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Abstract An increasing number of interactive applications and services, such as
online gaming and cognitive assistance, are being hosted in the cloud because of the
elastic properties and cost benefits of distributed data centers. Despite these benefits,
the longer and often unpredictable end-to-end network latencies between the end
user and the cloud can be detrimental to time-critical response to the applications.
Although technology enablers, such as Cloudlets or Micro Data Centers (MDCs),
are increasingly being leveraged by cloud infrastructure providers to address the
network latency concerns, existing efforts in re-provisioning services from the cloud
to the MDCs seldom focus on ensuring that the performance properties of the
migrated services are met. This chapter demonstrates the application of Dynamic
DataDrivenApplications Systems (DDDAS) principles in the systems software layer,
to address these limitations by: (a) determining when to re-provision; (b) identifying
the appropriateMDCand a suitable host within thatMDC thatmeets the performance
considerations of the applications; and (c) ensuring that the cloud service provider
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continues to meet customer service-level objectives while keeping its operational
and energy costs low. Empirical evaluations using a setup comprising a cloud data
center and multiple MDCs composed of heterogeneous hardware are presented to
validate the capabilities of the INDICES (Intelligent Deployment for ubiquitous
Cloud and Edge Services) framework to process DDDAS methods. It should also
be noted that the capabilitis created through INDICES are aimed to satisfy a broad
set of applications requiring real-time data deliver and thus also satisfy the support
requirements of environments enabling DDDAS-based applications.

1 Introduction

The cloud has become an attractive hosting platform for a variety of interactive and
soft real-time applications, such as scientific research, cognitive assistance, health
monitoring systems and collaborative learning, due to its elastic properties and cost
benefits. Despite these substantial advantages, the response time considerations of the
users mandate lower latencies for the applications, especially for the Dynamic Data
Driven Applications Systems (DDDAS) , such as stochastic estimation of mobile
platforms, cyber security and analytics, and urban situation awareness. For example,
prior works [33, 38] have shown that in highly interactive applications, latencies
exceeding 100 milliseconds (ms) may be too high for acceptable user experience.
However, real-world experiments have shown that the latencies experienced by ge-
ographically distributed users of an interactive service may tend to be on the order
of several hundreds of milliseconds [57]. Consequently, there is a need to bound the
resulting response times within acceptable limits.

For any cloud-hosted interactive application, the key factors that affect the round
trip latencies are the network delay between the client and the cloud, particularly
the roundtrip delay between the nearest access point of the client and the cloud, and
the time it takes to serve the client request in the cloud. Other factors are important
but can be negligible, such as the time taken by the thin client (e.g., lightweight
computer, such as an edge-node or Internet of Things IoT) to communicate with the
nearest access point [42] or time for the load balancer at the cloud front-end [32].
Thus, any improvement in response times must focus on reducing the network delays
and the server processing time.

In recent years, edge computing, cloudlets [52] or Micro Data Centers (MDCs)
[3] have emerged as one of the key mechanisms to manage and bound the transit
latency by supporting cloud-based services closer to the clients.MDCs can be viewed
as “data center in a box,” which act as themiddle tier in the emerging “mobile device–
MDC–cloud” hierarchy [52]. In the rest of the chapter, the term MDC is used to
represent all emerging mechanisms, such as Cloudlets, Micro Datacenters (MDCs),
Locavore infrastructures, etc. MDCs possess key attributes of soft states, sufficient
compute power and connectivity, proximity to clients, and conformance to standard
cloud technologies.
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Recent efforts [14,15,39,66] have leveraged the cloud, MDCs and mobile ad-hoc
networks by focusing primarily on cyber-foraging [4, 52], where tasks are offloaded
frommobile devices to the cloud/MDCs for faster execution and conserving resources
on the mobile client endpoints. However, only recently has there been an increasing
interest inmoving tasks from the central clouds to theMDCs. Those that do, however,
have seldom considered the resulting application performance because these efforts
tend to overlook the fact that servers within theMDCmay themselves get overloaded,
thereby worsening the user experience as compared to that of a traditional cloud-
hosted interactive service. On the other hand, efforts that consider performance of
MDCs make very simplistic assumptions regarding their performance models.

In this chapter, focus is placed on the performance of MDCs, specifically on
the key factors contributing to performance degradation of applications running in
MDCs and data centers in general. One fundamental system property that is often
overlooked in prior works is performance interference, which is caused by co-located
applications in virtualized infrastructures [11,18,35,37]. Performance interference,
being an inherent property of any virtualized system, manifests itself in MDCs
also and therefore must be factored in by any approach that is performance-aware.
Thus, themethods discussed here consider a “just-in-time” and “performance-aware”
service migration approach for migrating cloud-based interactive services hosted in
a centralized cloud data center to an MDC.

To support such as vision, a number of challenges manifest themselves as de-
scribed below - that must be addressed by any just-in-time and performance-aware
cloud-to-fog application migration solution:

• Hardware heterogeneity: Differences in hardware configurations of the servers
in a traditional data center and in an MDC will provide different performance
profiles, and hence should be accounted for in the analyses.

• Performance Interference:Noisy neighbors [12] cause performance issues, which
must be considered in both traditional data centers and MDCs. However, since
an MDC is orders of magnitude smaller than a traditional data center, perfor-
mance interference may be more pronounced and manifests more rapidly than in
traditional data centers.

• Network performance measurements: Accurate latency and bandwidth measure-
ments are required to reliably work over Wide Area Networks (WANs). Measure-
ments are important, since accurately estimating the value for the transit latency
is critical in the problem formulation and solution.

• System performance measurements: Reliable application and server performance
measurement and logging techniques are required to preciselymeasure the service
execution (i.e., service execution time on the hardware of the data centers or
MDCs).

The cloud-fog resource spectrum is a highly dynamic system and hence no a
priori, statically-defined solution is going to address these multitude of challenges
all at once. Instead, solutions that rely on dynamic data-driven techniques such
as that envisioned by the Dynamic Data Driven Applications Systems (DDDAS)
paradigm [7, 16] offer the most promise. DDDAS proposes an approach where
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data-driven models of a system are learned through dynamic instrumentation of
the system, the models are simulated to conduct what-if analysis, and in turn these
insights are used in a feedback loop to steer the system along the desired trajectory.
This chapter describes the DDDAS approach at the systems software layer to address
these aforementioned challenges and present a just-in-time and performance-aware
cloud-to-fog application migration approach that involves the following contribu-
tions:

• A data-driven modeling technique to estimate the performance of a cloud ap-
plication on different hardware platforms subject to performance interference
stemming from various co-located applications.

• Formulate server selection as an optimization problem that finds an apt server
among multiple micro data centers to migrate an application to, so that its per-
formance needs can be met while minimizing the deployment cost of the service
provider.

• Describe INDICES (INtelligent Deployment for ubIquitous Cloud and Edge
Services), which is a framework that implements DDDAS-based algorithms for
online performance monitoring, performance prediction, network performance
measurements, server selection and application migration.

• Show experimental results to validate the INDICES framework and evaluate the
efficacy of system.

The rest of the chapter is organized as follows: Section 2 presents the INDICES
system model and assumptions; Section 3 describes the problem formulation ad-
dressed in this research effort; Section 4 delves into details of the solution provided
through the methods discussed, including the design and implementation; Section 5
presents empirical results that validate the capabilities sought through the methods
presented here; Section 6 compares related work; and finally Section 7 presents
concluding remarks referring to lessons learned and future work.

2 System Model and Assumptions

This section formally defines and describes the system model used in the present
study, and also introduces the assumptions made for formulating the problem.

2.1 Components of Application Response Times

Typically, the total end-to-end latency CC>C0; or response time experienced by cloud-
hosted interactive applications consists of several parts as shown in Equation (1) and
which forms the motivation for the work presented here:

CC>C0; = C2;84=C + C0224BB + CCA0=B8C + C30C024=C4A + CB4A E4A (1)
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where

• C2;84=C is the processing delay at the client endpoint;
• C0224BB is the sum of inbound and outbound message transmission delays between

the client and its nearest network access point;
• CCA0=B8C is the sum of inbound and outbound communication delays between the

network access point and the cloud data center;
• C30C024=C4A is the communication delay from the data center front end (e.g., a

web server and load balancer) to the target server in the data center that actually
handles the request in both directions;

• CB4A E4A is the processing delay at the target server.

Among these costs, C2;84=C and C0224BB cannot be controlled and managed by
the cloud service provider. Also, since C30C024=C4A is usually less than 1 ms [13],
it is practically negligible. On the other hand, a cloud provider can control and
manage CCA0=B8C and CB4A E4A , both of which are key factors in meeting the response
time requirements of interactive applications. Note that CCA0=B8C is governed by the
number of hops incurred by the application messages to traverse the wide area
network (WAN) to reach the cloud data center and for the responses to traverse back
to the user.

2.2 Architectural Model

The work presented in this chapter is geared towards platform-as-a-service (PaaS)
cloud providers who seek to meet service-level objectives (SLOs) of soft real-time
applications, such as data analytics, online gaming, augmented reality, or virtual
desktop, by improving application response times via the exploitation of micro
data centers (MDCs); of which such applications have stringent real-time response
requirements which put to utmost test of the DDDAS-based systems software capa-
bilities sought, and thus will also satisfy the support requirements of environments
needed to support DDDAS-based applications. In doing so, cost considerations and
energy savings for the PaaS provider in operating and managing the resources be-
yond the traditional data centers are also critical issues while ensuring that such an
approach provides an additional source of revenue to the PaaS provider. Revenue
generation issues are, however, beyond the scope of this chapter.

Figure 1 depicts the INDICES architectural model that consists of a Centralized
Data Center (CDC), owned by a PaaS cloud provider. The CDC is connected to a
group of Micro Data Centers (MDCs), denoted by " = {<1, <2, . . . , <=}. These
MDCs are deployed at the edge, and are either owned by the CDC provider or leased
from an edge-based third party MDC provider. A leased MDC is assumed to be
exclusively under the control of the CDC provider. The sharing of MDCs across
different CDC providers is not addressed in this work and forms a dimension of the
future work. Once an MDC is leased, all its resources are considered to be part of
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the CDC provider, and hence customers of the CDC can be transparently diverted to
the MDC using their CDC-based security credentials.
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Fig. 1 Architectural Model of INDICES (Intelligent Deployment for ubiquitous Cloud and Edge
Services)

The CDC comprises a set of compute servers, �232 , that can be used to execute
applications. The CDC also contains a global manager 6<, which is responsible
for detecting and mitigating global SLO violations. It is assumed that, for each
MDC < ∈ " , there exist links to the CDC with a backhaul bandwidth of 1<.
Each MDC < also comprises a set of compute servers, �<, that can be allocated
to the CDC for its operations at a specified cost. One of the hosts from �< or
a specially designated MDC host acts as the local manager (;<<) for that MDC
and is responsible for the DDDAS functionality of data collection, performance
estimation, latency measurements and MDC-level decision making, which is the
DDDAS feedback loop. This decision-making logic is deployed at the MDC by the
CDC provider. For convenience, let �<32 =

⋃
<∈" �< denote the set of all servers

in the MDCs, and let �C>C0; = �<32
⋃
�232 denote the set of all servers from both

the CDC and the MDCs. Table 1 lists the key notations in the architecture model.
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Table 1 Key notations in the architectural model
Notation Description
��� Centralized Data Center, located at the cloud for execution of applications
" Set of Micro Data Centers, located at the edge for execution of applications
�232 Set of compute servers (hosts) located at the CDC
�< Set of compute servers (hosts) located at an MDC < ∈ "
�C>C0; Set of all compute servers (hosts) located at both the CDC and the MDCs
�<32 Set of all compute servers (hosts) located at the MDCs
1< Backhaul bandwidth to transfer data from the CDC to hosts of �<

2.3 Application Model

For the system model, consider a set of latency-sensitive applications, denoted as
�??B, that can be collaborative or single user and interactive or streaming in nature.
Each application 0 ∈ �??B is initially deployed in the CDC, with a set*0 of users,
and is assumed to be containerized inside a virtual machine (VM). It is assumed
that for a collaborative application 0, its users are located in proximity of each other
where they incur similar round trip latencies. These scenarios are common when
one considers for example collaborative educational applications such as [10] where
the users are a group of students working from a school library or a coffee shop,
computer vision-based applications in museum and stadium settings [20], or a single
user system such as augmented reality-based assisted industrial troubleshooting [29]
where image processing operations are performed in the cloud. Table 2 lists the key
notations used in the application model.

2.3.1 Application Performance

Each application 0 ∈ �??B can be hosted on any active host in CDC or MDC,
i.e., [ ∈ �C>C0; that provides virtualization using a hypervisor or virtual machine
monitor (VMM), such as KVM [36] and Xen [2]. Let 4430 represent the expected
execution duration for which the application will be used by the end-user clients.
An interactive or streaming application comprises multiple individual interactions
between the user and the application that are designated as streaming steps.

Each interactive or streaming step of application 0 consists of both a latency
and an execution time. A step takes an estimated execution time 44C0,[ on host [;
for collaborative applications, which indicates the time needed for all users to have
completed that step. Section 4.2 discusses in detail a systematic way of estimating
these per-step execution times. In addition, for each user D ∈ *0 of the application,
let 4;0,[,D represent the estimated round-trip network latency. Hence, 4BB0,[ denotes
the total expected response time of a streaming step, it ensues:

4BB0,[ = 44C0,[ + max
D∈*0

4;0,[,D (2)
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For an application 0, q0 is defined to be a bound on the acceptable response time
for each interactive step of the application. Thus, formally, the SLO for application
0 hosted on host [ should satisfy:

4BB0,[ ≤ q0 (3)

Table 2 Key notations in the application model
Notation Description
�??B Set of applications initially deployed on the CDC
%� Subset of applications in �??B that suffer from performance degradation
*0 Set of users executing application 0 ∈ �??B
4430 Expected execution duration of application 0 ∈ �??B
44C0,[ Estimated execution time of a streaming step of application 0 ∈ �??B executed

on host [ ∈ �C>C0;

4;0,[,D Estimated round-trip latency experienced by user D ∈ *0 from a streaming
step of application 0 ∈ �??B executed on host [ ∈ �C>C0;

4BB0,[ Total expected response time of a streaming step of application 0 ∈ �??B
executed on host [ ∈ �C>C0;

q0 Bound on acceptable response time for each streaming step of application
0 ∈ �??B

B0 Size of the snapshot of application 0 ∈ %� to be migrated from CDC to MDC
280,[ Initialization cost of migrating application 0 ∈ %� to host [

CA0=B 5 4A0,[ Transfer time for migrating application 0 ∈ %� from CDC to host [ in MDC
and for initializing it

X0 Bound on acceptable transfer time for migrating and initializing application
0 ∈ %�

2.3.2 Migration Cost

During normal execution, some applications may suffer from performance degrada-
tion. %� denotes the subset of �??B running on the CDC that suffer from perfor-
mance degradation. These impacted %� applications can be identified reactively by
the end-user client, which notices missed deadlines using special instrumentation
features supplied in the client-side “app” installed as part of the PaaS platform and
notifies the CDC service. Alternatively, they can be identified proactively via a pre-
dictive decision based on the existing user profiles, where the system predicts that
the users are likely to experience SLO violations if they had connected from their
profiled location during a certain time period. The goal of the methods presented
here is to minimize the number of SLO violations.

To minimize the SLO violations, the system can decide to migrate those ap-
plications from the CDC to the hosts in the MDCs, which is a decision made by
the DDDAS-based algorithm. Migrating (or transferring) an application incurs two
costs: the cost to transfer a snapshot of the application on the new host, and the
initialization cost to start the application on the new host.
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For an application 0 ∈ %� transferred to host [ ∈ �<, B0 denotes the size of the
snapshot of the application (independent of the host). The snapshot is transferred to
host [ using the corresponding MDC’s backhaul bandwidth 1< and, 280,[ denotes
the initialization cost of migrating application 0 to host [ before the application
can start processing requests on the MDC host. Once the user-specific state has
been transferred, there is minimal interaction between the CDC-based server and
the MDC-based server for the remainder of the functioning of application 0. In
this chapter, the work discussed does not consider further consolidation of resources
where applicationsmigrate back to the CDC. The transfer time CA0=B 5 4A0,[ incurred
while migrating application 0 from the CDC to host [ of anMDC is therefore defined
as follows:

CA0=B 5 4A0,[ =
B0

1<
+ 280,[ (4)

In general, to migrate the application to the new machine, one needs the transfer
duration to be small compared to the application’s remaining expected execution
duration 4430. The small duration is a necessary condition to motivate the use of
MDC resources and for the ensuing solution to be relevant. To ensure this, the
methods developed here do not require sending entire images of the VM or the
container from the CDC to MDC. Instead, a layered file system architecture is used
at the MDC that is pre-populated with base images used at the CDC as described in
Section 4.4. The images assumption is realistic because it is expected that an MDC
is either owned entirely or leased exclusively by the CDC provider. The methods
developed here are aimed to ensure that the transfer duration is within a threshold
X0 defined by the application users before they start to observe improved response
time. These requirements are concretized with the following constraint:

CA0=B 5 4A0,[ ≤ X0 � 4430 (5)

Finally, another critical issue that must be accounted for is that any migration of
a new application from the CDC to an MDC should not violate the SLOs of the
existing applications in that MDC. To model the violation constraint, let �??B[
represent the set of all applications currently running on an MDC host [. Then, for
each application 1 ∈ �??B[ , one must verify that its response time bound remains
satisfied, i.e., 4BB1,[ ≤ q1 , after the migration of the new application.

3 Problem Statement and its Formulation

This section formally presents the problem statement. Recall that the objective of the
methods is to improve response times for cloud-hosted interactive applications that
are experiencing performance degradation by migrating them to MDCs. To that end,
two key problems must be addressed. First, there must be have a systematic approach
for understanding the causes of performance degradation and for determining if an
application is impacted. Second, there must be an effective approach by which an
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application can be migrated from the CDC to an MDC without impacting existing
MDC-based applications while minimizing the cost incurred by the cloud provider.
Both these problems are addressed using the DDDAS approach as explained in the
remainder of this section.

3.1 Performance Estimation Challenges

The performance of an application depends on several factors, including the work-
load, the hardware hosting platform, and co-located applications that cause perfor-
mance interference [11,18,35]. It is thus important for any solution to account for all
of these factors in order to accurately estimate an application’s performance in both
the CDC and theMDCs. The roles of these factors and the challenges in performance
estimation are described next.

3.1.1 Workload Estimation

For the cloud-hosted interactive applications of interest here, it is assumed that the
workload variation is not significant within a single user session of the service.
However, different sessions may have different workloads. For example, in an image
processing application, the quality and hence the size of the captured and relayed
image may vary depending on different clients’ mobile devices. Thus, each workload
is considered as a different application setting, which is reflected by the application-
specific response time (as described in Section 2.3.1).

3.1.2 Hardware Heterogeneity

The CDC and MDCs may consist of heterogeneous hardware platforms and hence
each application’s performance can vary significantly from one hardware platform
to another [18]. Therefore, an accurate benchmark of performance is needed for
each hardware platform. DDDAS enables meeting this objective through effective
instrumentation, data collection and model building.

3.1.3 Performance Interference

Server virtualization platforms such as KVM [36] and Xen [2] provide high degree
of security, as well as fault and environment isolations for applications running in
virtualized containers, i.e., virtual machines (VMs). However, the level of isolation is
inadequate when it comes to performance isolation even though the cloud providers
have well-defined resource sharing mechanisms due to two primary reasons:
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• Presence of non-partitionable shared resources:VMs can provide isolation guar-
antees by applying strict CPU reservations and static partitioning of disk and
memory spaces. There are also solutions available to limit the network bandwidth.
Yet, on-chip resources including cache spaces, cache andDRAMbandwidths, and
interconnect networks are difficult to partition [27]. Recently, Intel has introduced
Cache Allocation Technology [9] to partition the last level cache (LLC). However,
it is still not widely used and cannot be applied to older generation servers. In
addition, the presence of shared storage disk is a leading cause of performance
degradation [53]. The load imposed on these shared resources by one application
is detrimental to all the cache-, memory- and I/O-sensitive applications [46].

• Hypervisor overhead: The virtual machine monitor or hypervisor has its own
overhead. In traditional hypervisors such as KVM and Xen, each virtual ma-
chine runs its own operating system which leads to overhead. In addition, the
virtual CPUs (vCPUs) can be de-scheduled and virtual RAM can be swapped out
without notification. This leads to performance anomalies. In recent years, Linux
Container-based virtualization techniques, such as Docker and LXC, have grained
transaction due to its low overhead. These resource sharing mechanisms divide
the kernel space from the host machine, which alleviates some of the performance
concerns but do not provide the same level of performance and security isolations
as the VMs [49]. In addition, to maximize the server utilization in shared clusters,
cloud providers tend to overbook resources such as CPU cores. This precludes
strict CPU reservations and leads to even the lower level caches (L1 and L2)
getting shared. In addition, if the overbooked workload goes beyond the server
capacity, contention takes place and the applications suffer from performance
issues.

3.2 Optimization Problem Formulation

The objective of INDICES’ DDDAS-based framework is to assure the SLOs for
all the identified applications in %� by migrating them to the MDC hosts, while
minimizing the overall deployment cost.

3.2.1 Objective Function

To formalize the optimization problem, the following binary variables are defined to
indicate the decision taken by INDICES’ DDDAS actuation logic for deploying the
applications in the set %� onto the hosts in �<32 .

G0,[ =

{
1 if 0 ∈ %� is deployed on [ ∈ �<32
0 otherwise

Thus, the total number of decision variables is |%�| × |�<32 |.



12 Shekhar et. al

The total cost of deploying applications consists of two parts as shown in Equa-
tion (6), where the first part indicates a fixed cost incurred due to extending the lease
of a host [ (if the host is selected), and the second part indicates the cost of deploying
an application 0 to host [, which includes both transfer and initialization costs.

�C>C0; =
∑

[∈�<32

�
5 8G43
[ +

∑
[∈�<32

∑
0∈%�

G0,[ · �34?;>H0,[ (6)

Each MDC host [ involves a monetary allocation cost as it is either leased or
could be leased to other providers if owned by the centralized cloud. In addition,
running servers involve operational costs, such as the need for power and cooling.
Thus, the provider wants to use an MDC server for the shortest duration possible
and hence the deployment cost depends on the duration for which the MDC server
is used. The cost can be modeled as the extra duration for which the server has to be
turned on due to the deployment of the applications in %� and it can be represented
by a nonlinear function as shown in Equation (7), where the constant U[ denotes the
cost gradient for powering on host [.

�
5 8G43
[ = U[ ·max

(
0, max
0∈%�

(G0,[ · 4430) − max
1∈�??B[

4431

)
(7)

The other objective for the cloud provider is to select hosts which bear minimum
transfer and initialization costs. The cloud provider cost is represented as a linear
function of transfer and initialization time, as shown in Equation (8), where the
constant V0,[ represents the cost gradient for transferring application 0 to host [.

�
34?;>H
0,[ = V0,[ · CA0=B 5 4A0,[ (8)

3.2.2 Optimization and Constraints

Using the decision variables and the objective function, one can now formulate the
optimization problem as an Integer Non-Linear Program (INLP) as follows:

minimize �C>C0;

subject to
∑

[∈�<32

G0,[ = 1,∀0 ∈ %� (9)∑
[∈�<32

G0,[ · 4BB0,[ ≤ q0,∀0 ∈ %� (10)∑
[∈�<32

G0,[ · CA0=B 5 4A0,[ ≤ X0,∀0 ∈ %� (11)

4BB1,[ ≤ q1 ,∀1 ∈ �??B[ ,∀[ ∈ �<32 (12)
G0,[ ∈ {0, 1},∀0 ∈ �??B[ ,∀[ ∈ �<32 (13)
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The following explains the constraints in the above formulation based on the
architectural and application models:

• Constraint (9) restricts each application 0 ∈ %� to be deployed on only one MDC
host.

• Constraint (10) enforces the response time constraint for each application 0 ∈ %�
(i.e., Inequality (3)).

• Constraint (11) enforces the deployment constraint for each application 0 ∈ %�
(i.e., Inequality (5)).

• Constraint (12) ensures the response time constraint for each existing application
1 ∈ �??[ in each MDC host [ ∈ �<32 .

• Constraint (13) restricts the decision variables to be binary.

Due to the NP-hardness of the above INLP formulation, the optimization relies
on a greedy heuristic to solve it. Section 4.5 describes the proposed heuristic for
server selection.

4 Design of the DDDAS-based INDICES Framework

This section details the INDICES framework, which solves the optimization problem
from Section 3.2. To that end, the solution depends on accurately and reliably
estimating: (a) the execution time of the impacted application and network latencies
suffered by its clients; (b) similar parameters for the already running applications on
different hosts of different MDCs, which are then used in selecting the appropriate
host to migrate an impacted application; and (c) the transfer time for migrating the
state of the impacted application. This section describes the framework architecture
and the detailed techniques for solving the optimization problem.

4.1 INDICES Architecture and Implementation

Before delving into the detailed techniques used to solve the optimization problem,
the high-level architecture of INDICES is described. Given the scale of the system,
a centralized approach to performance prediction and cost estimation for every
application hosted in the CDC/MDC and its clients is infeasible. Thus, a hierarchical
DDDAS approach is taken, where individual MDCs with their local managers and
the global manager of the CDC participate in a two-level decision making process
as shown in Figure 1.

Figure 2 shows the local decision-making component of INDICES. Each MDC
is composed of a management node and several servers on which the applications
executewithin virtualmachines. Each individual host in the systemhas a performance
monitoring component that logs the data at the localmanager ;<<. The localmanager
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consists of various DDDAS components: a data collector, a latency estimator, a
performance predictor and a cost estimator.
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Fig. 2 Local Decision

The performance monitor, which executes the DDDAS instrumentation function-
ality, instruments the host, and collects system level metrics such as CPU, memory
and network utilizations, as well as micro architectural metrics such as instructions
per second (IPS) who are retired (out-of-order instructions completed) and cache
misses. This information is periodically logged to the local manager for processing.
The performance monitoring framework is based on the collectd [24] system perfor-
mance statistics collection tool. To collect micro architectural performance metrics,
the INDICES system uses a Python plugin for collectd using Linux perf. The perf
plugin detects if the hardware platform is known, and accordingly executes code that
collects hardware specific performance counter statistics. The information is then
forwarded to the ;<< using AMQP [56] message queuing protocol. The ;<< runs
a server developed in the Go programming language, which persists the data in the
InfluxDB database, designed specifically for time-series data.



INDICES 15

4.2 Execution Time Estimation via DDDAS Model Execution

The constraints in the optimization problem require an accurate understanding of
the predicted execution time duration of an application if it were to execute at an
MDC, as well as the execution times of the existing applications executing on the
hosts of the MDCs. Hence, an application’s expected performance profile and in
turn its interference profile [31] when co-located with other applications on different
hardware platforms given the hardware heterogeneity across the CDC and MDCs is
built by defining a DDDAS model using the instrumented dynamic data. Although
prior efforts [46, 62, 64] have used retired instructions per cycle (IPC) or last-level
cache (LLC) miss rate as the performance indicators, Lo et. al [44] have shown the
limitations of these metrics for latency-sensitive applications. Thus, in the present
work the execution time is considered as the primary indicator of performance.

The interference profile of an application [40, 46, 61, 65] is a property that iden-
tifies: (a) the degree to which the application will degrade the performance of other
running applications on the host – known as pressure – and (b) howmuch the applica-
tion’s own performance suffers due to interference from other applications – known
as sensitivity. The performance degradation of an application depends, to varying
degrees, on different system components and architectures, and other co-located ap-
plications. Several prior efforts have used pairwise application execution to estimate
their sensitivity and pressure [40,46,61,65]. However, these solutions are not viable
for a data center given the significantly large number of hosted applications. Some
other efforts [62] pause non-critical applications to measure pressure and sensitivity
of live applications, which may not be a realistic solution.

Thus, the generated DDDAS model for a given application 0, captures the appli-
cation’s performance on a host with hardware configuration F and is modeled by
Equation (14), where . is the execution time, - is a vector of system-level metrics
that quantify the state of the host, and the function 5 1

0 models the relation between
the state of the host machine and the performance of the application 0. Moreover, the
system-level information needed is obtained through Equation (15), which depicts
through function 5 2

0 the change in the state of the host with hardware configuration F
if application 0 were to be hosted on it. Equation (15) provides an indirect measure
of performance interference, since its output can be used to calculate the change in
execution time of an already running application by plugging the new state vector
-=4FF into Equation (14) and solving it for each running application.

. = 5 1
0 (-F ) (14)

-=4FF = 5 2
0 (->;3F ) (15)

Another required step is to determine the appropriate DDDAS instrumentation
and data collection strategy, which in this case is to identify the right system-
level metrics to use. Previous works [17, 18, 31] have identified several sources
of interference including caches, prefetchers, memory, network, disk, translation
lookaside buffers (TLBs), and integer and floating point processing units. Both Intel
and AMD architectures provide hardware counters to monitor the performance of
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Table 3 Server Architectures

Server HardwareModel
Sockets/Cores/
Threads/GHz

L1/L2/L3
Cache (KB)

Mem Type-
/MHz/GB Memory Bandwidth Count

A i7 870 1/4/2/2.93 32/256/8192 DDR3/1333/16
64 *(UNC_IMC_NORMAL_READS.ANY
+ UNC_IMC_WRITES.FULL.ANY) / time
in sec

2

B Xeon
W3530 1/4/2/2.8 32/256/8192 DDR3/1333/6

64 *(UNC_IMC_NORMAL_READS.ANY
+ UNC_IMC_WRITES.FULL.ANY) / time
in sec

1

C Core2Duo
Q9550 1/4/1/2.83 32/6144/- DDR2/800/8

64 * BUS_TRANS_MEM.ALL_AGENTS
*1e9 * CPUFrequency /
CPU_CLK_UNHALTED.CORE

1

D Opteron
4170HE 2/6/1/2.1 64/512/5118 DDR3/1333/32

64 * SamplingPeriod *
DRAM_ACCESSES_PAGE.ALL / time in
sec

9

micro-architectural components. However, not all the sub-components can always
be monitored. Moreover, the list of available counters is significantly smaller for
older generation servers. Due to these constraints and driven by the need to support a
broadly applicable solution, the following host metrics for performance monitoring
are:

• System Metrics: CPU utilization, memory utilization, network I/O, disk I/O,
context switches, page faults.

• Hardware Counters: Retired instructions per second (IPS), cache utilization,
cache misses, last-level cache (LLC) bandwidth and memory bandwidth. The
bandwidth metrics are not directly available and the counters can vary from one
hardware to other. In the analysis, the LLC bandwidth and memory bandwidth
were found to be highly correlated and hence the memory bandwidth and not
LLC bandwidth is selected due to its easier availability on different architectures
and versions. Table 3 lists the hardware counter-based equations for calculating
memory bandwidth, which are derived from [1,21].

• Hypervisor Metrics: Scheduler wait time, scheduler I/O wait time, scheduler
VM exits. These metrics are the summation for all the executing virtual machines
for the KVM hypervisor.

By applying standard supervised machine learning techniques on the collected
metrics, Equations (14) and (15) are estimated using the following sequence of steps:

1. Feature Selection: Feature selection is the process of finding relevant features
in order to shorten the training times and reduce errors due to over-fitting. The
present work adopted the Recursive Feature Elimination (RFE) approach using
Gradient Boosted Regression Trees [22] and applied RFE in a cross-validation
loop to find the optimal number of features that minimizes a loss function (e.g.
mean squared error).

2. Correlation Analysis: To remove the linearly dependent features, correlation
analysis is required. This step further reduces the training time by decreasing
the dimensions of the feature vector. The Pearson Correlation Coefficient [43]
eliminates highly dependent metrics with a threshold of ±0.8.
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3. Regression Analysis: In this step, curve fitting is performed using ensemble
methods with a standard off-the-shelf Gradient Tree Boosting (GTB) method,
which is widely used in the areas of web page ranking and ecology. The primary
advantage of GTB lies in its ability to handle heterogeneous features and its
robustness to outliers.

The performance estimation of the applications, which is effectively conducting
what-if-analysis by simulating the developed DDDASmodel, consists of two phases:
(1) Offline Phase, and (2) Online Phase. The offline phase occurs at the CDC to find
estimators, while the online phase is performed by the local manager (;<<) of the
MDCs to estimate the performance of the target application and also to estimate the
performance degradation of the running applications. The two phases are described
next.

4.2.1 Offline Phase

Whenever the data center receives a request for migrating an application that has not
been profiled, it is benchmarked on a single host with a given hardware configura-
tion and then co-located with other applications to develop its interference profile.
However, since the number of profiling configurations can be huge, a uniformly
distributed subset of possible co-location combinations for profiling is selected. The
estimators can be found either by following the three above-listed steps or by choosing
an existing estimator of some application based on similarity between the projected
performance and the actual performance. A hybrid approach is used here, which first
predicts the performance of the new application and its interference profile using
estimators of an existing application for the same hardware specifications. If the
difference between the measured performance and the estimated performance are
within a pre-defined threshold, then the new application is considered to be similar
in performance to the existing application. Among all such similar applications, the
estimator of the application with the least error is selected for all MDC hardware
configurations, which saves profiling time and cost. However, if there is nomatch, the
application profile is developed, i.e., the existing DDDAS model is refined, by per-
forming feature pruning followed by model fitting on each unique hardware platform
maintained by the data center.

4.2.2 Online Phase

The learned models are then exported and forwarded to the MDC local manager
;<< for the available hardware platforms in the MDC to estimate the performance
of any application to be deployed in the MDC. Since each MDC is small in size and
typically illustrates limited heterogeneity in the supported hardware, the number of
estimation models will be small. On receiving a request from the global manager
6<, the local manager ;<< estimates the performance of an application by feeding
the estimator with presently logged data set using estimation function (14). The
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pressure on the existing set of applications �??[ on host [ is calculated by first
applying Equation (15) on the target application and then Equation (14) for the
existing applications.

4.3 Network Latency Estimation

The constraints of the optimization problem also require an accurate understanding
of the network latencies incurred by the clients, specifically the worst among all
the clients of each application. The latency information is needed for identifying
the appropriate host in the appropriate MDC to which an impacted application can
be migrated such that it satisfies the SLOs for the worst suffering client while not
unduly affecting the existing applications of the MDC hosts.

Thus, estimating the latency to different MDC servers is another key component
for achieving the targeted SLOs. To that end, the clients who suffer SLO violations
from Equation (3) must be determined. In each client, the instrumented “app” that
is installed by the user as part of the client application periodically reports to 6<
the application response time it is observing. To not overwhelm the 6<, such data
logging needs not occur directly on the 6<; instead, it can be logged on an ensemble
of servers that then report to the 6<, or the application server can itself gather data
and forward the information when SLO violations occur.

Since there could be multiple MDC choices to migrate an impacted application
to, the first step in the algorithm developed in the present work requires reducing
the target set of MDCs for latency estimation to decrease the load and amount of
time for server selection. To that end, the logged performance data from the clients
is used to extract its IP address in order to determine the closest MDCs to that client.
The extracted client IP address may not be accurate since often internet users have
private addresses and the reported external address is that of the network router or
one from the pool of network provider’s addresses in case the connection is via a
cellular network. However, the extracted IP address information is sufficient, as the
client location is used to reduce the set of MDCs that need to be queried. The client’s
geo-location and consequently its region is derived from the IP address.

The next step is measuring the latencies to the nearby MDCs. To obtain a re-
liable latency estimate, HTTP-based and TCP socket-based latency measurement
techniques are used for HTTP-based and plain TCP-based cloud applications, re-
spectively. Also, additional protocols can be added to this list based on the protocol
used. Subject to the collected information, the 6< forwards to the client app a list
of “nearby” MDC gateway servers that are also the local managers ;<<, which
each host a server for the purpose of latency measurement. The client then posts =
requests to each ;<< with a file that it typically posts to the cloud for processing
(e.g., an image for image processing application) and also the average size of the
response it receives from the application. The server responds with a response for the
same number of bytes. For each of the = interactions, the client records the elapsed
time and thus measures C2;84=C + C0224BB + CCA0=B8C . The client app selects the SLO
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latency (e.g., 95Cℎ percentile) from the = latencies for each ;<< and reports it to
6<. The latency assessment also accounts for the delay due to bandwidth size as the
actual request data is transferred instead of a ping. It is similar to the speed test for
measuring the download/upload speeds of an internet provider.

4.4 State Transfer Estimation

The final constraint of the optimization problem requires estimating the cost of the
state transfer. The local managers calculate the state transfer cost using Equation (4)
and use it in local decision making. Once the 6< selects a host for migrating an
application, the application’s state has to be transferred before the clients can be
switched to the new server location. In this regard, there exist several solutions
available for WAN-scale virtual machine migration [8,52,55,59]. The present work
leverages the cloud virtual disk format such as qcow2 features for WAN migration.
The VM disk is composed of a base image and can contain several overlays on top of
it for change sets. The VM overlay when combined with the base image constructs
the VM that needs to run for serving the clients.

This base image can contain just an operating system such as Ubuntu (www.
ubuntu.com) or an entire software stack such as OpenCV (www.opencv.org) for
image processing. The base image is assumed to be present on MDC hosts to save
on migration costs and can be shared by multiple VMs. For the target application,
overlays are created using external snapshots. The VM overlay is the state that gets
transferred to the host and is synthesized with the base image for execution.

Once the application starts running, it informs the 6< and all the application
clients are redirected to the new application URL. The URL direction happens for
custom clients by forwarding the new location to the clients which can then use the
new URL for processing. However, for browser-based clients, the communication
with the 6< occurs via application server due to cross-domain restriction and the
existing application issues HTTP-redirect to the new location. In the future, the
solution provided through the presentworkwill be enhanced to support livemigration
ofVMs using solutions such as Elĳah cloudlet [28] or the recently introducedDocker
Linux container’s live migration feature [48].

4.5 Solving the Optimization Problem at Runtime

The final piece of the puzzle is to solve the optimization problem described in
Section 3.2. The problem cannot be solved offline due to the changing dynamics of
the system. Moreover, due to the non-linearity and NP-hardeness of the problem,
the work here employs a heuristics-based DDDAS decision making algorithm as
described in Algorithm 1 (Deployment Server Selection) to solve it efficiently in

www.ubuntu.com
www.ubuntu.com
www.opencv.org
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an online setting. The algorithm selects aptly a suited server in an MDC while
minimizing the overall deployment cost for the entire system.

Algorithm 1 Deployment Server Selection
1: Input: set �??B of all applications running on the CDC
2: Output: a server on anMDC for migrating each application 0 ∈ %� ⊆ �??B that experiences

performance degradation
3: for all 0 ∈ �??B do
4: 4BB0,232 ← �BC) >C0;�G42) 8<4 (0, ���)
5: if 4BB0,232 > q0 then
6: %�.8=B4AC (0)
7: if %� = ∅ then return ⊲ Do nothing
8: for all 0 ∈ %� do
9: 4430 ← �4C�G?42C43�G42DC8>=�DA0C8>=(0)
10: 2;84=C!>2 ← �4C!>20C8>=(*0)
11: =40A1H"��B ← �8=3#40A1H"��B (2;84=C!>2)
12: for all < ∈ =40A1H"��B do
13: �< ← �4C(4A E4A!8BC (<)
14: for all [ ∈ �< do
15: CA0=B 5 4A0,[ ← �BC) A0=B�DA ([, 0)
16: if CA0=B 5 4A0,[ > X0 then
17: skip [ ⊲ Constraint violated
18: ?4A 50,[ ← %A4382C%4A 5 � =C4A 5 ([, 0)
19: for all 1 ∈ �??[ do
20: 4BB1,[ ← �BC) >C0;�G42) 8<4 (1, [, ?4A 50,[)
21: if 4BB1,[ > q1 then
22: skip [ ⊲ Constraint violated
23: 4BB0,[ ← �BC) >C0;�G42) 8<4 (0, [, ?4A 50,[)
24: if 4BB0,[ > q0 then
25: skip [ ⊲ Constraint violated
26: �C>C0;

0,[ ← �BC) >C0;�>BC (CA0=B 5 4A0,[ , 4430)
27: [�C>C0;

<8=
, [<8= ] ← min[ {�C>C0;

0,[ }
28: migrate application 0 to server [<8=

There are two phases in the algorithm. In the first phase, the set %� of applications
suffering fromSLOviolations (Lines 3–6) is identified. In the second phase, a suitable
server is selected for migrating each of these applications (Lines 8–28), unless the
set %� is empty, in which case the algorithm simply returns (Line 7). Otherwise, for
each application 0 ∈ %�, the locations of the clients of the application are identified
(Line 10), which are used to perform a lookup for the nearby MDCs (Line 11). Then
the server within the nearby MDCs that provides the best performance is chosen
which is carried out in parallel across all the nearby MDCs (for-loop starting from
Line 12).

For each such server [, it must first check the deployment constraint as shown
by Constraint (11) (Lines 15–17) and then predict the performance interference of
application 0 were it to execute on the server (Line 18). The resulting interference is
used to check the response times (Constraint (12)) for the existing set �??[ of appli-
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cations on that server (Lines 19–22), as well as the response time (Constraint (10))
for application 0 itself (Lines 23–25). Finally, the total cost is calculated according
to Equation (6) on whether all of these constraints can be met (Line 26). The server
with the minimum cost is then selected across all identified MDCs (Line 27), and
the application is migrated to the selected server and clients are redirected to the
migrated application.

5 Experimental Validation

In this section, experimental results for validating the DDDAS-based INDICES
framework are presented in the context of a latency sensitive application use case.

5.1 Experimental Setup

Table 3 illustrates the hardware platforms and their counts used in the experiments
considered in the present study. The CDC uses Openstack (www.openstack.org)
cloud OS version 12.0.2 where the guests receive their own public IP addresses. The
MDC servers are managed directly by libvirt virtualization APIs (www.libvirt.
org) and the guests communicate via port forwarding on the host. Each machine
has Ubuntu 14.04.03 64-bit OS, QEMU-KVM hypervisor version 2.3.0 and libvirt
version 1.2.16. Guests are configured with 2 GB memory, 10 GB disk, Ubuntu
14.04.03 64-bit OS and either 1 or 2 vCPUs. Since VM migration within a CDC is
of not present, the CDC heterogeneity is not a factor.

As described in Section 4.2, to preclude profiling every new application on all the
hardware, initial training data are needed. PARSEC, Splash-2 [6] and Stream [47]
benchmarks are used to generate the training data to train the INDICES’ DDDAS
model. PARSEC and Splash-2 target those chip-multiprocessors used typically in
modern-day data centers, and provide a rich set of applications with different in-
struction mix, cache and memory utilization, needed for stressing different system
subcomponents. For the present study, 20 tests were selected from these bench-
marks for data generation and validation. Also used is the Stream benchmark that
specifically targets cache/memory bandwidth, which is one of the key sources of
performance interference.

Due to lack of access to servers in different geographical regions, this study
used the network emulation tool, netem, and hierarchical token bucket-based traffic
control, tc-htb, for emulating the desired network latencies from the client to the
CDC and different MDCs.

www.openstack.org
www.libvirt.org
www.libvirt.org
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5.2 DDDAS Target Application Use Case

To validate the efficacy of the framework developed here, an image processing ap-
plication was used. The application performs feature detection, which is a critical
and expensive part of any of the computer vision problem such as object detec-
tion, facial recognition [25], etc. Also used the well-known Scale Invariant Feature
Transform (SIFT) [45] to find the scale and rotation independent features. The exper-
iment considers an augmented reality application as the use case, where the client
device is capturing video frames at a continuous rate. The application augments
information to the captured frame by processing the frame. A Minnowboard Turbot
(www.minnowboard.org) is used as the client device connected to a webcam that
continuously captures frames at a rate of 5 frames per second (fps). The frame res-
olution is 640X360 pixels and average frame size is 56 KB. The server comprises
a Python-based application that receives frames over a TCP socket, processes it,
and responds with the identified features along with the processing time. The client
expects to receive a response before capturing the next frame, implying that 200 ms
is the deadline for the application. Although the use case considers the performance
for a single client connected to the cloud-hosted application, it can easily be extended
to multiple clients residing in a similar latency region.

When the image processing application is submitted for hosting in the cloud, it
is executed on different hardware platforms in isolation to find its base execution
times. For hardware platforms �, �, �, � shown in Table 3, the base execution times
are measured to be 86, 91, 146, 157 ms, respectively. Table 4 displays the emulated
ping latency from this client to CDC or different MDCs in the same region as the
client. The table also lists their server composition, and the measured 95Cℎ percentile
network latency while sending TCP/IP and HTTP post requests of 56 KB size and
receiving a response of size less than 1 KB. The expected duration for which the
client needs to perform the image processing, 4430, is set as 1 hour and the SLO is
set to 95%.

Table 4 CDC and MDC setup for application use case

MDC Distance Ping latency
(±20%)(ms)

TCP la-
tency(ms)

HTTP la-
tency(ms) Servers

�1 1 hop <1 2 6 1C + 1D
�2 2 hops 5 14 28 1A + 2D
�3 Multi hops 20 54 96 1B + 2D
�4 Multi hops 30 76 142 1A + 3D
�5 Central 50 127 220 1D

www.minnowboard.org
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5.3 Evaluating the Performance Estimation Model

The use-case application is first benchmarked on hardware platform D in order
to develop its performance estimators. The threshold to discern applications with
similar interference performance profile, as described in Section 4.2.1, is set to 10%
error. However, as illustrated in Figure 3, none of the existing applications meets the
criteria. Thus, it was decided not to use any of the existing estimators for the use-case
application and benchmark the application on all hardware configurations to develop
their estimators. With this approach, it was found that the mean estimation error
for the use-case application is less than 4% on all the platforms with low standard
deviations as depicted in Figure 4. One can account for this estimation error in the
response time constraint (Equation (3)) for stricter SLO adherence.

parse
c.s

waptio
ns

parse
c.b

lacksch
oles

parse
c.d

edup

parse
c.f

reqmine

parse
c.b

odytra
ck

parse
c.f

erre
t

parse
c.f

luidanim
ate

Application

0

5

10

15

20

25

30

35

M
e
a
n
 A

b
so

lu
te

 P
e
rc

e
n
ta

g
e
 E

rr
o
r Config A

Config B

Config C

Config D

Fig. 3 Estimation of SIFT Profile Similarity with PARSEC Benchmark

A B C D
Hardware Configuration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
e
a
n
 A

b
so

lu
te

 P
e
rc

e
n
ta

g
e
 E

rr
o
r

Fig. 4 SIFT Application Performance Estimation Error



24 Shekhar et. al

5.4 Evaluating the Server Selection Algorithm

The server selection algorithm is compared against two other approaches based
on minimum number of hops and least loaded server (among reachable MDCs),
respectively. Table 4 highlights that the minimum hop is 1. There are 2 servers in
the minimum hop MDC �1 with hardware configuration types C and D. While
interference load on both servers, it’s ensured that the total load on the server does
not exceed its capacity in terms of memory and vCPUs to eliminate unrealistic
performance deteriorations. For the least-loaded server algorithm, the server with
least existing allocated resources is considered, i.e., containing only a single VM.
Servers with no existing load are not considered as it entails acquiring a new server
and thus causing additional cost to the service provider. In this case, the server
of hardware type D in MDC �4 is found to be least loaded. Applying SLO from
Equation (3) and the server selection algorithm, INDICES finds 2 servers of type A
and D from MDC �2 and one server of type B from MDC �3.

Figure 5 shows the response time comparison of each of the suitable servers
found by INDICES against the least loaded server for the expected duration 4430
(one hour) of the application. It’s observed that, in this scenario, the least loaded
server has 100% SLO violation because of the network latency. However, the servers
found by INDICES meet the SLO 100%, 99.38% and 98.94%, respectively, which
are all well over the target SLO of 95%. Figure 6 shows the corresponding response
time for the minimum hop algorithm. The 2 servers found by the algorithm meet the
SLO only 66.64% and 60.64% of times due to performance interference.
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Applying Algorithm 1 further, INDICES finds the server of type B from MDC
�3 to be most suitable, since the objective is to select a server with the minimum
cost to the service provider if it can meet the SLO. Thus, it prefers a server which
already has an application that is going to run longer and has better bandwidth
from the CDC server for migration. Figure 7 compares 3 migration scenarios: (a)
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an overlay with the software stack already present on the target server and the
bandwidth is 10 Mbps; (b) same as the previous scenario but with a bandwidth of
1 Mbps; (c) overlay is not present on the target server and the compressed file of
size 938 MB has to transferred over 10 Mbps bandwidth. In all the scenarios, the
application overlay and configuration files have to be transferred and the application
has to be initialized. It is observed that the server selection takes ≈ 1 second,
but the migration and initialization take 32 seconds, 56 seconds and 190 seconds,
respectively, for scenarios (a), (b) and (c). Thus, the overlay-based image transfer
should be the preferred methodology whenever applicable.

6 Related Work

In this section, the work presented in this Chapter is compared and contrasted with
related work along three dimensions: network latency-based server selection, perfor-
mance interference-based server selection and performance-aware edge computing.
Unlike the analysis presented here, the comparative survey conducted has found
that existing works seldom consider all these three dimensions holistically. Further,
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seldom do any of these prior efforts utilize dynamic instrumentation, data-driven
model building and simulation, and actuation in a feedback loop in their entirety as
prescribed by the DDDAS paradigm and implemented in INDICES.

6.1 Network Latency-based Server Selection

DONAR [58] addresses the global replica selection problem using a decentralized,
selection algorithm where the underlying protocol solves an optimization problem
that takes into account client performance and server load. CloudGPS [19] is a
server selection scheme that considers network performance, inter-domain transit
traffic and server workload for decision making. This work also reduces the network
distance measurement costs. Dealer [30] targets geo-distributed, multi-tier and
interactive applications to meet their stringent deadline constraints by monitoring
individual component replicas and their communication latencies, and selects the
combination that provides the best performance. Kwon et al. [41] applied network
latency profiling and redundancy for cloud server selection while suggesting using
cloudlets. The analysis discussed here contends that these efforts consider simplistic
models of server workload and their impact on performance, and do not cater to edge
resource management.

6.2 Performance Interference-aware Server Selection

Paragon [18] identified the sources of interference that impact application perfor-
mance and developed micro benchmarks for heterogeneous hardware. The system
benchmarks applications and classifies them to find collocation patterns for schedul-
ing. Sherlock [34] developed approach to estimate the performance interference
effect due to last level cache contention in containerized environment. The system
profiles application and defines a metric IScore, that measures the degree of perfor-
mance degradation of the application. It does not rely on the hardware counter of the
system, and does not take into account the heterogeneity in the hardware platform.

MEDEA [26] allows the users to define anti-affinity application constraints,
which captures resource interference characteristics of the applications. These con-
straints are utilized by the server scheduler for optimizing placement decisions of
the services to be deployed in the cluster. SMiTe [65] designed rulers for estimating
sensitivity and degree of contention between applications when they are collocated.
Bubble-Flux [62] assures QoS for latency-sensitive applications by dynamic in-
terference profiling of shared hardware resources and collocating latency-sensitive
applications with batch applications. These works, however, do not apply to virtu-
alized data centers where the hypervisor places its own overhead on the resources
and impacts performance. Moreover, INDICES requires virtualized environments
to support migration of applications on heterogeneous platforms. DeepDive [51]
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first identifies an abnormal behavior using a warning system and employs an in-
terference analyzer by cloning the target VM and running synthetic benchmarks.
Such an approach can be a costly runtime operation. Wu, et al. [60], developed a
DDDAS-based containerized method for latency-aware collection and processing of
wide-are motion imagery, which in addition to the imagery, had to schedule the VMs
in parallel to process sections of the extremely large images.

Prior work [11] conducted by the authors designed a performance interference-
aware resource management framework that benchmarks applications residing in
virtual machines and applies a neural network-based regression mechanism that es-
timates a server’s performance interference level. However, hardware heterogeneity
and per application performance were not considered. Heracles [44] mitigates perfor-
mance interference issues for latency-sensitive applications by partitioning different
shared resources. However, partitioning for resources, such as memory bandwidth
is still not available, and moreover, cache partitioning is only available on newer
hardware which cannot be applied to existing hardware.

6.3 Performance-aware Edge Computing

Zhou et al. [66] described amulti attribute decision analysis algorithm to offload tasks
amongst mobile ad-hoc network, cloudlet and public cloud. Their work performs cost
estimation considering execution time, power consumption, bandwidth and channel
conjunction level which is utilized by the decision making algorithm. The approach
utilizes ThinkAir [39] for offloading the tasks. However, they target only Java-based
tasks and the solution is not catered to latency-sensitive applications such as those
targeted by the present work and its methods.

Fesehaye et al. [23] described a design to select between cloudlets and central
cloud server for interactive mobile cloud applications based on the number of hops,
mobility and latency. SEGUE [63] is an edge cloud migration decision system that
applies state-based Markov Decision Process (MDP) model incorporating network
and server states. Both the approaches have not been evaluated on real systems and
the results are only simulation-based.

SmartRank. [54] is a tool for offloading facial recognition from mobiles to
cloudlets, and the scheduling is performed based on the round trip time and CPU
utilization. In the approaches presented here, the cost to the cloud provider is opti-
mized while maintaining the end user SLOs. Recent efforts build on the container
system, cloud-fog-edge developments towards a distributed latency-aware imagery
distribution system [50].



28 Shekhar et. al

7 Conclusions

This chapter presents INDICES, a framework based on the DDDAS principles for
dynamic cloud resourcemanagement that exploits the available edge/fog resources in
the form of micro data centers, which are used to migrate cloud-hosted applications
closer to the clients so that their response times can be improved. In doing so, the
INDICES framework ensures that existing edge-deployed services are not unduly
impacted in terms of their performance nor are the operational and management
costs for the cloud provider overly affected. These objectives are met using an online
optimization problem, which is solved using a two-level cooperative and online
process between system-level artifacts developed under the work presented here
and deployed at both the micro data centers and centralized cloud data center. The
experimental results obtained support the capabilities sought to be achieved through
the methods presented here by showing the efficacy of the INDICES framework
using a realistic application use-case.

This work has opened up many new challenges and directions, which form op-
portunities for future work. These challenges are presented below:

• Lack of benchmarks: There is a general lack of open source and effective
benchmarking suites that researchers can use to conduct edge/fog computing
studies. The DDDAS paradigm can be used here to define a collection of models
that serve as parameterized benchmarks that can be configured and customized
for different application use-cases.

• Collecting metrics under hardware heterogeneity: The plethora of deployed
hardware configurations with different architectures and versions makes it hard to
collect various performance metrics. Modern architectures are making it easier to
collect more fine-grained performance metrics, but muchmore research is needed
in identifying effective approaches to control the hardware and to derive the best
performance out of them. It will be interesting to investigate how the dynamic
instrumentation capabilities envisioned in DDDAS can be applied in this context.

• Workload consolidation and migration across MDCs: In this work, once an
application ismigrated to anMDC, it will complete its operation until termination.
Future work planned by the authors will consider dynamic server consolidation
across MDCs and CDCs. This dimension of future work concerns refining the
existing DDDAS decision-making algorithm in the INDICES framework.

• Reconciling application state: In the methods developed here, it was assumed
that once the application state is transferred to the MDC, there is no additional
state that accumulates at the CDC. However, for a broader set of applications,
not all application states may be transferrable to the MDC and may have to be
reconciled periodically with the CDC, which gives rise to interesting consistency
versus availability tradeoffs. Addressing this requirement will entail potentially
using multiple DDDAS loops that interact with each other: one at the CDC and
multiple loops one each at the MDC level.

• Distributed user base: Also, the work presented assumed that all distributed
users of an interactive applications are located in close proximity to each other.
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However, for applications such as online gaming, this assumption may not hold
for which additional research will be necessary.

• Energy savings and revenue generation: This work did not address revenue
generation issues stemming from the use of edge resources. Moreover, energy
savings is only indirectly referred to through the experimental results presented .
Addressing these limitations shapes directions for future work. This dimension of
future work also involves refining the existingDDDAS decisionmaking algorithm
to incorporate additional constraints and refining the objective.

• Shared micro data centers: Also, the methods derived here assumed that an
MDC is exclusively controlled by a CDC provider. In the future, it is likely that
MDC providers may lease their resources to multiple different CDCs. Additional
research is needed to address situations where MDCs are shared including those
that address security and isolation guarantees. This scenario has the potential to
incorporate dimensions of trust and security intomultiple, interoperatingDDDAS
loops, which will need significant new research.

All scripts, source code, and experimental results for INDICES are available for
download from a project called FECBench [5], which provides additional enhance-
ments to INDICES, from https://github.com/doc-vu/fecbench.
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