar (SAR) imaging
[20, 21] or single-pulse imaging (SPI) [22]. Applications are constrained by implicit platform/target motion, scene-
specific clutter/interference, and the degree of resolution required in various dimensions. Through-the-wall (TTW)
radar [23, 24], sea-observation radar [25, 26], over-the-horizon (OTH) radar [27], and foliage/ground penetration

(FOPEN/GPR) radar [28] contend with scene-specific clutter.

1.2. RADAR TRANSMISSION MODES

The transmission mode describes how the environment is illuminated electromagnetically for observation
of subsequent scattering. Active radar systems may transmit continuous wave (CW) or pulsed wave emissions in a
desired direction. Reflections from pulsed emissions can be processed on a single-pulse (e.g. SPI) or multi-pulse
(e.g. SAR) basis, depending on the radar objective. The user may wish to remain silent and instead operate in a
passive radar mode, utilizing emissions from other radio frequency (RF) users in the environment that then scatter

from targets of interest towards the radar receiver.

Figure 1: Radar transmission modes: The leftmost ship transmits active, multi-pulse emissions (yellow) towards other
ships, which reflect and are captured for localization. The communications radio tower (which is agnostic of the
ships) transmits CW waves (red), which reflect off a nearby surfaced submarine. Both ships passively receive the

reflected waves and process them to detect the submarine.



1.3. RADAR ORIENTATION

The orientation describes the positions of transmitters and receivers relative to one another. Various
potential radar orientations are illustrated in Figure 2. Monostatic radar describes an orientation where a single
transmitter and receiver are collocated and may (but need not) share the same antennae for electromagnetic
transconductance via a microwave switch or circulator [29]. Monostatic radar processing is the least demanding with
regards to scene geometry modeling and system synchronization, relying on electromagnetic wave backscattering
phenomenology for target observation. Bistatic radar describes an orientation where a single transmitter and
receiver are physically separated by a considerable distance. Bistatic orientation implies complex scene geometry,
relying on electromagnetic wave backward and forward scattering phenomenology. Location, motion, and oscillator
frequency of the transmitter and receiver must be jointly considered during radar processing to achieve phase
coherence. Multistatic radar is an extension of bistatic radar, wherein multiple transmitters and receivers are

distributed throughout the environment. Bistatic and multistatic radar are often referred to as distributed radar.

Multiple-input multiple-output (MIMO) radar characteristically has spatially diverse emissions that provide
an enhanced spatial resolution capability [30, 31]. MIMO radar encompasses any radar orientation that applies
spatial beamforming with multiple antenna elements to provide a spatial resolution enhancement [30]. MIMO radar
encompasses both distributed radar techniques [31] and non-distributed transmit/receive array processing methods
[32]. In contrast, simultaneous multifunction radars utilize emissions comprised of multiple antenna elements to
execute multiple functions without necessarily achieving a spatial resolution improvement [30]. Other forms of
simultaneous multifunction radar do not take advantage of antenna spatial orientation to achieve multiple
objectives, but instead splice the “multifunction” aspect into radar dimensions such as the fast time-frequency

spectrum [33-35].
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Figure 2: Illustration of radar orientations. Circles represent antennas, blocks of circles represent beamforming

antenna arrays.

1.4. RADAR DIMENSIONS

The dimensions of the radar system describe which mathematically modeled phenomena are exploited to
achieve the desired objective. Standard dimensions in radar systems include fast time-frequency, range, slow time-
frequency (Doppler), polarization, and space. Distinctions are made between each dimension for system modeling
and optimization purposes. Model representation is critical to successfully optimize a desired objective [36].

Non-traditional dimensions have likewise been examined (see [37-39]).

Radar phenomenology is described by continuous or discrete models. Continuous dimensions are modeled
around reality-driven physical behaviors, which are sampled to obtain discrete dimensions. For example, the
continuous time signal s(t) sampled every T; seconds for N samples forms the discrete time signal s(nT) for
n € [0 -+ N — 1], described by the discrete vector s = [s; -+ sy]7. Continuous and discrete models are described

hereafter for standard radar dimensions.



1.4.1. TIME-FREQUENCY

1.4.1.1. DEFINITIONS

The time dimension is defined in terms of how modulated electromagnetic waves are A) received, recorded, &

processed or B) designed, stored, & transmitted.

A) To observe the electromagnetic environment on receive, variations of the environment over time are
captured by an antenna at a probe point in space. The microwave system intended to record and process the signals
over time operates with either analog or digital procedures. An analog receive chain will process the captured waves
in the continuous dimension; the waves are physically processed near the speed of light using filters, mixers, lenses,
slits, and other analog transforms to yield pertinent material information for the given objective. Some legacy radar
systems exclusively used analog receive processing for objectives such as SAR imaging, but such systems are
expensive, lack reconfigurability, and lie prone to machine miscalibration [16]. Digital receive chains use analog-to-
digital converters (ADCs) to sample continuous waves at set time intervals and record the measured samples for
subsequent digital processing. Due to the limitations of ADC precision and sample rates relative to higher costs,
modern radar systems use a hybrid of analog signal conditioning and digital processing to capture a signal of interest

from the electromagnetic spectrum.

B) Transmit electromagnetic waves are designed within an analog or digital transmit chain for controlled
antenna emission into the RF environment. While transmit waveform characteristics can be modulated using analog
devices such as surface acoustic wave (SAW) structures [40], modern systems typically design in a discrete dimension
that subsequently translates to the continuous dimension using a digital-to-analog converter (DAC) to achieve more
precise modulation and dynamic waveform generation capability [41]. The DAC analog output is then additionally
modulated using analog components such as mixers, filters, and amplifiers to create an electromagnetic wave at the

desired frequency, bandwidth, and transmit power in the band of system operation.



1.4.1.2. REVIEW OF DIGITAL SIGNAL THEORY

A brief review of digital signal theory is presented for subsequent relation to the transmit and receive design
considerations for radar operation. If a continuous signal has a given maximum frequency f;,.x dictated by the
distance between sinusoidal component peaks, the Nyquist sampling theorem in (1.1) states that the uniform
sample rate capturing measurements must be at least twice the maximum frequency of the continuous bandlimited

signal being captured for subsequent perfect signal reconstruction.

f:S' 2 meax
(1.1)

Upon capturing an electromagnetic wave impinged on an antenna and temporally sampling at uniform intervals of
nT; for a given sample frequency f; = Tiwhere n € {0,1,...,N — 1}, the time sampling process imposes rectangular
S
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bounds in the frequency dimension in the set f € > 2). The rectangular frequency window restricted by the

sampling process implies an assumption by Fourier definition that the continuous time dimension signal is composed

of time-shifted sinc basis functions (as is only completely true for perfectly frequency bandlimited signals [42]).

sin(mt)

The sinc function is defined as sinc(t) = —

The relationship between normalized frequency sample rate bounds
and their corresponding implied sinc basis functions is illustrated in Figure 3. The critical Nyquist sampling rate is

defined as £\Y4St = 2f .

The Nyquist theorem can be understood intuitively from a time-dimension perspective by illustrating the
attempted sinc reconstruction of a real continuous signal when sampled below, meeting, or exceeding the Nyquist
sample rate, shown in the left column of Figure 4. Note that the signal being reconstructed is not truly bandlimited,
but the Nyquist rate is chosen to be twice the maximum frequency 3-dB power of the signal. Reconstruction is
performed using the Whittaker-Shannon interpolation theorem shown in (1.2). The sinc interpolation theorem
describes the method by which Fourier sinc basis functions are used to reconstruct the continuous signal structure

from a sampled bandlimited signal via discrete convolution.
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sinc basis functions assumed to compose any continuous signal within the bandlimited frequency window (bottom).
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s(t) = Z s(nTy) sinc (t _TnTS)

N

(1.2)

The frequency dimension of each reconstructed signal is shown in the right column of Figure 4. When a continuous
signal is not sampled at sufficiently frequent time intervals according to the Nyquist sample rate, the continuous
signal structure cannot be reconstructed without error. Here, fi,.x is selected as the highest frequency indicating a
3-dB power drop-off. The error introduced by sampling a bandlimited signal below the Nyquist rate f; < 2fax IS
referred to as aliasing and is shown in the bottom plots of Figure 4. When sampling below the Nyquist rate, the signal
is improperly reconstructed. Even when the Nyquist rate is roughly met by f; = 2f,.x the signal is not perfectly
reconstructed because the original signal is not perfectly bandlimited in the frequency dimension. The

reconstruction error is minimized, but not completely eliminated, only when the signal is oversampled f; > 2f.x-
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The fundamental relationship between real and complex signal notation is often overlooked. Only real
signals exist in the physical world. Rather, complex notation captures two orthogonal basis components of a real
modulated signal. Each basis component represents entirely unique information due to the orthogonality of the

cosine and sine functions over all time t. Any physical signal can be represented as

A(t) cos(wct + ¢(t)) = A(t) cos(d)(t)) cos(wct) — A(t) sin(d)(t)) sin(w.t)

= s51(t) cos(wct) — sq(t) sin(wt),

(1.3)



and can therefore be represented by the summation of two scaled basis components corresponding to the unique
information captured in cos(w.t) and sin(w.t), where w, = 2rf,. Euler’s identity maps the orthogonal basis
functions cosine and sine to an in-phase & quadrature (I/Q) representation, commonly illustrated by the complex

unit circle. That is

A)e’?® = A(t) cos(p(t)) + jAE) sin(p(®) = s;1(t) +j s () .

(1.4)

The 1/Q representation can demonstrate relationships including A(t) = /slz(t) + sé(t) and ¢(t) = atan (sQ(t)).

s1(t)
When s;(t) and sq(t) arbitrarily scale their respective basis components cos(w.t) and sin(w.t) as in (1.3), the
amplitude and phase of the constructed signal A(t) cos(wct + <;b(t)) are determinable from s;(t) and sq(t). To

enforce a signal to have constant amplitude (A(t) = A,V t), the basis components s;(t) and sq(t) must be

orthogonal s;(t) = A% cos(¢(t)) and sq(t) = A3 sin(¢(t)) such that A(t) = 4, Jcosz(¢(t)) + sin?(p (1)) = Ao.

The imaginary number j is not truly “imaginary”, but rather is a mathematical definition that allows tracking
the degree to which a modulated signal is composed of either the orthogonal basis functions cosine or sine.
Carl Friedrich Gauss said “That this subject [imaginary numbers] has hitherto been surrounded by mysterious
obscurity, is to be attributed largely to an ill adapted notation. If, for example, +1, -1, and V=1 had been called
direct, inverse and lateral units, instead of positive, negative and imaginary, such an obscurity would have been out
of the question.” Note that for purely real signals as shown in Figure 4, the frequency information is double-sided
(symmetric about zero) because information pertaining to the cosine basis function is considered and information
pertaining to the sine basis function is not considered (i.e. half the information has been disregarded by not capturing
the unique information mapped from the orthogonal sine component of the signal). When a complex signal that
captures both the sine and cosine phase basis function information is reconstructed in Figure 5 with temporal sinc
basis functions according to (1.2), the real and imaginary portions of the signal experience similar error as that shown

in Figure 4.
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Note in Figure 5 that the frequency dimension representation of the complex signal now occupies unique
spectral information in the entire frequency band (“negative” frequencies are decoupled from the “positive”
frequencies after discrete Fourier transformation), while still being sampled according to the original Nyquist rates.
The available signal information is fully captured by sampling both cosine and sine basis components, in comparison
to the information captured solely by the cosine basis component. This is mathematically represented by plugging

the Fourier identities
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cos(nfyt) = 3 [Tt + e T0t] & Z[8(F + )+ (F — fo)

sin(@rfyt) = o0t — et & L s(r 4 1) 467 - fo)

(1.5)
into (1.4) to show the negative frequency components cancelling in (1.6).
iy . 1. iy (—) ; iy
e I3t = cos(2mfyt) — j sin(2nfyt) = E[eﬂ”fot + e~J2mhot] — j <7) [e/2mfot — g=J2mfot]
1 j t —j2mfot _l ji2rfot _ ,—j2mfot
=E[€12 fot 4 g=J2mfot] . [e/2mfot — g=i2mfot]
. F 1 el
e & SS(f +F(O) +(f — FO)] = () BU + F(©) = 8(F = F©)]
1 1
= 6 +fE)+ 8¢ — fFO =5 [=6(f +f(O) +6(f — f()]
=6(f+ 1)

(1.6)

Negative frequency representations result from mathematical definitions, indicating the degree that a signal maps

to the cosine or sine basis function for a given frequency.

1.4.1.3. FAST TIME VERSUS SLOW TIME

Consider an active pulsed radar transmission emitted into free space. Time samples are coherently captured
at a sampling interval Ty and sampling frequency f; = 1/T, over a given duration. The received signature is
illustrated in Figure 6. The transmission consists of P pulses, each emitted for duration T,,. Sampling over the
duration T, yields N, = f; - T, samples. The time duration between consecutive pulses is the pulse repetition
interval (PRI) Tpg;, which recurs with a pulse repetition frequency (PRF) fprr = 1/Tpgr;. Sampling over the duration
Tpr; Yields Npg; = fs - Tpry samples. The time windowed duration of the receive signature is the coherent processing
interval (CPl) Tcpy = P - Tpry - Sampling over the duration T¢p; yields Ncpy = fi - Tepr = P - Npgp samples. It is

generally true that Ty & Ty < Tpgry K Tepy and fprr K fs.
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The data set is segmented into P pulse repetition intervals, each containing Npg; discrete samples.
The fast time dimension refers to the samples within a given PRI segment collected at sample intervals n - T for
n € {0,1, ..., Npg; — 1}. The slow time dimension refers to the samples between PRI segments separated by pulse
repetition intervals p - Tpg; for p € {0, 1, ..., P — 1}. Note that uniform PRI segmentation of samples is not always
used in practice [16]. Recent work has explored the use of random non-uniform (staggered) PRIs to glean additional

information from the RF environment [43].

The fast time-frequency dimension examines the frequency content across multiple contiguous fast time
samples using the discrete Fourier transform. The instantaneous time-frequency dimension examines the sample-
to-sample frequency deviation occurring between two contiguous fast time samples (via differencing) and is a subset
of the fast time-frequency dimension. The slow time-frequency dimension examines the frequency content across

multiple contiguous slow time samples using the discrete Fourier transform.

Tcpr

¢ |

I
T, I T, I Tpr I
> +—>

N

Fast Timen - T
>
Slow I_I
Time
p - Tpri
L
L

v

Figure 6: Fast time versus slow time representation, with temporal duration definitions.
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1.4.1.4. DEFINITION OF BASEBAND AND PASSBAND FREQUENCY REPRESENTATIONS

Two common signal models are referred to as baseband and passband representation. The fast time-

frequency representations of a baseband versus passband representation are shown in Figure 7.

Complex
Baseband
| t ! w
0 0
Real
Passband
t ! w
0 —We 0 W
Fast Time — Frequency
Figure 7: Fast time-frequency representations of baseband signals versus passband signals.
A passband representation refers to a real signal with center frequency w, = 21 f., written as
Spb(t) = A(t) cos(wct + qb(t)) = 51(t) cos(wct) — sq(t) sin(w,t)
(1.7)

One may recognize this form as being equivalent to (1.3). All physically realizable electromagnetic waveforms that
exist in reality have positive frequency content, which can be considered a mapping of s;(t) and SQ(t) when mixed
with orthogonal basis components cos(w.t) and sin(w.t) to generate the purely real signal A(t) cos(wct + q.’)(t)).

Conveniently, (1.7) can be written as

Spp () = A(t) cos(wct + qb(t)) = 51(t) cos(wt) — sq(t) sin(w.t)
= Re {(sl(t) +j sQ(t)) (cos(wct) +jsin(wct))}
= Re{(sbb(t))(cos(a)ct) +jsin(a)ct))}

(1.8)

Generation of a passband signal may be achieved either using analog or digital signal representations of s;(t) and

5q(t), each with their own pitfalls.
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Baseband representation refers to the complex signal representation shown in (1.9), which only considers
the portion of the passband signal that provides its amplitude and phase characteristics. One may recognize this

form as being equivalent to (1.4).

sop() = A() IO = A(6) cos($(D)) + JAW®) sin($ () = 51(6) +J sq(0)
(1.9)
Frequency modulated (FM) signals have constant amplitude envelopes (A(t) = A, V t) and non-constant phase
(p(t) # ¢y ¥V t) over their duration. Amplitude modulated (AM) signals have non-constant amplitude envelopes
(A(t) # Ay V t) and constant phase (¢(t) = ¢, V t) for their entire duration. Signals having both non-constant

amplitude and phase characteristics (A(t) # AoV t, ¢(t) # ¢y Vt) are often also referred to as amplitude

modulated (AM) signals to emphasize non-constant amplitude envelopes.

For FM signals, only a single instantaneous frequency exists at a given time instant defined by

d . . . S
fi(® =i( (Zit)) [44]. For AM signals, two or more instantaneous frequencies exist simultaneously, as the

amplitude term A(t) itself introduces a time varying frequency component. Instantaneous frequency definitions are

explored for specific signal types in [44].

A received passband signal can be demodulated to obtain its baseband signal representation (assuming
adequate out-of-band interference rejection) by the process outlined hereafter. Consider the passband signal

representation from (1.7) transmitted at a reference time ty¢s.

Spb(t - tref) = A(t - tref) cos(a)c ' (t - tref) + ¢(t - tref))
= 51(t — trer) COS((UC (t— tref)) - SQ(t — tref) Sin(wc (t— tref))

(1.10)
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In physical reality, the receive signal y(t) will be a delayed copy of the transmitted signal due to the near speed of

light (non-instantaneous) propagation delay tqejay-

Y(t) = Spb(t — Cref — tdelay)
= A(t - tref - tdelay) Cos (wc ) (t - ztref - ztdelay) + ¢(t - tref - tdelay))

= Sl(t — tref — tdelay) Ccos (wc ' (t — Lrer — ztdelay)) - SQ(t — tref — tdelay) sin (wc ' (t — tref — tdelay))
(1.11)

For convenience, assume no propagation delay tgelay = 0 and transmit reference time t.¢ =0 such that
y(t) = spp(t). The received signal can be mixed with a single oscillator cos(w,t), or two independent orthogonal
oscillator signals cos(w.t) and sin(w.t) (see 1.4.1.9). The latter configuration recovers the complex baseband signal
without loss of information as in (1.12). Note that the imaginary component j distinguishes the independent radio

frequency channels of the cosine component cos(w.t) and the sine component sin(w.t).

Ymix(t) = y(t) - (cos(wct) —j sin(wt))
= Spb ®)- (cos(wct) —J Sin(wct))
= A(t) cos(wct + <;b(t)) - (cos(wct) — j sin(w.t))

= %A(t){ [cos(2w .t + ¢(1)) + cos(p(D))] + j [~ sin(2wct + ¢()) + sin(d(®))] }
(1.12)
Bandstop filtering the components at 2wt in both channels yields the complex baseband signal
spb(t) = A){cos(p(@®)) +j sin(¢p(t))} = A(t) /.
(1.13)

The same derivation can be equivalently shown using the inphase and quadrature signal representation as

Vmix(t) = (sl(t) cos(wct) — sq(t) sin(wct)) - cos(wt)
+(sl(t) cos(wct) — sq(t) sin(wct)) * (—j sin(w.t))
= (sl (t) cos(wt) cos(wct) — sq(t) sin(wct) cos(wct))
+j(—sl (t) cos(wct) sin(wct) + sq(t) sin(w.t) sin(wct))

(1.14)
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Expanding via trigonometric identities

Vmix () = (sl(t) cos(wct) cos(wct) — sq(t) sin(w.t) cos(wct))
+j(—sl(t) cos(wt) sin(wct) + sq(t) sin(w.t) sin((uct))

= (ﬁ cos(Qwct) + Q os(0) — Slt )sm(cht) - SQZ(t) sin(O))

si(t t Sol(t
+j (— 1 )sin(cht) — I( ) in(0) — ( ) cosRw.t) + Qz( )cos(0)>
(1.15)
and bandstop filtering the higher frequency component at 2wt in both channels yields the baseband signal
Spb(t) = s1(8) + j sq () .
(1.16)

1.4.1.5. AMPLIFIER EFFECTS ON TRANSMIT WAVEFORMS

A typical amplifier power characteristic curve is shown in Figure 8, here divided into linear and saturated
regions. Class A amplifiers operate at relatively low power (in the linear region) and have low power efficiency.
Class AB, B, and C amplifiers operate at relatively moderate-to-high power (in the saturated region) with high power

efficiency, at the cost of inducing signal distortions [45].

High-power amplifiers are often used for radar signal transmission. The input signal power to an HPA is
driven far into the saturated region to maximize power efficiency and minimize heat dissipation. Hypothetical input
(P.y) and output (P,,) power operating points for optimal high-power amplifier efficiency are indicated in Figure 8.
Because HPAs often are biased to remain far in the saturated region, input AM waveforms would be afflicted by
significant distortion as the input amplitude A(t) and corresponding instantaneous power P;,(t) traverses the
nonlinear amplifier power curve. Moreso, HPAs are not designed to operate below the saturated region and power
efficiency becomes poor in the linear region. Because the average input power of an AM waveform may be
significantly less than that of an FM waveform, the amplifier may operate in an inefficient region and dissipate

additional heat into the amplifier heat sink (which becomes significant when >1 kW output power is needed).
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Figure 8: Amplifier power operating curve. P;, and P, indicate hypothetical optimal power efficiency operating
points for a high-power amplifier. For AM waveforms, the instantaneous power (red line) and peak power (yellow
dot) deviate significantly from the average power (green dot). For FM waveforms, minimum deviation occurs and

the amplifier is always saturated. Peak power must not exceed the maximum input power limitations of an amplifier.

Noting the significant deviation between peak and average power delivered for an AM waveform shown in
Figure 8, the peak-to-average power ratio (PAPR) is a common metric gauging how efficiently an input signal can be
amplified. PAPR is defined in (1.17) after normalization. Physical signals of non-zero frequency always experience a

deviation between the peak and average power ratio of at least 2. For example, an FM signal with constant

amplitude A, exhibits PIEZX = A3 and fPa“),bg = A%/2.Baseband signals aren’t always perfectly recreated at passband,

such that the baseband PAPR is approximately equal to the passband PAPR at the amplifier input (see 1.4.1.6).
FM waveforms maintain an ideal (= 1) PAPR and meet the necessary signal input conditions for efficient amplifier

operation, while AM waveforms have non-ideal (> 1) PAPR that causes heat dissipation and signal distortion.

1pPPP

max __

L[ max{lsp @} \ 2 [ max(isew©1?)
2 ppb 2 ~ =

PAPR = = =~ =
21 1 (1 2 Pbb 1 /7
Favg T—pf0p|5pb(t)| dt avg T—pfop|5bb(t)|2df

(1.17)
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Spectral regrowth refers to undesired signal spectral characteristics that result from RF amplifier distortion.
Spectral regrowth contaminates optimal waveform characteristics and impairs the transmission waveform spectral
containment required to mitigate interference with other RF users. Amplifier nonlinear distortions are labeled in
terms of specific components including harmonics, intermodulations (or cross-modulations), and memory effects
[46-50]. Common models for nonlinear distortions include power series, memory polynomials, Volterra series, and
Wiener-Hammerstein models [46-50]. The Matlab system identification toolbox provides functions and
documentation to model a wide variety of nonlinear models [51]. Real-time hardware implementations for amplifier

nonlinearity approximation have been implemented [52, 53].
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Figure 9: Nonlinear amplifier distortions simulated using the power series model and enforcing amplifier bandpass
filtering effects. The simulated distortions to an FM waveform (top) create harmonics only. The simulated distortions

to an AM waveform (bottom) create harmonics and intermodulations, referred to as spectral regrowth.
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The HPA nonlinearities are easily modeled via power series when limited to consideration of harmonics and
intermodulations [30]. The fundamental signal represented in (1.3) is A(t) cos(wct + d)(t)). The power series model

represents a summation of memory-less polynomials of integer order & forming the distorted signal spower(t).

Spower(t) = As(t) cosf((uct + ¢(t))

(1.18)
Even order polynomials exclusively produce harmonics at frequency multiples of the fundamental signal, e.g.
A2(t) cos?(wet + p(t)) = A2(t)(2 + 2 cos(2w.t + 2¢(t))). Odd order polynomials produce harmonics at the
fundamental frequency and multiples thereof, e.g. A3(¢)cos®(wct + ¢(t)) = A3(t) G cos(wet + (1)) +
%cos(3wct + 3¢(t))). Examining the odd order polynomials, any amplitude modulation produced by the amplifier

at the fundamental center frequency A% (t) cos(wct + <;b(t)) will superimpose with the transmit signal and cause

distortion [30]. FM waveforms mitigate amplifier distortion since A(t) = A, V t, yielding the fundamental signal.

The source of spectral regrowth outside of the fundamental signal bandwidth becomes apparent after
decomposing an AM waveform into instantaneous frequency components. The time-varying amplitude A(t) and
frequency cos(w.t) components imply that multiple instantaneous frequencies exist simultaneously [44]. Here,

consider the AM waveform generated by the superposition of two or more FM waveforms.
A(t) cos(wct + qb(t)) = Z A; cos(wct + ¢; (1))
vi

(1.19)
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The simple case where two FM waveforms with different phases are superimposed [54] can be expressed as

A, cos(wct + ¢4 (1)) + A, cos(wet + ¢, (1))

= \/[4; cos(¢; (1)) + A, cos(d, (E)]? + [A; sin(e, (t)) + A4, sin(¢,(£))]2

A; sin(¢4(t)) + Ay sin(,(t))
A; cos(¢4(t)) + A, cos(g,(t)) )

- cos <wct + tan™? [

(1.20)
By examination, the resulting amplitude and phase components when summing two FM waveforms are
A(t) = V[A; cos(¢1 () + 4; cos(¢2(0)]? + [Ay sin(p1 (1) + 4, sin($, (1))]2
1 [Axsin(@1(2) + A, sin(¢, (1))
¢ = tan™ A; cos(¢1(8)) + A; cos(d2 (D))
(1.21)

The superimposed signal will exhibit amplitude modulation (and therefore spectral regrowth) unless the comprising
phases are equivalent ¢, (t) = ¢,(t). Furthermore, applying the power series model reveals the root source of
spectral regrowth. Plugging (1.20) when A; = A, = 0.5 and ¢4(t) # ¢,(t) into (1.18) where & =3 yields
harmonic terms (e.g. cos(3w.t + 3¢, (t)) & cos(Bw.t + 3¢p,(t))) , in addition to intermodulation terms
(e.g. cos(w.t + 2¢,(t) — P,(t)) & cos(wct — P, (t) +2¢,(t))) located near the fundamental frequency.

The intermodulation terms indicate frequency expansion beyond the initial signal bandwidth.

(0.5 cos(wct + ¢1(t)) + 0.5 cos(w.t + ¢2(t)))3

= 0.219 cos(wct + ¢4 (t)) + 0.219 cos(wct + P, (t)) + 0.031 cos(3w t + 3¢, (t)) + 0.031 cos(3w .t + 3¢, (1))
+0.062 cos(¢1 () + 0.062 cos(p,(£)) + 0.093 cos(w .t + 2¢; (t) — p, (1))
+0.093 cos(wct — ¢y (t) + 2, (£)) + 0.062 cos(2w t + ¢ (t) + 26, (1))
+0.062 cos(2wct + 2¢1(£) + ¢, (£)) + 0.031 cos(3wct + ¢ (t) + 26, (1))

+0.031 cos(3wct + 26, (£) + ¢, (1))

(1.22)
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1.4.1.6. ANALOG UPCONVERSION

Two common methods exist to form a passband signal for subsequent transmission, which are analog
upconversion and digital upsampling, interpolation & upconversion. The choice of analog or digital passband signal
generation often amounts to which equipment is commercially available and sufficient for an engineering application
given hardware costs. For instance, software-defined radios (SDR) often have built-in analog upconversion, while

arbitrary waveform generators (AWG) often require digital passband signal generation.

Analog upconversion is illustrated in Figure 10 and Figure 11, where w, f denotes analog frequency and
fDAC is the digital-to-analog converter sample rate. To form the passband signal: A) the analog baseband
components s;(t) and sq(t) are generated by separate DACs and lowpass filtered to remove Nyquist spectral
images, B) the filtered baseband components are respectively mixed with cos(w.t) and — sin(w,t) local oscillators

for upconversion and summed using an analog combiner, C) the passband signal is bandpass filtered to enforce
spectral containment. The basis component — sin(w.t) = cos (wct—g) is created by pushing the cos(w.t)

oscillator through an analog 90° phase shifter to maintain phase coherence between channels.

I/Q imbalance exists when the upconverted inphase and quadrature channels have inequal scaling
(cl(t) & CQ(t)) due to RF fabrication variations, local oscillator (LO) amplitude variations, or crosstalk between the
baseband and LO channels [55]. Crosstalk from the LO to the passband channels in the transmit chain, called transmit
LO leakage, can be mathematically represented as a DC offset (dl(t) & dQ(t)) of the baseband components s;(t)

and sq(t) [56]. If the 1/Q imbalance or LO leakage is significant and uncompensated, the passband waveform may
exhibit undesired amplitude and phase distortion. 1/Q imbalance and LO leakage may drift over time with
environmental factors. Mixers introduce errors due to frequency push-pull effects and intermodulations [57].

The passband signal when incorporating non-ideal 1/Q imbalance and LO leakage effects is represented as

IR

Spp(t) = A(t) cos(wct + ¢(t)) cr(t)s1(t) cos(wct) — cq(t)sq(t) sin(wct) + di(t) cos(wct) — do(t) sin(wt)

a(@®(s1(0) + di(1)) cos(wt) — co(t) (SQ(t) + dQ(t)) sin(w.t)

(1.23)
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Figure 11: Analog upconversion stages: A) Form the I/Q baseband signal components on separate DACs and lowpass
filter to remove the Nyquist spectral images, B) Mix the analog complex baseband waveform by either cos(w,t) or

—sin(wct), C) Sum the components using an analog combiner to form the passband signal and bandpass filter the

signal to enforce spectral containment.
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1.4.1.7. DIGITAL UPSAMPLING, INTERPOLATION, & UPCONVERSION

Digital upsampling, interpolation, and upconversion are illustrated in Figure 12 and Figure 13, where w, f
denotes analog frequency, () denotes digital frequency, STX is the initial baseband waveform transmit sample rate,
and f.PAC is the digital-to-analog converter sample rate. To form the passband signal: A) the digital baseband signal
is formed, B) the number of complex baseband waveform samples is increased via upsampling & interpolation,
C) the interpolated baseband waveform is digitally mixed with a complex carrier for upconversion, D) the real
component of the upconverted waveform is extracted, E) the analog passband signal is formed with a high sample

rate DAC and bandpass filtered to enforce spectral containment.

Consider a baseband signal designed with initial baseband transmit sample rate f,'%, pulse duration Ty, and
NpTX = fIX. T, samples. Digital upsampling and interpolation is necessary when the DAC sample rate is greater than
the initial baseband transmit sample rate, f,?AC = B - £TX > £TX where B is an integer upsampling factor. To
maintain the desired pulse duration T, at the DAC sample rate fDAC the number of waveform samples must be
increased to NYAC = fPAC. T, = g - fTX-T,. Upsampling and interpolation increases the number of waveform
samples while attempting to preserve amplitude and phase characteristics. The interpolation stage introduces non-
ideal distortions to s;(n) and sQ(n) (see 1.4.1.8), where the distorted baseband components are distinguished as
5/(n) and 54(n) . After analog conversion and bandpass filtering, the distorted baseband components are
represented as §(t) and §Q(t). The passband signal when incorporating non-ideal digital interpolation effects is

represented as

spb(t) = A(t) cos(wct + ¢(8)) = Re {(51(t) +J 5o(1)) (cos(wct) + j sin(wct))}
= Re{(Ebb (t))(cos(wct) +j sin(wct))}
= §1(t) cos(wct) — 5q(t) sin(wt)

(1.24)
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Figure 13: Digital upsampling, interpolation and upconversion stages: A) Form a complex baseband waveform,
B) Upsample and interpolate the complex baseband waveform to expand the digital frequency space, C) Mix the
digital complex baseband waveform with a complex sinusoid at frequency f;, D) Extract the real portion of the
passband waveform E) Construct the analog passband signal using a DAC and bandpass filter the signal to enforce

spectral containment.
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1.4.1.8. DIGITAL UPSAMPLING & INTERPOLATION METHODS

Digital upsampling & interpolation increases the number of samples in the vectorized signal s while
attempting to preserve amplitude and phase characteristics. Digital upsampling refers to the insertion of zero-
padding between existing signal samples to increase sample spacing. Digital interpolation refers to filtering an
upsampled signal to form non-zero interior samples where zero-padding previously existed. Here, interpolation is

considered in the fast time dimension or the phase angle dimension.

Digitally upsampling is defined mathematically in (1.25), where & is the Kronecker product and 8 is an

integer upsampling factor.

1
s®9
0ﬁ><1

(1.25)

Uniform temporal interpolation is defined mathematically in (1.26), where § is the interpolated signal, H is a filter

bank, and s is the signal-to-be-upsampled.

(1.26)

Here, the upsampling factor 8 represents the frequency space expansion ratio between the initial baseband transmit
sample rate f,'X and the digital-to-analog converter sample rate f.°A¢, such that fPAC = g - £7X. Equivalently

stated from a temporal perspective, To X = f - TPAC,

Whittaker-Shannon sinc reconstruction and associated bandlimited spectral assumptions are described in
Section 1.4.1.2. Sinc reconstruction is a specific form of temporal interpolation derived from fundamental signal
theory. The Whittaker-Shannon sinc reconstruction formula is restated in (1.27) for comparison to (1.26), though

here specific time instances are evaluated and the signal s(t) is not assumed perfectly bandlimited.
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By observation, (1.27) can be represented in the form of (1.26) for sinc reconstruction between uniform samples
(i.e. when t is evaluated at t = n'T.LAC). The columns of H consist of sinc functions with peaks incrementally offset
by B and sinc nulls every 8 samples from the peak. Imperfect reconstruction via sinc interpolation of a constant
amplitude signal when critically sampled creates significant amplitude dips (see Figure 5), implying that the resulting
physical signal would not deliver constant average power to an amplifier and thus cause distortion (see
Section 1.4.1.5). While temporal interpolation via sinc reconstruction is common, other interpolation filters are
applicable [59]. Piecewise spline interpolation adaptively forms (™ integer order polynomial interpolation estimates
based on piecewise segments of s. Cubic spline interpolation ({ = 3) minimizes mean squared error during
reconstruction of imperfectly bandlimited signals (i.e. signals with spectral roll-off) [60]. Cubic spline interpolation is

effective for temporal interpolation schemes.

For high power radar applications, it is desirable to transmit constant amplitude waveforms (see
Section 1.4.1.5) which are written of the form s = cos(¢) + j sin(¢p). A complex constant amplitude envelope can
be enforced by applying Euler’s identity exp(j¢ ) = cos(¢) + jsin(¢p), where ¢ is an arbitrary phase angle

function. The angle of the signal-to-be-upsampled s is extracted via the angle argument operator (), which

calculates the phase as ¢ = atan (%) Interpolation is then performed on the phase angle of the baseband signal.

After performing phase interpolation, the temporal signal is formed by complex exponentiation exp(j-) to
reconstruct a constant amplitude waveform. Phase interpolation is an inherently nonlinear operation. While the
original samples of s are preserved, the upsampled signal § will have mildly distorted fast time-frequency
characteristics with the benefit of having a constant complex amplitude envelope. Effective interpolation methods

in the phase dimension include piecewise linear ({ = 1) and piecewise cubic ({ = 3) spline interpolation.
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Uniform phase interpolation is defined mathematically in (1.28).

| no |
s=epljHl @) |
| ohys |

(1.28)

The stages of temporal interpolation and phase interpolation are shown in Figure 14. A comparison between
temporal interpolation and phase interpolation for a given transmit signal is shown in Figure 15 displaying
corresponding effects on fast time-frequency and the amplitude envelope when = 10. Temporal interpolation
distorts both amplitude and frequency characteristics (especially when extrapolating), though cubic spline
interpolation introduces less amplitude distortion than sinc interpolation. Phase interpolation preserves a constant
amplitude envelope with only minor frequency distortion. The distortions induced by each method are emphasized
in the zoomed plots of Figure 15. Note that spline methods are not designed to extrapolate, potentially causing error

at temporal edges.

Temporal Interpolation Phase Interpolation
Re{s(t)} o(t)
* \/\/\—/\/\/ A '//
t t
Re{s(t)} 0)
1 1
s® [0] WA/ /28 Q [0] /
t t
Re{s(t)} o (1)
1 1
ool \NNNSY wloll) | e
t t
. Re{s(6)}
@ Original Samples
e TG I VAV AN ALY
@B Interpolated Samples t

Figure 14: Stages of temporal interpolation and phase interpolation

27



T P —va T T
e
e
e
e e N
e
e %0

e

0.8

=13
B
DRSS
Mle' —

—e——m g

e

B

BVIRBRRESSS12

e
o e
¢
—
4

0.6

Normalized Time

i
e
VR
e

=
e,
e e

=
IX-F\‘\X

0.4

28

Normalized Frequency

0.95

bi
h
{
T
1
< F
1
4
xJ
Xl
T
1
1
1

]

-20
-30 -

(ap) £(hs|

=
Nadi
oy
~~ 0.5
g
~oo
X

/

0.5

-0.5

0.8
0.8

et Be-Dal0
ML

I
*
i
!
|
¥
1
!
4
0.6
0.6

Normalized Time

e
)¢

Hem s
e
——E
I
e
paa

0.4

Normalized Time

0.4

-40
Signal-to-be-upsampled

Continuous Signal
Phase Linear Spline
- - = Phase Cubic Spline

X

—— Temporal Cubic Spline

—— Temporal Sinc

]

(()s}o

0.95

Figure 15: Temporal and phase interpolation methods. Phase interpolation methods overlap the continuous signal

with minimal error.



1.4.1.9. ANALOG DOWNCONVERSION

Two common methods exist to form a complex baseband signal from an electromagnetic wave captured at
passband, which are analog downconversion and digital downconversion & decimation. The choice of analog or
digital downconversion often amounts to which equipment is commercially available and sufficient for an
engineering application given hardware costs. For instance, real-time spectrum analayzers (RSA) often have built-in

analog downconversion, while high-speed oscilloscopes often require digital downconversion.

Analog downconversion is illustrated in Figure 16 and Figure 17, where w, f denotes analog frequency and

fAPC s the analog-to-digital converter sample rate. To capture the baseband signal: A) the received passband signal

is bandpass filtered to remove out-of-band interference, B) the filtered passband signal is mixed with either cos(w,t)

or —sin(w.t) on separate channels, C) the analog baseband signals are lowpass filtered to remove mixer output
higher order products and sampled on ADCs. The basis component — sin(w.t) = cos (wct —g) is created by

pushing the cos(w.t) oscillator through a 90° phase shifter analog component to maintain phase coherence
between channels. The ADC sample rate can be increased to mitigate the effects of aliasing due to imperfect signal

spectral containment (with diminishing returns when fAPC > 2£ ).

I/Q imbalance exists when the downconverted inphase and quadrature channels have inequal scaling
(cl(t) & cQ(t)) due to RF fabrication variations, local oscillator (LO) amplitude variations, or crosstalk from the
passband channel to the LO channel [55]. Crosstalk from the LO to the passband channels in the receive chain, called
receive LO leakage, can be mathematically represented as a DC offset (dl(t) & dQ(t)) of the baseband components

s1(t) and sq(t) [56]. If the I/Q imbalance or LO leakage is significant and uncompensated, the baseband waveform
may exhibit undesired amplitude and phase distortion. 1/Q imbalance and LO leakage may drift over time with
environmental factors. Mixers introduce errors due to frequency push-pull effects and intermodulations [57]. The

baseband signal when incorporating non-ideal I/Q imbalance and LO leakage effects is represented as

s6(8) = () (51(8) + di(©)) +J co(8) (5g(8) + dg ()

(1.29)
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Figure 16: Analog downconversion RF chain.

Bandpass | |
A Received Filter | |
) Passband A
t f

0

Complex Lowpass
B) Baseband Filter
0 2fc 3fc
| | 1 | |
IR fn m Vv \/I Mo | | | | | |
.‘\ l,‘\ |l\\ "\‘\ } " ,’ Yy ‘( Complex
\‘ll \‘ “\\'I\ \ , ‘l|”\ 1 I‘ Baseband | | | | I |
I] AR 1\ ol . 1 1 AR ] L o
—fADC 12 0 FADC /2
Fast Time

Fast Time — Frequency

Figure 17: Analog downconversion stages: A) Capture the passband signal and bandpass filter to remove out-of-band
interference, B) Mix the filtered passband waveform by either cos(w.t) or —sin(wct), C) Lowpass filter the

baseband signals to remove undesired mixing products and sample using separate ADCs.
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1.4.1.10. DIGITAL HILBERT TRANSFORM, DOWNCONVERSION, & DOWNSAMPLING

Digital Hilbert transformation, downconversion, & downsampling is illustrated in Figure 18 and Figure 19,
where w, f denotes analog frequency, Q denotes digital frequency, SADC is the analog-to-digital converter sample
rate, and f;RX is the desired baseband waveform sample rate (i.e. after downsampling). The baseband components
are minimally distorted from digital processing, albeit the method is computationally expensive compared to analog
downconversion. To capture the baseband signal: A) the received passband signal is bandpass filtered to remove
out-of-band interference, B) the filtered passband signal is sampled with an ADC, C) the Hilbert transform is
performed on the real passband samples to convert to complex notation, D) the complex passband signal is digitally
mixed with a complex carrier for downconversion, E) the complex baseband signal is lowpass filtered to enforce

band-limiting and then downsampled (keep every S time sample) to reduce the sample rate while sufficiently

exceeding the Nyquist sample rate.

The real passband signal captured by an ADC must be sampled according to the Nyquist rate £AP¢ > 2f, ...
Upon bandpass filtering and sampling the real passband signal (having a symmetric frequency spectrum), the Hilbert
transform is applied to cancel redundant negative frequencies, thereby converting samples to complex notation.

The Hilbert transformed signal sy (t) is defined as

(6 = spp(6) + H (5y(0)) = 5 (©) + (50 ;—:)

sw(F) = spo(F) +7 H (spu(F)) = 556(F) +J (sp(F) - =j sgn(f) )
= (530 + 553(0) + (5500 + 55(H) - s8n(h)
= (530N + 53 (H)) + (55 = 55(H)
= 255(f)

(1.30)

where s;’b(f) indicates positive frequencies and sgb(f) indicates negative frequencies of the passband signal.
The signum function sgn(f) is equal to +1 for positive frequencies, -1 for negative frequencies, and 0 at f = 0.
For FM signals, f]-[(A cos(wct+¢(t))) =Asin(a)ct+¢(t)) and simplifies as in (1.6). Applying the Hilbert

transform mitigates frequency aliasing in subsequent steps.
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Figure 19: Digital Hilbert transformation, downconversion, & downsampling stages: A) Capture the passband signal
and analog bandpass filter to remove out-of-band interference, B) Sample the filtered passband signal with an ADC,
C) Apply the Hilbert transform to the real passband samples to convert to complex data representation
D) Mix the digital complex baseband waveform with a complex sinusoid at frequency f. for downconversion,

E) Downsample the data for compression while still exceeding the Nyquist sample rate.
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Consider a passband signal captured with initial ADC sample rate fSADC. Digital downconversion converts
the passband signal from center frequency f, to baseband representation. The resulting baseband signal is often
oversampled relative to the Nyquist sample rate. Digital downsampling is beneficial when the ADC sample rate is
unnecessarily greater than the desired baseband waveform sample rate, fAPC = § - fRX > fRX where § is an
integer downsampling factor. Digital downsampling requires lowpass filtering to ensure the baseband signal is
sufficiently bandlimited), then preserving every 8 samples to reduce the incoming data rate. Cascaded integrator
comb (CIC) filters and polyphase filter banks (PFBs) are computationally efficient implementations for digital

downsampling [58].

1.4.1.11. SUB-NYQUIST SAMPLING

When the available ADC sample rate is less than the frequency of interest, sub-Nyquist sampling is suitable
to capture the information. The sub-Nyquist sampling method exploits discrete frequency periodicity, wherein
ADC

sampling a bandlimited signal produces spectral duplicates spaced at frequency integer multiples ¢ f

Sub-Nyquist sampling is often paired with analog frequency conversion, implemented in certain SDRs.

For example, consider the analog downconversion stages described in Section 1.4.1.9, though now with
local oscillators tuned to an arbitrary frequency w, = 2rf,. When wy = w,, direct analog downconversion occurs
as aforementioned. However, w, may be tuned to convert the passband signal to an intermediate center frequency
wip = 2T fip, where wp = . — wy. The duplicate image of the discretized intermediate frequency signal spectrum
is then captured at baseband center frequency wir — ¢ fAPC, where —fAPC/2 < wip — ¢ fAPC < £ADC/2
determines the integer ¢. The combined analog downconversion and sub-Nyquist sampling method is illustrated in
Figure 20 and Figure 21, where w, f denotes analog frequency and fAPC is the analog-to-digital converter sample
rate. To capture the baseband signal: A) the received passband signal is bandpass filtered to remove out-of-band
interference, B) the filtered passband signal is mixed with either cos(wgyt) or —sin(wyt) on separate channels,

C) the analog intermediate frequency signals are bandpass filtered to remove mixer products and enforce

bandlimiting, then sub-Nyquist sampled on separate ADCs.
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Figure 20: Combined analog downconversion RF chain and sub-Nyquist sampling.
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Figure 21: Combined analog downconversion and sub-Nyquist sampling stages: A) Capture the passband signal and
bandpass filter to remove out-of-band interference, B) Mix the filtered passband waveform by either cos(wyt) or
—sin(wgt), C) Bandpass filter the intermediate frequency signals to remove undesired mixing products and enforce

bandlimiting, then sub-Nyquist sample using separate ADCs.

34



1.4.1.12. PHASE COHERENCE

Phase coherence refers to the degree of accuracy between the true phase and estimated phase of a given
sinusoidal wave, relative to a given time-frequency reference point. The phase of a sinusoid cos(wref - (t - tref))
depends on the true reference center frequency w.er and reference time t..r. Multiple RF systems are mutually
phase coherent when synchronized to the same time-frequency reference point within an acceptable uncertainty.
For example, an analog downconverter (see 1.4.1.9) forms orthogonal inphase and quadrature baseband channels
by mixing the passband signal with phase coherent oscillators cos(wref (t - tref)) and — sin(wref -(t - tref)).
If the oscillators are not phase coherent (e. g. cos(w1 (- tl)) and — sin(a)z (- tz)), ty Fty, w # a)z),
then the baseband channels are no longer orthogonal and the generated baseband signal does not accurately

represent the passband signal information.

Consider the phase coherence between a transmitter and receiver. A coherent radar system minimizes the
uncertainty of the propagation delay tge1ay between the transmitter and receiver, thus allowing for accurate radar
localization. For convenience, the time-frequency reference t,..s and w,.r is set relative to the radar transmitter.

The transmit signal sp, (t) is emitted in a vacuum with center frequency w,f beginning at a time reference t,¢¢

Spb (t - tref) = A(t - tref) Cos(wref ’ (t - tref) + d)(t - tref))
(1.31)

After a given time delay tgelay traversed at the speed of light, the transmit signal is recorded by the receiver as

Y(t) = A(t - tref - tdelay) Cos (wref ’ (t - tref - tdelay) + ¢(t - tref - tdelay))
(1.32)

To determine the propagation delay t4e1ay, the receive signal y(t) is mixed with oscillators to yield the receive signal

Vmix(t, Orep trer), Where wiq and t/ ¢ are the assumed (but potentially incorrect) time-frequency references.

35



Ymix (6, @rep trer) = ¥(8) * (cos(@ler * (t = tlep)) = j sin(wyer - (€ = tiep))
= A(t — trer — tdelay) COS (wref - (€ = trer — tdelay) + P(t — trer — tdelay))
- (cos(wrer* (t = trep)) = j sin(wyeg - (t = trer)))
= %A(t — tref — Cdelay)
( [ cos (wref “(t = tref — taelay) + Wper * (€ = tiep) + G(t — trer — Laelay)

_+ Cos (wref ' (t — tref — tdelay) - wlr"ef ' (t - tl,”ef) + ¢(t — Lref — tdelay))_

)

_j' sin (
(

+ sin

Wref * (t — tref — tdelay) + wlr"ef ' (t - tllﬂef) + ¢(t — Lrer — tdelay)

Wref * (t — tref — tdelay) - C")llﬂef ' (t - tlief) + ¢(t — Lrer — tdelay)

(1.33)

After mixing, the additive frequency component of Y, (£, wref trer) is removed by filtering to yield

1
yerror(t' wI"ef' tlief) = EA(t - tref - tdelay)
li !
Ccos (wref : (t — et — tdelay) — Wref * (t - tref) + ¢(t — tref — tdelay))
—jsin (wref ) (t — tref — tdelay) - w;ef ’ (t - tll"ef) + ¢(t — tref — tdelay))

(1.34)

A perfectly coherent radar transmitter and receiver will allow for determination of the transmitted signal at a given
delay in a vacuum, where Wy = Wyer and trer = trer, Shown in (1.35). Note that a phase shift w,ef (—tdelay) is
imposed on the resulting receive signal based on the frequency of operation (relative to wavelength) and the delay

of the received signal tgejay-

cos (wref (_tdelay) + ¢(t - tref - tdelay))

1
Yeoherent(t) = 5 A(E = frer — taeiay) -
coheren 2 re elay — ] sin (wref (_tdelay) + ¢(t - tref - tdelay))

(1.35)
A radar system is non-coherent if the transmitter and receiver oscillator are not time/phase synchronous within a
degree of acceptable uncertainty, where wper # Wper aNd/Or trer # trep- The time-frequency reference may drift
over time due to oscillator phase noise and frequency drift from environmental factors. Frequency coherence error,
where Wper # Wrer and trer = trep, leads to drift in temporal and phase estimates over time such that processing

over slow time intervals is challenging without compensation.
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ynoncoherent(t' w;ef) = A(t - tdelay) [COS ((wref - wllﬂef) ' (t - tdelay) + ¢(t - tdelay))]
(1.36)

Temporal coherence errors, where Wpor = Wyer and trer # trep, leads to incorrect estimation of tdelay - Defining
At er = trer — tiop, the additional phase term wer (—Atref - tdelay) imposes additional uncertainty in determining
taelay- Here, fine phase coherence errors occur when w, ¢ (—Atyef) < 27 and coarse phase coherence errors occur
when wyer (—Atrer) > 2m. Practically, temporal coherence errors can be calibrated for by GPS or observance of

strong scene reflections at known locations [20].

ynoncoherent(t' ttl'ef) = A(t - Atref - tdelay) [COS (wref ’ (_Atref - tdelay) + ¢(t - Atref - tdelay))]
(1.37)

Illustrations of each coherence error are shown in Figure 22. All radar systems considered henceforth are assumed

to be phase coherent systems, such that non-ideal range uncertainties are assumed negligible.

Frequency Coherence Error
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Fine Phase Coherence Error
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Cos(wref (- tref))
Cos(w;‘ef (- tref))

Cos(wref (- tl"ef))

sos

Figure 22: Types of radar coherence errors, resulting in inaccuracies for target range/Doppler estimation and radar
processing. Phase coherence between channels is dependent on the assumed center frequency, temporal
synchronization (coarse tuning between fast time samples), and phase synchronization (fine tuning of phase relative

to the center frequency).
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1.4.1.13. REVIEW OF FOURIER TRANSFORMATIONS

Four flavors of Fourier notation include the Fourier Transform (FT), Fourier Series (FS), Discrete Time Fourier
Transform (DTFT), and Discrete Fourier Transform (DFT). Each transform represents a transference between a
discrete/continuous time dimension to a discrete/continuous frequency dimension for signals of periodic/aperiodic
nature as summarized in Figure 23 [42]. While each Fourier representation has purpose, modern radar systems often
implement discrete time processing. Consequently, the DFT and DTFT are of interest as transformations from
discrete time to discrete/continuous frequency. The DFT assumes input signal periodicity, though the DFT is often

applied to aperiodic input signals and the error is assumed negligible.

Periodic Discrete
Frequency Time

Aperiodic  Continuous
Frequency Time

Discrete Fourier Transform (DFT)

Fourier Series (FS)

Periodic Ne1 ' L T -
. j2mmn n —_—
Time 3(m) = Z s(n)e "M s(m) = T—f s()e T dt
0/o
Discrete j2mmt
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Discrete Time Fourier Transform Fourier Transform (FT)
Aperiodic - (OTFT) -
T_ _Jj2rnfn .
ime $H= ) swe 7 s = [ se st ae
Continuous n:;:o It
1 j2nfn )
Frequency | sa =+ [ stoe n a s©) = [ s(ertar

0
0

— 00

Figure 23: Summary of Fourier methods. Periodicity is indicated by the = accent.

The formal definition of the discrete Fourier transform (DFT) and inverse discrete Fourier transform (IDFT) is

N-1 )
_ j2mmn
s(m) = Z s(ne” ™
n=0
M-1
1 j2mmn
= — N
s(n) v Z s(m)e
m=0

(1.38)
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The DFT and IDFT are defined over discrete timen=[0 -+ N —1]" and frequency m=1[0 .- M —1]T.

The square DFT matrix A and IDFT matrix A? are defined with equal dimensions (N = M).

A = e—J2r(mn")/N
S = As

AHA
s = <T>S =(Ds

(1.39)

The square transformation matrix T applies a DFT circular shift vector rearrangement. The operation Ts; swaps the
former length [N /2] and latter length |N /2| halves of the vector s¢, where [ - ] is the ceil operator and | - | is the
floor operator. The transformation matrix TT applies an IDFT circular shift vector rearrangement. The operation
T7s; swaps the former length [N/2| and latter length [N/2] halves of the vector s¢, undoing the DFT shift.

For convenience, the matrices A = ATT and AP = TAF are defined.

1.4.1.14. PARSEVAL’S THEOREM AND THE L,-NORM

Parseval’s theorem formally states the unitary transformation property of the Fourier transform, which

defines that the time and frequency representations have equal energy. Here, || - ||, is the L,-norm operation.

f Is(0)17dt = Is@)II3 = f Is(H)Pdt = Is(HI2

(1.40)

Parseval’s theorem is valid for the discrete Fourier transform, though the frequency vector “energy” must be scaled

by the number of DFT samples in accordance with (1.38).

N-1 1 M-1 SHS ”S ”2
> ISl = ss = [sl13 =7 ) lseml? = =2 = ==
n=0 m=0

(1.41)
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The L, -norm of the continuous signal s(t) or the discrete vector s is formally defined as

IsOll, = ( fls(t)lp dt>
1:01 1/p
lIsll,, = (Zw(n)v’)

1/p

(1.42)

As p = oo, the norm determines the signal maximum magnitude (where p = 8 is a sufficient approximation).
Additionally, p = 2 determines the signal root-mean squared magnitude (called the Euclidean norm) and p =1

determines the signal mean magnitude.

1.4.1.15. ADDITIVE WHITE GAUSSIAN NOISE (AWGN)

Additive white Gaussian noise (AWGN) refers to the background radiation of the universe, which temporally
exhibits zero-mean Gaussian distribution due to the statistical central limit theorem amidst extraterrestrial sources
[61]. Noise perturbations are frequency indiscriminate, exhibiting a uniform power spectrum as the observation
interval increases. The ratio of the average signal power % to the expected noise power P, over the interval T,
is called the unprocessed signal-to-noise ratio (SNR). The additive noise v(t) has an expected power E{|v(t)|?}
equal to the variance o2 for the mean-ergodic, zero-mean Gaussian process [61].

P, P, P, TlpfoTpls(thdt

MR T Eflv@®)E 62 lim {% foTlv(t)lzdt}
T—oo

(1.43)

Upon sampling the random process v(t), the sample values are determined. The discrete initial SNR is expressed as

1 2
B__ B A WpEePOP
SNRimit = ==~ =2 = R
P EflvmI?} o iy {%Z\mhj(nﬂz} llvil3
N-oo

(1.44)
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1.4.2. RANGE

The fast time dimension refers to unprocessed data collected over the radar CPI, whereas the range
dimension refers to processed data that provides ranging information about the illuminated scene. Here, a simple
RF scattering environment is considered to define fundamental phenomenology. The transmit signal is assumed to

be frequency modulated, in consideration of amplifier power efficiency and distortions, such that the waveform

instantaneous frequency is f;(t) = i(%ﬁt))

1.4.2.1. ELECTROMAGNETIC FUNDAMENTALS

The fundamentals of electromagnetic scattering are briefly discussed here to establish a physical context
for range dimension modeling. The reader is referred to [62] for additional details on electromagnetic theory and
antenna considerations. First, electromagnetic equations are defined to describe radiation from a source located at
the coordinate origin. Second, electromagnetic equations are defined to describe radiation from a source located at
an arbitrary position. Third, Maxwell’s wave equation and the Green’s function are defined. The Green’s function
substantiates that electromagnetic scattering can be modeled as convolution between the transmit signal and point
scatterers in the environment. Fourth, the Borne approximation is defined to establish the assumptions involved

when modeling electromagnetic scattering as a linear process.

Consider a time-harmonic signal traveling in a free space vacuum. An ideal antenna located at position 7
receives the electromagnetic fields emitted from a source located at the origin. The electric field strength
E(7 0) [V/m] and magnetic field strength H(7 1) [A/m] form the magnitude power density as W) [W/m?].
The wave intensity U(8, ¢) [W/steradian] describes the power density normalized relative to a 4m steradian
spherical spreading loss, which characteristically drops off with range between two points as 1/r2. Note that the
Poynting vector W(7) is not a function of time, as the fields E(7, t) and ﬁ(f, t) are spatially orthogonal fields for all
time and thus deliver constant power at a given spatial position (consider the analogous time dimension description
from Section 1.4.1.4). The electromagnetic definitions from (1.45)-(1.49) are written with respect to a transmission

source located at the origin to provide the simplest basis coordinates, which are then generalized.
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_ 1 _ . .
E(rt) =~ (Eg(7(6,9))8 + E,(7(0,¢0))@)e I *oOrel(@ct+®)
1 . .
= _e(# —jko(O)7 pJ(wct+(E))
- e(r(@,(p))e olT g

1 . .
== le(7(6,9))| &(7(6, (p))e—lko(t)rel(wcf+¢(f))

H(F t) =

o (7xEED)

. 1 . .
W(7) =§Re{E(r_, t) x H(F t)}
(IEs (@, ) + |E, (76, 0))|*) (6, )
21, r?
[6(7(6,9))|" £(6, )
21, r2

‘o
= U(7(6,9)) r(r;”)

7 = rsin(0) cos(@)X + rsin(0) sin(p)y + rcos(6)Z

76.9) _ 7(6,9)

O =GE ol T r

(Extended Notation)
(Vector Notation)

(Magnitude/Polarization Notation)

(1.45)
(1.46)
(Extended Notation)
(Vector Notation)
(Intensity Notation)
(1.47)
(Spherical to Cartesian Mapping)
(1.48)
(Normalized Direction Unit Vector)
(1.49)

The value pg is the magnetic permeability of free-space, 1, is the intrinsic impedance of free-space, and

de(t)
. Wet——
ko(t) = zn(f“zf‘(t)) = ( ° C‘" ) = % is the wavenumber in the direction of propagation.

The wavenumber ky(t) is often assumed constant (i.e. ky(t) = ko and A(t) = A.) to decouple the space-time
dimensions (implying that the waveform has narrow bandwidth). Coupling exists when the instantaneous frequency

fi(t) significantly deviates from the center frequency f; (implying that the waveform has wide bandwidth).

Eg and E, are components of the electric field vector @ defined in the @ and @ spherical unit vector directions.

The electric field vector € is decomposed into magnitude |E(?(6, <p))| and polarization é(f'(@, <p)) components.

The term e 7k describes the wavefront phase with respect to spatial position. The term e/(@ct*+¢(®) describes

the phase with respect to time, independent of spatial position .
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Figure 24: Spherical coordinate system electromagnetic definitions.

The equations outlined in (1.50)-(1.55) are a generalization of (1.45)-(1.49). Two ideal antennas located at
arbitrary locations 7 and 7’ receive and transmit electromagnetic fields, respectively. The electric field strength
E(k,t) [V/m] and magnetic field strength H(k,t) [A/m] form a magnitude power density W(k) [W/m?].
The wave intensity U(8, ¢) [W/steradian] describes the power density normalized relative to a 47w steradian
spherical spreading loss, which characteristically drops off with range between two points as 1/ R?, where
R =r —r'. Notice that k is defined between two arbitrary positions 7 and 7. Because k is dependent on two
arbitrary positions, the electric field is now defined in terms of vector components that are orthogonal to E, namely
the horizontal h and vertical D vector components. The polarization components in é(k) are likewise defined by

the horizontal h and vertical ¥ vector components.

43



E(F,0) = % (En(R) + By (R))e— koIl giwet+6(0) = % (En(R)R + Ey (R)D)e—Tko(®© B =) g(wct+(6)

1 o~ o o~ o~ . _r o -
T (Ey(K)e** @ ™ b+ E,(k)et/*®) T §)e/k® Tei(wct+¢(®)  (Extended Notation)
1 .. o
=Rl e(k,t)e /k® Tei(wct+e®)) (Vector Notation)
1 ... - o
=Rl |e(k)| é(k, t)e/*® Tei(wct+o®) (Magnitude/Polarization Notation)
(1.50)
7 t) =——(VxEF D)
—JWHo
(1.51)
. 1 — —
W(7) =§Re{E(r‘, t) x H( t)}
~\12 12\ .
(IEa®)|" + |E,(B)[) ke .
= — (Extended Notation)
, 21 IR|?
—|_é(”€)| k Vector Notati
= m, IRP (Vector Notation)
- k
= U(k) Rl (Intensity Notation)
(1.52)
7 = rsin(0) cos(p)X + rsin(0) sin(p)§ + rcos(6)Z
7 =1"sin(8") cos(p" )& + 1’ sin(8") sin(p')§ + r'cos(8")Z
(1.53)
= 7(0,9) —7'(0,9)
k@6, ¢) =— =
17(6, ) — 7(6, )|
k(®) = ko(Dk
(1.54)
- zxk - . .
h = |A v E| (Orthogonal to k and 2, horizontal polarization cross Z direction)
V4
=k xh (Orthogonal to k and h, vertical polarization in 2 direction)
(1.55)

Ey and Ey, are components of the electric field vector € defined in the horizontal h and vertical D unit vector

directions. The electric field vector € is decomposed into magnitude |€(7€)| and polarization é(E, t) components.
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Figure 25: Generalized coordinate system electromagnetic definitions.

Electromagnetic propagation in a vacuum is constituted from Maxwell’s electromagnetic wave equation.
It can be shown [63] that the electric field G(7 — 7, t) originating from an arbitrary source S(7, t) transmitting at

location 7 is determined by solving Maxwell’s electromagnetic wave equation shown in (1.56).

1 92G(F — 7, t)

—V-VG(F—-7',t) + 2 9e2 =S, t)

(1.56)

Assuming §(F’, t) takes the form of an impulse (i.e. §5(f', t) = 6(17')6(t)) , then the transfer function response of
the differential equation in (1.56) can be determined, and is referred to as the Green’s function in (1.57).

S(t—lr__r_l)
N ¢ J

4|7 — 7|

65(7_- - T_', t) =

(1.57)
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Importantly, the wave equation in (1.56) is a linear differential equation. From the impulse transfer function listed

in (1.57), the general expression for E(f — 7, t) is written as a convolution between the arbitrary electric field and

the impulse response of the system [64]. Conveniently, because the transfer function is simply an impulse response

in delayed time and range, the convolution (*) results in an attenuated and delayed copy of the source §(r_’, t).

a(t_lf—r‘l)
N —

G(F —7,t) = S(7, t) * G5(F — 7, t) = S(7', t) *

4m|F — 7|
§ 7' t_u
— ’ C
T 4n|lr -7

(1.58)

The impinging electromagnetic field 6(?— 7,t) reflects on a composite scatterer located at 7 = 7.
The Borne approximation [63] asserts that the incident electromagnetic field is the single driving field at each point
in the composite scatterer (signifying a collection of point scatterers). The Borne approximation enforces that

the waveform is linearly scattered from the environment, where each reflection is deemed independent.

The reflected wave (T‘.ref is modeled as a reemission of the incident wave Emc scaled by the scattering term y.
Groe(T" = 7', 8) = ¥ Gip (7" — 7', 1)
(1.59)

Significant error results when extended scatterers or excessive multipath (wave bounces between scatterers before
reflecting towards the receiver) are present, as scatterer reflections are no longer independent. The approximation
is effective when the scattered field has significantly less power density than the incident field, so multipath becomes

sufficiently attenuated.
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1.4.2.2. RECEIVED SCATTERING FROM A STATIONARY SCENE

Consider a monostatic radar emitting the passband signal s}, (¢) with narrow bandwidth assumed.
The transmit signal propagates towards scatterers, reflects from the scene, then propagates back to the radar
receiver for downconversion to baseband. Consider a scene model containing a single stationary point scatterer

located at a distance R from the radar. From the Green’s function and the Borne approximation, the received
backscatter signal from a single point scatterer ysli)ngle(t) is a scaled and delayed copy of the transmit signal sy, (¢).

The electromagnetic wave has a two-way propagation delay T = 2R/c when traveling at the speed of light c.

Assume that additive white Gaussian noise (AWGN) is captured at passband, represented by v, (t).

single

Yoo o () = spp () * (¥ 8(t = 1)) + v (£) = yspu(t — ) + v (£)
(1.60)

Attenuation from spherical spreading loss is subsumed into the complex scattering term y. An implicit assumption

is that the scattering term y is independent of transmit frequency, however, atmospheric effects [65] and frequency

dependent scattering [16, 23-28] must be considered in scene specific radar design. The passband signal ygLngle(t)

is demodulated to form the baseband signal ysi)ngle(t), where s, (t) = spp(£)e/2™et and v, (1) = vyp (1) e/2et,

single

Yoo (1) = y[spb(t -17)+ Vpb(t)]e_jznfct

= V[Sbb (t — 7)e/2mfe(t=1) 4 vbb(t)eJ'anct]e—jZcht

. 2R\ _i(4"R
¥ Spb(t — 1)e 2T + v (£) = ¥ Spp (t - T) e ]( e ) + Vb (£)

. (41‘[R

i 2R\ _j(4rR
o (8) * (7 8(E = D)2 + 11 () = 55 (1) * (y o(e-=)e % )> 0

(1.61)

Consider multiple scatterers present in the scene. Due to the linearity of Maxwell’s wave equation, the reflected
electromagnetic waves are superimposed to form the passband receive signal ygl’)“lti(t) or demodulated baseband

receive signal y{,‘l’)“]ti(t). The ideal superposition of multiple scatterer echoes is shown in Figure 26.
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yﬁulti(t) = Z Yi Spb(t — 7)) + vpp(£)
vi

= Spp(t) * (Z yid(t— Ti)) + vpp (£)

multi —j2mfeti ZRi ﬂI(%)
Yoo (£) = Zlfi Spb (t — T1)e /2t + vy (t) =Z)’i Sbb (t— B )e ¢/ + v (t)
Vi Vi

Cc

. 2R\ _j(4mRi
= spp(® (Z " 5<r—ri>e-12”fcff>+vbb(t) = spp(® (Z oo (e - 200 5 >>+vbb(t>

(1.62)

Individual Received
Scatterers Scattering

S

Figure 26: Ideal superposition of multiple equidistant scatterer reflections

The continuum of point scatterers Zvi—mo(yi 6(t — Ti)) forms the range profile y(t). The passband receive signal

ypg“t(t) is modeled as a convolution of the transmission sy, (t) and the range profile y(t). The passband signal

Ypp't(t) is then demodulated to form the baseband signal ygp™ ().

Yt = f Y(D) 5y (t = 7) dT + 1 ()

= Spu(t) * ¥(t) + vpp (1)

. 2R s 4AnR(7)
yep () = f Y (@) spp(t — T)e V2T dr + vy, (t) = f]/(‘f) Sbb (t - C(T)) e J( Ae ) dt + vpp (t)

= spp(£) * (Y (D)e T2t + vy (£) = spp(8) * 7(E) + vpp (1)

(1.63)
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Assume that a single point scatterer is present in the scene, such that y(t)e /?™ct = y§(t —1).
The ideal radar return is described as a scaled and delayed copy of the transmit signal, with no AWGN present.

Note that the characteristics of the transmit signal s(t) significantly impact the received radar response.
yiaeal(t) = s(t) xys(t — 1) =y s(t — 1)
(1.64)

Consequently, observations can be made about desirable radar waveform traits. Radar processing is applied to the

baseband receive signal for subsequent detections of scatterers in the scene.

The continuous scattering model from (1.63) is discretized, where s is the length (Np X 1) waveform

representing sy (t), v is the length (NY X 1) scatterer range profile representing y(t).
y=s*xy+v=Sy+v
(1.65)

Convolution may also be expressed through the convolution matrix S of size (Np +N,—1x Ny), which contains

time-shifted versions of the vector s.

— Sl 0 -
S1
SN :
§= ’ S s
Np 1
| 0 Snp |

(1.66)
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1.4.2.3. THE PULSE COMPRESSION MATCHED FILTER, AUTOCORRELATION

A standard radar processing technique in the range dimension is pulse compression. Pulse compression
involves filtering the received signal containing scattered echoes y(t) with a selected filter w(t) that compresses
signal power to better estimate the illuminated scene characteristics ¥(t). The continuous representation of pulse

compression is written as a cross-correlation (*) between the received signal and the pulse compression filter.

7)) =w®) *y(t) = fW*(T) y(t+1)de= fW*(T -y@dr
(1.67)
Recall the similar definition for linear convolution (*) is
7)) =w@®) *y() = fW(T) y(t—1)dr = fW(t -0 y@dr.
(1.68)

Pulse compression via correlation (*) can be equivalently expressed as a convolution (*) between the received
signal y(t) and the time reversed, conjugated pulse compression filter w*(—t), shown by applying substitutions

wheret' = -1, di'=—-dr, t' =1t"—-t di =d7".

9(6) = w(=t) * y(©) f W (1) y(t — 1) dr = f W (@) y(t + 1) (—dt) = f W (@) y(¢ + 1) do’

= j w'@" -t yt+t" —t)dt" = J w(@" —-t)y(") dt"”
= w(t) * y(t)

(1.69)

50



The most broadly applied pulse compression filter is the matched filter, which has been proven to maximize
the signal-to-noise ratio (SNR) of a receive signal in the presence of additive white Gaussian noise (AWGN) [66, 67].
The continuous representation of the normalized pulse compression matched filter is

s® s
[21s@1zde Is@I3

Wmf(t) =

(1.70)

where the denominator power normalizes the matched filtered estimate 7,¢(t). Application of the normalized pulse

compression matched filter via cross-correlation is expressed as

Pk (©) = Wi () Y0 = T (t)=—fs*(r—t) @ dr
T = AT s T s YA

(1.71)

The matched filtered estimate is related to the autocorrelation function for deterministic signals. Recall the
ideal receive signal model from (1.64), expressed as a scaled and delayed copy of the transmit signal.
For demonstrative purposes, assume that the transmit signal is not attenuated (y = 1) and ignore the wave
propagation delay (8(t — 1) = §(t)) so the ideal receive signal model becomes y'9¢3!(t) = s(t). Consequently,

the normalized matched filtered estimate of (1.71) yields

[ee]

f s*(t—t)s(r) dt .

s(t) 1

~ideal _ % yideal = * =
Vinf (t) = Wmf(t) y (t) ||S(t)||§ S(t) “S(t)“%

(1.72)
The autocorrelation function r(t) of the deterministic signal s(t) is defined as
O = 5@ *s@ = [ 5C-0s@dr.
(1.73)
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The ideal normalized matched filtered estimate from (1.72) is equivalent to the normalized autocorrelation function

of the deterministic signal s(t). The normalized autocorrelation function 7*(t) is defined as

Los@rs® 1 [
O =T50E T SO [sa-ns@ar.

—00

(1.74)

The Wiener-Khinchin autocorrelation theorem states that the signal autocorrelation r(t) is related via the Fourier
transform to the signal absolute power spectrum r(f), as expressed in (1.75) [61]. Recalling the relationship
between correlation and convolution from (1.69), the Weiner-Khinchin theorem is directly related to the Fourier

transform pair between temporal convolution and frequency multiplication.

r(t) = s() xst) = s"(=t) *s(t) ‘; r(f) =s"(Ns() = Is(HI?

(1.75)

Pulse compression may likewise be expressed in discrete dimensions. Recall the discrete radar receive signal
model expressed in (1.65). The (N,, X 1) pulse compression filter w is correlated with the (N, + N, — 1 X 1)
receive vector y, which determines the (Nw + N, +N, —2X 1) range profile estimate ¥ with convolutional tails.
The convolutional tails of the range profile estimate ¥, consisting of the leading and trailing (N,, + N,)/2 samples,
are removed to examine the relevant (NY X 1) scene for comparison to the true range profile y .
The convolution matrix W of size (N, + N, — 1) X (N, + N, + N, — 2) contains time-shifted versions of the pulse
compression filter w. The Hermitian transposed matrix W exhibits conjugation and vector reversal of the filter w,

consequently applying the cross-correlation operator.
Y=wxy= WHy=WH(SY+V) = WHSy + Wiy

(1.76)
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The convolution matrix W is expressed in (1.77).

_WXIW 0 -
[Whe wy 0 ] . w
N N‘*;v
| WN Wl | W* H
w 1
W= , wWH = . .
Wy Wy,
l 0 Wy, W1J .
) wy |

(1.77)

While analog matched filtering may be performed using SAW filters for repeating pulsed waveforms [40],
matched filtering is typically performed after analog-to-digital conversion using the baseband model. The discrete
normalized pulse compression matched filter wy,¢ is expressed in (1.78), where the denominator power normalizes

the matched filtered estimate ¥,

S s
W, f=—=_
™ (sts)  |IslI3

(1.78)

The normalized matched filter estimation is written in terms of the linear model expressed by (1.76).

The matched filter vector wy,r forms the convolution matrix Ws. The matched filter convolution matrix is often

1 =~

expressed instead as an extended, normalized signal convolution matrix Wy,¢ = WS’
2
o _S*Y _um Hy— L (gHgy 4 gH
Ymf = Wmt*x ¥ = sHg - WmeY + wmfv - ”Sllz (S SY +S V)
2

(1.79)

The ideal normalized matched filter estimate is expressed from (1.79), where the ideal range profile y'4¢al = [1] is

a unit scalar. The ideal received signal yideal is the transmit signal s with no propagation delay and no noise present.

1

lIsll3

. . S . S .
oideal _ ideal _—_ ideal _—_ _ H ideal _ H o —
Ymf = Wmf*y * *s = WmeY - wmfs -

CH
= y = Sfs
lIs||2 HE

(1.80)

53



The autocorrelation function r of the deterministic signal s is defined as
r=sx*s = Sfs .
(1.81)

The ideal normalized match filtered estimate from (1.80) is equivalent to the normalized autocorrelation function of

the deterministic signal s. The normalized autocorrelation function ¥ of the deterministic signal s is defined as

. S*sS 1
r=——=
sl lIsll3

QH

(1.82)

The discrete Wiener-Khinchin autocorrelation theorem is defined in (1.83), demonstrating the relationship between
the deterministic signal s, the signal frequency S¢, the autocorrelation r, and the absolute power spectrum r;.
The DFT matrix A and shifted DFT matrix A are defined in Section 1.4.1.13. By discrete definition, the correlation
expressed in (1.82) between two vectors s of equal length N, results in the vector r of length N. = 2N, — 1.
To achieve the defined autocorrelation vector length, s is zero-padded to length N, forming S prior to Fourier

transformation. The operator ( is the elementwise multiply Hadamard product.

r; = |5¢? = |AS]? = A5 O (AS)" = Ar
oy
r=s*s=(ﬁr)A (AsO(As))=(E>A re

(1.83)
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Standard Fourier relations hold based on the Weiner-Khinchine autocorrelation theorem. For instance,
broadening of the rectangular signal power spectrum (wider 3-dB bandwidth Bsg4g) results in narrowing of the

autocorrelation response (finer fast time resolution At,..s = 1/B34g). Assuming a single scatterer is present,

CAtres _ €

. The total amount of gain
2 2B3dB

the peak-to-null range resolution achieved by matched filtering is Ar =

achieved by pulse compression for scatterer localization (assuming the signal is FM to deliver constant power) is
determined as Gpc = B3qgT,, referred to as the time-bandwidth product or pulse compression gain ratio.
The relationships between power spectrum and autocorrelation, fast time resolution, and time-bandwidth product

are summarized in Figure 27. The relationship between the signal power spectrum bandwidth and the corresponding

c c

range resolution achieved is often described as Ar = T The range resolution estimate Ar = 3 holds for

3dB B3dB

waveforms that have a clearly defined (near rectangular) 3-dB bandwidth [41].

O T A T 10 T
Mainlobe Atpes
° > |- 1 | |
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Figure 27: Relationship between autocorrelation and power spectrum, time-bandwidth product gain, and fast time

pulse compressed resolution (for B3qgT, = 1000 or 30 dB).
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Figure 28: Various autocorrelation responses and power spectrum shapes, related by the Fourier transform.

The range sidelobe level must be considered for waveforms having a non-contiguous power spectrum such as the

Gaussian with frequency null shown in Figure 28, which demonstrates significant sidelobes below the -13 dB marker.

The pulse compression gain ratio metric alone does not describe the power in the autocorrelation sidelobes.

Consider the matched filtered output when a large scatterer reflection is temporally overlapping a small scatterer

reflection. The matched filtered sidelobes of the large scatterer estimate may mask the small scatterer estimate,

depending on the signal power spectrum shape, as shown in Figure 29.
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Figure 29: The dangers of autocorrelation sidelobes - The matched filtered output of a Gaussian spectrally shaped
signal can distinguish the small scatterer. However, the matched filtered output of a Gaussian with frequency null

spectrally shaped signal cannot distinguish the small scatterer due to sidelobe masking.

The pulse compression gain ratio does not capture the degree of waveform out-of-band spectral energy.
Waveform spectral containment is needed to avoid interfering with other users (and thus meet FCC regulations).
The ideal autocorrelation response is often considered to be an impulse response, having a mainlobe peak and
no sidelobes,e=[0 - 0 1 0 -- 0]7.To achieve the ideal autocorrelation response, many phase coded
waveform sequences (see Section 1.4.2.6.3) have been formulated to achieve theoretically zero sidelobes. Based on
the Fourier relationship between the autocorrelation and power spectrum, any waveform achieving an impulse
response autocorrelation e must exhibit the power spectrum e; having theoretically infinite bandwidth, as shown in
Figure 30. If the transmit waveform is not bandlimited (i.e. attempts to achieve a perfect autocorrelation response),
then the transmission will likely interfere with other radio frequency users occupying nearby frequency bands.
Other RF user transmissions would mutually interfere with the radar receive echoes, degrading scatterer detection
capability.
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Figure 30: Nonideal versus ideal autocorrelation (left) and bandlimited versus band-unlimited power spectra (right),

related by the Fourier transform.

Transmission spectral containment to a bandwidth B;4p is necessary to avoid interfering with other users.
The range resolution achieved is dependent on the utilized bandwidth At,..s = 1/B34g. Correlation sidelobes that
lie outside of the expected resolution cell width At,..s are commonly characterized by two metrics, known as the
integrated sidelobe level (ISL) and peak sidelobe level (PSL). The modified generalized integrated sidelobe level

(GISL) metric may determine both the ISL and PSL metrics as
GISL = |lwg O ¥ll,,
(1.84)

where wyg is the sidelobe selector mask with value 1 in the sidelobe region and value 0 in the mainlobe region.
When the GISL metric is tuned for p = 2, the sidelobe root-mean-squared absolute value determines the ISL,
whereas tuning for p = 8 well-approximates the sidelobe maximum absolute value determines the PSL.

The GISL metric extends to the normalized cross-correlation metric for pulse compression mismatched filters.
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1.4.2.4. THE LEAST-SQUARES MISMATCHED FILTER, CROSS-CORRELATION

A pulse compression mismatched filter is any pulse compression filter that is not the matched filter.
Pulse compression mismatched filters invoke the tradeoff between reduced range sidelobes and degraded
signal-to-noise ratio (relative to the matched filter). The continuous representation of pulse compression is written
as a cross-correlation (x) between the received signal y(t) and the pulse compression filter w(t) to compress the

signal power for better estimation of the illuminated scene characteristics 7(t).
1O =wO O = [wmyerdd= [we-0y@d

(1.85)

When yi9€al(t) = s(t) to represent an ideal scatterer reflection, the pulse compressed estimate from (1.85) yields

[ee]

prael®) = w(t) x y' () = w(t) *s(t) = j w' (T —t) s(7) dr .

—00

(1.86)

Note that the representation in (1.86) is equivalent to the cross-correlation function c(t) between the deterministic
signal s(t) and pulse compression filter w(t). Generally, the pulse compression filters w(t) are designed to provide

accurate range profile estimates 7(t) without additional normalization required.
c®) =w(t) xs(t) = f w*(t —t) s(r) dt
—o00

(1.87)

Pulse compression mismatched filters invoke the tradeoff between range sidelobe levels and degraded
signal-to-noise ratio (relative to the matched filter, which maximizes SNR). The estimation power loss is caused by
decorrelation between w(t) and s(t). The degree of SNR degradation, called mismatch loss, is characterized by the

Cauchy-Schwarz inequality [68] in (1.88).

59



%, w @ s(@) daf° L w@s@al
(ffoww*(r) w(7) dr)(f_woos*('[) s(r) dr) W@l sl

(1.88)
The pulse compression mismatch loss is written generally as
[eY) 2
[ ow@s@dd _ ma{le@Py
0, 1= = , S O, 1S .
o Iw®IZ sl lw®IZ sl -
(1.89)

The mismatch loss oy, determines the degree of estimation power loss when the filter w(t) and signal s(t)
centrally overlap to form a pulse compression peak. The matched filter wy,¢(t) yields no mismatch loss (g = 1),
whereas all other mismatched filters yield mismatch loss (0 < 0,1 < 1). Incorporating mismatch loss into the
cross-correlation definition, the normalized cross-correlation function ¢(t) is useful for comparison of pulse
compression filters w(t) with respect to a given signal s(t). When w(t) is selected as the matched filter wy,¢(t),
the normalized cross-correlation ¢(t) simplifies to the normalized autocorrelation 7*(t).

f_oooo w*(z —t) s(1) dt

‘O = Lo, 5o,

(1.90)

The Wiener-Khinchin cross-correlation theorem states that the cross-correlation c¢(t) is related via the Fourier
transform to the cross-power spectrum c(f), as expressed in (1.91) [61]. Recalling the relationship between
correlation and convolution from (1.69), the Weiner-Khinchin theorem is directly related to the Fourier transform

pair between temporal convolution and frequency multiplication.

c(t) = w(t) *s(t) = w(=t) * s(t) ‘; c(f) =w (H)s()

(1.91)
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Recall that pulse compression may also be expressed in discrete dimensions. The discrete pulse
compression model described in (1.76) is restated here, for reference. The pulse compression filter w is correlated

with the receive vector y, which determines the range profile estimate ¥ with convolutional tails.

¥ =wxy =Wy = WI(Sy + v) = WSy + WHy

(1.92)

When the ideal range profile y'9¢a = [1] is a unit impulse scalar with no propagation delay, the ideal pulse

compression output §'9¢! is expressed as the cross-correlation function between the transmit signal s and the

ideal

mismatched filter w. The ideal received signal y is the transmit signal s with no propagation delay or noise

present.

?ideal = Wx yideal —Wxs = WHSYideal = Whs

(1.93)
The cross-correlation function c is similarly expressed as
c=wx*s=Wis
(1.94)
The degree of SNR degradation is characterized by the Cauchy-Schwarz inequality [68] in (1.95).
lw's|?
lwliZ lIsllZ
(1.95)
The pulse compression mismatch loss (SNR degradation relative to matched filtering) is written generally as
lwHs|? max{|c|?}
oo = TWE sl Twig s’ 0SSt
(1.96)
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The mismatch loss 0., determines the degree of estimation power loss when the filter w and signal s centrally
overlap to form a pulse compression peak. Incorporating mismatch loss into the cross-correlation definition,
the normalized cross-correlation function € is useful for comparison of pulse compression filters w with respect to
a given signal s. When w is selected as the matched filter w,,s, the normalized cross-correlation € simplifies to the
normalized autocorrelation F.

Wis

¢=——
Iwll lIsll

(1.97)

The discrete Wiener-Khinchin cross-correlation theorem is defined in (1.98), demonstrating the relationship
between the signal s and filter w, the signal frequency §¢ and filter frequency Wy, the cross-correlation ¢, and the
complex cross-power spectral density ¢;. The DFT matrix A and shifted DFT matrix A are defined in Section 1.4.1.13.
By discrete definition, the correlation expressed in (1.94) between vectors s and w of lengths N, and N, results in
the vector ¢ of length N, = N, + N,, — 1. To achieve the defined cross-correlation vector length, s and w are each
symmetrically zero-padded to length N, prior to Fourier transformation. Because the vectors s and w aren’t
necessarily equal length, symmetric zero padding enforces a pulse compression mainlobe peak located at their
central overlap. The zero padded symmetry is dependent on whether N, and N, are odd or even valued, requiring
the symmetry term NV = (Np mod 2)(1 — (N, mod 2)). The operator © is the elementwise multiply Hadamard

product, | - | applies the floor operator, and mod applies the modulo operator.

0le/ZJ—N x1 Ole/ZJX1
s=1|S , w=|W
ONW—[NW/Z |-1+N x1 ONp—[Np/z |-1x1

Cg = Wf* O] §f = (AW)* ©) (A§) = Ac
1\ _ 1\ _
c=wrs= ()& O5) = () A((AW) © (49))

Ne

(1.98)
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Linear algebra expressions can be formed and optimized to achieve a desired pulse compression response.
One such optimization problem is least squares regression. The objective function for least squares regression takes
the general form of (1.99) where Y is the desired complex output, X is the given complex input, and B is optimized

to minimize the difference between Y and X. The operation || - ||, denotes the Euclidean 2-norm.

min ||Y — XB||3
B

(1.99)

Expanding the least squares regression objective function, taking the gradient, and setting the gradient equal to zero
(to determine objective function inflection points) allows for calculation of a closed form solution. Here,
complex valued Y, X, and B are considered. The gradient can be calculated using matrix derivatives [69] and

Wirtinger calculus [70] as in (1.100). For Wirtinger calculus, complex B and B* are treated as independent variables

a
JdB*

(orthogonal by definition), such that — (B) = 0 and :—B (B) =0.

lY — XBJ|2 = (Y — XB)? (Y — XB) = Y'Y — Y/XB — BYX"Y + B¥X"XB

lY — XBJ||2 = —-X"Y + X”XB
dB* 2

o7 IY — XBl3 = —X"Y + X"XB = 0 > X"XB = X"Y

B

(XHX)"1XHY
(1.100)

Using least squares regression, it is feasible to determine the pulse compression filter w that correlates with the
signal s to achieve a desired cross-correlation response d. Recall that correlation and convolution are related via
w(t) *s(t) = w*(—t) *s(t). The discrete relationship between correlation and convolution is expressed as
w* s = (Tgyw)* * s = W * s, where the transformation matrix Ty reverses the elements of w. In matrix notation,
wxs = WHs = W x s = SW, where here the signal convolution matrix S has dimensions (N, + N, — 1) X (Ny).
The filter W is optimized via least squares regression using the convolutional model (SW). The filter W is transformed

viaw = (TRW)"* to instead apply the correlational model (W¥s).
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The least squares regression objective function is revised to achieve a desired pulse compression response.
The least squares optimal filter wjg that minimizes the difference between the cross-correlation ¢ = SWj4 and the

desired pulse compression response d is determined by minimizing the objective function

min ||d — Sw 3
Wis

(1.101)
where the solution to the pulse compression problem [71] is written as
wis = (SHS + AI)~1sHd .

(1.102)

Note that the addition of the term Al within the matrix inverse, referred to as a regularization term, enforces that
the matrix-to-be-inverted is full rank and thus invertible. Figure 31 depicts the least squares optimization, where
d is the desired response (the impulse responsee =[0 -« 0 1 0 - 0] isselected here), c = SWy is the
least squares filter cross-correlation function, and ¥ = SW; is the normalized matched filter autocorrelation

function listed for comparison.

S Wis d=e |e|?=~ |¥|2

[ S1 1[ Wi ] (0]
: S1
Sy, i S1 0 :
SN, : S1
SN, : S1 0
SNp : S1 :
Sy, P S1 0
SNy, : S1
0 SN, i S1 )
SN, : ’
L SNp _ _WNW_ L (0

Figure 31: lllustration of least squares regression optimization to achieve a desired cross-correlation response.

[EnN
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Super-resolution occurs when the pulse compressed range resolution is finer than the signal 3-dB
bandwidth resolution, i.e. At..s < 1/Bsgqg . Achieving super-resolution via mismatched filtering invokes the
additional tradeoff between range resolution, range sidelobes, and mismatch loss. Enforcing a finer resolution
At..s < 1/Bggg implies that the cross-power spectrum (c; = W¢* © §;) bandwidth is broadened relative to the
signal power spectrum (r; = §¢" © §¢) bandwidth. With this intent, the mismatched filter spectrum Wy effectively
“amplifies” portions of the signal spectrum §; . As the mismatched filter spectrum W;* becomes more dissimilar from
signal spectrum §; , the mismatch loss degrades (o, — 0) due to declining correlation between w and s.
Recall that the transmit signal s must be bandlimited to avoid interfering with other users upon transmission, as

illustrated in Figure 30.

Applying the least squares optimal filter ws to the bandlimited signal s could potentially impose
considerable mismatch loss (without regularization A or further modification) if the desired response is the
band-unlimited impulse d = e, as illustrated in Figure 32. In this example, the signal s has a bandlimited Gaussian
power spectrum |§¢|? and normalized autocorrelation ¥. To achieve the impulse desired response d = e, then
theoretically infinite spectrum is required by Fourier definition. When no regularization is applied (A= 0),
the mismatched filter spectrum Wy inverts the signal spectrum S§; to enforce a flat cross-power spectrum
¢ = W O S¢. However, the degree of mismatch loss significantly degrades due to declining correlation between
w and s (for example, o,m = 0.12 corresponds to —9 dB mismatch loss). The example mismatched filter
minimizes the objective function, but limited degrees of freedom are available to here achieve super-resolution and
minimize sidelobes. Remnant error exists and the resulting cross-correlation response may be less than desirable.

Super-resolution achieved by linear filtering may be less desirable in scenarios where high SNR is necessary.
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Figure 32: Example correlation responses (left) and power spectra (right). If the least squares filter wyg is applied to
the bandlimited signal s to achieve super-resolution, significant mismatch loss occurs (for example, 0y, = 0.12).
The filter spectrum W; is mismatched from the signal spectrum §; to form the cross-power spectrum c; .

Sidelobe level and mismatch loss performance are degraded in trade to achieve significant super-resolution.

Formulations to robustly determine the least squares filter exist. Consider the least squares filter solution.
For large A, the matrix-to-be-inverted is approximately (S¥S + AI) =~ Al, so the mismatched filter simplifies to
wis = (AD71SHd = (1/A)1Sd = (1/A)S"d. The desired response d may be selected as the impulse response e.
For large A values, when d ~ e and N,, = N,,, the least squares optimal filter simplifies to the matched filter as
wis = (1/A)(S"e) = (1/A)S = Wy By observation, the variable A allows for tuning between the least squares
filter and matched filter when d = e. Consequently, increasing the regularization A minimizes the mismatch loss
ommi inflicted by tuning closer to the matched filter solution, in exchange for degraded resolution or range sidelobe

performance as illustrated in Figure 33.
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Figure 33: Example correlation responses (left) and power spectra (right). If the regularization A is increased to form
the least squares filter wyg, which is then applied to the bandlimited signal s to achieve super-resolution, moderate
mismatch loss occurs (for example, g, = 0.33). Range resolution is degraded in trade to mitigate mismatch loss

and improve the sidelobe level performance, though moderate super-resolution is still achieved.

Another method to counteract super-resolution effects is to simply reduce constraints around the
correlation mainlobe within the least squares formulation. Consider the impulsee, =[0 - 0 1 0 - 0],
having a mainlobe peak (located at the £t sample) and no sidelobes. When the desired response is selected d = e,,
the cross-correlation SW,, aims to achieve the ideal impulse response. The L rows above and below the #™ row in S
(corresponding to the mainlobe resolution) may be zeroed, effectively removing constraints on the cross-correlation
mainlobe resolution. The method of reducing resolution to compensate for other performance metrics is known as
beamspoiling. Consequently, range resolution beamspoiling minimizes the mismatch loss oy, inflicted and

improves range sidelobe performance as illustrated in Figure 34.
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Figure 34: Example correlation responses (left) and power spectra (right). If range resolution beamspoiling is
incorporated to form the least squares filter wyg, which is then applied to the bandlimited signal s, then slight
mismatch loss occurs (for example, 6, = 0.99). Super-resolution is waived in trade to mitigate mismatch loss and

improve the sidelobe level performance.

In summary, the least squares optimal filter formulation may be adjusted to control the degree of mismatch
loss, super-resolution, and sidelobe levels achieved. For the least squares formulations described thus far, the
desired response d is selected as the impulse response e to provide insight regarding the algorithm behavior.
However, a variety of templates may be selected for the desired response d [72,73]. Importantly, the degree of
mismatch loss is minimized when the waveform spectrum §; minimally deviates from the filter spectrum w¢" [73].
By extension, the degree of mismatch loss is minimized when the signal power spectrum minimally deviates from
the cross-power spectrum r; = ¢; [73]. The desired correlation d and desired power spectrum d; are a Fourier
transform pair according to the Wiener-Khinchin theorem, expressed as d; = Ad. When the signal spectrum r¢ and

cross-power spectrum c; are each designed to exhibit the same desired spectrum d¢, the mismatch loss is minimized.

68



Correlation-based pulse compression via matched or mismatched filtering relies on linear time invariant
(LTI) processing to achieve the desired radar performance. Data-driven nonlinear processing techniques exist that
likewise achieve super resolution in various radar dimensions [74-76]. For instance, adaptive pulse compression
(APC) [74] forms multiple range-dependent filters (called a filter bank) that update based on the observed data
statistics. For adaptive algorithms, sensitivity to imprecise model estimation may potentially cause false alarms,

though incorporating robustness into adaptive algorithms mitigates undesirable effects [76].

1.4.2.5. PERCENT BANDWIDTH DEFINITION (NARROWBAND, WIDEBAND, ULTRA-WIDEBAND)

A definition for the size of bandwidth utilized relative to a wavelength is listed in (1.103). The bandwidth
size used is important, as many assumptions are made depending on the bandwidth size relative to a wavelength.
The narrowband assumption is often invoked to simplify processing. Definitions of narrowband, wideband, and ultra-

wideband are defined in [77] based on the percent bandwidth utilized relative to the transmit center frequency.

B3gp

%BW =
fe

(1.103)

Table 1: Narrowband, Wideband, Ultra-Wideband Definitions.

Narrowband %BW Wideband %BW Ultra-Wideband %BW

<1% 1% - 25% >25%

1.4.2.6. WAVEFORM TYPES

The waveform types discussed here include unmodulated tones, linear frequency modulated (LFM) & nonlinear
frequency modulated (NLFM) waveforms, phase coded & angle modulated waveforms, and polyphase coded
frequency modulated (PCFM) waveforms. For further waveform analysis, the reader is directed to [41, 78, 79].

Keep in mind, the waveform power spectral density (PSD) r(f) impacts the waveform autocorrelation function r(t).
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1.4.2.6.1. UNMODULATED PULSE (SINUSOIDAL TONES)

Sinusoidal tones have no modulated bandwidth and the range resolution achieved depends entirely on the
duration T, of the pulse. The 3-dB bandwidth of a tone having duration T, is observed as Bione = 1/Tp, due to the
Fourier transform pair between the temporal rectangular function and frequency sinc function. The duration of the

temporal rectangular window determines the sinc 3-dB bandwidth in frequency. The bandwidth B,,,. determines

. . [
the achievable range resolution Arygpe = ——

cTq . .
pys = Tp. The range resolution Ari,,e of an unmodulated pulse is called
tone

the Rayleigh resolution [77]. Stepped frequency radar involves sequential transmission of tones with incrementing

frequency to form bandwidth across slow time, which is used for ultra-wideband radar [80, 81].
Stone () = el2mfet

(1.104)
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Figure 35: Unmodulated sinusoidal waveform in fast time-frequency
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1.4.2.6.2. CHIRP WAVEFORMS

Most legacy radar systems transmit linear frequency modulated (LFM) or nonlinear frequency modulated
(NLFM) chirp waveforms due to their simplicity in design by chirp rate modulation to shape the spectrum [67, 82].
Transmission of chirp waveforms generally implies pulse or CW segment repetition and a predictable instantaneous
frequency modulation f;(t). Linear FM waveforms have a linear instantaneous frequency function, which

corresponds to a quadratic instantaneous phase function. The mathematical description of an LFM waveform is

syt (6) = ejZn(f1t+0.5(7%)t2) e (o).

(1.105)
Nonlinear FM waveforms are often designed using the principle of stationary phase (POSP) to determine the

instantaneous frequency function f;(t) to achieve a desired PSD shape r(f), originally detailed in [67].

The closed-form instantaneous frequency functions f;(t) of numerous NLFM waveforms [79, 83-100] are
listed in Section 4.1. The power spectra r(f) and autocorrelations r(t) of [79, 83-96] are shown in Figure 36.
Other NLFM waveform optimizations do not have closed-form solutions [101-111]. The instantaneous frequency
functions f;(t) may be numerically determined to achieve a desired PSD shape r(f), detailed in [112]. Methods for
wideband synthesis of nonlinear FM waveforms are outlined in [113, 114]. NLFM waveforms has been applied in
airborne SAR [108-111], and recent work used neural networks to select the NLFM instantaneous frequency
functions based on the estimated scene [115]. Note that NLFM waveforms may be designed to arbitrary spectrum

shapes [112], including those having spectral nulls [116].
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Figure 36: Various nonlinear FM waveform (top) power spectra, (middle) autocorrelations, and (bottom)

instantaneous frequencies over time [79, 83-96] for B3qgT, = 500. When tuned appropriately, the performances

achieved are quite similar.

72



1.4.2.6.3. PHASE CODED WAVEFORMS & ANGLE MODULATED WAVEFORMS

Phase coded waveforms [79] and angle modulated waveforms [117] have equivalent continuous
representations s¢(t), despite maintaining important distinctions. Here ¢, indicates the nth of Ny, phase chips,

Ty is the time interval between adjacent phase chips, and hy(t) is a selected temporal shaping filter.
No

5o(t) = hy () * Z §(t = (n—1)T,) e9n
n=1

(1.106)

The resulting waveform spectrum sy (f) is represented by the multiplication between the shaping filter spectrum
h(f) and the frequency representation of the phase chip impulse train.
N

se(f) = he(f) - Z e~ J2nf(n-1Tg) gidn

n=1
(1.107)

The temporal shaping filter hy (t) imposes the frequency spectrum shape hg (f), but may also introduce amplitude

modulation to the waveform s, (t) depending on the selected shaping filter.

The rectangular temporal shaping filter hd,(t) = l‘eCt(t_;q)/z
)

) is often examined because the resulting

waveform sy (t) maintains constant amplitude, but forms the frequency mask hy (f) = Ty, sinc(fT¢) eI (Te/2)

In contrast, the sinc temporal shaping filter h,(t) = sinc(TL) imposes amplitude modulation upon the waveform
[

s¢(t), while forming the rectangular frequency mask h¢(f) =Ty rect(qu,). The rectangular and sinc temporal
shaping filters are applied to generate waveforms s¢(t) having uniformly distributed phase chips ¢,, € [—m, ], and

the resulting waveform characteristics are shown in Figure 37.
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Figure 37: Amplitude envelopes |s¢(t)|2 and power spectra |s¢(f)|2 of phase coded waveforms having uniformly

distributed phase chips ¢,, € [—, 7], applying either the shaping filter h,(t) = rect(t_:—q’/z) or hy(t) = sinc(Ti).
¢ ¢

The distinction between “phase coded” and “angle modulated” waveforms is subtle, but significant.
Both are designed with a phase chip structure to modulate s4(t) — with the caveat that, when applying the

t-Tp/2
To

rectangular shaping filter hg,(t) = rect( ), angle modulated waveforms exhibit spectral containment and

phase coded waveforms do not exhibit spectral containment. Rather, phase coded waveforms require
t=T¢/2
non-rectangular shaping filters h¢(t) * rect(T;"/) to enforce spectral containment (as illustrated in Figure 37).
¢

In short, angle modulated waveforms simultaneously preserve an FM structure and spectral containment, whereas

phase coded waveforms must trade between the degree of amplitude modulation and spectral containment.
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The rectangular shaping filter hq,(t) = rect(t_:—"’/z) models the sample-and-hold configuration utilized for
¢

DAC signal reconstruction to generate analog waveforms in RF transmit chains [42]. Applying the rectangular shaping
filter to emulate DAC signal reconstruction, phase coded waveforms exhibit poor spectral containment due to
unconstrained instantaneous frequency. Angle modulated waveforms exhibit adequate spectral containment due

to frequency restrictions imposed during optimization.

Figure 38 illustrates the spectral containment of phase coded waveforms and angle modulated waveforms
when the rectangular shaping filter is applied. By definition of the DTFT, an aperiodic discrete temporal signal results
in a periodic continuous frequency spectrum (with spectral repetitions centered at f/fPAC = +1,42,..).
Due to the rectangular shaping filter, the spectral images of the angle modulated waveform become attenuated by
the arising sinc spectral mask nulls. By observation, bandlimited waveforms are produced with greater accuracy by

sample-and-hold DACs. The 3-dB oversampling ratio k345 = f:?AC/Bsq4p is one indicator of spectral containment.
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Figure 38: Power spectrum |s¢(f)|2 of a phase coded waveform and an angle modulated waveform, after applying

t—T¢/2
To

the temporal shaping filter hy, (t) = rect( ) that imposes the mask hy, (f) = Ty, sinc(fT,) e /2™ To/2),
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When the baseband waveform sy,(t) is uniformly sampled at intervals t = (n/ﬁ¢)T¢, the waveform model

is defined by (1.108). The truncated convolution matrix H, of size N, X B¢N¢ contains time-shifted versions of the

shaping filter hg,. The phase chipsin ¢ = [¢1 ¢ ¢N¢]T of size Ny, X 1 determine the waveform properties.
The upsampling factor S, describes the factor of interpolated samples N, = B4 Ny, imprinted by the temporal

shaping filter h¢ between sample intervals nT,.

s¢=H¢/e“’® (1) \
\ L.

(1.108)

However, the waveform model is typically simplified. Assume each phase chip is sampled only once (e.g. By = 1).

Consequently, the shaping filter Hy, reduces to the identity matrix I. The discrete waveform model then becomes
S¢ = €]¢ .
(1.109)

Various forms of angle modulated waveforms exist [117-121]. Pseudo-random optimized frequency modulated
(PRO-FM) waveforms are constructed with an alternating projection optimization, which leverages the waveform
model s = e/® [120-121]. The p** of P waveforms is initialized with phase chips drawn from the uniform

distribution ¢,, € [—m, ] to form the signal s ,,. The PRO-FM algorithm performs the k™ of K alternating iterations

Sz(;k+1) _ KH{d2/2 0} eXp(]'LKSI(Jk))}

(k+1) . (k+1)
S p )

v =uQ® exp(jAs
(1.110)

where A is the M X N truncated DFT matrix with M = 2N—1, A¥ is the N X M truncated IDFT matrix, d; is the

M X 1 desired PSD, u is the N X 1 desired amplitude envelope, and £( - ) extracts the argument phase.
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Figure 39 illustrates the PRO-FM waveform characteristics, for P = 10 randomly initialized waveforms and
K = 200 alternating projection iterations. The desired PSD dy is selected to have a super-Gaussian spectral shape
[121] and u is constant amplitude. Due to random initializations, each PRO-FM waveform has an entirely unique
instantaneous frequency structure. While the PRO-FM waveforms exhibit moderate instantaneous frequency

compactness, notable deviations occur about the spectral band edges [122].
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Figure 39: Various randomly initialized PRO-FM waveforms (top) power spectra, (middle) autocorrelations, and

(bottom) instantaneous frequencies over time for B34gT, =~ 500, for P = 10 waveforms and K = 200 iterations.
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1.4.2.6.4. POLYPHASE CODED FREQUENCY MODULATION (PCFM)

Polyphase coded frequency modulated (PCFM) waveforms [123, 124] are mathematically defined to
explicitly restrict the phase transition size between adjacent samples, which imparts innate spectral containment.
PCFM waveforms are constructed by N, instantaneous frequency values «,, which are interpolated via the
frequency shaping filter h,(t) and then integrated to form a continuous phase term. PCFM waveforms are
intrinsically constant modulus, and therefore amenable to high-power amplification. The PCFM waveform structure

has been optimized to achieve a variety of objectives [123-132]
t

Ng
sa(®) = exp 1 f ha() * | Y @bz = (= DT dr

0

t [ Ng
= expij J lz a h.(t—(n—1T)|dr
0o |n=1

o4

= exp+j Z an f hy(t—(n—1T,)dz
0

=1
(1.111)

When the frequency shaping filter h,(t) is defined only for positive time, such that h,(t < 0) = 0, then the integral

is shift-invariant [133] and may be expressed instead by the phase shaping filter ba(t)zfotha(r) dt .

The relationship between h,(t) and b, (t) isillustrated in Figure 40, when h,(t) = Tirect(t_:—“/z).
Ne t N
se® = expdj | D [ hor = = DR dr |§ = expdj| D anbate - (- DT
n=1 0 n=1

Ne
expdj | be(®) | ) @bt = (1= DT

(1.112)
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ho(t — (n—1)Ty)

Figure 40: Relationship between the frequency shaping filter h,(t — (n — 1)T,) and the phase shaping filter

bo(t — (n — 1)T,), where h(t) = Tirect(t_;—“/z) and b, (t) = fot hy () dt.

When the baseband waveform s, (t) is uniformly sampled at intervals = (n/8,)T, , the waveform model
is defined by (1.113). The truncated convolution matrix B of size N, X N, contains time-shifted versions of the phase
shaping filter b, . The instantaneous frequencies in aa = [@1 Q2 &N, ]T of size N, X 1 determine the

waveform properties. The upsampling factor 8, describes the factor of phase interpolated samples N, = BaNy

imprinted by the phase shaping filter b between sample intervals nT,.
Sqg=¢

(1.113)
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T-Ty/2

When the frequency shaping filter h,(7) is selected as the rectangular function h,(t) = Tirect(T—)

the resulting phase shaping filter b, (t) = fot hq(T) dt becomes the ramp-and-hold function, which behaves similar
to linear phase interpolation. The upsampling factor B, = N, /N, effectively limits the largest phase transition
between adjacent waveform samples. Consequently, the upsampling factor 5, and the 6-dB oversampling ratio k¢qg
are approximately equivalent kgqg = f:?AC/Bgqg = By as shown in Figure 42. The inherent spectral containment of

PCFM waveforms minimizes distortion caused during sample-and-hold DAC reconstruction.
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Figure 41: Mean power spectrum of P = 1000 unoptimized PCFM waveforms for upsampling factors 8, = 2,4, 8.
The 6-dB oversampling ratio k¢qg is approximately equal to the upsampling factor . The instantaneous frequency

values are drawn from a uniform distribution a,, € [—m, 7].

Figure 42 illustrates unoptimized PCFM waveform characteristics, where the instantaneous frequency
values are drawn from a uniform distribution a,, € [—m, 7] to generate P = 10 waveforms. The unoptimized PCFM
waveforms exhibit innate spectral containment via the upsampling factor S, for virtually no computational cost,
yielding compact instantaneous frequencies while maintaining constant amplitude temporal envelopes.

Optimization can improve the degree of spectral containment or reduce autocorrelation sidelobes [123-132].
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Figure 42: Various unoptimized PCFM waveforms (top) power spectra, (middle) autocorrelations, and

(bottom) instantaneous frequencies over time for B34gT, ~ 500, for P = 10 waveforms and factor 8, = 2.
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1.4.2.7. RANGE AMBIGUITIES AND PULSE ECLIPSING

Consider a waveform set transmitted in a uniform pulsed manner. Upon transmitting a given pulse s, (t),
the received returns are range unambiguous if the electromagnetic scattering arrives at time delays that are
non-overlapping with the returns from other pulse transmissions s;5(t). In contrast, the received returns are range
ambiguous if the scattering from pulse s, (t) temporally overlaps with the scattering from other pulses s5(t).
Pulse eclipsing occurs when the scattered returns temporally overlap with the pulse transmission, wherein the
receiver is switched off, thus concealing a portion of the scattered return. Due to the propagation power drop-off,
the scattered signal from s,(t) is assumed negligible relative to the noise floor over sufficient distance.

These scenarios are illustrated in Figure 43.
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1.4.2.8. SIGNAL-TO-NOISE RATIO, PULSE COMPRESSION GAIN & COHERENT INTEGRATION

The impact of pulse compression and slow time processing on signal-to-noise ratio (SNR) is considered in
the presence of additive white Gaussian noise (AWGN), represented by the random process v(t). Consider the

receive signal model y(t) = s(t) + v(t). The pulse compression estimate becomes

7@ =w(t) *y(t) = w(t) xs(©) + w(t) xv(t) .
(1.114)
The noise v(t) is spectrally filtered by w(t), preserving a Gaussian distribution after the linear transformation [61].
The deterministic filter w(t) and the random process v(t) are uncorrelated in the expectation, such that

E{lw(t) xv(t)|*} = llw(@®)II5 E{lv(t)|?}. The pulse compression gain G, and filter mismatch loss 6y, determine

the peak power of the pulse compression estimate 7(t). The pulse compressed SNR is

_max{w® * s} (CmmiGpo)®?s (ammlec)(%foTls(t)lzdt) _(ammlapc

M W@ O WOREOP ol tim (L oora] o S

(1.115)

Further SNR improvement to improve estimation accuracy is achieved by coherent integration across
slow time pulse returns. Coherent integration requires that the radar transmitter and receiver are phase coherent.
Assume that the given signal s(t) is pulsed for P uniform pulse repetition intervals (PRI). Furthermore,
assume scatterers are stationary to temporarily ignore Doppler effects. The range profile estimate ?p (t) is formed

by correlating the filter w(t) and the pth received signal y,, (t). Coherent integration is expressed as
7p(t) = w(t) * 3, (&) = w(t) % 5(£) + w(t) * v (£)

P = D 7p(®) = ) (W) 5 5(0) + w(©) 5 5,®) = PW(®) *5() + D w(t) * 1, ()
vp vp

vp

(1.116)
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The noise signal v,(t) captured during the p"* received signal y, (t) is assumed independent and identically

distributed, relative to noise signals v;(t) captured during other pulse repetition intervals. The expected noise

power after coherent integration is then expressed as

2 *

D w@ 5@ p=E{[ Y w5 [ Y w© 50 | { =PlIw©l3 .
% vp vp

(1.117)
The pulse compressed, coherently integrated SNR becomes
2 2
max {lP(W(t) *s(t)) } P? - (01umiGpc ) Ps Omm1 Gpc
SNRjy = 5 5 *SNR,c = P| ———= | SNRjpi¢
E {|va w(t) * v, (8)] } Tw®IE Elv@©3 w113
(1.118)

The coherent integration across P pulse compressed LFM waveforms with AWGN present is shown in Figure 44.
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Figure 44: Coherent integration across P pulse compressed, identical LFM chirp waveforms with AWGN present.
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1.4.2.9. COHERENT INTEGRATION RANGE SIDELOBE REDUCTION FOR NON-REPEATING WAVEFORMS,

RANGE SIDELOBE MODULATION (RSM)

Nonrepeating waveforms, when optimized with unique initializations, tend towards different local minima
within an objective function. For instance, the angle modulated waveform denoted PRO-FM are shaped to a desired
power spectrum template, however, each PRO-FM waveform exhibits unique instantaneous frequency structures.
Assume that the unique signals s, (t) are pulsed for P uniform PRIs. Furthermore, assume scatterers are stationary

to temporarily ignore Doppler effects. Recall the ideal receive signal model y},deal(t) = 5,(t), here indicating the

" received signal ¥p(t) from the pt" unique transmission s, (t). The ideal pulse compression estimate becomes

pt
?p ® = Wp(t) *p ®) = Wp () * Sp ®) = Cp OF

(1.119)

The range profile estimate #,,(t) is formed by correlating the pt" filter w(t) and received signal ¥, (t), which under

ideal conditions forms the p*"* cross correlation function ¢p(t). Coherent integration is then expressed as

?p ®) = Wp ®) *Vp @® = Wp () * Sp ®)

P = D 70 = D wp() x5,(0) = ) 6 (0)
Vp Vp

vp

(1.120)

Importantly, note that the coherently averaged cross-correlation Y.y, c,(t) and mean cross-power spectrum

va ¢, (f) are Fourier transform pairs, proven by operation linearity as

vacp(t) B Z\m?_l{cp(f)} = {vaCp(f)} .

(1.121)

When the filter w, (t) is selected as the pth matched filter, the statement is extended to the Fourier relationship

between the coherently averaged autocorrelation Y.y, 7;,(t) and mean power spectrum Y.y, 7, (f).
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zvprp(t) = zvpj:'—l{rp(f)} =F1 {varp(f)} .

(1.122)

The pulse compressed sidelobes of unique nonrepeating waveforms exhibit noise-like characteristics, with
approximately complex Gaussian distributions due to the central limit theorem, as detailed in [134].
The correlation mainlobe remains coherent while the sidelobes decohere, which inherently reduces the coherently
averaged pulse compression estimate sidelobe levels. The coherent sidelobe reduction applied to uniquely

optimized PRO-FM waveforms when no AWGN is present is illustrated in Figure 45.
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Figure 45: Sidelobe reduction from coherently integrating non-identical PROFM autocorrelations, with no AWGN.

Note that coherent sidelobe reduction of nonrepeating waveforms does not improve SNR, but rather reduces the
pulse compression estimate sidelobe levels for improved detection of small scatterers. Range sidelobes fluctuations
occur with increasing integration, due to the randomness of the correlation sidelobes. The correlation sidelobe

phenomena of nonrepeating waveforms is called range sidelobe modulation (RSM).

86



1.4.3. DOPPLER FREQUENCY

The Doppler effect occurs when scatterers are moving throughout the illuminated scene, which distorts the
scattered electromagnetic wavefront. The Doppler effect is dependent on the scatterer velocity relative to the speed
of light ¢ and the operating wavelength A(t). Here, the fundamental physics describing the Doppler effect are

examined with respect to the fast time and slow time radar dimensions.

1.4.3.1. THE DOPPLER EFFECT

The Doppler effect is a distortion of electromagnetic wave time-frequency characteristics when moving
scatterers are present in the observed scene, as explained by the theory of relativity [77]. The Doppler effect impacts
the perceived time and frequency characteristics of the reflected pulse. When scatterers travel radially towards or

away from the monostatic radar with constant velocity v, the reflected pulse is distorted temporally as

c—7 T,
il v
c+ v, P

(1.123)

1 do(t)

The instantaneous frequency fi(t) = f. + P of the frequency modulated electromagnetic wave becomes

inversely distorted as

1© = () A© = wh©

c+ v
cC—
(1.124)

The Doppler distortion imposed by a moving scatterer is approximated by geometric expansion when v, < ¢ as

T’—(C_Ur)T (1 ZUT)T
P \e+y/) P T c/?

2v,

A(t)

O = (555 10 = (1425 10 = O + o= O + )

c+ v
c— 1

(1.125)
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The narrowband assumption imposes that the expected Doppler response f4(t) from the scatterer with velocity v,

is invariant over time. The Doppler frequency is expressed as
, 2y, )
fa@® = (@) - fi(®) = <T) fi®) (Wideband)
. 2
fa=fi—fc= (T)fc (Narrowband)

(1.126)

When a single scatterer traveling with radial velocity v, imposes the Doppler effect, the passband receive signal

under the narrowband assumption is modeled as

0o ) -2

c+ v c—

2R )ejzrrfc(l,bt—%)}
c— 1

= YRe {Sbb (ll)t -

. R
=Y Re {Sbb (l/Jt L )ejz”fcwfe_ﬂnfc(c_—w)} .
c—

(1.127)

When the scatterer velocity is considerably less than the speed of light v. < ¢, the passband receive model under

the narrowband assumption is approximated as

. R
Ypo(t) = ¥ Re {Sbb <<1 + ﬁ) - )e"z”(f“fd)fe_ﬂﬁc(m)} .
c c—v

(1.128)
With sufficiently small velocity v, the passband signal is further reduced to
2R\ . . R
Yoo(t) = ¥ Re {Sbb (t = —) ei2nUcHf d)te_”"fc(F)} .
c

(1.129)
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Subsuming miscellaneous terms into y, the passband model is simplified to

2R\ .
Ypb ) = Y Re {Sbb (t - T) efzn(fc"'fd)t}

2R\ .
— t—— Jj2mfat .
(e

(1.130)
The baseband receive signal representation is similarly represented as
ybb(t) = ]/Spb(t - ‘[)ejzn'fdte—jZn'fct
= yspp(t — T)e/2Mfct=Di2mfat g=j2mfct
j j _j(ﬁ> .
=¥ son(t = T)e_jznfcrejznfdt =Y Spbb (t - T) e \c)gi2nfat
(1.131)

Assume a single point target is present in the scene where y(t)e /2™ct = y§(t — 7). The ideal Doppler-shifted

receive signal is expressed as

2R\ ; 2R\\
Yideat ) =¥ S (t - T) ef2nfat = <s(t) xy8 (t — T)) ei2nfat
(1.132)

1.4.3.2. THE AMBIGUITY FUNCTION

When moving targets are present in the illuminated scene, the reflected signal is frequency shifted due to
the Doppler effect. When the received signal from a single pulse is Doppler-shifted by frequency f;, but the pulse
compression filter is tuned assuming the scattered return has no Doppler shift (f3 = 0), the pulse compression
estimate varies with the degree of Doppler shift f4. Consider the pulse compression filter w(t) applied to the ideal

Doppler-shifted signal y;qeq; (t)-
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[ee) [ee)

or f W (T = £) Yigea (1) d = f w*(r—t)s(r—zé)efz"fd("%dr

—00 —00

(1.133)

The narrowband (or Woodward’s) ambiguity function defined in (1.134) is constructed from matched filter estimates
of the ideal Doppler-shifted baseband or passband signal ¥;4e41(t) assuming no range delay, swept over every
possible Doppler shift f;.

[oe]

Xt fa) = f Wmf(T t) Yideal (r) dt = s (t)llz .o[ s*(r—t)(s(r) ejZn:de) dt

(1.134)

The ambiguity function of an LFM waveform and a PROFM waveform are shown in Figure 46. The LFM waveform is
called Doppler tolerant because a strong matched filter response exists across all Doppler frequencies.
The PROFM waveforms are called Doppler selective (or Doppler intolerant) because the matched filter response

rapidly drops off at significant Doppler shifts. Ambiguity function waveform metrics are discussed further in [135].
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Figure 46: Ambiguity function |x(t, f4)|? of an up-chirped LFM waveform (left) and a single PROFM waveform (right),

with time-bandwidth product B;qgT, = 100.
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1.4.3.3. RANGE-DOPPLER PROCESSING, THE POINT SPREAD FUNCTION

Fast time-Doppler and slow time-Doppler are distinct only with respect to the examined time scale.
Fast time-Doppler refers to Doppler shifts induced within a single pulse, elicited by high velocity scatterers.
Slow time-Doppler refers to Doppler shifts induced across multiple pulses, elicited by low velocity scatterers.
Consider the pulse train Syain(t) formed by the pt" of P pulses sp(t), which are uniformly spaced by the PRI

duration Tpg; > Tp,.

P-1

Strain (t) = Z Osp (t — pTpr1)
p:

(1.135)

The ideal baseband or passband scatterer response from the pulse train is then

P-1 2R\\ .
yideal(t) = (z Sp <t — pTPRl - —)) eIZTdef .
p=0 c

(1.136)

The pth pulse compression filter wy, (t) is applied to the listening interval of the pth pulse repetition interval to form
the range estimate 7, (t).

(p+1)Tpr1

N 2R\ .
yp(t) = f W;(T —t) Sp (‘[ — pTpr1 — T) eJ2mfaT dr

PTPRI

(1.137)
The set of range estimates over the entire coherent processing interval (CPl) becomes
p—1 (P+1)TpRI
N 2R\ .
7@ = Z J wp(T = 1t) s <T — PTpr1 — T) e/?mfat dr
p=0 pTpgy
(1.138)
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The stop-and-hop assumption imposes that the fast time-Doppler shift is negligible within the scattered pulse
duration. The scatterer is assumed to have constant velocity over the entire CPI, and to not traverse a significant
distance within the CPl. The Doppler shift is uniformly sampled every pTpr; seconds at delay bin 2R/c .

For slow moving scatterers f3 < 1/T},, the introduced error is negligible.

p—1 /P+V)TprI
Plt+—) = wy |7 — t+E sy (T —pTh _ZK e/2mfa®@TerD) dg
4 c P PRI c

p=0 \ pTpgi

p—1 /®@+VTpR1 IR -
= f wy (T —t— T) Sp (1- — pTpr1 — T) drt | e/?7fa(®TprD

p=0 \ pTpgy

P-1
. f
-5 gt gt

p=0
P-1
= Z Cp (t - prri)ejZme

p=0

(1.139)

The pulse compression estimate of the ideal Doppler shifted return becomes the time-delayed cross-correlation
responses, phase shifted by the slow time Doppler phasor e/2™@P under the stop-and-hop assumption. The Doppler
response of the scatterer is sampled every pT,; seconds, which is considered sampling across pulses (or slow time)
with pulse repetition frequency fprr. The sampling bounds of the uniform slow time-Doppler dimension are

determined by the Nyquist theorem as

I\

-2 ()

fPRF

1/c AcferE
» w2 () for = £75E
C

(1.140)
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The slow time-Doppler phase response of the scattering scene is “sampled” across P pulses. The received

fast time response y,, from the pth transmit pulse is modeled under the stop-and-hop assumption with AWGN as
Yy = Z S,Y(@)e/*™P +v
Vw

(1.141)

where y(@) is the scattering range profile corresponding to the normalized Doppler shift @, S,, is the convolution

matrix of the pth pulse, and v is noise. The slow time-Doppler phase progression (or steering vector) u(w) for the

normalized Doppler-shift @ is expressed as
u(@) = [gizmr@(® ... giznw(P-1]T
(1.142)

Pulse compression is applied to the pt" receive vector to form the range estimate ¥, wherein moving scatterers
having Doppler-shift @ may be present at the £¢" range bin. W, is the convolution matrix of the p™ pulse

compression filter wy,.

Vp = wp xy, = Wiy, = W (z Spy(w)ejzmvp + V) =Wy (Z Spy(w)ejzmvp> +Wylv
Vo Yo

(1.143)

-~ -~

Each range estimate from the p*"* PRI is stacked horizontally to form the fast/slow time matrix ¥ = [y, = $p_1].

To determine the Doppler content in the pulse compressed data matrix Y, the Doppler filter bank
U=[u"(@;) -+ u(wp_q)] hypothesizes various normalized slow-time Doppler shifts @ that are uniformly
spaced over the set @ € [—0.5,0.5). The Doppler filter bank U correlates the data matrix Y with each possible

Doppler steering vector u*(w), applied along the slow time dimension as
?d = Y.U

(1.144)

93



Noting that the pulse repetition intervals p and hypothesized Doppler shifts @ are each uniformly sampled, the
Doppler filter bank now takes the form of a DFT matrix A with dimension P X P (which can be efficiently
implemented with an FFT). Consequently, (1.144) may be rewritten as
.’Y.d = .’Y\.K
(1.145)
Now, assume a single point scatterer is present with no range delay and no Doppler shift. The set of P

waveform/filter cross-correlation functions ¢, are concatenated to form the matrix C = [co € -+ €p_q]. The

DFT applied to the cross-correlation fast time dimension of C forms the set of waveform cross-power spectra Cs.

C;=A,C
C= (Ni) AC,
(1.146)
The DFT applied to the slow time dimension of C forms the point spread function U.
U= CA, = (Ni) AUCA,
c
(1.147)

For the case of matched filter pulse compression, the point spread function (PSF) may be expressed more specifically.

1 —

S —— RA, = E—
ZVp”Sp”z ervp”Sp”z

A'RA,

(1.148)
The PSF may be determined in a vectorized form by applying the Kronecker product identity [69].
vec(U) = vec(AfR(A,) = (AL ® Af)vec(Ry)

(1.149)

94



The PSF of a repeated LFM waveform set and a non-repeated PRO-FM waveform set is shown in Figure 47.
The range sidelobe modulation (RSM) observed for non-repeating waveforms is visible across slow time-Doppler.

The SNR and sidelobe decoherence benefits of coherent integration apply in the slow time-Doppler dimension.
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Figure 47: Comparison of point spread functions U for LFM waveforms (left) and PROFM waveforms (right) for

P = 100 pulse repetition intervals.
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CHAPTER Il: COGNITIVE RADAR AND SPECTRUM SHARING

The RF spectrum is becoming congested due to the proliferation of wireless devices, wideband 5G
communications, and the internet of things [1, 3]. As a result of RF spectrum auctioning, radar users are becoming
secondary users in frequency bands that they previously had sole ownership of. Various methods now exist to
contend with operation of radar and communications users operating within the same RF bands, including dual-
function radar communications (DFRC) [33], cognitive (or fully adaptive) radar [136-138], and spectrum management
by time-frequency scheduling. Spectrum sharing technology offers the opportunity for radar to dynamically access
the spectrum and mitigate mutual interference [2]. The cognitive perception-action cycle (PAC) involves sensing the

environment, deciding upon an appropriate action, and subsequent system adaptation.

~

Radar
Perception / Acti
Cycle (PAC)

Learn &
Decide

Figure 48: Perception-action cycle (PAC) concept for radar [136].

The PAC is considered for radar waveform adaptation to the observed RF interference environment, with intent to
perform pulse-Doppler radar for moving target indication (MTI). The RF bands of interest are assumed narrowband.
Spectrum sensing and transmit waveform frequency notching is a form of cognitive radar that seeks to reduce
mutual interference with other spectrum users in a cohabitated band. The cognitive sense-and-notch emission
strategy is experimentally demonstrated as an effective way to reduce interference caused to other in-band users.
The physical radar emission is based on a random FM waveform structure possessing attributes that are inherently
robust to range sidelobes. One or more spectral nulls are reactively incorporated into the radar waveform to occupy

as much available bandwidth possible within a band-of-interest.

96



Recent work examined the sense-and-avoid (SAA) cognitive approach [139, 140], which gleans information
from spectrum measurements of potential interferers and modifies the waveform center frequency and bandwidth
to occupy the largest available contiguous band. The sense-and-notch (SAN) cognitive approach likewise employs
spectrum measurements to identify interferers, however, the waveform incorporates spectral nulls collocated with
the RF interferers to realize wider bandwidths and maximize spectrum occupancy (e.g. [141-152]). The efficacy of
adapting waveform spectral notches dynamically in reaction to interference is explored, with the ultimate goal of

achieving real-time sense-and-notch mutual interference mitigation.

The “learn and decide” stage of the PAC is performed with the fast spectral sensing (FSS) algorithm
[153, 154], which quickly determines the occupied frequency band locations from the “sensed” receive data.
Waveform spectral nulls must coincide with the identified interference regions to diminish mutual interference.
Based on the perceived interference bands, the frequency notch locations are “adaptively” incorporated into the
random FM waveform design [150-152]. The random FM (RFM) waveform class exhibits pseudo-random phase while
maintaining an FM temporal structure, subsuming both the angle modulation and PCFM waveform subclasses.
Orthogonal frequency division multiplexing (OFDM) is a communication system design concept applied in long-term
evolution (LTE) networks. Due to the modern prevalence of 5G LTE networks, OFDM-structured waveforms such as
guadrature amplitude modulation (QAM) are considered as the primary observed interference source.
Decision latency is vitally important because the RF interference (RFI) environment may change instantaneously.

Figure 49 illustrates experimental measurements of RFM waveforms designed in response to OFDM interference.

The emulation and analysis performed here is unique compared to previously explored forms of mutual
interference mitigation. For foliage penetration (FOPEN) radar, spectral notches were incorporated into an LFM
waveform to avoid interfering with local communications bands, although the spectral notch was stationary for the
entire coherent processing interval and did not require real-time reaction [28]. Interference avoidance was
investigated for stepped frequency radar; however, the tones did not exhibit fast time-frequency bandwidths [80].

Of course, dynamic interference requires dynamic radar waveform design.
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Figure 49: Experimental measurements of PRO-FM waveforms, designed with or without a spectral null collocated

with observed OFDM interference.
2.1. SPECTRALLY NOTCHED RADAR WAVEFORM DESIGN

Recall the pseudo-random optimized FM (PRO-FM) algorithm, which produces spectrally shaped angle
modulated radar waveform. The p* of P PRO-FM waveforms is initialized with phase chips drawn from the uniform

distribution ¢,, € [—m, 7] to form the signal s, ,,. The PRO-FM algorithm performs the k" of K alternating iterations

Sz(:k+1) _ KH{d:/Z 0) exp(j4§s£k))}

(k+1) _ L (k+1)
s, =u®exp(jzs, )

(2.1)

where A is the M X N truncated DFT matrix with M = 2N—-1, A¥ is the N x M truncated IDFT matrix, d; is the
M x 1 desired PSD, u is the N X 1 desired amplitude envelope, and £(-) extracts the argument phase.

Spectral nulls may be incorporated into the desired PSD d; over the set of frequency indices to null A by enforcing
diy =0 form€eA.

(2.2)
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Inclusion of rectangular notches in the spectrum has been shown [148] to induce degraded range sidelobe roll-off

in the autocorrelation. However, inclusion of a taper in the spectral region surrounding the notches via

hy,m forme€ AL
dem =40 form € A
hym form € Ay

(2.3)

has been demonstrated to be an effective solution [149]. The frequency intevals A;, and Ay indicate the lower and
upper frequency regions adjacent to the notch, to which are applied the tapers hy ,, and hy,,, respectively.
A gradual transition between a notch and its local power spectrum is attained by forcing each tapered region to be
continuous with its surrounding power spectrum. The shape of the taper regions can be arbitrary, but it has been

observed that the Tukey taper well-compensates for the sidelobe degradation [149].

PRO-FM waveforms can achieve spectral notch depths of ~20 dB relative to the peak spectral power with
sufficient iterations K. Waveform spectrum nulling algorithms [155-159] have been experimentally demonstrated
to deepen spectral notches, while simultaneously maintaining a constant temporal amplitude. If deeper spectral
notches are desired, the reiterative uniform weight optimization (RUWO) technique [156, 157] has been
shown to attain appreciably deeper notches when applied after the optimization process above.
The final signal vector sz(,K) from (2.1) is used to initialize the RUWO algorithm. The RUWO algorithm performs the

the qth of Q iterations to deepen the waveform spectral notches. In the RUWO formulation, the frequency null
intervals A are denoted by the M, discretized frequency values f,, such that the N, X M, matrix By comprised of

frequency steering vectors is formed as

1
|[ el2mfo el2nh elzn(fMA 1) ]l
leIZﬂfo(Np—l) el2mfilNp=1) ., 612” fMp-1 (Np_l) J

(2.4)
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An N, X Ny, structured matrix is subsequently obtained by
W, = B,B," + Al
(2.5)
where Lis an N, X N,, identity matrix and A is a diagonal loading term. The RUWO algorithm is performed for Q
iterations to deepen the spectral notch obtained via the PRO-FM process.

. - -1
sl(,q) = exp(jz WAlsI(,q D)

(2.6)

The mean power spectrum and coherently averaged autocorrelations of P = 2500 full-band waveforms and
P = 2500 spectrally notched waveforms are illustrated in Figure 50, where K = 200 PRO-FM iterations and

Q = 100 RUWO iterations are applied.
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Figure 50: The coherently averaged waveform autocorrelations 21’;:1 r, and mean waveform power spectra
Zgzl 1, for 2500 full-band PROFM and 2500 spectrally notched PROFM waveforms, transmitted on an arbitrary
waveform generator and received on a real-time spectrum analyzer. Here K = 200 PRO-FM iterations and

Q = 100 RUWO iterations are applied.
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2.2. EXPERIMENTAL EMULATION

The interference spectrum of OFDM experimental loopback measurements is determined by FSS to inform
the null locations of frequency notched PROFM waveforms, which are subsequently transmitted in a separate
free-space radar measurement. The synthetic combination of the closed-loop and free-space collections is examined
to evaluate the impact to the radar performance. It is demonstrated that reactive spectral notching provides a
significant signal to interference plus noise ratio (SINR) enhancement for moving target indication (MTI) via
pulse-Doppler processing. The SINR improvement is degraded when an adaptation latency occurs between

observance of interference and updating spectral notch locations within the radar waveform.

2.2.1. FAST SPECTRUM SENSING (FSS) ALGORITHM

The fast spectrum sensing (FSS) algorithm is a rapid band aggregation method that identifies the locations
and widths of spectral regions requiring nulling for interference mitigation with other users. Here the FSS algorithm
is used to identify the locations and widths of spectral regions that require notching in an efficient manner by
reducing the number of frequency bins needed to analyze the spectrum. Frequency bins (9) undergo a spectrum
power threshold to produce alternating groups of low and high power “meso-bands (¥)” [182]. The meso-bands
are then merged according to a minimum meso-bandwidth requirement B,;, to form the final merged sub-bands

(®) where notches are needed.

For the given discrete observed spectrum © = {9, ... 9y} with frequency discretization Af between
samples, the FSS approach operates by first applying threshold T; to label frequency samples as occupied or
unoccupied. Define the set of Q < M intermediate meso-bands as W = {‘I’l ‘PQ}, where meso-band g contains
Y, = {85(‘”, ...,85(@}, for $(g) and E(g) the start and end frequency indices composing a contiguous band of
occupied or unoccupied bands. A low-power meso-band requires that 9,,, < Ty while a high-power meso-band has

Oy > Ty forallm € {S(g), .., E(q) }.
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Meso-bands are merged according to rules governing the minimum allowable meso-bandwidth By,
(corresponding to a discrete length Lyin = [Bmin/Af]) so the radar spectrum does not become too fragmented, as
there is a need for a gradual transition into each notch to constrain the range sidelobe levels [149]. A low-power
meso-band is merged with a high-power meso-band when L(g) = (E(g) — $(g) + 1) < Ly is satisfied.
Define the set of R < Q@ < M merged meso-bands as ® = {®,, ..., Pz}, where merged meso-band 7 contains
o, = {‘PS(T), ...,lPE(r)} , for S(#) and E () the start and end frequency indices composing a contiguous band.
The number of samples in each ®,. band is L(#~) = E(#) — S(#*) + 1. The length of each merged meso-band @,

defines its bandwidth
B(r) = L(r)Af

(2.7)
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Figure 51: FSS-determined sub-bands for two OFDM signals, where {®,, @3, ®5} represent unoccupied sub-bands

and {®,, ®,} represent occupied sub-bands.
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2.2.2. COGNITIVE RADAR EMULATION

Consider the situation in which OFDM interference is cohabitating the bandwidth occupied by the radar.
To simplify analysis, a stationary monostatic radar performing moving target indication (MTI) is considered, for which
the range-Doppler response can be accurately modeled by the point spread function. The performance of the radar
is evaluated experimentally when in the presence of the communications RFl and with/without the use of cognitive
spectral notching. To isolate the impact of the spectral notch and the presence of the interference separately,
the communication signal measurement and the free-space radar measurement are collected separately and then

combined synthetically. Notch-free, full-band waveforms are included to provide a performance baseline.

To fully characterize the interaction of sense-and-notch cognitive radar with the in-band interference,
different interference arrangements are generated and the FSS algorithm is applied on a per-pulse basis to identify
the occupied RFI bands. Each pulsed radar waveform is then designed to notch the regions of occupied spectrum.
The waveforms are transmitted to collect free-space measurements of moving vehicles. The loopback
measurements of interference and the free-space radar measurements are then combined synthetically in Matlab™
to determine how well notching mitigates the interference. The radar measurements are also evaluated individually

(without interference included) to assess the trade-off notching imposes.

Three RFl scenarios are considered here:

e Case 1: the RFl is stationary in frequency over the CPI.

e Case 2: the RFI hops to a random center frequency every four PRIs and the radar waveform adapts
without latency.

e Case 3: the RFl hops to a random center frequency every four PRIs and the radar waveform adapts with

a latency of Tpg;.
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The OFDM interference is modeled either as a single band consisting of eight adjacent subcarriers
comprising a single contiguous bandwidth of 10 MHz, or two disjoint bands consisting of four adjacent subcarriers
comprising separate contiguous bandwidths of 5 MHz. Each subcarrier is modulated by a random stream of
quadrature amplitude modulated (QAM) symbols from a 4-QAM constellation at a symbol rate of 1 MHz. Example
power spectra for both RFI models are shown in Figure 52. The width of the observed notches arises because FSS
identified the OFDM spectral roll-off as an occupied region. The sharp roll-off of the measured spectrum is caused
by the limited analysis bandwidth (160 MHz) of the real-time spectrum analyzer. Note that the OFDM signals are not
spectrally well-contained, which means that leakage interference will occur despite the waveform spectral notches.

If the interference possessed better spectral containment the leakage degradation would largely be avoided.
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Figure 52: Example power spectra of measured OFDM interference, spectrally notched PROFM (adapted using FSS),

and full-band PROFM waveforms. The RF interference either has a single contiguous bandwidth of 10 MHz (left) or

two disjoint bands comprising separate contiguous bandwidths of 5 MHz (right).

The experimental timing diagrams for each case are illustrated in Figure 53 and Figure 54. Note that the full-band
PROFM waveform and the notched PROFM waveform are interleaved such that both illuminate the same moving
target scene for comparison. Note that in instances where the disjoint RFl bands hop near one another, FSS may

combine the identified meso-bands into a single sub-band for subsequent notching.
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Figure 53: Experimental timing diagram for the single contiguous RFI band scenario: Case 1 - the interference and
the radar notch is stationary; Case 2 - the radar adapts new notches instantly when the interference location changes

(no latency); Case 3 - the radar adapts new notches with a delay Tpg; when the interference location changes.
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Notched
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Figure 54: Experimental timing diagram for the two disjoint contiguous RFI bands scanario. Case 1 - the interference
and the radar notches are stationary; Case 2 - the radar adapts new notches instantly when the interference location

changes (no latency); Case 3 - the radar adapts new notches with delay Tpgr; when the interference location changes.
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To facilitate the synthetic combination of communication and radar data, the OFDM signal is generated in
Matlab™ and the FSS algorithm is applied to the communication signal on a per-PRI basis to identify the occupied
RFI band using a minimum continuous-band grouping B,;, requirement of either 8 MHz for a single contiguous
band, or 4 MHz for two disjoint contiguous bands. For all cases, the FSS algorithm is used to identify the spectrum
users with a power threshold T set to be 15 dB below the average peak power of the OFDM subcarriers.
The results obtained from FSS are used to adapt the notched PROFM waveforms according to the latency incurred.
Each OFDM signal is captured in a loopback configuration using RF test equipment consisting of a Tektronix arbitrary
waveform generator and a Rohde & Schwarz real-time spectrum analyzer. The set of notched PROFM waveforms
dictated by FSS were then transmitted (using the test setup in Figure 55) from the roof of Nichols Hall on the KU
campus to illuminate the intersection of 23" St. and lowa St. in Lawrence, KS. These open-air measurements were
combined synthetically with the loopback-measured communication signals to assess overall performance.

The baseband waveforms are transferred to passband via digital upsampling, interpolation, and upconversion.

For each case a total of 5000 interleaved pulses were transmitted, with 2500 each for full-band and
frequency notched PROFM. Accounting for the interleaving, the PRI is defined as the time interval between each
pair of pulses and is set to Tpg; = 40 ps. Each pulse has a duration of T, = 2 us and bandwidth B335 = 100 MHz.
Both sets of radar waveforms have individual time-bandwidth products T,,B;qg = 200. The total CPI for each
waveform set is Tcp; = 100 ms. The OFDM signals and radar emissions were each generated at a center frequency
of 3.55 GHz and the resulting 1/Q data was captured at a sample rate of f; = 200 MHz for loopback and open-air
measurements, respectively. For radar receive processing, pulse compression matched filtering is performed using
loopback captured versions of the emitted waveforms (also at f; = 200 MHz sampling rate) to account for hardware
imperfections. Since there was no platform motion, clutter cancellation was performed by a simple projection of the
zero-Doppler response and a Taylor taper was applied across Doppler. Platform motion effects such as angle-Doppler

coupling of clutter and changing RFI spatial direction need not be addressed here.
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Figure 55: Open-air hardware setup.

2.2.3. CASE 1: STATIONARY INTERFERENCE

As a baseline, Figure 56 shows the measured range-Doppler response after clutter cancellation for the
full-band PROFM waveform, prior to synthetic RFl injection. Multiple automobiles were traversing the intersection,
which are clearly visible here as moving targets. Note that different traffic patterns are observed for the single-notch
and multi-notch transmission, though the same intersection is probed. It is useful to compare the full-band result
against the notched PROFM radar measurement without the inclusion of RFI, as depicted in Figure 57.

A spreading in range is observed due to the presence of the stationary notch that degrades the range sidelobe levels.
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Figure 56: Range-Doppler plot of full-band PRO-FM with no injected RFI, intended as the baseline comparison,
for the single-notch data collect (left) and multi-notch data collect (right). Case 1.
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Figure 57: Range-Doppler plot of notched PRO-FM with no injected RFI, possessing a stationary spectral notch,

for the single notch data collect (left) and multi-notch data collect (right). Case 1.

The OFDM RFI measured in loopback is power-scaled and then synthetically combined with the free-space
test measurements. It is assumed that the measured clutter power is sufficiently greater than the noise power for
the latter to be neglected. The “received” unprocessed signal to interference ratio (SIR) is defined as the
average power of the received radar backscatter signal (excluding direct path) divided by the average power of the
OFDM interference, within the time interval that the backscatter was received. Figure 58 and Figure 59 show the
range-Doppler plots for the full-band and notched PRO-FM when RFl is injected that is 20 dB greater than the radar
receive echoes (i.e. a received SIR of -20 dB). The notched waveforms experience some degradation due to an
increased background response, caused by interference leakage. In contrast, the full-band waveforms are greatly
affected by the interference, so much so that the moving targets are essentially obscured beyond recognition.
Qualitatively, the baseline case for full-band PROFM when interference is injected shown in Figure 58 will be the

same regardless of the interference hopping pattern and therefore will not be shown redundantly.
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Figure 58: Range-Doppler plot of full-band PROFM with injected stationary RFI of received SIR = -20 dB,

single notch data collect (left) and multi-notch data collect (right). Case 1.
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Figure 59: Range-Doppler plot of notched PROFM with injected stationary RFI of received SIR = -20 dB, for the single

notch data collect (left) and multi-notch data collect (right). Case 1.
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A useful metric to assess the impact of interference that is facilitated by this synthetic combination, along

with the individual impact of hopping notches, is

A

A Imeas

Ibaseline

(2.8)

where I, is the average power measured for each scenario in the range/Doppler regions that do not contain

discernible targets or the clutter notch. The value I, seline i then the particular value of I, for the full-band,

no RFI scenario (e.g. Figure 56). Consequently, the metric in (2.8) represents the change in the background response

induced by RFI or spectral notches that would impact downstream CFAR (constant false alarm rate) detection.

Table 2 shows that, compared to the full-band scenario, the stationary notch of Case 1 incurs around 1 dB of

degradation in terms of an increased noise floor when no RFlis present. When RFl is present the full-band waveforms

realize a 23 dB sensitivity degradation, while the notched waveforms only suffer 11 dB, a net difference of 12 dB.

Table 2: Impact of interference and notching for Case 1, when a single RFl or two disjoint RFI bands are present.

Imeas, single | A, single | Imeas, multi A, multi
Full-band, no RFI (baseline) —120.3 dB -- -119.8 dB --
Notched, no RFI -119.5dB +0.8 dB -118.7 dB +1.1dB
Full-band, with RFI —96.8 dB +23.5dB —96.1 dB +23.7dB
Notched, with RFI —109.0 dB +11.3 dB —108.2 dB +11.6 dB
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2.2.4. CASE 2: HOPPED INTERFERENCE, NO LATENCY

The hopped interference and notched waveforms in this case follow the timing arrangement when there is
no adaptation latency between the interference changing (every four PRIs) and when the notch location adjusts in

response. Figure 60 and Figure 61 show the full-band and notched PRO-FM responses when the RFl is not present.
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Figure 60: Range-Doppler plot of full-band PRO-FM with no injected RFI, intended as the baseline comparison,

for the single notch data collect (left) and multi-notch data collect (right). Case 2.
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Figure 61: Range-Doppler plot of notched PRO-FM with no injected RFI, possessing a spectral notch hopped every

four PRIs, for the single notch data collect (left) and multi-notch data collect (right). Case 2.
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Moving the frequency notch location during the CPI introduces a Doppler smearing effect, due to innately
varying range sidelobe modulation from pulse-to-pulse. When the hopped RFl is present, again with a received SIR
of =20 dB, the notched PROFM responses in Figure 62 is realized. Per Table 3, it is interesting to observe that the
hopping notch (without RFI) yields a nearly 7 dB increase in the noise floor, which is actually uncanceled clutter
sidelobes distributed across range and Doppler. When frequency hopping RFl is present, again with a received SIR
of -20 dB, the full-band response (not shown) experiences the same 23 dB degradation as before. In contrast,

the MTI performance of the notched waveforms realizes A = 12 dB, only 1 dB worse than the stationary RFI case.
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Figure 62: Range-Doppler plot of notched PROFM with injected frequency hopping RFI of received SIR = -20 dB,
reacting with no adaptation latency, for the single notch data collect (left) and multi-notch data collect (right).

Case 2.

Table 3: Impact of interference and notching for Case 2, when a single RFl or two disjoint RFI bands are present.

Ieas, single | A, single | Imeas, multi A, multi
Full-band, no RFI (baseline) —120.8 dB -- —120.3dB --
Notched, no RFI -113.8dB +7 dB —113.4 dB +6.9 dB
Full-band, with RFI —97.0 dB +23.8 dB —96.7 dB +23.6 dB
Notched, with RFI —108.1 dB +12.7 dB —108.4 dB +11.9 dB
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2.2.5. CASE 3: HOPPED INTERFERENCE, 1 PRI LATENCY

The scenario is examined where there is a latency of duration Tpg; before the location of the spectral notch can be
determined and the waveform is adapted. The fullband and notched PROFM range-Doppler maps prior to

RFl injection are depicted in Figure 63 and Figure 64, respectively, and are qualitatively the same as seen in Case 2.
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Figure 63: Range-Doppler plot of full-band PRO-FM with no injected RFl, intended as the baseline comparison,

for the single notch data collect (left) and multi-notch data collect (right). Case 3.
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Figure 64: Range-Doppler plot of notched PRO-FM with no injected RFI, possessing a spectral notch hopped every

four PRIs, for the single notch data collect (left) and multi-notch data collect (right). Case 3.
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Upon adding interference, Figure 65 depicts the notched PROFM responses with adaptation latency effects.
Due to the perception-action cycle latency, the notched case now experiences about A= 18 dB because 1 PRI out
of every 4 pulses is corrupted by interference. This result emphasizes the importance of adapting the waveform to

changing RFl as quickly as possible.
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Figure 65: Range-Doppler plot of full-band PROFM with injected frequency hopping RFI of received SIR = -20 dB,
reacting with adaptation latency Tpg;, for the single notch data collect (left) and multi-notch data collect (right).

Case 3.

Table 4: Impact of interference and notching for Case 3, when a single RFl or two disjoint RFl bands are present.

Imeas, single | A, single | Imeas, multi A, multi
Full-band, no RFI (baseline) —120.9 dB -- —120.6 dB --
Notched, no RFI -113.9dB +7.0 dB -113.6 dB +7.0 dB
Full-band, with RFI -97.2dB +23.7 dB —97.0dB +23.6 dB
Notched, with RFI —102.3 dB +18.6 dB —102.3 dB +18.3 dB

114



2.2.6. CONCLUSIONS

It has been experimentally demonstrated using the synthetic combination of open-air radar measurements
and loopback measurements of OFDM communication interference that cognitive spectrum sensing and notching
can provide proactive interference mitigation. Compared to stationary interference, when frequency hopping of the
interference occurs during the radar CPI, a range sidelobe modulation (RSM) induced Doppler response is observed.
Latency to adjust the notch location(s) will further degrade the output SINR. Practical factors contribute to the
efficacy of this approach, such as Doppler smearing caused by notch hopping to address changing RFI.

The matched filter response of spectrally notched waveforms provides significant RFI suppression.
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2.3. CLUTTER RANGE SIDELOBE MODULATION COMPENSATION

Cognitive spectral notching of FM noise waveforms on transmit is shown to be an effective means to
mitigate in-band interference. However, to contend with dynamic interference, the transmit notch may be required
to move during the CPI, which introduces a nonstationarity effect across slow time that results in increased RSM
after slow time-Doppler processing and cancellation. The degradation is linked to a distortion of the delay/Doppler
point spread function. The least square optimal mismatched filtering (LS-MMF) can partially mitigate this

degradation while maintaining the necessary spectral notch for interference mitigation [160].

An approach to compensate for the nonstationarity is proposed that borrows the missing portion of the
clutter frequency response (due to notching) from another pulsed response (having a notch in a different location)
[161]. By using this borrowed response to fill in the notched clutter, subsequent clutter cancellation minimizes the
RSM residue effect. It is shown using measured data that the combination of the clutter filling approach with notched

LS-MMFs realizes clutter cancellation performance on par with full-band waveforms that do not possess notches.

To that end, an ad hoc approach denoted as devoid clutter capture and filling (DeCCaF) is proposed whereby
the clutter frequency response from a different pulse is bandpass filtered (BPF) commensurate with the notch
location in the present pulse, and then subsequently added to the clutter response for the present pulse.
Measured data collected using waveforms having moving spectral notches is used to assess the efficacy of this
approach. For application to cognitive RFl avoidance, each unique LS-MMF must also contain spectral notches that
align with the given notched waveform. Care must be taken so that the inverse nature of the LS-MMF does not invert

the desired spectral notch, but instead preserves sufficient notch depth for interference suppression on receive.
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2.3.1. DEVOID CLUTTER CAPTURE AND FILLING

Moving spectral notches during the CPI (due to dynamic RFI) hinders clutter cancellation because the
changing notch locations introduce significant deviations from the mean power spectrum of the waveform set,
inflicting time-varying RSM structure. Modest variation of the spectral density already occurs for notch-free RFM
waveforms, though the application of LS-MMFs has been found to compensate to a sufficient degree [72].
The presence of moving notches requires more substantial steps to homogenize the individual spectral densities

across the CPI.

Consider a set of P random FM waveforms denoted s, (t) that possess the same general power spectrum
aside from a) modest variation due to their random nature and b) spectral notch locations that may change on a
pulse-to-pulse basis. For ease of explanation, the case in which only a single notch is present for each pulse is
considered, though the proposed compensation approach can be applied to the case of multiple notches.

The received response after transmitting this sequence of waveforms can be expressed as
yp(t) = S (t) = Yo @)+ Up ®
(2.9)

where * is the convolution operation, y,(t) is the impulse response of the environment during the pt" PRI,
and v, (t) is additive noise. One can generally expect the stationary (f4 = 0) clutter component of y,(t) to be

essentially unchanged over the CPI. Pulse compression of (2.9) is then performed via
?p(t) = Wp(t) * yp(t)
(2.10)

for w,, (t) the matched filter or LS-MMF of the pt" waveform. Normally, Doppler processing and clutter cancellation
would then be performed across the set of P responses from (2.10). However, when frequency hopping waveform

spectral notches are present during the CPl, an RSM effect causing residual clutter sidelobes is observed.
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Consider the same experimentally measured data collected from a stationary platform observing moving
vehicles leaving/entering an intersection in Lawrence, KS. The residual clutter response due to RSM, which takes the
form of the large streaks across Doppler, is caused by the slow time nonstationarity introduced by moving the
spectral notches. The DeCCaF approach seeks to compensate for this residual clutter effect via an ad hoc
“clutter filling” solution. While the notion of estimation/interpolation of static spectral notches are used for
wideband radar applications to compensate/enhance image quality (e.g. [163, 164]), the distinction here is that the
intent is to mitigate clutter residuals by reducing range-Doppler sidelobes and better facilitate clutter cancellation.

If the pt" waveform contains a spectral notch at a given location, a similar spectral portion of the clutter is
borrowed from the response generated by a different waveform that does not have a notch in that same location.
Denoting the index of that other waveform as p and w,, (t) as a bandpass filter (BPF) whose passband aligns with the

notch location of the pth waveform, the borrowed clutter component is
Sfiltrey -
Vo5 (6) = wy (£) = ¥5(8)
(2.112)

Thus, the DeCCaF response is obtained by simply combining the original response with the borrowed clutter via

o () = 7o) + 755 (©)

(2.12)
Subsequent Doppler processing and clutter cancellation is then performed on the spectrally homogenized estimate.
As an illustration of the concept, Figure 66 depicts the closed-loop measured spectra for a full-band waveform, a
notched waveform, and the BPF version of the full-band waveform corresponding to spectral notch location.
These full-band and notched RFM waveforms were obtained from completely independent initializations and
optimization processes, and thus the only thing they have in common is the same general spectrum shape.
While the DeCCaF combination of the notched and BPF waveforms would not yield a spectrum that is identical to
that of the full-band waveform, the resulting shape is rather close. Further, since convolution is a linear operation,
consideration of Figure 66 in the context of (2.9) and (2.12) implies that this approach should do well to recapture
the missing clutter component as long as the clutter phenomenology is sufficiently stationary.
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Figure 66: Loopback measured spectra for a full-band waveform, a notched waveform, and a BPF version of the

full-band waveform

To establish a baseline for achievable performance using this clutter borrowing/filling approach, two sets
of uniqgue RFM waveforms were transmitted in an open-air setting with an interleaved arrangement (see Figure 67).
Both sets were generated according to the PROFM scheme. One set contains 2500 full-band waveforms that are all
independently initialized and optimized. The other set likewise contains 2500 independent waveforms, which
contain a spectral notch moving to a new random location within the 3-dB bandwidth after every fourth pulse.
This waveform arrangement is clearly not suitable for actual cognitive interference avoidance due to the presence
of the interleaved full-band waveform but is used here to provide a controlled experiment regarding the utility of
borrowed clutter responses. Consequently, two different cases are considered in extension of section 2.2,

both illuminating the same intersection of 23" and lowa.

e Case 4: RFM waveforms with moving notches where DeCCaF is applied using interleaved full-band
responses to performing clutter filling
e Case 5: The full-band responses are disregarded and the borrowed clutter responses are taken from

other notched waveform responses.
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Figure 67: Timing diagram of the waveform arrangement used for experimental evaluation of DeCCaF. Full-band and

notched waveforms are interleaved, with the borrowed clutter taken from an adjacent full-band response

The last of these represents the operating arrangement one would expect in practice. Both the matched
filter (MF) and the least squares mismatched filter (LS-MMF) are applied for each case. It is important to note that,
while the primary purpose of this manner of cognitive operation is to mitigate mutual RFI between the radar and
other in-band spectrum users, the following results contain the associated spectral notches but not the RFI itself.
The degradation from RFI was shown to be significantly reduced in section 2.2, which is especially true when the RFI
possesses good spectral containment. Consequently, the RSM limitation imposed by the moving spectral notches
(which provide the mutual RFI suppression) is considered here. The LS-MMF was constructed with a length that is
3x that of the MF length (N,, = 3N,) and with sufficient diagonal loading to avoid notch inversion and minimize
mismatch loss. Beamspoiling is not applied in the LS-MMF formulation, as it was found to degrade the spectral

homogenization across range estimates and thus sustain the clutter range-Doppler sidelobes.
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Figure 68 show the matched filtered full-band PRO-FM responses when the RFl is not present for baseline
comparison, repeated from Case 2. Figure 69 illustrates the degradation that arises for the MF and LS-MMF when
notched PRO-FM waveforms are employed and the notch locations move dynamically during the CPI. The streaks
observed in Figure 69 are clutter sidelobes that could not be cancelled due to the nonstationarity induced by

changing notch locations. The use of notched LS-MMFs provides some compensation for this effect.

-20 -15 -10 5 0 5 10 15

Vélocity (m/s)

Figure 68: Range-Doppler plot of full-band PRO-FM with no injected RFl, intended as the baseline comparison,

applying the matched filter to the single notch data collect. Repeated from Case 2.
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Figure 69: Measured range-Doppler response from 2500 PRO-FM waveforms with dynamic spectral notches,

applying the matched filter (left) and least squares mismatched filter (right), for the single notch data collect.
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2.3.2. CASE 4: HOPPED INTERFERENCE, NO LATENCY, CLUTTER FILLING BY TEMPORALLY

ADJACENT FULL-BAND WAVEFORMS

Figure 70 shows the MF and notched LS-MMF range-Doppler responses for the same set of notched
waveforms when DeCCaF is applied using the borrowed clutter estimate elicited by the adjacent full-band
waveforms. Recall the metric for interference impact A, where I, is the average power measured for each
scenario in the range/Doppler regions that do not contain discernible targets or the clutter notch. The value I ¢eline
is then the particular value of [0, for the full-band, no RFI scenario (e.g. Figure 68). Without application of DeCCaF,
the matched filter estimate is degraded by A= 7.0 dB and the mismatched filter estimate is degraded by A= 3.8 dB,
demonstrating a slight improvement. The addition of DeCCaF before Doppler processing improves the background
floor, where the matched filter estimate is degraded by A= 2.7 dB, demonstrating an improvement of 4.3 dB of the
uncompensated counterpart. Applying DeCCaF in addition to the LS-MMF achieve A= 0.8 dB, which is near the level
achieved by the baseline. In other words, this combination of approaches seems to have come rather close to

completely compensating for degradation imposed by spectral notches that address dynamic RFI.
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Figure 70: Measured range-Doppler response from 2500 PRO-FM waveforms with dynamic spectral notches,
applying interleaved & spectrally-filtered full-band responses for clutter filling via the matched filter & DeCCaF (left)

or the mismatched filter & DeCCaF (right).
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Table 5: Impact of notching, MF or LS-MMF estimation, and DeCCaF using temporally adjacent full-band estimates,

for Case 4, when a single RFI band is present.

Imeas, single | A, single
Full-band, no RFI, MF (baseline) —120.8 dB --
Notched, no RFI, MMF —-117.0dB +3.8 dB
Notched, no RFI, MF -113.8dB +7.0 dB
Notched, no RFI, DeCCaF, MMF —120.0 dB +0.8 dB
Notched, no RFI, DeCCaF, MF -118.1dB +2.7 dB

2.3.3. CASE 5: HOPPED INTERFERENCE, NO LATENCY, CLUTTER FILLING BY TEMPORALLY

ADJACENT NOTCHED WAVEFORMS

Having established the performance enhancement of DeCCaF when the borrowed clutter responses are
taken from the separate (interleaved) set of full-band waveforms, now consider the impact of borrowing clutter
from other notched pulses within the same CPI. The BPF clutter is borrowed from the temporally nearest notched
waveform that has a non-overlapping notch location relative to the pulse under consideration, as shown in
Figure 71. The resulting DeCCaF response therefore involves the re-use of clutter and noise from elsewhere in the
CPI, as opposed to the statistically independent instantiations considered in the previous interleaved case, which

would likely not be realistic. Some degradation in the degree of residual clutter compensation is expected.
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Figure 71: Timing diagram of the waveform arrangement used to evaluate the operationally useful form of DeCCaF.

The borrowed clutter is taken from temporally adjacent, spectrally non-overlapping notched responses.

Figure 72 shows the MF and MMF range-Doppler responses for this arrangement. Compared to Figure 70,
the residual clutter floor is slightly increased, though the overall performance improvement relative to Figure 69
without DeCCaF is still quite clear. The addition of DeCCaF before Doppler processing improves the background floor,
where the matched filter estimate is degraded by A= 4.4 dB, demonstrating an improvement of 2.6 dB of the
uncompensated counterpart. Applying DeCCaF in addition to the LS-MMF achieve A= 1.7 dB, which is still near the

level achieved by the baseline.
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Figure 72: Measured range-Doppler response from 2500 PRO-FM waveforms with moving spectral notches, applying
adjacent spectrally-filtered notched waveform responses for clutter filling via the matched filter & DeCCaF (left) or

the mismatched filter & DeCCaF (right).

Table 6: Impact of notching, MF or LS-MMF estimation, and DeCCaF using temporally adjacent notched estimate,

for Case 5, when a single RFI band is present.

Ineas» single A, single
Full-band, no RFI, MF (baseline) —120.8 dB +0.9 dB
Notched, no RFI, MMF -117.0dB +3.8 dB
Notched, no RFI, MF -113.8 dB +7.0 dB
Notched, no RFI, DeCCaF, MMF -119.1 dB +1.7 dB
Notched, no RFI, DeCCaF, MF -116.4 dB +4.4 dB
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For a different perspective on how DeCCaF is compensating for notch-induced clutter modulation,

the mean PSD of the MF range estimate across the CPI in slow-time are examined. The PSD having moving notches

exhibits a noticeable deviation from the PSD when full-band waveforms are used, as shown in Figure 73.

However, refilling the missing clutter response via DeCCaF returns the mean PSD closely to the full-band case.

Figure 74 shows the PSDs of the MF range estimates, indexed over the p‘" pulse of the CPI, before and

after applying DeCCaF.

5_

0_
—~ S
M
= -10f
& 15
=
2 20
A 25
D)
2o30) I
*C-é (i

]
o 351 WI
A ol |'|——Full-band
—— Notched
45 - .
Notched, Clutter Filled
-50 : : - : : : : P—
100 -80 -60 -40 20 O 20 40 60 80 100

Frequency (MHz)

2
Figure 73: Mean power spectra of the matched filtered range profile estimate va|)7p(f)| over the given CPI for

Case 1 (full-band) and Case 2 (notched without clutter filling). The mean compensated range profile estimate

va|)7p(f)|2 after applying DeCCaF for Case 5 (notched, clutter filling with other notched responses) is quite similar

the full-band response.
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Figure 74: Power spectra of the matched filtered range profile estimate |)7p (f)|2 for the pt" pulse before applying

DeCCaf (top) and the compensated range profile estimates |)7p(f)|2 after applying DeCCaF (bottom)

2.3.4.

CONCLUSIONS

An ad hoc approach denoted as devoid clutter capture and filling (DeCCaF) has been proposed and

demonstrated on measured data as a means to address the nonstationarity that arises when spectral notches must

move during the CPI to mitigate interference with dynamic RFI. When DeCCaF is combined with appropriately

notched optimal mismatched filtering the result is nearly indistinguishable from the case in which no spectral

notches are employed.
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2.4. NOTCHED POWER SPECTRA FOR OPTIMAL SIDELOBE REDUCTION

Designing radar waveforms with notched spectral regions can mitigate mutual interference with other
proximate RF users. However, this capability comes at the cost of degraded range-Doppler sidelobe performance.
To evaluate the limitations of correlation-based processing in the range dimension, the null-constrained power
spectral density that globally minimizes correlation sidelobe levels is determined for comparison with waveform and
pulse compression filter design methods. Existence of the least-squares global optimum indicates a fundamental
dynamic range limitation for notched power spectra (notwithstanding further receive compensation such as DeCCaF
or range resolution spoiling). By extension, the limitations of combined pulse compression and slow time-Doppler
processing are assessed by determining the null-constrained set of power spectral densities that globally minimizes

the range-Doppler sidelobes indicated by the point spread function (PSF).

Section 2.1 examined spectrally notched random FM (RFM) waveform design where ad-hoc tapering was
incorporated into the null shape as a heuristic means of reducing range sidelobes. Here, waveforms designed
according to the optimal null-constrained spectral template are demonstrated to have improved sidelobe
performance after pulse compression and slow-time processing. Further, because these waveforms are designed
according to the least squares optimal spectral template, application of the least squares mismatched filter provides

additional sidelobe reduction (toward the global limit) with minimal mismatch loss.

2.4.1. GLOBAL MINIMUM POWER SPECTRUM FOR RANGE SIDELOBE REDUCTION

To gain insight about the behavior of spectrally notched power spectra when attempting to minimize
correlation sidelobes, it is interesting to first examine solutions to a well-posed (less constrained) objective
statement. The waveform power spectral density (PSD) r; and autocorrelation r are a Fourier transform pair;
therefore, waveforms designed to conform to a desired PSD template d¢ can be directly optimized for both
autocorrelation and spectral properties. Moreover, doing so while constraining spectral null locations provides

global minimum boundaries for waveform/filter spectral notches due to convexity.
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Consider the optimization problem to design the desired PSD template dg, which can be written as
min |le — A¥dg |3
df

s.t. dgp <&, formeA

0<d¢,, form=01,..M3-1
(2.13)

where d¢ is the My X 1 discretized PSD template with d¢,, as the mt" element, A" is an M4 X M shifted inverse
discrete Fourier transform (IDFT) matrix, e is the ideal impulse autocorrelation response, (-)* denotes complex
conjugation, || - || is the 2-norm operator, and &, is the constrained maximum value for the associated d,, and for
m in the subset A (i.e. null constraints). Each element of df must be non-negative by definition of the PSD.
The objective function in (2.13) therefore determines d; such that the corresponding autocorrelation (via IDFT) has

a minimized integrated sidelobe level (ISL), subject to spectral null constraints.

The problem formulation in (2.13) is a hybrid of non-negative LS and boxed LS, each being convex and having
unique global solutions if A” has full column rank (true for the DFT matrix) [165]. Different degrees of beamspoiling
[71] can be achieved by replacing L rows of A¥ (corresponding to autocorrelation mainlobe roll-off) with zeros, thus
permitting different mainlobe widths and achievable sidelobe levels. The resulting beam-spoiled matrix still

maintains full column rank; therefore, (2.13) is convex and yields the globally optimal solution (if.

For convenience, (2.13) is solved using the Matlab™ fmincon optimization toolkit [166]. The resulting
optimal PSD templates for minimizing ISL, and their associated autocorrelation structures with various degrees of
beamspoiling, are shown in Figure 75. The spectral window length is chosen to be Myq = 200 samples.
Notches are imposed at the band edges for containment, and an additional notch is imposed off-center from
normalized frequencies -0.2 to -0.1. For all illustrated cases, each notch occupies 10% of the band with an enforced
relative depth of 40 dB. The autocorrelation mainlobe resolution is defined by the ratio (%) of beamspoiled rows in

A¥ relative to the total spectral window length M.
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A notable characteristic of the power spectra in Figure 75 is that the larger primary band (between digital
frequencies —0.1 and +0.4) maintains a majority of the power, with the smaller supplementary band (between digital
frequencies —0.4 and —0.2) used to improve resolution. In fact, for the 6% beamspoiling case, the supplementary
band is hardly occupied, implying that a sense-and-avoid [140] approach may be suitable depending on the desired
resolution and sidelobe levels. Prior findings [150] that spectral notching near the band center degrades the
achievable range sidelobe level is also confirmed in Figure 76. Compared to traditional windowing methods [167],
the least squares optimal spectral templates are rather custom-designed via (2.13) to include spectral notches based

on a prior spectrum-sensing process.

——— Beamspoil 1%
107 ——— Beamspoil 2%
Beamspoil 4%
——— Beamspoil 6%
0r \ -20 -
A ot ==
g g
g g
q 20 F A, -60
= z
+~ ~+
< <
= -30 - g 801
o N ~
-40 -100 |
| B T AV
-0.5 0 0.5 -1 -0.5 0 0.5 1
Normalized Frequency (f/fPAC) Normalized Time (¢/T7,)

Figure 75: Optimum desired power spectrum templates (if and autocorrelation responses d with minimized
autocorrelation ISL according to (2.13), for 40 dB spectral null and varied beamspoiling ratios of 1%, 2%, 4%, 6%

relative to total window length
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Figure 76: Optimum desired power spectrum templates cif and autocorrelation responses d with minimized
autocorrelation ISL according to (2.13), for 40 dB spectral nulls (at different locations) and beamspoiling ratio of 2%

relative to total window length.
The cost function in (2.13) can be readily generalized to a p-norm framework
min ||e — ARd¢||?
in | fl7

s.t. digy < &, form €A

0<d¢, form=01,.M—-1
(2.14)

with sufficiently large p well-approximating the peak sidelobe level (PSL) metric. The p -norm version still maintains

convexity, so therefore global optimality is likewise preserved. The gradient of (2.14) is
V. lle = A"dl|5 = —p Re{A(le — A¥d¢|*~2 O (e — A"dp))}
(2.15)

where Re{ - } extracts the real part of the argument.
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For example, the resulting optimal PSD templates (if and their corresponding autocorrelations d for various

degrees of beamspoiling are shown in Figure 77 for p = 8. The same constraints are enforced as in Figure 75 for the

ISL case. Interestingly, these PSDs exhibit ridged structures at low resolutions. Similar to the ISL case, as the degree

of beamspoiling is increased (relaxing autocorrelation mainlobe width) the sidelobe floor is correspondingly reduced.

This interplay between sidelobe level and mainlobe resolution is a fundamental trade-space for this design.

A given degree of beamspoiling is necessary to achieve a desired dynamic range (i.e. sidelobe level); though

increasing the beamspoiling factor does reduce 3-dB bandwidth and therefore degrades mainlobe resolution.
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Figure 77: Optimum desired power spectrum templates cif and autocorrelation responses d with minimized

autocorrelation PSL (p = 8) according to (2.14), for 40 dB spectral null and varied beamspoiling ratios of 1%, 2%,

4%, 6% relative to total window.
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2.4.2. GLOBAL MINIMUM POWER SPECTRUM FOR RANGE-DOPPLER SIDELOBE REDUCTION

While the global minimum template for range sidelobe reduction provides insight regarding the per-pulse
limitation of correlation-based processing (i.e. assuming fq = 0) for arbitrary notch depths and locations,
consideration must be taken regarding range-Doppler sidelobes resulting from a non-stationary spectral notch.

Recall from (1.149) that the range-Doppler point spread function may be expressed (excluding normalizations) as
U = AYRA,
(2.16)

The ideal range-Doppler point spread function is the two-dimensional impulse function E having a mainlobe peak
and no range-Doppler sidelobes. The set of waveform PSDs R; and the point spread function U are a
two-dimensional Fourier transform pair; therefore, waveforms designed to conform to the desired PSD template set
D= [dso df; -+ dgp_4]can be directly optimized for both range-Doppler and spectral properties. Moreover,
doing so while constraining spectral null locations provides global minimum boundaries for waveform/filter spectral
notches due to convexity. Of course, knowledge of future notch locations would require precise knowledge of future
interference spectral patterns which is rarely had, and the range-Doppler optimum is intended here for analytical

purposes. Consider the optimization problem to design the PSD template set D¢ written as

min llvec(E) — vec(A¥ DAL, = llvec(E) — (A} @ A{)vec(Dp)ll%
f
S.t. demp < &y form,p €A
0 <dgmp form=01..My4g—1,p=01,..,P—-1

(2.17)

where Dy is the My X P discretized PSD template set with dg,, ,, as the m'" element of the p'" spectral template,
Al is an Mg x My shifted IDFT matrix, A, is an P X P shifted DFT matrix, E is the ideal impulse point spread
function, and &, ,, is the constrained maximum value for the associated dg,, , and for m in the subset A (i.e. null

constraints). Each element of Df must be non-negative by definition of the PSD.
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The objective function in (2.17) therefore determines Dy such that the corresponding point spread function
has minimized integrated sidelobe levels (ISL) or peak sidelobe levels (PSL) inside the constrained range-Doppler
region, subject to spectral null constraints. Different degrees of range beamspoiling or Doppler beamspoiling [71]
can be achieved by replacing L rows of A (spanning the autocorrelation mainlobe roll-off) or P columns of A,
(spanning to the Doppler mainlobe roll-off) with zeros, thus permitting different mainlobe widths and achievable
sidelobe levels. The resulting beam-spoiled matrix (AL ® A¥) maintains full column rank; therefore, (2.17) is convex

and yields the globally optimal solution ﬁf.

The objective function must include an appended set of linear constraints to ensure that the total power in
each PSD is uniform across all pulses. Linear constraints maintain objective function convexity, under the condition

that the constraints are not disjoint [168]. The constraints are appended as

min ||vec(E) — vec(AYDA,)|l} = lIvec(E) — (A ® Af)vec(Dylly
f

S.t. dimp < Emp form,p €A
0<d¢mp, form=01.M3—1p=01..P—-1

17d¢, =1 forp=01,..P -1
(2.18)

Because the optimization is extended to a two-dimensional problem space, the spectral notch constraints become
time-varying and numerous possible variants would result in different global minima. Here, three representative
notch patterns are demonstrated, and the corresponding PSDs and PSFs after optimizing point spread function ISL
are illustrated. The spectral window length is chosen to be My = 200 samples and the pulse number is selected as
P =50. Note that the number of optimizable parameters becomes My - P, thus signifying a rapidly growing
computational cost as variable size increases. Notches are imposed at the band edges for containment.
For all illustrated cases, each notch occupies 10% of the band with an enforced relative depth of 40 dB.
The range mainlobe resolution is defined by the ratio (%) of beamspoiled rows in A relative to the total spectral
window length M. The Doppler mainlobe resolution is defined by the ratio (%) of beamspoiled columns in A,

relative to the total number of pulses P.
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Consider a stationary spectral notch from normalized frequency -0.2 to -0.1 over the CPI duration,
optimized when p =2, enforcing the 2% range beamspoiling ratio and 4% Doppler beamspoiling ratio.
The resulting optimal PSD templates that minimize point spread function ISL according to (2.18), and the
corresponding PSF, are shown in Figure 78. The power spectrum set D; remains mostly unchanged across pulses,
with minor deviations present, which indicates that maintaining a homogenous spectrum across slow time minimizes
range-Doppler sidelobes. For comparison, the same interference pattern is used to optimize autocorrelation ISL on
a per-pulse basis via (2.14), illustrated in Figure 79. When the RF interference is stationary, only minor differences

are observed between the PSF-optimized and autocorrelation-optimized solution.
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Figure 78: Optimum desired power spectrum template set D¢ and point spread function responses U with minimized
point spread function ISL (p = 2) according to (2.18), for 40 dB spectral nulls and enforcing the 2% range
beamspoiling ratio relative to the window length M4 and 4% Doppler beamspoiling ratio relative to the number of

pulses P. The spectral notches are stationary across all pulses.
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Figure 79: Desired power spectrum set D¢ and point spread function responses U with minimized autocorrelation
ISL (p = 2) determined on a per-pulse basis according to (2.14), for 40 dB spectral nulls and enforcing the 2% range

beamspoiling ratio relative to the window length M. The spectral notches are stationary across all pulses.

Now consider when the spectral notch deviates by small steps throughout the CPI duration. The resulting
optimal set of PSDs that minimizes point spread function ISL, and the corresponding PSF, are shown in Figure 80.
The power spectrum set ﬁf allocates power across slow time pulses in spectral regions having the fewest total
notches, further revealing that maintaining a homogenous spectrum across slow time minimizes range-Doppler
sidelobes. Interestingly, the reduction in point spread function ISL causes power to smear, forming a background
pedestal in the PSF. In contrast, the same interference pattern is used to optimize autocorrelation sidelobes on a
per-pulse basis via (2.14), illustrated in Figure 81. Because the impact of slow time spectrum deviation is not
considered in the per-pulse autocorrelation optimization, range-Doppler sidelobes appear in a concentrated band
neighboring the zero-range cut. However, the sidelobe power outside of banded region is significantly reduced,

posing an interesting performance tradeoff regarding the expected sparsity of the ensuing range-Doppler sidelobes.
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Figure 80: Optimum desired power spectrum template set D¢ and point spread function responses U with minimized
point spread function ISL (p = 2) according to (2.18), for 40 dB spectral nulls and enforcing the 2% range
beamspoiling ratio relative to the window length M4 and 4% Doppler beamspoiling ratio relative to the number of

pulses P. The spectral notches drift slowly across pulses in a semi-deterministic pattern.
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Figure 81: Desired power spectrum set D¢ and point spread function responses U with minimized autocorrelation
ISL (p = 2) determined on a per-pulse basis according to (2.14), for 40 dB spectral nulls and enforcing the 2% range
beamspoiling ratio relative to the window length My. The spectral notches drift slowly across pulses in a

semi-deterministic pattern. RSM appears in the zero-range cut due to slow time spectral deviations.

The spectral notch is now made to deviate randomly throughout the CPI duration. The resulting optimal
PSDs that minimize point spread function ISL, and the corresponding PSF, are shown in Figure 82. An important
takeaway is that, regardless of the notch locations across pulses, the PSF-optimal power spectrum set ﬁf always
allocates power over the entire available bandwidth. Rather, regions exhibiting multiple spectral notches across slow
time are distributed less (though non-zero) power to minimize range-Doppler sidelobes, verifying the necessity for
the sense-and-notch paradigm. Once more, the resulting PSF exhibits a background pedestal. In contrast, the same
interference pattern is used to optimize autocorrelation sidelobes on a per-pulse basis via (2.14), illustrated in Figure

83. Significant range-Doppler sidelobes appear within a concentrated band neighboring the zero-range cut.
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Figure 82: Optimum desired power spectrum template set D¢ and point spread function responses U with minimized
point spread function ISL (p = 2) according to (2.18), for 40 dB spectral nulls and enforcing the 2% range
beamspoiling ratio relative to the window length M4 and 4% Doppler beamspoiling ratio relative to the number of
pulses P. The spectral notch randomly hops within the radar operational band over the CPI. Interestingly, the optimal

power spectrum templates exhibit a bimodal distribution.
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Figure 83: Desired power spectrum set D¢ and point spread function responses U with minimized autocorrelation
ISL (p = 2) determined on a per-pulse basis according to (2.14), for 40 dB spectral nulls and enforcing the 2% range
beamspoiling ratio relative to the window length My . The spectral notch randomly hops within the

radar operational band over the CPI.
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2.4.3. APPLICATION OF OPTIMAL TEMPLATE FOR SPECTRAL SHAPING

Achieving real-time reactivity on a practical time scale can make optimal solutions impractical, though the
evaluation of optimality (for a given metric [36]) is still beneficial to determine bounds on performance. Specifically,
in [149] a heuristic method was introduced that mitigates correlation sidelobes arising from waveform spectral nulls.
That method attempted to reduce sidelobes by spectral shaping with templates having tapered spectral null borders,
which thereby softened sharp transitions, within the context of PRO-FM waveforms. While PRO-FM does involve
optimization (via alternating time/frequency projections) the computational cost is low and therefore realizable in

real-time. However, the heuristic approach in [149] does not guarantee optimality.

Here, PRO-FM is likewise used, but in conjunction with the optimal least squares (LS) null-constrained
power spectrum that minimizes autocorrelation sidelobe levels (based on matched filtering). The sidelobe level is
then further reduced using LS mismatched filtering that was previously shown to be effective while maintaining
spectral notches [160]. Since both the waveforms and mismatched filters are shaped according to the LS optimal

power spectrum, their combination improves sidelobe performance with only rather modest mismatch loss.

We compare the PRO-FM waveform spectra using two different desired templates d¢, both intended to
reduce autocorrelation sidelobes in the context of spectral nulls. The desired templates are selected to be the
ISL-optimal PSD template determined via (2.14) and the ad hoc tapered template determined via (2.2) and (2.3),
where the latter was shown to be an effective (though suboptimal) solution. For this comparison, both templates
have the same nulled region(s) defined by A, with the range-optimal template based on the constrained LS
framework and the ad hoc template adhering to a notched Gaussian shape (same as [149]). After PRO-FM
optimization, the nulls of either spectrum may not achieve an acceptable depth; therefore, subsequent application
of the zero-order reconstruction of waveforms (ZOROW) algorithm [159] reinforces spectral notching while
maintaining constant amplitude. The ZOROW algorithm operates on the phase values of the converged PRO-FM

waveform, then minimizing spectral power in designated null A regions. See Section 2.5 for additional details.
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Consider the case where P = 1000 waveforms are generated by sequentially applying the PRO-FM and
ZOROW algorithms to adhere with the optimal PSD template and the ad hoc template from [149]. The PRO-FM and
ZOROW algorithms were implemented for K =200 and Q = 1000 iterations, respectively, to ensure full
convergence. The number of waveform parameters N, = 200 is held constant. The spectrum template size is set to
Mgy = 4N, — 1. Spectral nulls for both templates are placed at both band edges and at a single off-center location,

with each null occupying a normalized spectral width of 0.1f; (so 0.3f; in total).

For the ad hoc spectral template, d; has a Gaussian shape with normalized 3-dB bandwidth B = 0.5f;,
which imposes low range sidelobes before spectral notches are inserted. The additional tapering of sharp nulls takes
the form of a raised-cosine function spanning f;/16 at each null transition (one at each band edge and one either

side of the off-center null, totaling four and spanning 0.25f;).

The resulting mean power spectrum and averaged autocorrelation responses over all 1000 waveforms for
the ad-hoc case are shown in Figure 84. The optimum PSD template (with beamspoiling ratio of 2%) is included for
reference. While the ad hoc spectral template is clearly different from the optimal template (top panel), it does
provide a reasonable approximation, with the resulting mean waveform PSD yielding a good match to the heuristic
design. The coherently averaged (CA) autocorrelation computed over the waveform set (bottom panel)
demonstrates the expected incoherent sidelobe averaging reduction [41] due to the non-repeating nature of RFM
waveforms. While approaching the optimum, the ad hoc autocorrelation response does experience some mainlobe

broadening and “shoulder” lobes.

142



Mean Signal PSD
~ ——— Global Optimum
10 Design Template

Relative Power (dB)

05 -04 03 02 -01 0 0.1 0.2 0.3 0.4 0.5
Normalized Frequency

’ ——— CA Autocorrelation

or Global Optimum
m 10120
:S/ 20 F
D% _jz _-4-%.04 002 0 002 004
e A
R 1M~ "' 'i. "‘M\v
ool i

: Mﬁmlh ‘(¥ | .‘l H | . | | | “ W' | J)‘ LAY
-1 08 06 -04 -02 0 0.2 0.4 0.6 0.8 1

Normalized Lag

Figure 84: Notched PRO-FM mean PSD }.y, I, and coherently averaged autocorrelation Y.y, I, from applying an
ad-hoc tapered [149] spectral template determined via (2.2) and (2.3). The optimum template (if determined

according to (2.14) is included for comparison.

Now consider waveform design using the autocorrelation-optimal template as shown in Figure 85, which is
based on the 2-norm version from (2.14). Clearly the mean PSD across the waveform set is closer to optimality than
in the ad hoc case, and likewise for the ensuing CA autocorrelation. Of course, some deviation is also observed
because perfect time-limited waveform spectrum shaping is not possible. Consequently, shoulder lobes are
noticeably lower, yet are still present. However, the mainlobe broadening is essentially avoided. The sidelobe

response is modestly lower than in the ad hoc case, though neither reach the optimal sidelobe roll-off.
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Figure 85: Notched PRO-FM mean PSD Y.y, It,, and coherently averaged autocorrelation ¥y, r,, from applying the
least-squares optimal spectral template that minimizes autocorrelation ISL determined via (2.14). The optimum

template d; determined according to (2.14) is included for comparison.

Because the optimum spectral template is based on LS in a 2-norm sense, it is logical to apply the LS
mismatched filter (LS-MMF) to these same waveform sets. Here the desired correlation response in the LS-MMF
formulation is the IDFT of the globally optimum desired spectrum d = KH(if. The optimal power spectrum (if has
length My = 4N, — 1 and the LS-MMF has length N,, = 3N, such that My = N, + N,, — 1. The diagonal loading
term A is set to 1% of the maximum eigenvalue of S¥’S to bias the LS-MMF towards the matched filter, reducing

spectral notch degradation [160].
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Figure 86: Notched PRO-FM mean PSD }.y, I, and coherently averaged autocorrelation Y.y, I, from applying an
ad-hoc tapered [149] spectral template determined via (2.2) and (2.3). The coherently averaged LS-MMF
cross-correlations va ¢, are shown along with their mean cross-power spectrum va Ctp- The optimum template

d; is included for comparison. The mean signal and filter PSDs are complementary, forming the desired cross-PSD.

For the ad hoc case, Figure 86 depicts the mean signal and filter PSDs, their mean cross-PSD, and the
optimum PSD template. The LS-MMF elicits an average mismatch loss of 2.59 dB, but the signal/filter combination
also almost perfectly overlaps with the optimal response. Consequently, the sidelobes likewise reach nearly to the
optimum level. The LS-MMF also mitigates the notch degradation observed in [160]. Figure 87 then shows the
optimal template case, where we see the filter and cross-PSDs now align well with the optimal PSD and the mismatch
lossis now 1.37 dB, a 1.22 dB improvement over the ad hoc case. Of course, mismatch loss for both could be reduced

by increasing the diagonal loading A, though doing so will increase deviation from the optimal sidelobe level.
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Figure 87: Notched PRO-FM mean PSD Y.y, It,, and coherently averaged autocorrelation ¥y, r,, from applying the
LS optimal spectral template determined via (2.14). The coherently averaged LS-MMF cross-correlations Y.y, C,, are
shown along with their mean cross-power spectrum va Ctp- The optimum template (if is included for comparison.

The mean signal and filter PSDs are near the global optimum, with the cross-PSD in close agreeance.

2.4.4. CONCLUSIONS

The globally optimum power spectrum for correlation sidelobe reduction and for range-Doppler sidelobe
reduction is determined when portions of the spectrum are null constrained. By designing waveforms so that their
spectrum closely matches the optimum, their attendant sidelobes likewise approach the optimum level. Application
of the least-squares mismatched filter then closes much of the remaining sidelobe difference with mismatch loss in
trade. Importantly, it is found that a previous ad hoc approach involving simple tapering of notch edges achieves

near-optimal performance with a computational cost that is low enough for real-time implementation.
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2.5. REAL TIME IMPLEMENTATION OF SENSE-AND-NOTCH RADAR (EARLY DEVELOPMENT)

With the reality of increasing radio frequency (RF) spectral congestion, radar systems capable of dynamic
spectrum sharing are needed. Recent work has demonstrated a real-time cognitive capability on a software defined
radio (SDR) by generating pulse-agile LFM chirps that vary their center frequency and bandwidth to avoid dynamic
interference on a per-pulse basis. Separately, spectral notching of random FM waveforms was developed and
experimentally evaluated as another means with which to mitigate emulated interference, though real-time

operation had not yet been demonstrated.

Here the operational framework of the former is combined with the waveform agility of the latter to
facilitate real-time generation of notched, random FM waveforms as part of an integrated cognitive SDR
architecture. The early development of the sense-and-notch radar supported pulse repetition frequencies up to
2.2 kHz for on-the-fly waveform synthesis, could incorporate multiple spectral notches per waveform, and achieve
notch depths of 25 dB relative to peak power (with greater depth possible given greater computational resources).

Performance examples are illustrated along with implementation decisions and design trade-offs [169].

Cognitive radar, also known as fully adaptive radar, is generally understood to refer to systems that in some
sense learn and subsequently respond to attributes of their operational environment [11, 170]. Due to increasing
spectral congestion and competition [1], an important topic of research is the use of cognition in a spectrum sharing
context [171] to modify the radar’s physical emission structure according to sensed RF interference (RFI) in the band
of interest. Essentially, these efforts are working to develop “good spectral neighbor” capabilities for the radar by

mitigating the mutual interference to/from other spectrum users.

A separate, yet related, research direction has focused on the radar utilization of emerging software-
defined radio (SDR) platforms (e.g. [172, 173]) due to their cost-effectiveness, scalability, and the prospect of rapid
prototyping. Specifically, a growing body of work is devoted to the application of SDRs to realize real-time cognitive
radar capabilities (e.g. [140, 174-176]). For example, it was recently shown that by utilizing a rapid band-aggregation
method [154] to monitor RFI and select appropriate usable subbands, subsequent LFM waveforms could be

generated via direct digital synthesis (DDS) on an Ettus x310 SDR to avoid interferers in real-time [140].
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The purpose of this paper is to demonstrate how another cognitive radar capability for spectrum sharing
can likewise be deployed for real-time mutual interference mitigation. Where the approach in [140] involves a sense-
and-avoid (SAA) strategy, this other approach [152] employs a sense-and-notch (SAN) strategy that leverages
spectrally-shaped, random FM waveforms to place in-band spectral notches on a per-waveform basis in response to
dynamic RFIl. Based on emulated (i.e. not real-time) RFl it was previously experimentally shown using test equipment
that spectral notches having better than 50 dB in depth (relative to the peak spectrum power) can be achieved for

these physically realizable waveforms [152].

It was noted in [174] that a key enabler to realizing spectral notching that is responsive on a per-pulse
timescale is implementation of waveform generation on the field-programmable gate array (FPGA) of the SDR.
When in-band RFI is dynamically changing during the radar’s coherent processing interval (CPl), these SAA or SAN
capabilities must likewise perform at the rate of the pulse repetition frequency (PRF). Consequently, here the SAN
method [151-154], which also leverages aspects of the SAA deployment from [140], is implemented on the FPGA of

an Ettus x310 SDR and demonstrated for real-time operation.

In [152] it was experimentally demonstrated, albeit not yet at real-time, that random FM waveforms
possessing deep spectral notches could be physically realized according to the available in-band spectrum
determined using the fast spectrum sensing (FSS) method of [153]. It has been observed that changing the radar
emission structure during the CPI in response to dynamic RFI does introduce a significant clutter modulation effect
[152]. That said, a variety of recent receive processing methods have been developed and experimentally

demonstrated to compensate for this effect with varying efficacy [160, 161, 177, 178].
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2.5.1. COGNITIVE SPECTRAL NOTCHING ON SOFTWARE-DEFINED RADAR

Implementation of the SAN capability on an SDR platform is accomplished by sequentially applying two
random FM waveform generation methods. First, the PRO-FM approach is employed to produce a transmitter-
suitable waveform that possesses a desirable overall power spectrum shape (Gaussian is useful for this purpose) and
containing spectral notches based on the RFI determination from FSS. However, because PRO-FM generally cannot
achieve very significant notch depths by itself (20 dB at best), further notch suppression is required.
In [152] it was shown that the reiterative uniform weighted optimization (RUWO) method [156] could accomplish
this task, though the attendant computation cost is rather high. Then in [158] the analytical spectrum notching
(ASpeN) approach was developed and experimentally demonstrated using a high-fidelity arbitrary waveform
generator (AWG) to achieve notch depths better than 50 dB. Most recently, ASpeN has been modified for use on the
more modest digital-to-analog conversion (DAC) rates, and thus lower fidelity, available in SDRs. The resulting zero-
order reconstruction optimization of waveforms (ZOROW) method [159] accounts for much, though not all, of the

distortion arising from this lower fidelity, which is particularly important when attempting to form spectral notches.

The notched waveform generation approach implemented on the SDR’s FPGA is summarized as follows.
Recall the pseudo-random optimized FM (PRO-FM) algorithm, which produces spectrally shaped angle modulated
radar waveform. The pt"* of P PRO-FM waveforms is initialized with phase chips drawn from the uniform distribution

¢, € [—m, 7] to form the signal So,p- The PRO-FM algorithm performs the k" of K alternating iterations

S',(,kﬂ) = KH{d§/2 ©) exp(jLKs;k))}
s;kﬂ) =u(® exp(jLs'z(,k“))
(2.19)
where A is the M X N truncated DFT matrix with M = 2N—-1, A¥ is the N X M truncated IDFT matrix, d; is the
M x 1 desired PSD, u is the N X 1 desired amplitude envelope, and £(-) extracts the argument phase.

Spectral nulls may be incorporated into the desired PSD d¢ over the set of frequency indices to null A by enforcing
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dip =0 formeA.
(2.20)

The desired PSD d; is not otherwise reshaped, due to considerations of increasing computational cost for real-time
implementation. Imposing the null constraint in (2.20) via the alternating projections of (2.19) can produce spectral
notches with depths up to 20 dB. Moreover, this process can require hundreds of iterations that would generally
preclude real-time operation. Therefore, in this implementation notched PRO-FM via (2.19) and (2.20) is used to
roughly shape the entire waveform spectrum, including the formation of shallow notches, and then ZOROW [159] is
applied to complete the notching process. It has been found that at least initiating notch formation with PRO-FM

facilitates faster convergence for subsequent ZOROW application, which is likewise iterative.

The ZOROW formulation operates on the version of the discretized waveform at the k = K terminal

PRO-FM iteration, which we shall denote as
s, = e/
T
(I)p = [¢1,p ¢2,p ¢)Np,p]

(2.21)

This signal representation conforms to the zero-order hold model employed by the SDR DAC, in which the DAC input
sample is held constant for Ts seconds. The resulting analog signal is then fed through a reconstruction filter to
suppress the repeated images outside the fundamental frequency interval of [—f;/2, +f5/2]. It was shown in [158]
that perfect Nyquist reconstruction can be realized for a pulsed (i.e. time-limited) signal given sufficient sampling of
the analytical spectrum. For the ZOROW waveform representation [159], this sampled analytical spectrum has the

form
sin(rf;, Ts) S
Sp(fm' ‘bp) = Tmsz exp (—j(anm(n —.5)Ts + ¢n.p))
(2.22)
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where f,, = mAf for integer m on the interval —co < m < oo aslong as Af < 1/(2T). Noting that (2.22) takes the
form of a discrete Fourier transform (DFT) with an imposed sinc( - ) envelope, it can be calculated efficiently using
a fast Fourier transform (FFT). The ZOROW formulation [159] then employs the cost function

J=min )15, (e 0,

meA

(2.23)

where the summation corresponds to the frequency interval(s) A for which notching is required. The gradient of

(2.23) with respect to ¢, is then determined for use in gradient-descent optimization as

I()q+1) - ;q) +ng}(f)
(2.24)
where p, is the step-size based on a simple back-tracking technique [179] and
(@) -8 wheng =0
Br = { g,(,q) + pgéq_l) otherwise
(2.25)

is the search direction at the q*" iteration. Here 0 < p < 1 dictates the type of gradient-descent being used and it

can be shown that (2.25) can be efficiently computed via
g’ = 2 im {&¥ ((Asy”) O Winc) © 5,1}
(2.26)

Here Im{ -} extracts the imaginary part of the argument, A¥ is the M X N truncated inverse DFT matrix, (-)*

denotes complex conjugation, sz(,q) is the discrete signal vector from (2.21) at the g*" iteration of ZOROW, and

Wiinc is the length M vector representing the sinc( - ) envelope in (2.22) with the unnotched portions replaced by

zeros. With the gradient expressed in this manner it can be efficiently computed using FFTs [13, 180].
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The gradient-descent implementation in [158, 159] relies on a “heavy ball” framework [181] with a
backtracking technique [179] to select the step-size. However, backtracking involves determination of cost function
values that can be inefficient to compute on an FPGA. That said, it has been observed for this formulation that the
use of standard steepest descent (p = 0) combined with backtracking via a simple line-search method tends to
converge quickly to a constant step-size value. Thus g is set to 1 for this FPGA implementation, which has been

found to be less than the smallest optimized step-size obtained by backtracking.

As an example, Figure 88 illustrates the mean power spectra of ¢ = 1000 random FM waveforms
containing a central spectral notch location spanning 10% of the band. These waveforms were generated using only
K = 2 PRO-FM iterations and either Q = 6 or 1000 ZOROW iterations. Significant notch depth can clearly be
achieved via Q = 1000 iterations, though the Q = 6 case is applied for FPGA implementation. Figure 89 compares
this particular implementation in terms of convergence over 1000 iterations to other gradient-descent approaches
[182] when a spectral notch is placed in the center of the spectrum. While the heavy ball scheme (yellow trace) is
the best overall after 1000 iterations, this simple approach involving straightforward steepest descent (SD) without
backtracking yields the best performance after the first 100 iterations. Since real-time operation limits the number

of feasible iterations, this streamlined approach is clearly an attractive solution.
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Figure 88: Mean power spectra of PRO-FM / ZOROW waveform sets for a central notch location spanning 10% of the
band after K = 2 PRO-FM iterations and Q = 6 and 1000 ZOROW iterations. Per [159], notches are also placed at

the band edges to facilitate spectral containment prior to DAC reconstruction.
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2.5.2. IMPLEMENTATION CONSIDERATIONS

A block diagram of the SDR cognitive radar architecture during early development is shown in Figure 90.

The RF environment is sensed at the receive port of the SDR, where the signal is frequency down-converted and

quantized into in-phase & quadrature channels at 100 MSamples/s, processed by a high throughput FFT performed

on the FPGA, and then continuously streamed to the host computer. Here FSS [154] is performed on the host

computer to identify the spectral locations of RFI within the 100 MHz band during the radar listening periods.

The identified RFI spectral locations are returned to the SDR, where the PRO-FM / ZOROW notched waveform

generation process is performed.
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Figure 90: Cognitive radar architecture on the SDR during early development. See [140] for further details.
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The maximum time Tpg; required to generate each waveform establishes the minimum feasible pulse repetition
interval (PRI) and thus the maximum PRF for cognitive operation. However, a latency also exists between the
observance of changes in the RFl and when FSS responds with the appropriate notch locations, which currently
establishes the minimum adaptation interval T,q.p - Consequently, while a new waveform is generated on a
per-PRI basis, the notch locations for each waveform are currently updated by FSS at a rate of once every R PRIs
(depending on the PRF employed). Figure 91 exemplifies a timing diagram of the SDR operation where the RFI

changes every 4 PRIs, but the radar adaptation latency is R = 3 PRls.

PROFM 3 dB Bandwidth

Tadapt

Notched
OFDM RFI
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=
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Figure 91: Timing diagram of SAN cognitive radar adjusting a spectral notch location to coincide with dynamic RFI,

where T,qapc = 3Tpg; for this example.
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The FPGA code architecture was developed such that board resources are conservatively utilized, timing
constraints imposed by the PRI (< 1ms desired) are met, and notch depths in the waveform are maximized under
these conditions. As such, K = 2 iterations of PRO-FM was deemed sufficient to impose a preliminary spectral shape
followed by Q = 6 iterations of ZOROW, thereby realizing ~25 dB of notch depth relative to peak power.
As illustrated in Figure 88, greater notch depth could be achieved on the SDR, though doing so would alter the
response time trade-space. With this parameterization, the SDR supports cognitive spectral notching at a
PRF up to 2.2 kHz, a minimum adaptation interval of T,qa,: = 3ms, and can incorporate multiple spectral notches
per waveform. Thus, the adaptation rate R is 7 PRIs at the highest PRF supported during early development.
All FPGA processing, including the implementations of PRO-FM and ZOROW for notched waveform generation,
is performed using FFTs, inverse FFTs, multiplies, and additions in a burst streaming format compatible with a
commercial off-the-shelf (COTS) SDR. The final FPGA resource utilization was at ~30%, thereby providing the

possibility for additional upgrades.

2.5.3. EVALUATION OF REAL-TIME OPERATION

To characterize the behavior of the real-time cognitive SAN architecture on the SDR, various RFI patterns
were generated and resulting performance assessed. The SDR operates at a center frequency of 2 GHz and measures
complex baseband data after receive analog down-conversion based on a 100 MHz sample clock. The SAN
implementation has an adaptation interval of R = 7 PRIs, a pulse duration of T, = 2.56yus, and PRI duration of

Tpri = 450.6pus. The RFI test cases include

e C(Case 1: Three swept-frequency tones with 15 ms or 5 ms dwell times

e (Case 2: Three independent 5 MHz bands of OFDM subcarriers randomly hopping with dwell times of
15 ms

e Case 3: One contiguous 40 MHz band of OFDM subcarriers randomly hopping with a dwell time of

15 ms

An independent arbitrary waveform generator (AWG) is used to generate the RFl scenarios that are combined with

the radar transmissions in closed loop for subsequent cognitive radar performance testing.
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Figure 92 shows a spectral capture of three independent frequency tones (Case 1) as well as a
corresponding notched random FM waveform generated by the SDR. Figure 93 shows a waterfall spectrogram
(frequency content versus time) when the RFI dwell time is 15 ms. With a response time of T,q,pc = 3ms the SAN

cognitive radar is able to respond relatively quickly and form multiple notches that coincide with the sensed RFI.
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Figure 92: (Case 1) Spectrum capture showing three tonal interferers (red) and the SAN radar spectrum (blue) with

collocated notches.
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Figure 93: (Case 1a) Waterfall spectrogram versus time for RFl comprised of three stepped tones (vertical pink bars)

and the SAN radar spectrum (horizontal yellow lines) with notches. The RFI changes every 15 ms.

For the same case, when the dwell time of the three swept tones is commensurate with the adaptation speed
of this SAN implementation, notching alignment accuracy is observed to degrade rather significantly, as in Figure 94.
For this reason, ongoing work investigated how adaptation latency can be further reduced. For environments in which
the RFI exhibits observable patterns, prediction was explored as means to anticipate where notching is likely to be
required so that corresponding waveform generation can be initiated earlier [183]. The concept of meta-cognition

has been investigated to examine when operational cognitive schemes may function optimally [184-186].
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Figure 94: (Case 1b) Waterfall spectrogram versus PRI time for RFI comprised of three stepped tones (vertical pink

bars) and the SAN radar spectrum (horizontal yellow lines) with notches. The RFI changes every 5 ms.

Figure 95 shows a scenario in which the RFI consists of three 5 MHz bands comprised of OFDM subcarriers
(Case 2) that change spectral locations randomly every 15 ms. The same 7-PRI latency is again observed, with the
notch widths and locations adjusting according to the observed RFI. For randomly changing RFI, presuming no
discernible pattern is available, this manner of reactive mode is more appropriate than a predictive mode like [183].
Moreover, while the persistent RFl around —33 MHz is a random occurrence in these results, such an outcome could
occur more frequently in practice if the RFl is likewise employing some form of dynamic spectrum access. Specifically,
the two systems could potentially achieve a steady-state condition in which it is more beneficial from a mutual signal-
to-interference-plus-noise (SINR) perspective for both the radar and the other user to maintain the same spectral

disposition. Of course, this manner of “locked in” behavior may not require spectral maneuver freedom.
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Finally, Figure 96 shows the cognitive SAN radar adapting to a single 40 MHz band of OFDM subcarriers
(Case 3) that changes spectral locations randomly every 15 ms. The 7-PRI adaptation latency is once again observed.
However, this result highlights the fact that, while transmit spectral notching generally permits more overall
bandwidth to be preserved and is more robust to clutter modulation relative to a sense-and-avoid (SAA) mode
[140, 152], the SAA may still be preferred in some instances. Specifically, the time interval from 210 to 223 ms in
Figure 96 illustrates that SAN provides access to both sides of the remaining bandwidth. However, when significant
RFI content is present in an off-center portion of the available band (223 to 240 ms and beyond in Figure 96) the SAA
approach would realize essentially the same spectral content as SAN at a lower computational cost, which would

translate into lower response latency.

Powe

-40 -20 0 20 40
Baseband Frequency (MHz)

Figure 95: (Case 2) Waterfall spectrogram versus PRI time for RFlI comprised of three 5 MHz bands of OFDM
subcarriers (vertical pink bars) and the SAN radar spectrum (horizontal yellow lines) with notches. The RFI changes

every 15 ms.
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Figure 96: (Case 3) Waterfall spectrogram versus PRI time for RFI comprised of one 40 MHz band of OFDM subcarriers

(vertical pink bar) and the SAN radar spectrum (horizontal yellow lines) with notches. The RFI changes every 15 ms.

2.5.4. CONCLUSIONS

A sense-and-notch (SAN) cognitive radar approach involving the use of spectrally notched, random FM
waveforms has been implemented and demonstrated for real-time operation on a COTS SDR. The waveform
generation process only requires simple FPGA resource blocks including FFTs, multiplications, and additions. The
early development SDR architecture supported PRFs up to 2.2 kHz, can incorporate multiple spectral notches per
waveform, and achieves notch depths of 25 dB relative to peak power. This capability for operational radar modes
such as moving target indication (MTI) in the presence of dynamic RFl is evaluated next. To improve the adaptation

latency, the FSS algorithms is offloaded from the host computer to the FPGA.
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2.6. REAL TIME IMPLEMENTATION OF SENSE-AND-NOTCH RADAR (LATE DEVELOPMENT)

Here we demonstrate the final cognitive evaluation step in which the sense-and-notch SDRadar operates
in real-time in an open-air setting, performing moving target indication (MTI) processing (except for clutter
cancellation) in the presence of a dynamically hopping interferer. This implementation is shown to support pulse
repetition frequencies (PRFs) up to 4.4 kHz, meaning new interference-responsive waveforms can be produced at
that rate, while achieving a transmit notch depth of 25 dB relative to peak power (greater depth is possible with

additional computational resources).

This work represents the culmination of a multi-year effort to achieve a real-time sense-and-notch radar
capability that can contend with highly dynamic spectrum users. It consequently involves the intersection of practical
waveform design, a novel method for efficient spectral notch generation, RF systems engineering for physical
deployment, field-programmable gate array (FPGA) implementation for real-time processing, and assessment of a

performance vs. computation trade-space.

Specifically, the FPGA of an Ettus x310 SDR was used to implement this SDRadar capability, consisting of
the fast spectrum sensing (FSS) [154] algorithm to quickly assess the portions of the band occupied by other users
on a per-pulse basis, followed by incorporation of corresponding spectral notches within a nonrepeating RFM
waveform and the subsequent open-air transmission. Aspects of this approach were previously assessed in [152]
using open-air measurements, though notched waveform generation was not yet real-time, and in [169] at real-time
speeds, though not yet in an open-air setting. Here these attributes are combined to realize full sense-and-notch

functionality in real-time for an MTI application.
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2.6.1. REDUCING THE ADAPTATION LATENCY

The stages within this sense-and-notch method are outlined in Table 7, which also includes the latency of
each stage when implemented on the FPGA of the SDR. The first stage is clearly the spectrum sensing process, which
uses the FSS algorithm from [154] that quickly identifies and aggregates a “good enough” partitioning of the
operating band into appropriately sized subbands, which either do or do not contain a meaningful amount of RFI.
The spectral locations and widths of the RFI-occupied subbands, collected in A, then inform where spectral notching

is necessary.

Table 7: Sense-and-notch stages with latencies

Algorithm Latency
Fast Spectral Sensing (FSS) 120 us
Pseudo-Random Optimized FM 28 us /
(PRO-FM) iteration
Zero-Order Reconstruction 28 us /
Optimization of Waveforms (ZOROW) iteration

A block diagram of the SDRadar cognitive radar architecture is shown in Figure 97. The RF environment is
sensed at the receive port of the SDRadar, where the signal is frequency down-converted and quantized into
in-phase & quadrature channels at 100 MSamples/s, processed by a high-throughput FFT performed on the FPGA,
and then continuously streamed to the host computer. Relative to [169], in which the latency of FSS on the host PC
was Trss = 3.1ms and therefore served as the bottleneck in RFl identification, it has now been integrated onto the

FPGA to operate in 120 ps, a 25x reduction.
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Figure 97: Cognitive radar architecture on the SDRadar

The overall adaptation time T,qap: dictates how quickly the overall implementation can identify available spectrum

and synthesize waveforms in reaction to environmental changes. It can be expressed as

Tagapt = Trss + Tpro + Tzorow

=120 + 28K + 28L ps
(2.27)

where the lower line captures the currently achievable process times as implemented on the x310 FPGA, for
K and Q the respective number of iterations for PRO-FM and ZOROW. Here K = 2 and Q = 6 iterations are used,

still realizing 25dB spectral notches relative to peak power. Consequently, the adaptation delay is T,gape = 344 ps.

In [169], a PRF of 2.22 kHz (Tpg; = 550.6 pus) was used. Software modification in the FPGA since then to
operate the clock at twice the rate (from 100 to now 200 MHz), permits PRF values up to 4.4 kHz (Tpg; = 225.3us).
Therefore, while the implementation in [169] incurred a 7-pulse latency (Thqape = 3.1ms) at the lower PRF, the new
instantiation could either update with no latency at the 2.22 kHz PRF or with a 1-pulse latency at the 4.44 kHz PRF.
Here the latter is examined, meaning that as the rate of RFI hopping increases there will be a growing number of
pulses in which the RFI and notch locations are mismatched (i.e. “collisions”). The reason for choosing this
arrangement is because, in reality, there would be a degree of randomness that would almost certainly lead to some
percentage of pulses with collisions. If further latency is acceptable, based on an expectation of little/no RFl hopping,
then deeper notches are also achievable via additional ZOROW iterations. Moreover, as SDR and RF-SoC technology

progresses, these limits will become less restrictive.
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2.6.2. REAL-TIME COGNITIVE SENSE-AND-NOTCH MOVING TARGET INDICATION

In [152] an open-air MTI test was performed based on prior observation and determination of notched
waveforms, i.e. not reacting in real-time. Here the test is repeated using the SDRadar, along with the procedure
outlined above, to generate new notched waveforms in real-time as the RFl moves around in frequency. As before,
this open-air test took place on the roof of Nichols Hall on the University of Kansas campus, observing the
intersection of 23rd and lowa streets roughly 1.1 km away. Figure 98 provides a block diagram of test setup
components, while Figure 99 and Figure 100 respectively show photos of the SDRadar (using separate

transmit/receive antennas) and the location of the nearby RFl source.

Ettus x310 VBFz-3590+ | VA-82-213
x— 22 ~
KPPA-23-3GHZ (x2)
~C
[N\
@ " “\v
ZX60-3800LN+ VBFZ-3590+

Tektronix AWG 70002A

Channel 1 L

Vivaldi Antenna

Figure 98: Test setup overview, with sense-and-notch radar (top) and dynamic interferer (bottom)

Figure 99: Open-air test setup: Ettus x310 SDRadar (white oval) and illuminated traffic intersection (green oval)
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Figure 100: Open-air test setup: interference source (red oval)

The SDRadar operates at 3.5 GHz and measures complex baseband data after receive down-conversion
based on a 100 MHz sample clock. The pulse duration is T, = 2.56ps, which corresponds to a duty cycle of about
1.2 percent at the 4.44 kHz PRF. Each CPl comprises P = 1000 unique pulsed waveforms. The RFl source is produced
by a Tektronix AWG connected to a quad-ridge horn antenna, which transmits a single contiguous signal comprised
of OFDM subcarriers having a 10 MHz bandwidth that randomly hops in frequency over the operating band at time
intervals of Trp; , Which corresponds to a hopping rate of fgp; = 1/Tgrp; - In addition to a stationary RFI case,
interference dwell times of Trpr =50ms,10ms and 0.6 ms are considered, which correspond to
frrr = 20 Hz, 100 Hz and 1.66 kHz. A full-band RFM waveform case with no interference present is included for
comparison. For Tpg; = 225.3us, these cases amount to hopping of roughly 5, 23, and 375 times during the CPI
(the RFl and SDRadar are not synchronized so the precise number could vary). While only a single hopping RFI source
is considered here, no change is needed to realize an arbitrary number of RFI sources/notches. Of course, further
degradation is expected due to less available bandwidth for the radar to operate. Moreover, because the focus here
is to demonstrate real-time notched waveform design/generation, clutter cancellation has not yet been

incorporated.
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To establish a baseline case, Figure 101 illustrates the range/ Doppler response for a CPI of full-band
PRO-FM waveforms when no interference is present. Movers are clearly detectable against the background.
However, once the RFl is turned on (Figure 102), the movers are no longer visible. When sense-and-notch operation
is engaged for this stationary RFI case, movers once again become visible (Figure 103). While arguably not necessary
in this case, each notched waveform in the CPl is produced according to real-time sensing of RFl on a per-pulse basis.
Comparison of the background responses in Figure 101 and Figure 103 shows an increase of a few dB for the latter,

which is due to notch depth being limited to 25 dB here as a trade-off for real-time responsiveness.
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Figure 101: Range-Doppler plot of full-band PRO-FM without RFI, intended as the baseline comparison. All radar

operations are performed in real-time via the SDRadar.
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Figure 102: Range-Doppler plot of full-band PRO-FM with stationary RFI, intended as the baseline comparison.

All radar operations are performed in real-time via the SDRadar.
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Figure 103: Range-Doppler plot for sense-and-notch PRO-FM with stationary RFI. All radar operations are performed
in real-time via the SDRadar.
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The RFIl is now allowed to change dynamically at different rates, as illustrated in Figure 104 through Figure 106.
It is observed that hopping every 50 ms in Figure 104 is qualitatively the same as Figure 103 because the RFI hopping
rate is slow enough that additional clutter modulation induced by dynamic notching remains below the background
response from RFl leakage. As the hopping rate increases to occurring every 10 ms in Figure 105, clutter modulation
begins to arise that can mask movers if not properly compensated. However, the many movers are still visible.
Finally, when the hopping increases again to changing every 0.6 ms, Figure 106 shows that clutter modulation has
now grown to mask the movers. Moreover, with the PRI interval of Tpg; = 225.3ps relative to the RFl hopping every
Trrr = 600ps, the number of latency-induced collisions grows significant. In short, there is a need for further

reduction of the adaptation latency T,4ap: if RFI becomes more dynamic.
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Figure 104: Range-Doppler plot for sense-and-notch PRO-FM with RFI hopping every 50ms. All radar operations are

performed in real-time via the SDRadar.
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Figure 105: Range-Doppler plot for sense-and-notch PRO-FM with RFI hopping every 10ms. All radar operations are

performed in real-time via the SDRadar.
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Figure 106: Range-Doppler plot for sense-and-notch PRO-FM with RFI hopping every 0.6ms. All radar operations are

performed in real-time via the SDRadar.
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2.6.3. CONCLUSIONS

A real-time open-air experimental demonstration of a cognitive sense-and-notch radar capability has been
shown to have practical feasibility. This approach addresses the limiting factors of physical generation of on-the-fly
notched waveform design, hardware fidelity effects, and acceptable latency for response time. Of course, the
increasing complexity of the RF environment, including a multiplicity of distributed and dynamic spectrum users, will
continue to drive the need for faster responses of higher quality (in this context, deeper) notches. As required
adaptation rates are driven faster by greater congestion, techniques to mitigate clutter modulation effects also

become critical.

2.7. FINAL REMARKS

With the available spectrum becoming increasingly congested, spectrum sharing is inevitable. From the
radar perspective, significant fundamental challenges must be addressed to be a “good spectral neighbor” while
simultaneously achieving sufficient scatterer detection performance. Foremost, the radar adaptation latency is the
major driving factor towards mitigating interference between the radar and other spectral users. If an LTE signal is
frequency hopping within an operational band, the radar may be required to spectrally null the transmission in a
time-varying pattern within a coherent processing interval, which creates fundamental dynamic range limitations
when applying standard range-Doppler processing. Additional post-processing methods (such as DeCCaF) are critical

to achieve sense-and-notch radar performance requiring large dynamic ranges over extended processing intervals.

The global bounds have been determined for both range sidelobe and range-Doppler sidelobe minimization
when waveform/filter spectral notches are present in the CPI. Designing waveforms to the global optimum power
spectrum template, followed by subsequent least squares mismatched filtering, was shown to achieve the global
optimum bound after coherent integration with modest mismatch loss. However, for real-time implementation,
sub-optimal solutions are required to meet timing requirements and rapidly react to the presence of RF users.
The sense-and-notch radar prototype implementation presented demonstrates the capability to achieve real-time
interference avoidance for spectrum sharing applications using commercial-of-the-shelf (COTS) hardware.
Spectral coexistence is quite feasible.
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4. APPENDIX

4.1. TABLE OF NONLINEAR FM WAVEFORMS

The desired starting and stopping frequencies are f; and f,, the center frequency is f, = fz;fl + f1, the approximate

swept bandwidth is B = f, — f;, and the pulse width is T;,. The arbitrary factors are in the ranges of ¢; € (0,1),

c; € (0, g), c3 € (0,), ¢4 € (1,), c5 € (1,2].

For the piecewise defined functions, —0.5 < f; < f{ < 0 < f; < f, < 0.5 are intermediate frequencies such that

By=f,—f,,Bi=f,'—fi'and By = fi — fi.

Table 8: Nonlinear FM Waveform Equations
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jZn(fC(t+T7p)+fgfi(t)dt) [96]

fi 1 [2nf;
—Tp[§+gsm< B

fi 1 (Zﬂfi
—T.|=+ —5ij
P [B + - sin B

Scook(t) =€

)=

) + %cos (%flf sin (%fl)] —-t=0

(Use nonlinear solver)

N |5
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N——
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Spoly(t) =e€ \ }
- te(0,T, 98,99
i2n<fct ’f{l—fﬁz -ln<1 : (flefZ)(T—;D) ( p) [ |
supm(t) = e
fi>0
f2>0
sterm (8) = e 2nlfettly ritoa) t€(0,T,) (100]
£ G
fi®)=fi+B (T_>
p
sserm(t) = eIn(fet+lp ficoae) t€(0,T,) [100]

fi(t) = f; + Bsin® (Ti (%))
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