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Abstract 

Even for a fixed time-bandwidth product there are infinite possible spectrally-shaped random 

FM (RFM) waveforms one could generate due to their being phase-continuous. Moreover, certain 

RFM classes rely on an imposed basis-like structure scaled by underlying parameters that can be 

optimized (e.g. gradient descent and greedy search have been demonstrated). Because these 

structures must include oversampling with respect to 3-dB bandwidth to account for sufficient 

spectral roll-off (necessary to be physically realizable in hardware), they are not true bases (i.e. not 

square). Therefore, any individual structure cannot represent all possible waveforms, with the 

waveforms generated by a given structure tending to possess similar attributes. Unless of course we 

consider over-coded polyphaser-coded FM (PCFM), which increases the number of elements in the 

parameter vector, while maintaining the relationship between waveform samples and the time-

bandwidth product. Which presents the potential for a true bases, if there is a constraint either 

explicit or implicit that will constrain the spectrum. Here we examine waveforms possessing different 

attributes, as well as the potential for a true basis which may inform their selection for given radar 

applications.   
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Chapter 1 Introduction 

1.1 Radar Background 

Radar was developed in the early 1900s independently by several different countries [1,2,3]. By 

1922 the Naval Research Laboratory, was using radar to detect wooden ships on the Potomac and 

would accidentally detect aircraft by 1930. Radar, which is an acronym for Radio Detection And 

Ranging, sends out a signal and listens for an echo or reflection from a target. Using the reflected 

signal and various processing techniques, the target location and velocity can be determined. From 

the 1930’s, radar technologies has improved leaps and bounds spreading their use across a variety 

of applications. This led to an increase in popularity over the years, from being used by law 

enforcement for traffic radars to various applications in sports. As a result most people know what 

radars are, but they do not know the complicated concepts and technologies composing the system. 

Therefore, the goal of this chapter is to introduce the necessary background information in order to 

assist the reader in understanding the topic of this thesis.  

1.2 Radar Ranging 

Beginning with the basics of radar, for a monostatic radar operating in a pulsed-Doppler mode 

the radar will transmit a signal and listen for a reflection from a target. The range from the radar to 

the target can be determined by the roundtrip travel time, 𝜏𝑜 it takes the signal to travel there and 

back [2,3],  

𝑅𝑜 =
𝑐𝜏𝑜
2
, (1.1) 

where the signal, due to electromagnetics, propagates at the speed of light, 𝑐 ≈ 3 × 108 m/s.  But 

what about the case where there are multiple targets? For two targets, that are at 𝑅𝑜 and 𝑅1, the 

reflected signal would return still at time 𝜏𝑜 from the first target and the return from the second 

target would arrive at 𝜏1. While this seems simple, there are other factors to consider here, such as 



how far the targets are spaced apart and what the pulse duration is. In Figure 1-1, the scenario 

described above is depicted, 

 

Figure 1-1: Radar reflection from two point targets 

If the targets are in close enough proximity, the reflected signals may overlap in time, causing them 

to interfere with each other. The radar’s ability to resolve two targets within close proximity is known 

as range resolution Δ𝑅, from the definition in (1.7), we see Δ𝑅 is related to the pulse width 𝑇, or also 

inversely the signal bandwidth 𝐵, 

Δ𝑅 =
𝑐𝑇

2
=
𝑐

2𝐵
, (1.2) 

Being a monostatic radar operating in a pulsed mode, there are some impediments that we must 

consider. Operating in a pulsed mode implies that at a set interval the radar transmits a signal, this is 

known as the pulse repetition interval 𝑇𝑃𝑅𝐼 . Due to 𝑇𝑃𝑅𝐼  there is a maximum range, defined in (1.3), a 

target may be from the radar. Every 𝑇𝑃𝑅𝐼  a new pulse is being sent out, the reflection from the target 

must return before the next pulse or else it will be considered ambiguous. Therefore, an ambiguous 

target will appear as if it is closer to the radar system than it really is, this scenario is illustrated in 

Figure 1-2. As stated previously, there have been a lot of improvements in radar since the 1930’s and 

that includes the disambiguation of targets.  



𝑅𝑚𝑎𝑥 =
𝑐𝑇𝑃𝑅𝐼
2
. (1.3) 

 

 

Figure 1-2: Radar reflection from a point target within 𝑅𝑚𝑎𝑥  and a point target beyond 

1.3 Signal-to-Noise Ratio 

When the radar emits a signal, it is not the only electromagnetic signal that is propagating 

through free space. Once the reflected signal is received, it will have interacted with other 

electromagnetic waves, such as noise. There are different types of noise and noise sources, for 

example cosmic noise spawns in outer space, solar noise generated by the sun, and thermal noise. 

Typically, the main culprit corrupting the reflected signal is thermal noise. Thermal noise stems 

internally from the receiver itself due to the random movement of thermally charged electrons. Since 

the noise is considered a random signal due to the randomly varying amplitude and phase, it is 

uncorrelated sample to sample and uncorrelated with the received signal. Therefore, the signal 

power and noise power add to determine the total power.  

The ability to accurately detect targets is dependent on the signal-to-noise ratio (SNR). The higher 

the signal power relative to the noise power, the higher the SNR, which facilitates the detection and 



keeps false alarms to a minimum. As seen in Figure 1-3, as the noise power increases the underlying 

transmitted signal becomes harder to distinguish, 

 

Figure 1-3: Different noise powers and effect on the signal-to-noise ratio (SNR) 

While the SNR is simply the received signal power to the noise power, there is a little more to 

calculating the power ratio than that. The received power is derived from the radar range equation, 

which considers transmitted power 𝑃𝑡 , antenna gain(s) 𝐺𝑡 , carrier wavelength 𝜆𝑐 , target radar cross 

section (RCS) 𝜎, and the target range 𝑅. Due to noise being uncorrelated sample to sample, the 

thermal noise power can be taken as uniformly distributed over the operating bandwidth. Thus the 

SNR for a monostatic radar can be calculated as, 

𝑆𝑁𝑅 =
𝑃𝑟
𝑃𝑛
= 

𝑃𝑡  𝐺𝑡
2 𝜆2 𝜎

(4𝜋)3𝑅4 𝑘𝑇𝑜𝐹𝐵
, 

(1.4) 



where 𝑘 = 1.38 × 10−23 J K−1 is Boltzmann’s constant, 𝑇𝑜 = 290 𝐾 is the absolute temperature, and 

𝐹 is the receiver noise figure.  

For a radar system that has poor SNR, there are options to make improvements the easiest being 

to increase the transmitted power. Conceivably by increasing the pulse duration 𝑇, the transmitted 

power is also increased, but this is at the cost of range resolution. Thankfully, there are other options 

to increase the transmit power, which will be discussed shortly. From (1.4) we can infer other options 

to increase SNR, one could increase the antenna gain 𝐺, decrease the target range 𝑅, decrease the 

noise figure 𝐹, decrease the receiver bandwidth 𝐵, or change the operating frequency. While these 

are potential options, their feasibility is questionable as they may require changes in hardware or 

adversely affect performance elsewhere.  

1.3.1 Pulse Integration 

As discussed previously, there is another option to increase the transmit power without 

adversely affecting Δ𝑅. When the radar is operating in a pulsed mode, the transmitted energy can be 

increased by emitting more pulses [1,2]. Processing of the received pulses is then performed through 

coherent, noncoherent, or binary integration. For this thesis, only coherent and noncoherent 

integration will be discussed. Coherent integration utilizes the amplitude and phase information 

from the individual pulses to average the received data. The underlying objective of coherent 

integration is for the signal phase to add constructively from pulse to pulse, allowing the signal 

amplitude to multiply by the number of pulses emitted. It also operates under the assumption that 

the noise will be uncorrelated from pulse to pulse. In the case that a target is moving and the pulses 

are out of phase, there are processing techniques that can be performed prior to coherent integration 

to mitigate this issue.  By utilizing coherent integration, we are thus improving the SNR from (1.4) to,  

𝑆𝑁𝑅𝑐𝑜ℎ =
𝑃𝑡  𝐺𝑡

2 𝜆 𝜎 𝑁𝑝
(4𝜋)3𝑅4𝑘𝑇𝑜 𝐵𝐹

. 
(1.5) 

Improving the SNR by a factor of the number of pulses 𝑁𝑝. 



Another option is to perform noncoherent integration, which only requires the magnitudes from 

the measured samples. By discarding the phase information of the individual pulses, processing the 

pulses from a moving target is easier. On the other hand, the SNR cannot be wrapped up into a nice 

equation like (1.5), because the signal and noise components are no longer easily separated. 

Therefore, in order to determine the SNR improvement, knowledge about the probability density 

functions (PDF) for the noise-only case and the signal-plus-noise-only case is required. In general you 

can count on the SNR improvement from noncoherent integration to be,  

√𝑁𝑝 𝑆𝑁𝑅𝑐𝑜ℎ ≤ 𝑆𝑁𝑅𝑛𝑐 < 𝑁𝑝 𝑆𝑁𝑅𝑐𝑜ℎ . (1.6) 

While 𝑆𝑁𝑅𝑛𝑐  is more difficult to determine, noncoherent integration is easier to perform than 

coherent.  

1.4 Pulse Compression 

What else can be done to increase the transmit power? Of course there is always the option to 

use a transmitter that outputs more power, but this change presents several undesirable 

repercussions. Increasing the bandwidth appears to be a good alternative, but as stated previously 

because of the inverse relationship with the pulse width 𝑇, this would adversely affect Δ𝑅. Thankfully, 

a technique was developed to decouple 𝑇 and Δ𝑅 known as pulse compression. Pulse compression uses 

various types of modulation in the interest of increasing signal bandwidth 𝐵, while still transmitting 

a longer pulse. Then once the echo is received, a matched filter is applied to the return to compress 

the long pulse to approximately 1/𝐵. Typically the modulation employed is frequency or phase 

modulation, due to the detrimental effects amplitude modulation has on the transmitter and 

detection efficiency. By utilizing pulse compression, a radar can have its cakes and eat it too, by still 

achieving the energy of a longer pulse but retaining Δ𝑅 of a short pulse.  

 One of the most widely known pulse compressed radar waveforms is the linear-frequency 

modulated (LFM) waveform. The LFM waveform transmits a constant amplitude rectangular pulse 

of length 𝑇. Which is then frequency modulated such that the frequency linearly sweeps the 



bandwidth 𝐵. Also referred to as a chirp waveform, the frequency can linearly increase or decrease, 

denoted as an up-chirp illustrated in Figure 1-4 or down-chirp, respectively. The LFM is defined by, 

𝑠(𝑡) = {
exp (𝑗𝜋 

𝐵

𝑇
 𝑡2) ,

  
0 ≤ 𝑡 ≤ 𝑇

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 .   (1.7) 

The matched filter is exactly as the name implies, it is a filter that is matched to the transmitted 

signal. Using the transmitted signal, the matched filter becomes the time reversed, complex 

conjugate, as shown in (1.8). By using the matched filter on the received signal, we are essentially 

determining the correlation and for this case, it is known as the autocorrelation response.  

ℎ(𝑡) = 𝑎 𝑠∗(𝑡), 0 ≤ 𝑡 ≤ 𝑇. (1.8) 

To visualize the improvement pulse compression provides, the autocorrelation and power spectral 

densities (PSD) of a simple unmodulated pulse is shown in comparison to an LFM waveform in Figure 

1-4. Not only is there an improvement in Δ𝑅, but employing the matched filter in (1.8) also maximizes 

the SNR therefore, also improving detector efficiency. 

 



 

Figure 1-4: Autocorrelation response (top) and power spectral density (PSD) (bottom) of a 

simple unmodulated pulse and linear FM (LFM) waveform 

1.4.1 Autocorrelation Sidelobes 

The autocorrelation shown in Figure 1-4 illustrates great Δ𝑅, but Δ𝑅 is not the only factor that 

affects the ability to detect targets. From Figure 1-4, we see that the peak sidelobe level (PSL) for the 

LFM waveform falls at -13.2 dB and is completely independent of 𝐵𝑇. This sidelobe level poses issues 

when there is more than one target present, especially in the case that one has a much larger return 

than the other. As demonstrated in Figure 1-5, the return from a large scatterer at a delay of 5 𝜇𝑠 

nearly mask the return from a smaller scatterer at 5.5 𝜇𝑠.  

 



 

Figure 1-5: Return of LFM waveform when two targets are present with large difference in 

power returned 

Of course, there are options to mitigate this type of issue, but as usual they come at a cost. For 

example, in the case of LFM waveforms, mismatch filtering can be applied to the received signal but 

recall that the matched filter is the filter that provides the maximum SNR. Therefore, the cost of using 

the mismatch filter comes at the price of a degraded SNR with a loss of, 

𝑆𝑁𝑅𝑀𝑀𝐹 𝐿𝑜𝑠𝑠 = −10 log10 (
∑ |𝑤(𝑛)|2𝑁𝐾
𝑛=1

𝑁𝐾 ∑ 𝑤2(𝑛)𝑁𝐾
𝑛=1

), 
(1.9) 

where 𝑁 is equivalent to 𝐵𝑇 and 𝐾 is the over-sampling factor relative to the 3 dB bandwidth. 

Customarily, the mismatch filter is formed from the matched filter where a window function, such as 

a Hamming, Hanning, or Taylor window, replaces the arbitrary constant amplitude 𝑎 in (1.8). Or 

instead, the spectrum of the received data is tapered with a window function prior to filtering. Along 

with degraded SNR performance, the Δ𝑅 will deteriorate as well.  



1.4.2 Random Frequency Modulated Waveform (RFM) 

Ambiguity of targets, whether that be in range or Doppler are a nuisance for processing. As 

defined back in (1.3), there is a maximum range that a target can extend to before it is considered 

ambiguous. There are a few detection techniques that can solve for the targets true location, such as 

M of N detection, but even so there are still range and Doppler values that are ambiguous. A waveform 

however, that possess random attributes, such as noise radar, is capable of alleviating these 

ambiguities [5,6]. Random FM (RFM) waveforms not only diminish the number of ambiguities, but 

they are constant amplitude and continuous in phase, making them amenable to high-power 

transmitters. The random nature of the RFM waveform implies a non-repeating structure which 

naturally provides the additional sidelobe suppression! Along with the favorable characteristics of 

RFM, there are downfalls, such as range sidelobe modulation (RSM). There are various versions of 

RFM waveforms that have been optimized and experimentally demonstrated in different manners. 

Such as the spectrally-shaped versions of RFM [10] that exhibited improved spectral containment 

and achieved lower range sidelobes. A subclass that utilizes a parameterized structure will be the 

main character in the next few chapters.  

Chapter 2 Radar Signals 

2.1 Radar Phase Codes 

There are different methods to generating a pulse compressed radar waveform and one such 

method is by utilizing phase codes. For a phase-coded waveform, the pulse to be transmitted is 

divided into subsections, for example a pulse of width 𝑇 can be divided into 𝑁 constant-amplitude 

subpulses, also called chips. Each subpulse will have a width 𝑇p = 𝑇/𝑁, and will be modulated by a 

phase value 𝜃𝑛, as shown in Figure 2-1. The discretized phase values elicited to modulate each 

subpulse is based on a phase constellation. The phase constellation may be composed of two states 



(symbols) or a continuity of symbols that are limited only by the systems numerical precision, known 

as biphase codes and polyphase codes, respectively. 

 

Figure 2-1: Phase-coded waveform structure 

Over the years plenty of research has gone into finding optimal phase codes for radar 

applications. Whether that be biphase or polyphase codes, various families of codes exist that 

examine sidelobe response, sequence length, and in some cases Doppler tolerance. For example, 

Barker codes were discovered in 1953 and achieve a peak sidelobe to mainlobe ratio equivalent to 

the code length [1,2,13]. Granted the maximum code length known at this time for Barker codes is 

13.  

2.2 Polyphase-Coded Frequency Modulation 

With phase codes, the abrupt phase transition between subpulses results in spectral spreading 

with sin (𝑥) 𝑥⁄   roll-off that diminishes the spectral containment. An offshoot of phase codes is 

polyphase-coded frequency modulation (PCFM), which utilizes techniques from communications to 

realize continuous smooth phase transitions, thus improving spectral containment. Nearly identical 



to continuous phase modulation (CPM), PCFM follows similar implementation style but disregards 

aspects that are irrelevant to radar design. Specifically, CPM encodes information for 

communications between users, while PCFM radar waveforms are concerned with designing signals 

that optimally glean information from the illuminated environment.  

 

Figure 2-2: PCFM Radar waveform implementation 

The PCFM waveform implementation, splits the pulse width 𝑇, into 𝑁 consecutive impulses 

separated in time by 𝑇p = 𝑇/𝑁, to form an impulse train. This impulse train is then weighted by a 

vector 𝐱 containing the time-varying digital frequency, i.e., the 𝑛𝑡ℎ pulse is weighted by 𝛼𝑛. The 

weighted impulse train is convolved with a shaping filter 𝑔(𝑡′), where 𝑔(𝑡′) integrates to one over 

the defined interval [0, 𝑇p]. After which, to attain a continuous phase function, an integration stage 

occurs thus forming the contents of the exponential that establish the PCFM waveform. We can 

condense this process and express it as, 

𝑠(𝑡; 𝐱) = exp {𝑗 (∫𝑔1(𝜏) ∗ [∑ 𝛼𝑛 𝛿(𝜏 − (𝑛 − 1)𝑇p)

𝑁

𝑛=1

] 𝑑𝜏

𝑡

0

)}, (2.1) 

where ∗ denotes convolution. While the implementation in Figure 2-2 and (2.1) pertains to first-

order PCFM, this is easily extensible to higher-orders, which will be further discussed in later 

sections.  



2.2.1 First-Order PCFM 

As discussed previously first-order PCFM follows the implementation show in Figure 2-2, but 

what makes it specifically first-order? In order to be first-order PCFM the phase needs to be 

differentiable. In the case a rectangular filter is employed as the shaping filter, the phase trajectories 

after integration of the first-order PCFM, are simply piecewise linear. Along with the requirement of 

differentiability, the span of the parameters is also indicative of the PCFM order and in the first-order 

case, 𝛼𝑛 ∈ [−𝜋, 𝜋]. While this requirement can be relaxed to exceed this interval, which is known as 

over-phasing, this expansion is correlated with a spread in the spectrum.  

When the phase 𝜙(𝑡; 𝐱α) is evaluated, we recognize that the benefit of the PCFM waveform 

structure extends past the basic desires of a radar waveform, like constant amplitude, continuous 

phase, and transmitter amenable implementation,  

𝜙1(𝑡; 𝐱α) = ∑𝛼𝑛 𝑏𝑛(𝑡)

𝑁

𝑛=1

. (2.2) 

Due to the discrete parameter structure, PCFM also facilitates the optimization of the waveform 

parameters, which will be explored in Chapter 3. In (2.2), the phase function is composed of both the 

discretized parameters and the continuous quasi-basis functions. By proper discretization, i.e., 

through adequate oversampling to ensure sufficient spectral containment, the discretized PCFM 

model becomes, 

𝐬 = exp(𝑗 𝐁 𝐱α). (2.3) 

Where columns of the matrix 𝐁, are composed of the quasi-basis functions that are simply delay-

shifted versions of the integrated shaping filter and the vector 𝐱α contain the first-order parameters. 

Again, in the case that the shaping filter utilized is rectangular, the quasi-basis functions become,  

𝑏𝑛(𝑡) = {

0,

(𝑡 − (𝑛 − 1)𝑇p) 𝑇p⁄ ,

1,

   

0 ≤ 𝑡 < (𝑛 − 1)𝑇p
(𝑛 − 1)𝑇p ≤ 𝑡 < 𝑛 𝑇p
𝑛 𝑇p ≤ 𝑡 ≤ 𝑁 𝑇p

, (2.4) 



i.e., for first-order PCFM the quasi-basis functions are a linear ramp to a constant, as shown in Figure 

2-3.   

 

Figure 2-3: First-order PCFM quasi-basis functions 

From (2.4), we see that first-order PCFM has piecewise linear phase trajectories, which will play 

a role in first-order’s ability to represent an LFM waveform. For an LFM upchirp, it is known that the 

frequency linearly sweeps the bandwidth during the pulse width. This arises from the phase of an 

LFM which is, 

𝜙𝐿𝐹𝑀(𝑡) = 𝜋
𝐵

𝑇
𝑡2. (2.5) 

Taking the derivative of the phase with respect to time, the instantaneous frequency is found as, 

𝑓𝐿𝐹𝑀(𝑡) =
1

2𝜋

𝑑

𝑑𝑡
(𝜙(𝑡)) 

=
𝐵

𝑇
𝑡. 

(2.6) 

On the other hand, when first-order is used to represent the LFM waveform, the use of the 

rectangular shaping filter results in a piecewise linear frequency. Therefore, first-order can only 

approximate an LFM waveform, this behavior is highlighted in Figure 2-4 and Figure 2-5. In these 

figures, the frequency excursions of the LFM (orange) are smooth and the first-order approximate 

LFM frequency is observed taking small-steps.  



 

Figure 2-4: Instantaneous frequency of 1st-order approximated LFM and actual LFM 

 

 

Figure 2-5: Focused instantaneous frequency behavior 

 



The integration in (2.1), produces a continuous phase despite the stair stepping behavior that is 

shown in Figure 2-4 and Figure 2-5. After all we are dealing with an FM waveform. But the behavior 

of the instantaneous frequency will be a distinguishing characteristic between the different PCFM 

orders, along with the instantaneous chirp rate! Where chirp rate is the amount of time or rate that 

the frequency changes, for example an LFM waveform has a constant chirp rate. The chirp rate is 

mathematically represented as the derivative of the instantaneous frequency, 

𝜓(𝑡) =
1

2𝜋
 
𝑑

𝑑𝑡
𝑓(𝑡) =

1

2𝜋
 
𝑑2

𝑑𝑡2
𝜙(𝑡). (2.7) 

To explore the differences between the different orders of PCFM and Fourier waveform, we can 

examine the instantaneous phase, frequency, and chirp rate behavior. To ensure a fair comparison 

between the three quasi-basis types, pseudo-random optimized FM (PRO-FM) waveforms [35] were 

used to initiate the waveform sets. Followed by a least-squares in phase mapping to produce the 

appropriate parameters based on the quasi-basis used. Five first-order waveforms were initialized 

using this method and in Figure 2-6 we have the first-order instantaneous phase, frequency, and 

chirp rate illustrated. From this we see that just like Figure 2-4 and Figure 2-5, the instantaneous 

frequency has a step-like behavior, where it is constant and abruptly changes. If we think about how 

this behavior will influence the derivative, we know that the areas of constant slope will be zero and 

the abrupt changes will cause discontinuities; which is exactly what we see in the instantaneous chirp 

rate plot in Figure 2-6.   

  



 

Figure 2-6: Five PRO-FM LS phase mapped initializations of first-order PCFM  instantaneous 

phase (top), instantaneous frequency (middle), and instantaneous chirp rate (bottom) 

 

  



2.2.2 Second-Order PCFM 

Now that 1st-order PCFM has been discussed, higher-order PCFM implementations can be 

introduced, beginning with second-order PCFM. Higher-order PCFM implementations were first 

explored in [16], with the notion that the higher-order implementations had the ability to expand the 

number of physically realizable waveforms. This ability was appealing as it proposed a means to 

address the growing issue of a congested spectrum because of the increase in design space. But what 

do these higher-order PCFM implementations look like?  

As stated previously, the attributes that discern the PCFM order are the number of integration 

stages and the span of the parameters, while the latter may be more lax.  The implementation is 

almost identical to first-order, as shown in Figure 2-7. For second-order PCFM the implementation 

still begins by weighting the impulse train of 𝑁 pulses, by the second-order parameters contained 

within the vector 𝐱β = [𝛽1 𝛽2…𝛽𝑁]
𝑇 . Following the convolution of the weighted impulse train with 

the shaping filter 𝑔(𝑡′′), there are two integration stages, producing a continuous phase function 

from the parameters that represent a time-varying chirp rate.  

 

Figure 2-7: Second-order PCFM implementation 

The process described in Figure 2-7, can be condensed and summarized into the expression 

found in (2.8), where 𝑔2(𝜏) is the shaping filter, 𝜔̅2 is the initial frequency, and 𝜙̅2 is the initial phase.  



In [16], the range of permissible second-order parameters is fully derived, finding that  𝛽𝑛 ∈

[−2𝜋,+2𝜋],  

𝑠2(𝑡; 𝐱β) = exp {𝑗 ( ∫∫ 𝑔2(𝜏) ∗ ∑ 𝛽𝑛 𝛿(𝜏 − (𝑛 − 1)𝑇p)

𝑁

𝑛=1

𝑑𝜏

𝑡′

0

𝑑𝑡′

𝑡

0

+∫𝜔̅2 𝑑𝑡
′

𝑡

0

+ 𝜙̅2)}. (2.8) 

Working under the assumption that a rectangular shaping filter is the filter of choice, evaluation of 

the phase in (2.8) reveals further simplifications can be made similar to those made for the first-order 

PCFM.  

𝜙2(𝑡; 𝐱β) =  ∫∫ ∑𝛽𝑛 𝑔2(𝜏 − (𝑛 − 1)𝑇p)

𝑁

𝑛=1

𝑑𝜏

𝑡′

0

𝑑𝑡′

𝑡

0

+∫𝜔̅2 𝑑𝑡
′

𝑡

0

+ 𝜙̅2. (2.9) 

Performing the double integral in (2.9), still assuming a rectangular shaping filter, the second-order 

PCFM may also be implemented in a discretized form. In previous work such as [12], the first-order 

PCFM quasi-basis was main focus, in [16] the second-order PCFM implementation was touched on 

but the quasi-basis was not fully derived. The following shows the development of the second-order 

quasi-basis used in [17]. To simplify this process, the rectangular shaping filter can be thought of as 

a piecewise function, i.e.,  

𝑔2(𝜏) = {

0, 0 ≤ 𝜏 < (𝑛 − 1)𝑇p

1 𝑇p
2⁄ , (𝑛 − 1)𝑇p ≤ 𝜏 < 𝑛 𝑇p

0, 𝑛 𝑇p ≤ 𝜏 ≤ 𝑁 𝑇p

.  

(2.10) 

Therefore, when the double integral is evaluated, we examine each interval individually, 

  



 0 ≤ 𝜏 < (𝑛 − 1)𝑇p: (𝑛 − 1)𝑇p ≤ 𝜏 < 𝑛 𝑇p: 𝑛 𝑇p ≤ 𝜏 ≤ 𝑁 𝑇p:  

 

ℎ2(𝑡
′) = ∫ 0 𝑑𝜏

𝑡′

0

 

= 0 

ℎ2(𝑡
′) = ∫

1

𝑇p
2  𝑑𝜏

𝑡′

(𝑛−1)𝑇p

 

=
𝜏

𝑇p
2|
(𝑛−1) 𝑇p

𝑡′

 

=
𝑡′

𝑇p
2 −

𝑛 − 1

𝑇p
+ 𝐶 

ℎ2(𝑡
′) = ∫ 0 𝑑𝜏

𝑡′

𝑛 𝑇p

 

= 0 + 𝐶. 

(2.11) 

Using the constant of integration 𝐶 we can ensure that at the border of each region the functions are 

equal, guaranteeing that we have a continuous function, therefore, 

 (𝑛 − 1) 𝑇p: 

0 =
𝑡′

𝑇p
2 −

𝑛 − 1

𝑇p
+ 𝐶|

𝑡′=(𝑛−1) 𝑇p

 

0 =
( 𝑛 − 1)𝑇p

𝑇p
2 

−
𝑛 − 1

𝑇p
+ 𝐶  

0 = 𝐶 

 

𝑛 𝑇p: 

𝑡′

𝑇𝑝
2 −

(𝑛 − 1)

𝑇𝑝
= 𝐶|

𝑡′=𝑛 𝑇p

 

𝑛𝑇p

𝑇p
2 −

(𝑛 − 1)

𝑇p
= 𝐶 

1

𝑇p
= 𝐶. 

(2.12) 

This results in the following expression, which will need to be integrated once more, 

ℎ2(𝑡
′) = {

0, 0 ≤ 𝑡′ < (𝑛 − 1)𝑇p

𝑡′ 𝑇p
2 − (𝑛 − 1) 𝑇p⁄ ,⁄ (𝑛 − 1)𝑇p ≤ 𝑡

′ < 𝑛 𝑇p
1/𝑇p, 𝑛 𝑇p ≤ 𝑡

′ < 𝑁 𝑇p

. 

(2.13) 

Performing the same process again and evaluating each region individually, we find the following, 

  



0 ≤ 𝑡′ < (𝑛 − 1)𝑇p: (𝑛 − 1)𝑇p ≤ 𝑡
′ < 𝑛 𝑇p: 𝑛 𝑇𝑝 ≤ 𝑡

′ ≤ 𝑁 𝑇𝑝:  

ℎ2(𝑡) = ∫0 𝑑𝑡
′

𝑡

0

 

= 0 

ℎ2(𝑡) = ∫
𝑡′

𝑇p
2 −

𝑛 − 1

𝑇p
 𝑑𝑡′

𝑡

(𝑛−1) 𝑇p

 

=
𝑡′2

2𝑇p
2 −

(𝑛 − 1)𝑡′

𝑇p
|
(𝑛−1) 𝑇p

𝑡

 

=
𝑡2

2𝑇p
2 −

(𝑛 − 1)𝑡

𝑇p
+
(𝑛 − 1)2

2

+ 𝐶  

ℎ2(𝑡) = ∫
1

𝑇𝑝
𝑑𝑡′

𝑡

𝑛 𝑇𝑝

 

=
𝑡′

𝑇p
|
𝑛 𝑇p

𝑡

 

=
𝑡

𝑇p
− 𝑛 + 𝐶. 

(2.14) 

Determining 𝐶 to ensure the function is continuous at the boundaries, 

 (𝑛 − 1)𝑇p: 𝑛 𝑇p:  

 
0 =

𝑡2

2𝑇p
2 −

(𝑛 − 1)𝑡

𝑇p
+
(𝑛 − 1)2

2

+ 𝐶|
𝑡=(𝑛−1) 𝑇p

 

0 =
(𝑛 − 1)2𝑇p

2

2𝑇p
2 −

(𝑛 − 1)2𝑇p

𝑇p

+
(𝑛 − 1)2

2
+ 𝐶 

0 = 𝐶 

𝑡2

2 𝑇p
2 −

(𝑛 − 1) 𝑡

𝑇p
+
(𝑛 − 1)2

2

=
𝑡

𝑇p
− 𝑛 + 𝐶|

𝑡=𝑛 𝑇p

 

𝑛2 𝑇p
2

2 𝑇p
2 −

(𝑛 − 1) 𝑛 𝑇p

𝑇p
+
(𝑛 − 1)2

2

=
𝑛 𝑇p

𝑇p
− 𝑛 + 𝐶 

1

2
= 𝐶. 

(2.15) 

Finally, this results in the following second-order quasi-basis functions, 

𝑏𝑛(𝑡) = {

0, 0 ≤ 𝑡 < (𝑛 − 1) 𝑇p

𝑡2 2𝑇p
2⁄ − (𝑛 − 1) 𝑡  𝑇p⁄ + (𝑛 − 1)2 2⁄ , (𝑛 − 1) 𝑇p ≤ 𝑡 < 𝑛 𝑇p

𝑡 𝑇p⁄ + 1 2⁄ − 𝑛, 𝑛 𝑇p ≤ 𝑡 ≤ 𝑁 𝑇p

. 

(2.16) 

Resulting in a piecewise function composed from a quadratic to a linear ramp, as visualized in Figure 

2-8, 



 

Figure 2-8: Second-order PCFM quasi-basis functions 

 Figure 2-8 shows that the phase trajectories are quadratic, exactly like the phase of an LFM 

waveform, which allows second-order to perfectly replicate the well-known Doppler tolerant 

waveform. An LFM waveform is also known for being spectrally contained, since first-order can only 

approximate an LFM, the presumption is second-order is better suited for generating spectrally 

contained waveforms. From the quadratic phase function, we can determine the frequency using a 

variation of (2.6), which leads to the piecewise linear instantaneous frequency function,  

𝜔2(𝑡) =
𝑑

𝑑𝑡
𝜙2(𝑡) 

= ∫[∑𝛽𝑛 𝑔2(𝜏 − (𝑛 − 1)𝑇p)

𝑁

𝑛=1

]  𝑑𝜏

𝑡

0

+ 𝜔̅2 

= ∑𝛽𝑛
𝑑

𝑑𝑡
𝑏𝑛(𝑡)

𝑁

𝑛=1

+ 𝜔̅2. 

(2.17) 

To determine the instantaneous frequency function exactly, we can substitute in (2.13) to (2.17).  

Along with adequate oversampling of the quasi-basis functions in (2.16), recall back in (2.8), 

there is also an initial frequency 𝜔̅2 term that must be included in the discretization. A 

straightforward and simple approach to include this, is by appending it to the quasi-basis matrix and 

the time-varying chirp rate parameters, i.e., 𝐁 = [𝐛1 𝐛2…𝐛𝑁 𝐭] and 𝐱𝛽 = [𝛽1 𝛽2…𝛽𝑁 𝜔̅2]
𝑇 , where the 

vector 𝐭, is the discretization of continuous time over the pulse duration 𝑇 and 𝜔̅2 is the initial 

frequency. Recall, the time vector is included to account for the integration of the initial frequency 



term. Including this initial frequency term will offset the aggregate spectrum to maintain it at zero 

(at baseband). This produces the second-order PCFM waveform  

𝐬 = exp(𝑗 𝐁 𝐱β), (2.18) 

Previously, we evaluated the first-order instantaneous phase, frequency, and chirp rate. We saw 

that the instantaneous frequency had discontinuities and the instantaneous chirp rate was 

essentially random impulses. How does second-order PCFM compare to first-order? From (2.17), we 

know that the instantaneous frequency of second-order is piecewise linear, meaning that the 

behavior results in a continuous frequency function. The behavior of the second-order instantaneous 

phase, frequency, and chirp rate is displayed in Figure 2-9.  Again, PRO-FM was used to initialize a set 

of five spectrally contained waveform, where least-squares is employed to phase map the second-

order approximation. As we see in Figure 2-9, second-order produces a smooth instantaneous 

frequency function, demonstrating its ability to replicate an LFM waveform. The instantaneous chirp 

rate on the other hand is analogous to the behavior we examined from first-order’s instantaneous 

frequency.   

  



 

Figure 2-9: Five PRO-FM LS phase mapped initializations of second-order PCFM 

instantaneous phase (top), instantaneous frequency (middle), and instantaneous chirp rate 

(bottom) 

  



2.2.3 Over-Coded PCFM 

Degrees-of-freedom, when it comes to waveform design, are like nuggets of gold and the 

perception of extra design freedom is what led to the notion of “over-coded” PCFM. Previously, for 

first- and second-order PCFM, the pulse width 𝑇, contained an impulse train of 𝑁 consecutive 

impulses, separated by  𝑇p = 𝑇/𝑁. These 𝑁 subpulses are then weighted by the parameters contained 

within the vector 𝐱α = [𝛼1 𝛼2…𝛼𝑁]
𝑇 and sampled 𝐾 times. 

 

Figure 2-10: Visualization of parameterized sampling structure for 𝐿 = 1 

Over-coded further divides 𝑇p by the over-coding factor 𝐿, thus increasing the degrees-of-

freedom by increasing the number of parameters from 𝑁 = 𝐵𝑇 → 𝑁 = 𝐿(𝐵𝑇). This division of the 

time-support 𝑇p signifies that the each impulse in the impulse train will now be separated in time by 

𝑇s, where the total pulse width is composed of 𝑇 = 𝑁𝑇p = 𝑁𝐿𝑇s. But despite the number of PCFM 

parameters increasing, the oversampling rate 𝐾, stays the same therefore, every 𝑇p interval is still 

oversampled by 𝐾, as shown in Figure 2-11.  

 

Figure 2-11: Visualization of parameterized sampling structure with an over-coding factor 

The degrees-of-freedom have increased by utilizing over-coding and this is due to the partial 

decoupling of the number of PCFM parameters 𝑁, from the time-bandwidth product. Of course, as 

there are trade-offs for most relationships in radar such as resolution and spectral containment, 



there is also a consequence for the decoupling. To maintain the spectral footprint, the relationship of 

𝑀 = 𝐾(𝐵𝑇), where 𝑀 is the number of waveform samples and 𝐾 is the oversampling factor, must be 

preserved. Preserving this relationship is addressed by limiting the span of the PCFM parameters, 

i.e., for first-order PCFM 𝛼𝑛 is limited to [−𝜋 𝐿⁄ ,+𝜋 𝐿⁄ ]. To preserve this relationship, an explicit 

constraint can be placed on the parameter span during the optimization or as done in [37-38,40], 

matching the waveform to a spectral template can implicitly constrain the parameters.  

The consequences of not limiting the parameter span to [−𝜋 𝐿⁄ ,+𝜋 𝐿⁄ ] is displayed in Figure 2-12 

and Figure 2-13. In the first figure, we have the autocorrelation and power spectral densities 

illustrated, where it is clear that the over-coded instantiation lacking the factor of 1/𝐿 is clearly 

spread in spectrum, while of course the autocorrelation is thriving. Evaluation of the in-phase and 

quadrature components is shown in Figure 2-13. From this it is obvious that the phase transitions 

maintain closer proximity to the edge of the phase circle, when those parameters are limited. Without 

the factor of 1/𝐿, those phase transitions begin to cut through the unit circle more and more.  



 
Figure 2-12: Autocorrelation and PSD of over-coded PCFM with and without a limit on 

parameter span 

 



 

Figure 2-13: In-Phase and quadrature components of over-coded PCFM with and without limit on 
parameter span 

2.3 Fourier 

With any order, first, second, or higher-order PCFM the basis-like matrix, 𝐁, is a quasi-basis 

structure, which is due to the need to oversample, creating an 𝑀 ×𝑁 non-square matrix. Therefore, 

these waveforms cannot realize all possible FM structures. While over-coded PCFM poses the 

possibility of achieving a true basis function, in the case that 𝐾 = 𝐿, a constraint either implicit or 

explicit is necessary to capture sufficient spectral roll-off. Since these are quasi-basis structures that 

means there are other quasi-bases that could realize other RFM waveform structures possessing 

different characteristics. Which is what led to the examination of the Fourier-based representation 

that stems from the constant-envelope OFDM (CE-OFDM) signal model from communications 

[19,22,25].  



The desire here, is to get the Fourier model into the exp (𝑗𝐁𝐱) form like the PCFM 

implementations. Using Euler’s formula, the Fourier model may be expressed in terms of sines and 

cosines. Which then allows for the decomposition of the phase into in-phase/quadrature 

components,  

𝜙𝐹(𝑡;  𝐱) = ℜ {∑ 𝛾𝑛 exp(𝑗𝜔𝑛𝑡)

𝑁

𝑛=1

} 

= ∑ℜ{ 𝛾𝑛 } cos(𝜔𝑛𝑡) + ℑ{ 𝛾𝑛 } sin(𝜔𝑛𝑡)

𝑁

𝑛=1

 

= ∑𝛾𝑛
ℜ cos(𝜔𝑛𝑡) + 𝛾𝑛

ℑ sin(𝜔𝑛𝑡)

𝑁

𝑛=1

, 

(2.19) 

where ℜ{ ∙ } and ℑ{ ∙ } extract the real and imaginary part of the argument, respectively. Due to this 

decomposition into sines and cosines, when we form the parameter vector 𝐱𝛾 it is composed of 

double the number of elements, i.e., 𝐱γ = [ 𝐱γr
𝑇   𝐱γi

𝑇  ]
𝑇

. Where 𝐱γr = [ 𝛾r,1  𝛾r,2  … 𝛾r,𝑁 ]
𝑇

 and 𝐱γi =

[ 𝛾i,1  𝛾i,2  … 𝛾i,𝑁 ]
𝑇

 will now scale 2𝑁 quasi-basis functions. The quasi-basis functions can easily be 

discretized by sufficiently sampling the sine and cosine terms and concatenating the resulting two 

matrices together,  

𝐁 = [ 𝐁C 𝐁S ]. (2.20) 

Allowing us to form the discretized waveform representation similar to (2.3) and (2.18). 

The Jacobi-Anger expansion was previously examined in regards to the CE-OFDM signal in 

[22,31], it was presented that it could be utilized to determine the spectral properties for a random 

symbol constellation. To apply this same sentiment to the Fourier-based representation, we need to 

first evaluate the signal model,  



𝑠(𝑡) = exp(𝑗 {∑ 𝛾𝑛
ℜ  𝑐𝑜𝑠(𝜔𝑛𝑡) + 𝛾𝑛

ℑ  𝑠𝑖𝑛(𝜔𝑛𝑡)

𝑁

𝑛=1

}) 

= exp(𝑗∑ 𝛾r,𝑛 𝑐𝑜𝑠(𝜔𝑛𝑡)

𝑁

𝑛=1

) exp (𝑗∑ 𝛾i,𝑛 𝑠𝑖𝑛(𝜔𝑛𝑡)

𝑁

𝑛=1

). 

(2.21) 

If we express the terms as, 

𝑧r,𝑛 = 𝛾r,𝑛, 

𝑧i,𝑛 = 𝛾i,𝑛, (2.22) 

and 

𝜃𝑛(𝑡) = 𝜔𝑛𝑡, (2.23) 

we can then rewrite (2.21) as, 

𝑠(𝑡) = exp (𝑗∑ 𝑧r,𝑛

𝑁

𝑛=1

𝑐𝑜𝑠(𝜃𝑛(𝑡))) exp (𝑗∑ 𝑧i,𝑛 𝑠𝑖𝑛(𝜃𝑛(𝑡))

𝑁

𝑛=1

), (2.24) 

which is equivalent to, 

𝑠(𝑡) =∏exp(𝑗 𝑧r,𝑛  𝑐𝑜𝑠(𝜃𝑛(𝑡))) exp(𝑗 𝑧i,𝑛  𝑠𝑖𝑛(𝜃𝑛(𝑡)))

𝑁

𝑛=1

. (2.25) 

Thus, leading to the Jacobi-Anger expansion producing, 

𝑠(𝑡) =∏{[ ∑ 𝑗𝑚 𝐽𝑚(𝑧r,𝑛) exp( 𝑗𝑚 𝜃𝑛(𝑡))

∞

𝑚=−∞

] [ ∑ 𝐽𝑚(𝑧i,𝑛) exp(𝑗𝑚 𝜃𝑛(𝑡))

∞

𝑚=−∞

]} ,

𝑁

𝑛=1

 (2.26) 

where 𝐽𝑚( ∙ ) is the 𝑚-th Bessel function of the first-kind. Once we gather the constant terms together, 

such that 𝑑𝑛,𝑚
ℜ = 𝑗𝑚 𝐽𝑚(𝑧r,𝑛) and 𝑑𝑛,𝑚

ℑ = 𝐽𝑚(𝑧i,𝑚), provides us with,  

𝑠(𝑡) =∏ ∑ 𝑑𝑛,𝑚
ℜ  exp(𝑗𝑚 𝜔𝑛𝑡) 𝑑𝑛,𝑚

ℑ  exp(𝑗𝑚 𝜔𝑛𝑡)

∞

𝑚=−∞

𝑁

𝑛=1

. (2.27) 

Which can be rewritten as,  

𝑠(𝑡) =∏ ∑ 𝑑𝑛,𝑚
ℜ  𝑑𝑛,𝑚

ℑ  exp(𝑗 2𝑚 𝜔𝑛𝑡)

∞

𝑚=−∞

.

𝑁

𝑛=1

 (2.28) 



From (2.28), we are multiplying an infinite sum of complex sinusoids by the Bessel function, the 

Fourier relationship of which means this product becomes a convolution in the frequency domain.   

Let’s consider the central limit theorem (CLT) briefly, where the sum of an infinite sequence of 

independent random variables has a normal Gaussian distribution [30]. From the CLT, we also know 

that the probability density of this summation is the convolution of their densities. Thus, drawing a 

parallel between the CLT and (2.28), we can deduce that the Fourier quasi-basis produces a Gaussian 

spectral density in the expectation, over a random symbol initialization as the number of parameters 

𝑁 increases.  

The Fourier quasi-basis, as discussed is composed of sines and cosines and we know that sine 

and cosine are infinitely differentiable. Therefore, when we examine the instantaneous phase, 

frequency, and chirp rate, all three functions will be continuous and smooth. Once again using PRO-

FM to generate a random initialization and least-squares to map to the Fourier-representation, the 

instantaneous phase, frequency, and chirp rate behavior can be observed in Figure 2-14 of a set of 

five waveforms. In the instantaneous frequency plot, the frequency excursions extend past the 3-dB 

bandwidth at the end of the pulse width 𝑇 and similar behavior occurs with the instantaneous chirp 

rate plot. The least-squares mapping approximates the phase of the Fourier representation with a 

minimal amount of error, therefore, there is some degradation that is introduced.  



 

Figure 2-14: Five PRO-FM LS phase mapped initializations of Fourier-based instantaneous 

phase (top), instantaneous frequency (middle), and instantaneous chirp rate (bottom) 

   

  



Chapter 3 Optimization 

3.1 Purpose and Background 

Optimization is used in a wide variety of fields, such as engineering, business, education, science, 

and even politics. The purpose of optimization is to determine the solution that best fits the given 

problem through minimizing or maximizing the chosen metric. Whether that be scheduling flight 

crews for an airline, determining what stocks to buy or sell, or finding parameters that minimize 

autocorrelation sidelobes. The latter being the goal of the optimization discussed in this chapter. Our 

goal is to take the waveforms discussed in previous sections and take advantage of their 

parameterized structure, to generate waveforms with desirable autocorrelation features that have 

little deviation from the originating 3-dB bandwidth.  

In general, an optimization problem will take on the following form, 

min 𝑓(𝐱) 

subject to 𝑐𝑖(𝐱) ≥ 0, 𝑖 = 1,… ,𝑚, 
(3.1) 

where the vector 𝐱 = [𝑥1 𝑥2…𝑥𝑁],  contains 𝑁 parameters to be optimized, such that the function 

𝑓(𝐱) is minimized while satisfying the 𝑚 constraints, 𝑐𝑖(𝐱). In (3.1), we are considering a 

minimization problem, but it is important to remember that an optimization problem can either 

minimize or maximize the desired function. Also, while there are constraints present in (3.1) an 

optimization problem does not have to have constraints, which is referred to as unconstrained 

optimization. Now along with constrained and unconstrained optimization problems, there are even 

more classifiers to describe the type of optimization problem. If the optimization results in a solution 

such that, 𝑓(𝐱∗) ≤ 𝑓(𝐱) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐱 ∈ ℜ𝑁 then we have reached a global solution, if this is not the case, 

we have reached a local solution. If a problem has a global solution, it is known as a convex problem. 

There are many more descriptors of optimization problems, but what is important to know here, is 

that we are dealing with an highly non-convex cost function with no constraints.  



3.2 Cost Function 

A highly non-convex cost function means that the solution that we obtain is going to be a local 

minimum. In other words, the solution 𝐱∗obtained will be a minimum relative to the region 𝒩 that it 

lies within. 

𝑓(𝐱∗) ≤ 𝑓(𝐱) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐱 ∈ 𝒩. (3.2) 

An example of both a global and a local minimum are shown in Figure 3-1. A global solution implies 

that the optimal solution that provides the best results is achieved. Therefore, it is gratifying to reach 

a global solution, but in many cases especially when dealing with highly non-convex cost functions, 

it cannot be known if the solution obtained is a global solution.  

 

Figure 3-1: Local and global minimum 

The goal of our optimization is to minimize sidelobe levels, while ensuring spectral containment. 

There are a few metrics that are popular to analyze the sidelobe level of a waveform’s 

autocorrelation, these are the integrated sidelobe level (ISL) and peak sidelobe level (PSL). ISL 



evaluates the ratio of the total energy in the autocorrelation sidelobes to the energy in the mainlobe 

region. While PSL gauges the energy in the largest autocorrelation sidelobe compared to the energy 

of the mainlobe. These metrics can be written as, 

ISL =
∫ | 𝑟(𝜏) |2 𝑑𝜏
𝑇

Δt

∫ | 𝑟(𝜏) |2 𝑑𝜏 
Δ𝑡

0

, (3.3) 

and 

PSL =
max  { | 𝑟(𝜏) |2 }Δ𝑡

𝑇

max  { | 𝑟(𝜏) |2 }0
Δ𝑡 =

max{ | 𝑟(𝜏) |2}Δ𝑡
𝑇

| 𝑟(0) |2
. (3.4) 

Both of these equations in (3.3) and (3.4) are highly non-convex and not very well-behaved. To ease 

the optimization, both (3.3) and (3.4) can be subsumed into [27], 

GISL = (
∫ |𝑟(𝜏)|𝑝 𝑑𝜏
𝑇

Δ𝑡

∫ |𝑟(𝜏)|𝑝
Δ𝑡

0
 𝑑𝜏
)

2
𝑝⁄

, (3.5) 

where Δ𝑡 is the peak-to-null width of the autocorrelation mainlobe for 2 ≤ 𝑝 < ∞. Where when 𝑝 =

2, the GISL metric becomes the ISL and as 𝑝 → ∞, it becomes the PSL. While we cannot evaluate a 

value of 𝑝 = ∞, sufficiently large values of 𝑝 can approximate the PSL metric, in fact a value of 𝑝 = 8, 

seems to be sufficient.  

Recall, that a convex problem is the ideal optimization problem, because it results in a global 

solution. The cost function is evaluating the autocorrelation 𝑟(𝜏), which is a second-order function of 

the waveform 𝑠(𝑡), therefore when we evaluate the ISL metric, we are evaluating a fourth-order 

function of the waveform. This results in a highly non-convex cost function, where the solution 

achieved will be highly dependent on the initialization. There are a few ways to address the 

initialization, which in this thesis is done by initializing with a waveform that is known to possess 

“good” waveform characteristics, i.e., the spectrally contained pseudo-random optimized FM (PRO-

FM) waveform [35]. PRO-FM is an iterative process that uses alternating time-frequency projections 

to spectrally match to a Gaussian template. This Gaussian template is defined by a shaping parameter, 



for example a shaping parameter value of 2 yields a regular Gaussian but as the shaping parameter 

approaches ∞, the spectral density becomes rectangular.  

3.2.1 GISL Cost Function  

The discretized nature of the PCFM parameters still generates a continuous PCFM waveform. The 

GISL cost function examines the autocorrelation, which examines the waveform, that is formed from 

the discretized parameters. Therefore, it too is a continuous function, making it a viable candidate to 

utilize gradient based optimization with respect to the parameters contained in 𝐱. This discretization 

process is discussed in [12], but a short synopsis of the process will be provided here. To optimize, 

we need to discretize the GISL cost function and that is done by discretizing the autocorrelation first, 

𝑟[ℓ] =  ∑ 𝑠[𝑚] 𝑠∗[𝑚 + ℓ]

𝑀

𝑚=1

, (3.6) 

where ℓ is the delay index and 𝑠[𝑚] = 0 for 𝑚 ≤ 0 and 𝑚 ≥ 𝑀. The conjugate symmetric relationship 

of 𝑟[−ℓ] = 𝑟∗[ℓ] is also maintained. By utilizing the discrete Fourier transform (DFT) and inverse 

DFT matrices to represent the Fourier transform, the autocorrelation can be expressed in terms of 

matrix multiplication,  

𝐫 = 𝐀𝐻  [(𝐀𝐬̅) ⊙ (𝐀𝐬̅)∗ ], (3.7) 

where ⊙, (∙)∗, and (∙)𝐻  denote the Hadamard product, complex-conjugate, and Hermitian operations, 

respectively. To account for circular convolution, 𝐬̅ is the zero-padded waveform vector, i.e., 𝐬̅ =

[𝐬𝑇  𝟎1×(M−1)]
𝑇

and 𝐀 and 𝐀𝐻  are the DFT and IDFT matrices, respectively. By writing the 

autocorrelation is this discretized manner, the GISL cost function becomes,  

𝐽𝑝 =
‖𝐰SL⊙ 𝐫‖𝑝

2

‖𝐰ML⊙ 𝐫‖𝑝
2 , (3.8) 

where 𝐰SL and 𝐰ML are length (2𝑀 − 1) vectors, composed of zeros and ones responsible for 

selecting the sidelobe and mainlobe regions of 𝐫, respectively.   



3.3 Gradient Descent 

Optimization is an iterative process and it begins with the initialization, 𝐱0. For a descent 

optimization, an update needs to be made to the parameters within the vector 𝐱𝑖 , which is done via,  

𝐱𝑖 = 𝐱𝑖−1 + 𝜇𝑖  𝐪𝑖 , (3.9) 

where 𝜇𝑖  is a scalar that dictates the current step-size, 𝐪𝑖  is the current search direction, and 𝐱𝑖−1 is 

the vector of the parameters at the 𝑖 − 1 iteration. The difference between the types of descent 

optimization is the method in which the search direction 𝐪𝑖  is selected. Each method will use 

information about the cost function at the previous iteration to determine how to move for the 

current iteration, but how this information is used is what differentiates the different optimization 

styles. For example, some methods may use not only the information from the previous iteration, but 

also information from iterations past, i.e., 𝐱𝑖−2, 𝐱𝑖−3, … , 𝐱0 or they may simply set the search direction 

to the negative of the gradient, 𝐪𝑖 = −∇𝐱 𝐽. Recall that the gradient is a direction of ascent, therefore, 

to achieve a decrease the negative of the gradient is necessary. There are also algorithms that do not 

require the current iteration to realize an immediate decrease in the cost function, therefore there 

may be some iterations that an increase occurs, but after a set amount of iterations a decrease will 

be required.  

For a simple explanation, the gradient of the cost function is simply evaluating the partial 

derivative of the cost function with respect to each parameter, in mathematical notation this is,  

∇𝐱 𝐽 = [
𝜕𝐽

𝜕𝑥1

𝜕𝐽

𝜕𝑥2
 ⋯

𝜕𝐽

𝜕𝑥𝑁
]
𝑇

. (3.10) 

Therefore, ∇𝐱 𝐽 is able to determine the direction to traverse for each parameter in order to obtain a 

decrease in the cost function.  As stated previously, the cost function being evaluated in this thesis is 

highly non-convex, meaning that there are multiple solutions to the problem. To emphasize this a 

surface plot is displayed in Figure 3-2; where the cost function was evaluated when two values within 

the parameter vector were selected at random and varied over the range of permissible values. From 



this variation in just two parameters, the cost function surface illustrates several saddle points, 

substantiating the claim of a highly non-convex cost function and the importance of initialization! 

This leads to another caveat; how do we know that a decrease in the cost function is happening at 

each iteration? Which brings us to the line search. 

 

Figure 3-2: Cost function surface plot 

 

3.3.1 Line Search 

There are various methods that can be used to determine the search direction for the line search 

strategy, such as Newton’s method. For Newton’s method, we utilize curve fitting to determine the 

Newton Direction, this is done by using the second-order Taylor series approximation to 𝑓(𝐱𝑖 + 𝐪𝑖), 

which gives us the following approximation, 



𝑓(𝐱𝑖 + 𝐪𝑖) ≈ 𝑓𝑖 + 𝐪𝑖
𝑇  ∇𝑓𝑖 +

1

2
 𝐪𝑖
𝑇  ∇2𝑓𝑖  𝐪𝑖 ≝ 𝑚𝑖(𝐪𝑖). (3.11) 

Which when we make a few assumptions, like ∇2𝑓𝑖 being positive definite and taking the derivative 

with respect to 𝐪𝑖 , we find the Newton Direction to be, 

𝐪𝑖 = −(∇
2𝑓𝑖)

−1 ∇𝑓𝑖 . (3.12) 

When ∇2𝑓𝑘 is positive definite, Newton’s method converges quickly but if it is not positive definite 

the resulting search direction may not be a descent direction. Also, if the difference between the true 

function and the model is too large, the Newton direction is not the most reliable.  

Here the search direction will follow steepest-descent, while also employing a heavy-ball [26] or 

inertia factor, ℎ, that can take on values [0,1]. By utilizing ℎ, abrupt changes in the gradient will be 

diluted because previous search directions are also included in the calculation of the current search 

direction meaning, 

𝐪𝑖 = −∇𝐱 𝐽𝑝(𝐱𝑖−1) + ℎ 𝐪𝑖−1. (3.13) 

The inclusion of ℎ also influences the oscillation of the solution path, by including the previous 

gradients, we have a “heavier ball” which means it bounces less. But in the case that the inclusion of 

previous iterations are negatively affecting the search direction, by causing it to not be a descent 

direction, the current search direction is reset.  

While steepest descent is a good method, the convergence can be rather slow, especially compared 

to Newton’s method. A convergence rate better than Newton’s method will not be attainable but 

determining the step-length, 𝜇𝑘  will either improve or deteriorate the convergence. One way to 

encourage convergence is by ensuring that the cost function is experiencing an acceptable reduction 

at each iteration. Which is exactly the purpose of a popular line search condition shown in (3.14). The 

sufficient decrease condition [42] evaluates the reduction in the cost function and ensures that it is 

proportional to both the step length and directional derivative,  (∇𝐱 𝐽𝑝(𝐱𝑖−1))
𝑇
𝐪𝑖 . As (3.14) displays, 

the right-hand side takes on the form of, 𝑚𝑥 + 𝑏, a slope-intercept equation. In this case, the slope of 



this equation is negative, therefore, we are evaluating the proposed step-size and ensuring that the 

result will be below the line defined by 𝐽𝑝(𝐱𝑖−1) + 𝑐1 𝜇𝑖  (∇𝐱 𝐽𝑝(𝐱𝑖−1))
𝑇
𝐪𝑖  

𝐽𝑝(𝐱𝑖−1 + 𝜇𝑖  𝐪𝑖) ≤ 𝐽𝑝(𝐱𝑖−1) + 𝑐1 𝜇𝑖  (∇𝐱 𝐽𝑝(𝐱𝑖−1))
𝑇
𝐪𝑖 . 

(3.14) 

Note that this only encourages convergence, it does not ensure convergence, and therefore this 

condition alone is a necessary but not sufficient condition. The sufficient decrease, also known as the 

Armijo condition, is typically paired with the curvature condition [42] that calculates the slope of the 

updated cost function to assess the progress in comparison with the previous iteration. Another 

option to pair with the sufficient decrease condition [42] is to use backtracking for calculation of the 

step size, which is the method chosen for optimization here. This backtracking step will evaluate the 

first Wolfe condition and if it is not met, will decrease the step size until the condition is met. 

Combining this information, the procedure for optimization is summarized in Table 1.  

Table 1: GISL Gradient Optimization of parameterized waveforms [12] 

1: Initialize: 𝑀,𝐵𝑇, 𝐁, 𝐱0, 𝑝, 𝑁, 𝐪0 = 𝟎𝑁×1, ℎ, 𝜇0, 𝜌𝑢𝑝, 𝜌𝑑𝑜𝑤𝑛, and 𝑐 

2: Repeat: 

3: Evaluate: 𝐽𝑝(𝐱𝑖−1), ∇𝐱 𝐽𝑝(𝐱𝑖−1) 

4: 𝐪𝑖 = −∇𝐱 𝐽𝑝(𝐱𝑖−1) + ℎ 𝐪𝑖−1 

5: If (∇𝐱 𝐽𝑝(𝐱𝑖−1))
𝑇
𝐪𝑖 ≥ 0 

6: 𝐪𝑖 = −∇𝐱 𝐽𝑝(𝐱𝑖−1) 

7: End 

8: While 𝐽𝑝(𝐱𝑖−1 + 𝜇𝑖  𝐪𝑖) > 𝐽𝑝(𝐱𝑖−1) + 𝑐1 𝜇𝑖  (∇𝐱 𝐽𝑝(𝐱𝑖−1))
𝑇
𝐪𝑖  

9: 𝜇𝑖 = 𝜌𝑑𝑜𝑤𝑛 𝜇𝑖  
10: end 
11: 𝐱𝑖 = 𝐱𝑖−1 + 𝜇 𝐪𝒊 

12: 𝜇 = 𝜌𝑢𝑝 𝜇 

13: 𝑖 = 𝑖 + 1 

14: Until 𝑖 = 𝐼 or ‖∇𝐱 𝐽𝑝(𝐱𝑖)‖ < 𝑔𝑚𝑖𝑛, 

 

where 𝜌𝑑𝑜𝑤𝑛 is the backtracking parameter and 𝜌𝑢𝑝 increases in the step-size. Following this 

procedure is how the optimization was performed for the results found in chapter 4 and 5.  



3.3.2 Gradient Derivation 

The gradient of the GISL cost function was fully derived by Mohr.  Therefore, it is not included 

and the reader should refer to [12] for reference.  

3.3.2.1 Over-Coded Gradient Derivation 

Here we want to utilize over-coded PCFM, but need a means of enforcing spectral containment. 

We suspect that by using similar techniques from [15], that by accounting for range straddling effects 

within the optimization, it will provide an implicit constraint on the resulting waveform’s spectral 

footprint. In [15] subsample shifts were included in the GISL metric; for this thesis we will be acting 

similarly but instead of subsample shifts, we will be taking advantage of the Fourier relationship 

between a sample-shift and phase-shift. Therefore, also taking advantage of the DFT and inverse DFT 

matrices in (3.7) and including a phase-shift vector, 𝐯. 

What is range straddling? As we know from previous sections, the receiver captures the signal, 

the ADC samples that returned signal, and matched filtering occurs. If the sampled signal does not 

contain the theoretical peak value, there will be a loss in SNR, which is known as straddle loss [1,2,43]. 

This occurs because the ADC is sampling on either side of the peak, meaning the peak occurs between 

two samples. The largest straddle loss occurs at a half-sample-shift, i.e., 𝜏 = 0.5, and is calculated as, 

𝐿 = 20 ∙ log10 |
𝑟(𝜏)

𝑟(0)
|
𝜏=0.5

.  
(3.15) 

In Figure 3-3, an example of an autocorrelation response sampled correctly and an autocorrelation 

response that includes a half-sample-shift is illustrated.  



 

Figure 3-3: Autocorrelation with and without range-straddling 

Our aim is to reduce this loss, which can be done by reducing the amplitude difference between the 

peak and nearest sample. Inherently by reducing this amplitude difference, we also end up widening 

the mainlobe. The mainlobe broadening will therefore implicitly constrain the spectrum, at least that 

is our hope.  

The inclusion of 𝐯 does slightly alter the GISL cost function and therefore, also effects the gradient.  

𝐫L = 𝐀
𝐻[((𝐀𝐬̅) ⊙ 𝐯)⊙ (𝐀𝐬̅)∗] 

= 𝐀𝐻(|𝐀𝐬̅|2⊙𝐯). (3.16) 

In [12], the gradient derivation included a simplification due to the conjugate symmetry of the 

autocorrelation about zero-delay. But here, the addition of the phase-shift term 𝐯 means that 

conjugate-symmetric characteristic does not hold anymore. Which makes the derivation more 

difficult to do if we employed the same methodology as used previously. Therefore, using (3.16) with 



the GISL cost function, we can derive the gradient using an “inside-out” method by expanding out the 

terms in the cost function,  

𝐽𝑝 =
‖𝐰SL⊙ 𝐫𝐿‖𝑝

2

‖𝐰ML⊙ 𝐫𝐿‖𝑝
2  

= (
𝐰SL|𝐫𝐿|

𝑝

𝐰ML|𝐫𝐿|
𝑝
)

2/𝑝

 

= (
𝐰SL|𝐀

𝐻(|𝐀𝐬̅|2⊙𝐯)|𝑝

𝐰ML|𝐀
𝐻(|𝐀𝐬̅|2⊙𝐯)|𝑝

)

2/𝑝

 

= (
𝐰SL|𝐀

𝐻(|𝐀(exp (𝑗𝐁𝐱)|2⊙𝐯)|𝑝

𝐰ML|𝐀
𝐻(|𝐀(exp (𝑗𝐁𝐱)|2⊙𝐯)|𝑝

)

2/𝑝

. 
(3.17) 

From (3.17), our goal is take the gradient of 𝐽𝑝 with respect to the parameters in 𝐱. The “inside-

out” method breaks the cost function down into steps, from the inner most term that is a function of 

the parameters outwards. It relies heavily on the complex chain rule to determine the derivative at 

each subsequent stages and then piece it all back together. With that being said, the first stage of our 

cost function gradient, takes the partial derivative of the waveform phase with respect to the 

parameters, where 𝐁 𝜖 ℝ𝑀×𝑁 , 𝛟 𝜖 ℝ𝑀 

𝛟 = 𝐁𝐱: 

𝜕

𝜕𝑥𝑛
𝜙𝑚 =

𝜕𝜙𝑚
𝜕𝑥𝑛

 
𝜕

𝜕𝜙𝑚
+
𝜕𝜙𝑚

∗

𝜕𝑥𝑛
 
𝜕

𝜕𝜙𝑚
∗  

=
𝜕𝜙𝑚
𝜕𝑥𝑛

𝜕

𝜕𝜙𝑚
+ 0.  

(3.18) 

Due to the matrix multiplication 𝐁𝐱 increasing the dimension from ℝ𝑁 → ℝ𝑀, in order evaluate the 

partial derivative of the phase vector with respect to the parameters, we have to utilize the Jacobian -

𝐉𝛟(𝐱), meaning,    

  



𝛁𝐱 = 𝐉𝛟(𝐱) 𝛁𝛟 

=

[
 
 
 
 
𝜕𝜙1
𝜕𝑥1

 ⋯
𝜕𝜙𝑀
𝜕𝑥1

⋮ ⋱ ⋮
𝜕𝜙1
𝜕𝑥𝑁

⋯
𝜕𝜙𝑀
𝜕𝑥𝑁 ]

 
 
 
 

 

= 𝐁𝑇𝛁𝛟. (3.19) 

From (3.19), our next step will be evaluating the waveform gradient with respect to the phase, where 

the waveform is zero-padded and complex, 𝐬̅ 𝜖 ℂ2𝑀,  

𝐬̅ = exp(𝑗𝛟):  

𝛁𝛟 = 𝐉𝐬̅(𝛟) 𝛁𝐬̅ 

𝜕

𝜕𝜙𝑚
 𝑠̅𝑖 =

𝜕𝑠̅𝑖
𝜕𝜙𝑚

𝜕

𝜕𝑠̅𝑖
+
𝜕𝑠̅𝑖

∗

𝜕𝜙𝑚

𝜕

𝜕𝑠̅𝑖
∗ 

= 𝑗𝑠̅𝑚
𝜕

𝜕𝑠̅𝑚
− 𝑗𝑠̅𝑚

∗
𝜕

𝜕𝑠̅𝑚
∗ 

= 2ℑ {𝑠̅𝑚
∗  

𝜕

𝜕𝑠̅𝑚
∗ } = 2 ℑ{𝐬̅

∗⊙𝛁𝐬̅∗}.  
(3.20) 

And in (3.17) the waveform is being multiplied by the DFT matrix, therefore, 𝐀, 𝐠 𝜖 ℂ2𝑀 

𝐠 = 𝐀𝐬̅:  

𝛁𝐬̅∗ = 𝐉𝐠(𝐬̅
∗) 𝛁𝐠 

𝜕

𝜕𝑠̅𝑚
∗  𝑔𝑖 =

𝜕𝑔𝑖
𝜕𝑠̅𝑚
∗  
𝜕

𝜕𝑔𝑖
+
𝜕𝑔𝑖

∗

𝜕𝑠̅𝑚
∗  

𝜕

𝜕𝑔𝑖
∗
 

= 0 +
𝜕

𝜕𝑔𝑖
∗∑

𝜕

𝜕𝑠̅𝑚
∗ (𝑎𝑖𝑗

∗ 𝑠̅𝑗
∗)

2𝑀

𝑗

  

=
𝜕

𝜕𝑔𝑖
∗∑𝑎𝑖𝑚

∗

2𝑀

𝑗

 

= 𝐀𝐻  𝛁𝐠∗ . (3.21) 

Taking this to evaluate |𝐀𝐬̅|2𝜖 ℝ2𝑀 we find the following,  



𝐲 = |𝐀𝐬̅|2 = |𝐠|2:  

𝛁𝐠∗ = 𝐉𝐲(𝐠
∗) 𝛁𝐲 

𝜕

𝜕𝑔𝑚
∗ 𝑦𝑖 =

𝜕𝑦𝑖
𝜕𝑔𝑚

∗

𝜕

𝜕𝑦𝑖
+
𝜕𝑦𝑖

∗

𝜕𝑔𝑚
∗

𝜕

𝜕𝑦𝑖
∗
 

=
𝜕

𝜕𝑔𝑚
∗  𝑔𝑖  𝑔𝑖

∗ 𝜕

𝜕𝑦𝑖
 

= 𝑔𝑚
𝜕

𝜕𝑦𝑚
 

= 𝐠⊙ 𝛁𝐲. (3.22) 

Still following this inside-out method, |𝐀𝐬̅|2 is then phase-shifted making the next stage and due to 

the phase shift vector, we now have, 𝐯, 𝐡 𝜖 ℂ2𝑀 

𝐡 = |𝐀𝐬̅|2⊙𝐯 = 𝐲⊙ 𝐯: 

𝛁𝐲 = 𝐉𝐡(𝐲) 𝛁𝐡 

𝜕

𝜕𝑦𝑚
ℎ𝑖 =

 𝜕ℎ𝑖  

𝜕𝑦𝑚
 
𝜕

𝜕ℎ𝑖
 +  

 𝜕ℎ𝑖
∗

 𝜕𝑦𝑚 
 
𝜕

𝜕ℎ𝑖
∗ 

=
𝜕

𝜕𝑦𝑚
 𝑦𝑖  𝑣𝑖  

𝜕

𝜕ℎ𝑖
+

𝜕

𝜕𝑦𝑚
𝑦𝑖  𝑣𝑖

∗ 𝜕

𝜕ℎ𝑖
∗ 

= 𝑣𝑚
𝜕

𝜕ℎ𝑚
+ 𝑣𝑚

∗
𝜕

𝜕ℎ𝑚
∗  

= 2ℜ {𝑣𝑚
∗  

𝜕

𝜕ℎ𝑚
∗ } =  2 ℜ{𝐯

∗⊙𝛁𝐡∗}. 
(3.23) 

The next stage is the autocorrelation function previously defined in (3.16),  

  



𝐫 = 𝐀𝐻(|𝐀𝐬̅|2⊙𝐯) = 𝐀𝐻  𝐡: 

𝛁𝐡∗ = 𝐉𝐫(𝐡
∗) 𝛁𝐫 

𝜕

𝜕ℎ𝑚
∗ 𝑟𝑖 =

𝜕𝑟𝑖
 𝜕ℎ𝑚

∗  
 
𝜕

𝜕𝑟𝑖
+
𝜕𝑟𝑖
∗

 𝜕ℎ𝑚
∗  
 
𝜕

𝜕𝑟𝑖
∗ 

=
𝜕

𝜕𝑟𝑖
∗∑

𝜕

𝜕ℎ𝑚
∗ (𝑎𝑖𝑗  ℎ𝑗

∗)

2𝑀

𝑗

 

=
𝜕

𝜕𝑟𝑖
∗∑𝑎𝑖𝑚

2𝑀

𝑗

 

= 𝐀 𝛁𝐫∗ . (3.24) 

Again, using the same guidelines as discussed previously when dealing with a real-valued function of 

a complex variable, we find, 

𝛈 = |𝐫|𝑝 = (𝐫⊙ 𝐫∗)(
𝑝
2⁄ ): 

𝛁𝐫∗ = 𝐉𝛈(𝐫
∗) 𝛁𝛈 

𝜕

𝜕𝑟𝑚
∗ 𝜂𝑖 =

 𝜕𝜂𝑖  

𝜕𝑟𝑚
∗  
𝜕

𝜕𝜂𝑖
+
 𝜕𝜂𝑖

∗ 

𝜕𝑟𝑚
∗  

𝜕

𝜕𝜂𝑖
∗
 

=
𝜕

𝜕𝑟𝑚
∗ ( 𝑟𝑖  𝑟𝑖

∗ )
𝑝
2⁄  
𝜕

𝜕𝜂𝑖
 

=
𝑝

2
( 𝑟𝑚 𝑟𝑚

∗  ) (
𝑝
2⁄ −1)  

𝜕

𝜕𝑟𝑚
∗  ( 𝑟𝑖  𝑟𝑖

∗ )  
𝜕

𝜕𝜂𝑖
 

=
𝑝

2
( 𝑟𝑚 𝑟𝑚

∗  ) (
𝑝
2⁄ −1) 𝑟𝑚  

𝜕

𝜕 𝜂𝑚
 =  

𝑝

2
 |𝐫|(𝑝−2)⊙ 𝐫⊙ ∇𝛈. 

(3.25) 

Finally, we are to the final derivation and evaluate the derivative of the cost function with respect to 

𝛈, 

  



 
𝜕

𝜕𝜂𝑚
 𝐽𝑝 =

𝜕

𝜕𝜂𝑚
[(
∑ 𝑤SL,𝑖  𝜂𝑖
2𝑀
𝑖

∑ 𝑤ML,𝑗  𝜂𝑗
2𝑀
𝑗

)

2 𝑝⁄

] 

=
2

𝑝
(
∑ 𝑤SL,𝑖  𝜂𝑖
2𝑀
𝑖

∑ 𝑤ML,𝑗  𝜂𝑗
2𝑀
𝑗

)

2 𝑝⁄ −1
𝜕

𝜕𝜂𝑚
(
∑ 𝑤SL,𝑖  𝜂𝑖
2𝑀
𝑖

∑ 𝑤ML,𝑗  𝜂𝑗
2𝑀
𝑗

) 

=
2

𝑝
 𝐽𝑝  (

∑ 𝑤SL,𝑖  𝜂𝑖
2𝑀
𝑖

∑ 𝑤ML,𝑗  𝜂𝑗
2𝑀
𝑗

)

−1
(∑ 𝑤ML,𝑗  𝜂𝑗

2𝑀
𝑗 )𝑤SL,𝑚 − (∑ 𝑤SL,𝑖  𝜂𝑖

2𝑀
𝑖 )𝑤ML,𝑚

(∑ 𝑤ML,𝑗  𝜂𝑗
2𝑀
𝑗 )

2  

=
2

𝑝
 𝐽𝑝  
(∑ 𝑤ML,𝑗  𝜂𝑗

2𝑀
𝑗 )𝑤SL,𝑚 − (∑ 𝑤SL,𝑖  𝜂𝑖

2𝑀
𝑖 )𝑤ML,𝑚

(∑ 𝑤SL,𝑖  𝜂𝑖
2𝑀
𝑖 )(∑ 𝑤ML,𝑗  𝜂𝑗

2𝑀
𝑗 )

 

=
2

𝑝
 𝐽𝑝 (

𝑤SL,𝑚
∑ 𝑤SL,𝑖  𝜂𝑖
2𝑀
𝑖

−
𝑤ML,𝑚

∑ 𝑤ML,𝑗  𝜂𝑗
2𝑀
𝑗

) =
2

𝑝
 𝐽𝑝 (

𝐰SL

𝐰SL
𝑇 |𝐫|𝑝

−
𝐰ML

𝐰ML
𝑇 |𝐫|𝑝

). 
(3.26) 

Piecing everything back together now,  

𝜕

𝜕𝐱𝑛
𝐽𝑝 = 4 𝐽𝑝 𝐁

𝑇  ℑ { 𝐬̅∗

⊙𝐀𝐻 [(𝐀𝐬̅) ⊙  ℜ { 𝐯∗⊙𝐀 ((
𝐰SL

𝐰SL
𝑇 |𝐫|𝑝

−
𝐰ML

𝐰ML
𝑇 |𝐫|𝑝

)⊙ |𝐫|(𝑝−2)⊙ 𝐫) } ] }. 
(3.27) 

Chapter 4 Simulation Results 

While waveform implementations like the PCFM and CE-OFDM have a span for their parameters 

and this plays a role in spectral containment; it was observed in [12] that when randomly initializing 

within this span can still produce waveforms that have diminished spectral containment. But there 

is also a need for good initializations because of the effect it has on the optimization, therefore, a 

waveform that has already undergone spectral shaping will be used for the initialization. The pseudo-

random optimized FM (PRO-FM) [35] waveform uses a spectral template based on a shaping 

parameter to perform spectral shaping via alternating time-frequency projections. The shaping 

parameter will vary the spectral template from a regular Gaussian spectral density to a rectangular 

spectral density. Using PRO-FM to initialize 3000 waveforms, all with a 𝐵𝑇 = 200, and 4 × 



oversampling (relative to the 3-dB bandwidth), least-squares is then used to map the phase of the 

PRO-FM waveform into the parameters for each quasi-basis type. For example, examining the 

discretized phase of the 𝑘th PRO-FM waveform, 

𝜙𝑃𝑅𝑂,𝑘  𝐿𝑆{𝐁𝛼}
→    𝐱α,𝑘 

𝐿𝑆{𝐁𝛽}
→    𝐱β,𝑘 

𝐿𝑆{𝐁𝛾}
→    𝐱γ,𝑘 . (4.1) 

Using the procedure laid out in Table 1, the GISL gradient optimization was then performed for 

the case of 𝑝 = 8, which approximates a PSL metric.  The convergence behavior when optimizing one 

waveform for each quasi-basis for a max of 106 iterations, typifies the behavior that can be expected 

when larger waveform sets are optimized. Figure 4-1 illustrates this convergence behavior and we 

see that even though all three parameterized structures were initialized with the same PRO-FM 

waveform, there is a difference in starting point. For which we point back to the least-squares 

mapping that was utilized to determine the parameters for each quasi-basis type. There will be some 

degradation introduced through this process, which we will see in some of the results later. Although 

we are initializing with a waveform that has previously undergone a different optimization 

procedure, the first-order and Fourier cases were still able to achieve a roughly 10 dB improvement 

in the cost function. But separating the converged upon solution of these two cases is about 102 

iterations. Meanwhile, as Fourier begins to flat line is when second-order begins to slowly decline, 

with no notable improvement occurring until 104 iterations.  



 

Figure 4-1: Convergence behavior of first-order, second-order, and Fourier quasi-bases using 

gradient based optimization 

For the following results, we are evaluating each quasi-basis type when 3000 waveforms are used 

for the initialization and the optimization is run for a max of 9000 iterations. Since our cost function 

has to do with sidelobe levels, it is rather important to evaluate the autocorrelation behavior. Figure 

4-2 illustrates both the root-mean-square (RMS) and coherent combining, i.e., slow-time processing 

of the 3000 unique autocorrelations for each case. Due to the reduction in iterations performed, the 

RMS and coherent combining results in figure 4.2 display similar outcomes for each quasi-basis type. 

The Fourier case at 9000 iterations was about 1 dB better than first-order, and first-order was 6 dB 

below second-order, which is nearly synonymous with the results we see in Figure 4-2. While the 

sidelobe level is an important attribute to examine, another feature of the autocorrelations appears 

when we zoom into the mainlobe region. In Figure 4-3 the mainlobe close-up reveals shoulder lobes 

that are present to varying degrees for all three quasi-bases, the local minima associated with this 



effect, poses an explanation for the differing convergence rates. These shoulder lobes are an artifact 

of the super-Gaussian shaping used for the PRO-FM initialization. This highlights the proficiency of 

the Fourier quasi-basis to suppress those shoulder lobes, while second-order struggles to make any 

significant reduction in them. As stated previously, shoulder lobes are an artifact of a super-Gaussian 

power spectrum, therefore an attribute associated with better spectral containment.  

 

Figure 4-2: RMS and coherent combination of autocorrelations for 3000 unique waveforms for 

first and second-order PCFM and Fourier quasi-bases 

 

 



 

Figure 4-3: RMS and coherent combination of autocorrelations for 3000 unique waveforms 

optimized for first and second-order PCFM and Fourier quasi-bases (mainlobe close-up) 

The autocorrelation is important to examine because it provides us with knowledge regarding 

the waveforms ability to resolve multiple targets within close proximity, i.e., the range resolution and 

target detectability. While important, this means nothing if the transmitted or received spectrum is 

essentially white noise. Therefore, we also need to examine the power spectral density (PSD) of all 

the quasi-basis types. The differing sidelobe levels we saw previously in Figure 4-2 and Figure 4-3 

are better understood once we explore the PSD’s illustrated in Figure 4-4, Figure 4-5, and Figure 4-6. 

Each of the figures depicts the averaging across the set of 3000 waveforms for each quasi-basis type. 

For instance, we previously saw that second-order had the highest sidelobe level, along with a slightly 

wider mainlobe, while the PSD (Figure 4-5) exhibits better spectral containment than both the PRO-

FM initialization and the other two quasi-basis types. But the shoulder lobe characteristics that we 



saw with first and second-order PCFM are generally associated with better spectral containment. 

Especially when we examine the roll-off region, we see that second-order is superior to both first-

order and Fourier, almost following the roll-off exactly from 3-dB to 10-dB. Previously, Fourier had 

the best results for the autocorrelation, but we see that the spectrum has suffered, by expanding to 

the typical random CE-OFDM response of a Gaussian PSD.  

 

Figure 4-4: Average spectral density over 3000 waveforms using 𝑝 = 8 norm for first-order 

PCFM quasi-basis 

 



 

Figure 4-5: Average spectral density over 3000 waveforms optimized using 𝑝 = 8 norm for 

second-order PCFM quasi-basis 

 



 

Figure 4-6: Average spectral density over 3000 waveforms optimized using 𝑝 =  8 norm for 

Fourier quasi-basis 

Spectral containment is extremely important, especially in the context of physically realizable 

waveforms. The signal will undergo spectral filtering due to up-conversion, amplification, and the 

actual antenna for an analog system. If the waveform is not meeting the spectral considerations, not 

only will distortion be introduced into the signal, but energy will be dissipated and if severe enough 

may cause damage to the radar system. The distortion brought on by not meeting the spectral limits 

will especially cause issues when the signal is passed through the high-power amplifier that typically 

operates in saturation, which could damage the system. On the other hand, for a digital system the 

bandwidth is limited by the sampling rate. Therefore, the slow roll-off illustrated for the Fourier 



quasi-basis will necessitate the need for higher over-sampling of the discretized waveform 

representation, which may hinder any use for wideband systems. 

The last waveform characteristics we want to examine are the instantaneous phase and 

frequency behavior. We know that because we are dealing with FM waveforms, the instantaneous 

phase for each quasi-bases will be continuous. But as we see in Figure 4-7, there is some difference 

between the behaviors of each quasi-basis type.  First-order PCFM exhibits a piecewise linear phase 

trajectory, which is due to the quasi-basis structure that we showed back in (2.4) and Figure 2-3, that 

linearly ramps up before remaining constant. Meanwhile, second-order has a smoother undulating 

behavior, due to the quadratic phase trajectories previously discussed in section 2.2.2, that allows it 

to perfectly realize the LFM waveform. The infinite differentiability from the sine and cosine terms 

the form the Fourier quasi-basis also permit it to possess smooth rolling phase trajectories.  



 

Figure 4-7: Close-up section of instantaneous phase of a single optimized waveform for first and 

second-order PCFM and Fourier quasi-bases with a PRO-FM initialization 

We can obtain the instantaneous frequency by taking the sample-to-sample difference of the 

individual instantaneous phase functions shown in Figure 4-7.  In Figure 4-8, we have the 

instantaneous frequencies of all three quasi-basis shown against the PRO-FM waveform used for 

initialization. From this, we see that the first-order PCFM illustrates flat regions immediately 

followed by discontinuities, which is in agreeance with the groundwork laid out in section 2.2.1.  

Again, this is due to the use of a rectangular shaping filter that appears in (2.1). Second-order also 

uses a rectangular shaping filter, but due to the additional integration stage in (2.8), we see in Figure 

4-8 that second-order now takes on a piecewise linear instantaneous frequency. The Fourier quasi-

basis remains infinitely differentiable; therefore, it still maintains a smooth instantaneous frequency. 



Lastly, we do see that the frequency excursions of first-order PCFM and Fourier, do expand past those 

of PRO-FM, conforming to the expanded 3-dB bandwidth that we saw in Figure 4-4 - Figure 4-6.  

 

Figure 4-8: Close-up section of instantaneous phase of a single optimized waveform for first and 

second-order PCFM and Fourier quasi-bases with a PRO-FM initialization 

4.1 Over-Coded 𝑳 = 𝟐  

For the over-coded simulation, an over-coding factor of 𝐿 = 2, was evaluated. PRO-FM and a 

least-squares in phase was still employed to initialize the waveform sets for the three quasi-basis 

types. Utilizing over-coding increases the number of parameters and the size of the quasi-basis, 

therefore the number of waveforms evaluated was decreased to 1000. As discussed previously, over-

coded waveforms tend to expand spectrally during optimization, therefore, the gradient defined in 



(3.27), was used with the procedure laid out in Table 1. The optimization was performed for a 

maximum of 9000 iterations. While the pattern of the convergence behavior is similar to Figure 4-1, 

the Fourier quasi-basis is fully converged by 300 iterations. Operating in about half the iterations 

used in the previous optimization. For first-order most of the improvement is done by 100 iterations, 

but continues decreasing around 2 dB per decade thereafter. Due to the decrease in iterations 

executed for the 𝐿 = 2 convergence behavior versus the results in Figure 4-1, both first-order and 

second-order have not fully converged. Lastly, second-order again is very slow to make 

improvement, not even decreasing 2 dB after 9000 iterations. It is important to point out that the 

starting point for the cost functions are higher than we previously saw with no over-coding. But when 

we examine the convergence at 9000 iterations for the previous case, we do see that both first-order 

and Fourier have decreased further than the 𝐿 = 1 case. 



 

Figure 4-9: GISL cost function convergence for 𝐿 = 2 over-coded first and second-order PCFM 

and Fourier quasi-bases over 9000 gradient-descent iterations for 𝑝 =  8 

Interestingly, due to the increase in convergence rate for the over-coded case, the resulting 

optimized autocorrelations for first-order and Fourier are remarkably similar to Figure 4-2. In fact, 

in terms of the RMS autocorrelation, that sidelobe level could be considered better than previous 

results. While this is promising, we still need to assess the optimized PSD behavior. Synonymous with 

previous behavior, second-order sidelobe levels are higher compared to the other quasi-bases, but 

as opposed to the 𝐿 = 1 case, they are about 10 dB higher than the first-order and Fourier quasi-

bases.  



 

Figure 4-10: RMS and coherent combination of autocorrelations for 1000 unique waveforms 

optimized for 𝐿 = 2 over-coded first and second-order PCFM and Fourier quasi-bases 

Evaluation of the mainlobe region demonstrates that once again, shoulder lobes are the cause of the 

slower second-order convergence. Meanwhile, first-order and Fourier were both able to largely 

suppress this characteristic.  



 

Figure 4-11: RMS and coherent combination of autocorrelations for 1000 waveforms optimized 

for 𝐿 = 2 over-coded first and second-order PCFM and Fourier quasi-bases (mainlobe close-up) 

Recall, as we saw previously, Fourier was largely able to suppress the shoulder lobes, but this 

was at the cost of a spectral containment. That ability is no different for the over-coded case. In Figure 

4-12, the average PSD of 1000 over-coded first-order PCFM waveforms is compared against the 

average PSD from the PRO-FM initialization. It is hard to discern how much spread has occurred 

when we compare the 3 dB bandwidth from Figure 4-3. But when the edges are evaluated, we see the 

roll-off is much more gradual for the 𝐿 = 2 over-coded case, tending more towards a Gaussian PSD.   

  



 

Figure 4-12: Average spectral density over 1000 waveforms optimized using 𝑝 =  8 norm for 

𝐿 =  2 over-coded first-order PCFM quasi-basis 

Regarding second-order, we saw in Figure 4-11 that the shoulder lobes were still present, but at 

first glance the average PSD in Figure 4-13 appears to have very poor spectral containment. 

Meanwhile, the PSD from a single waveform contradicts what the average is depicting. Therefore, 

evaluating the individual spectral densities from a small subset of these waveforms, reveals that it is 

not that the spectrum is spreading, but instead that some of the optimized waveforms are producing 

PSDs that are shifted slightly off baseband, as shown in Figure 4-14. Therefore, taking these 

optimized waveforms, we can simply shift them back to baseband by changing that final parameter 

in 𝐱𝛽 . Revealing in Figure 4-15, that the spectrum maintains tighter containment than both the first 

and Fourier quasi-bases. While the spectrum is still contained, the results from 𝐿 = 2 over-coded are 

still inferior to the results shown in Figure 4-4. 



 

Figure 4-13: Average spectral density over 1000 waveforms optimized using 𝑝 = 8 norm for 𝐿 =

2 over-coded second-order PCFM quasi-basis 

 



 

Figure 4-14: Spectral densities of a subset of the 1000 waveforms optimized using 𝑝 = 8 norm 

for 𝐿 = 2 over-coded second-order PCFM quasi-basis 

 

 



 

Figure 4-15: Average spectral density over 1000 waveforms optimized using 𝑝 = 8 norm for 𝐿 =

2 over-coded second-order PCFM quasi-basis (individual PSDs shifted back to baseband) 

  



 

Figure 4-16: Average spectral density over 1000 waveforms optimized using 𝑝 = 8 norm for 𝐿 =

2 over-coded Fourier quasi-basis 

Finally, the Fourier PSD is displayed in Figure 4-16.  Although the 3 dB bandwidth is a good metric 

to evaluate, it may not always tell the full story. From Fourier’s PSD, the 3 dB bandwidth is not much 

worse than second-orders, but the roll-off region is. In terms of spectral containment Fourier’s is very 

poor, possessing significant degradation at the roll-off edges and barely maintaining any separation 

from the noise floor. While the autocorrelation for Fourier has low sidelobes and is great for target 

detection, the PSD exposes the difficulty hardware will have with this optimized waveform.  

The final attribute that is instructive to examine, are the instantaneous phase and frequency 

behavior for each quasi-basis class, as shown in Figure 4-17 and Figure 4-18. For both the 

instantaneous phase and frequency examples illustrated here, the second-order case was shifted 

back to baseband prior to calculation. Or else we would see the instantaneous phase of second-order 

well outside the bounds shown here. The behavior of the instantaneous phase that we see here, in 



terms of smoothness, is the same as we saw previously. The instantaneous frequency exposes just 

how much the bandwidth is expanding for both the first-order and Fourier cases. First-order’s 

instantaneous frequency nearly expands by 1.6 times the amount, while Fourier is approximately 2.2 

times the frequency excursions of the frequency excursions of the PRO-FM initialization.  

 

Figure 4-17: Close-up section of instantaneous phase of a single waveform optimized for 𝐿 = 2 

over-coded first and second-order PCFM (individual waveforms shifted back to baseband) and 

Fourier quasi-bases, compared to PRO-FM initialization 

 



 

Figure 4-18: Close-up section of instantaneous frequency of a single waveform optimized for 𝐿 =

2 over-coded first and second-order PCFM (individual waveforms shifted back to baseband) and 

Fourier quasi-bases, compared to PRO-FM initialization 

4.2 Over-Coded 𝑳 = 𝟒 

When the over-coding factor 𝐿 is increased to 4, we are now dealing with a fully over-coded 

waveform, thus a true basis. All other waveform/optimization parameters are kept the same, the only 

thing changed here was 𝐿. Most of the attributes examined such as cost function convergence, 

autocorrelation behavior, and instantaneous phase have the same behavior as the 𝐿 = 2 case. Where 

the biggest difference lies in the PSD’s of the first-order basis. While difficult to definitively tell from 

the 3 dB bandwidth lines, the spectral spread is clear when the roll-off region is under question. The 

noise floor for the first-order basis continues to roll-off for the 𝐿 = 4 case as opposed to stopping 

around -30 dB. The instantaneous frequency plot highlights how much the spectrum has spread for 



the first-order case, expanding by approximately 1.7 times the frequency excursions of the PRO-FM 

initialization.  All other attributes previously examined for the 𝐿 = 2 case are displayed for 𝐿 = 4, but 

do not possess glaring differences like the PSDs and instantaneous frequency plots. Unfortunately, 

the analysis for 𝐿 = 4 of the Fourier basis has been left out.  

 

Figure 4-19: GISL cost function convergence for 𝐿 = 4 over-coded first-order PCFM and second-

order PCFM quasi-bases over 9000 gradient-descent iterations for 𝑝 = 8 

 



 

Figure 4-20: RMS and coherent combination of autocorrelations for 1000 unique waveforms 

optimized for 𝐿 = 4 over-coded first and second-order PCFM quasi-bases 

 



 

Figure 4-21: RMS and coherent combination of autocorrelations for 1000 unique waveforms 

optimized for 𝐿 = 4 over-coded first and second-order PCFM quasi-bases (mainlobe close-up) 

 

 



 

Figure 4-22: Average spectral density over 1000 waveforms optimized using 𝑝 = 8 norm for 𝐿 =

4 over-coded first-order PCFM quasi-basis 

 



 

Figure 4-23: Average spectral density over 1000 waveforms optimized using 𝑝 = 8 norm for 𝐿 =

4 over-coded second-order PCFM quasi-basis (individual PSDs shifted back to baseband) 

 



 

Figure 4-24: Close-up section of instantaneous phase of a single waveform optimized for 𝐿 = 4 

over-coded first and second-order PCFM (individual waveforms shifted back to baseband) quasi-

bases compared to PRO-FM initialization 

 



 

Figure 4-25: Close-up section of instantaneous frequency of a single waveform optimized for L=4 

over-coded first and second-order PCFM (individual waveforms shifted back to baseband) quasi-

bases compared to PRO-FM initialization 

Chapter 5 Open-Air Experimental Results 

All of the results shown thus far, are a great starting point, but they are simulated. We want to 

ensure that the resulting optimized waveforms are physically realizable, therefore, the final step is 

evaluating them experimentally. The optimized waveforms were first interleaved to guarantee that 

the illuminated environment was almost identical for each quasi-basis type. To test the robustness 

of the physical implementation, we first need to perform interpolation via spline interpolation of the 

phase to a sample rate of 10 GSamples/sec that corresponds to the transmitter sampling frequency. 

The resulting interpolated waveform was then digitally upconverted to a center frequency of 3.45 

GHz with a pulse repetition interval of 22 𝜇𝑠.  



Experimental data was collected in lovely Lawrence, KS, from the roof of Nichols Hall at the 

University of Kansas. The transmitter and receiver were directed towards the intersection of 23rd and 

Iowa. The interpolated waveforms were loaded on the Tektonic AWG7002A arbitrary waveform 

generator (AWG), passed through a bandpass filter and RF amplifier before being transmitted out. 

Once the receiver collected the returned signal, it was then passed through another bandpass filter 

and low noise amplifier, before being collected on the Rhode & Schwarz real-time spectrum analyzer 

at 200 MSamples/sec.  

Using loopback data collected at the time of the experimental data collect, a match filter was then 

applied to the received signals to perform pulse compression. A -35-dB Taylor window was also 

applied in Doppler to alleviate Doppler spread. Since the radar system was on a stationary platform 

simple projection-based clutter cancellation was performed. This clutter cancellation technique 

forms a clutter matrix based on a given small radial velocity and performs singular value 

decomposition to calculate the projection matrix that the experimental data will be directed away 

from. Lastly, Doppler processing was performed.  

As we saw previously, all three quasi-bases performed well in simulation. These next results will 

show that not surprisingly, all three quasi-bases also yield physically realizable waveforms that are 

amenable to hardware. Upon visual inspection, there is hardly a discernable difference between the 

resulting range-velocity maps illustrated in Figure 5-1 – Figure 5-3. Upon evaluation of the 

background floor, it is revealed that second-order is about 2-dB higher than first-order and Fourier. 

Recall that second-order was not completely converged following the optimization, which led to a 

higher sidelobe response that was shown in Figure 4-2 and Figure 4-3, thus the higher background 

floor.  



 

Figure 5-1: Open-air range-velocity response after simple clutter cancellation using 3000 unique 

first-order PCFM optimized waveforms 

 



 

Figure 5-2: Open-air range-velocity response after simple clutter cancellation using 3000 unique 

second-order PCFM optimized waveforms 

 



 

Figure 5-3: Open-air range-velocity response after simple clutter cancellation using 3000 unique 

Fourier optimized waveforms 

Chapter 6 Conclusions and Future Work 

Leveraging a recent 𝑝-norm based gradient-descent method for optimizing parameterized FM 

waveforms, the impact of selecting different quasi-bases for this parameterization was examined. 

Several results highlight them importance for a given quasi-basis to be sufficiently oversampled. 

Despite similarities in calculated 3 dB bandwidth between the quasi-bases examined, out-of-band 

spectral roll-off exposed the potential limitations of using higher over-coding factors in hardware, 

especially with first-order and Fourier quasi-basis. Despite the expectation that imposing range-

straddling in the waveform design would implicitly impose spectral constraints for implementation 



of an over-coded waveform, this was inherently not the case especially when employing the first-

order and Fourier quasi-bases. 

6.1 Future Work 

From [16] the span of the parameters for first-order, second-order, and all the way up to third-

order PCFM was derived. Initializing a first-order PCFM within the derived bounds of [−𝜋,+𝜋], 

results in a waveform that is spectrally contained. But when we initialize second-order between that 

have a sense of “memory” or within the bounds of [−2𝜋,+2𝜋], spectral containment is off the table. 

In fact in [16], there was the assumption of a constant frequency during each 𝑇𝑝 interval that was 

made in order to determine the permissible second-order and third-order parameter values. This 

assumption is clearly not the case for second or higher-orders of PCFM. In fact, when PRO-FM is used 

to initialize the parameters of the second-order waveform often times the maximum and minimum 

parameters lie outside of these defined bounds. Indicating that more exploration into the appropriate 

bounds for initializing the second-order PCFM parameters needs to be done.  

It was also the hope that by including range straddling into the waveform design process, this 

would implicitly impose spectral containment as was shown in [15]. While the range-straddling 

implemented through the derivation was shown to be successful in the case of the second-order 

quasi-basis case, it was not as successful for the first and Fourier quasi-bases. Experimentation using 

an ad-hoc approach to impose spectral containment was explored, where the autocorrelation 

became,  

𝐫 = 𝐀𝐻[((𝐀𝐬̅) ⊙ 𝐯∗ + (𝐀𝐬̅) ⊙ 𝐯 + (𝐀𝐬̅)) ⊙ (𝐀𝐬̅)∗). (6.1) 

Therefore, by including both the forward and backward phase-shift vector, the relationship of 

conjugate-symmetry was maintained, allowing the use of the gradient derived in [12]. Early 

simulation indicated that this did implicitly provide a constraint on the spectrum. This was a very ad-

hoc method for the optimization and it would be better if instead of using the sum of the phase-shifts 

in the autocorrelation, to use the three separate GISL cost functions for each phase-shift case.  
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