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ABSTRACT
Soft errors occur frequently on large computing platforms due to
the increasing scale and complexity of HPC systems. Various re-
silience techniques (e.g., checkpointing, ABFT, and replication) have
been proposed to protect scientific applications from soft errors
at different levels. Among them, system-level replication often in-
volves duplicating or even triplicating the entire computation, thus
resulting in high resilience overhead. This paper proposes dynamic
selective protection for sparse iterative solvers, in particular for
the Preconditioned Conjugate Gradient (PCG) solver, at the system
level to reduce the resilience overhead. For this method, we leverage
machine learning (ML) to predict the impact of soft errors that strike
different elements of a key computation (i.e., sparse matrix-vector
multiplication) at different iterations of the solver. Based on the
result of the prediction, we design a dynamic strategy to selectively
protect those elements that would result in a large performance
degradation if struck by soft errors. An experimental evaluation
demonstrates that our dynamic protection strategy is able to reduce
the resilience overhead compared to existing algorithms.

KEYWORDS
Fault tolerance, soft errors, dynamic selective protection, iterative
solvers, preconditioned conjugate gradient.

ACM Reference Format:
ZizhaoChen, Thomas Verrecchia, Hongyang Sun, JoshuaD. Booth, and Padma
Raghavan. 2023. Dynamic Selective Protection of Sparse Iterative Solvers
via ML Prediction of Soft Error Impacts . In Workshops of The International
Conference on High Performance Computing, Network, Storage, and Analysis
(SC-W 2023), November 12–17, 2023, Denver, CO, USA. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3624062.3624117

This work is licensed under a Creative Commons Attribution International
4.0 License.

SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0785-8/23/11.
https://doi.org/10.1145/3624062.3624117

1 INTRODUCTION
Sparse iterative solvers, such as the Preconditioned Conjugate Gra-
dient (PCG) solver, represent an important class of numerical meth-
ods in scientific computing for solving sparse systems of linear
equations. When these iterative solving techniques are used at
scale (i.e., on large linear systems), the number of iterations and
clock cycles will be high. As such, these methods are exposed to
both hard failures and soft errors, which occur at higher rates due
to the large system scale and increasing hardware complexity. Thus,
fault tolerance or resilience techniques have been widely recog-
nized as a critical component to ensure the effective use of HPC
systems [1, 10].

Numerous resilience solutions have been proposed over the years
to protect iterative solvers from faults, ranging from system-level
techniques using checkpointing and replication [5] to application-
specific techniques such as algorithm-based fault tolerance (ABFT)
[2, 8, 12]. In this work, we focus on system-level replication as a
general-purpose approach to transparently detect and mitigate soft
errors for the PCG solver. Traditional replication strategies often
duplicate or even triplicate the entire computation, which incurs
high resilience overheads. However, not all elements of the compu-
tation are equally susceptible to soft errors. While errors striking
certain elements could cause significant performance degradations,
errors striking other elements will have little impact on the solver’s
convergence [7, 8]. This creates an opportunity for reducing the
resilience overheads by selectively protecting only the critical ele-
ments.

This work proposes this type of low-overhead resilience algo-
rithm by using dynamic selective protection. We first perform a
characterization of the impacts of soft errors on the convergence of
PCG by injecting a sample of errors at different elements and itera-
tions in a key computation of the solver, i.e., sparse matrix-vector
multiplication (SpMV). This sampling allows us to train several
classic ML models (i.e., Logistic Regression, Support Vector Ma-
chine, Random Forest, K-nearest neighbors [4]) that predict if the
slowdown incurred by a soft error striking a particular location
will exceed a critical threshold. This model allows for the identifica-
tion of corresponding elements in the SpMV that will be protected
during the execution. Our preliminary results evaluated using two
matrices from the SuiteSparse Matrix Collection [3] show that the
Random Forest classifier tends to offer the best prediction perfor-
mance on the testing data, and the resulting dynamic protection
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scheme provides a promising resilience solution while reducing
the overhead compared to two baseline schemes and two static
protection schemes.

2 BACKGROUND AND MOTIVATION
2.1 The PCG Solver
PCG [6] is one of the most widely used algorithms for solving a
sparse linear system: 𝐴𝑥 = 𝑏, where 𝐴 is an 𝑁 × 𝑁 symmetric
positive definite sparse matrix, and 𝑥 and 𝑏 are 𝑁 × 1 dense vectors.
Algorithm 1 shows the pseudocode. It starts with an initial guess of
the solution vector 𝑥0, and at each iteration 𝑖 , computes an updated
solution vector 𝑥𝑖 . The algorithm terminates when the solution
converges based on a pre-defined residual threshold (𝑡𝑜𝑙 ) or when
the specified maximum number of iterations (𝑚𝑎𝑥𝑖𝑡 ) is reached.

Algorithm 1: Preconditioned Conjugate Gradient (PCG)
Input:𝐴,𝑀,𝑏, 𝑥0, 𝑡𝑜𝑙,𝑚𝑎𝑥𝑖𝑡

1 begin
2 𝑟0 ← 𝑏 − 𝐴𝑥0 // Initial residual

3 𝑧0 ← 𝑀−1𝑟0 // Preconditioning

4 𝑝0 ← 𝑧0
5 𝑖 ← 0
6 while 𝑖 <𝑚𝑎𝑥𝑖𝑡 and ∥𝑟𝑖 ∥/∥𝑏 ∥ > 𝑡𝑜𝑙 do
7 𝑞𝑖 ← 𝐴𝑝𝑖

8 𝑣𝑖 ← 𝑟𝑇
𝑖
𝑧𝑖

9 𝛼 ← 𝑣𝑖/(𝑝𝑇𝑖 𝑞𝑖 )
10 𝑥𝑖+1 ← 𝑥𝑖 + 𝛼𝑝𝑖 // Improve approximation

11 𝑟𝑖+1 ← 𝑟𝑖 − 𝛼𝑞𝑖 // Update residual

12 𝑧𝑖+1 ← 𝑀−1𝑟𝑖+1 // Preconditioning

13 𝑣𝑖+1 ← 𝑟𝑇
𝑖+1𝑧𝑖+1

14 𝛽 ← 𝑣𝑖+1/𝑣𝑖
15 𝑝𝑖+1 ← 𝑧𝑖+1 + 𝛽𝑝𝑖 // New search direction

16 𝑖 ← 𝑖 + 1
17 end
18 end

Among the computations performed in each iteration of PCG,
the SpMV operation (Line 7) is the most compute-intensive, taking
𝑂 (𝑛𝑛𝑧) time, where 𝑛𝑛𝑧 represents the number of nonzeros in 𝐴.
SpMV is also the computation that is the most prone to soft errors
[7, 11]. Thus, we inject soft errors in SpMV, in particular in the
vector 𝑝 , to study the impacts of such errors on the convergence.

2.2 Impact of Soft Errors
We inject errors at different elements of the 𝑝 vector (Line 7 of
Algorithm 1) and at different iterations of the computation. The
impact is measured in terms of the slowdown, as defined below:

𝑠𝑙𝑜𝑤𝑑𝑜𝑤𝑛 = 𝐼𝑒/𝐼𝑜 , (1)

where 𝐼𝑒 and 𝐼𝑜 denote the number of iterations for the algorithm
to converge with and without errors, respectively.

Five sets of experiments are conducted at five different iterations:
2, 0.25𝐼𝑜 , 0.5𝐼𝑜 , 0.75𝐼𝑜 , and 𝐼𝑜 . In each set, 100 experiments are run,
where each run has an error injected at the given iteration in a
random location of the 𝑝 vector. The resulting slowdowns (sorted
in ascending order) for each considered iteration are shown in
Figures 1(a)(c) for the sparse matrices "cbuckle" and "bcsstk18" [3].
For both matrices, if the slowdown of an experiment exceeds 100,

(a) (b)

(c) (d)

Figure 1: Impact of soft errors for two matrices: "cbuckle"
(top) and "bcsstk18" (bottom). Figures (a)(c) show the slow-
downs caused by errors injected in 100 random locations of
𝑝 vector at five different iterations. Figures (b)(d) show the
correlations between the slowdowns and the row 2-norms of
the matrices.

we terminate the execution and simply report the slowdown for
that experiment as 100.

We observe that not all errors are equal: while some lead to
significant slowdowns in the convergence of the algorithm, many
others have small or even no impact on the convergence. The impact
of an error depends greatly on the location of its occurrence (i.e.,
which iteration and which element of the 𝑝 vector). To reduce the
resilience overhead, it is therefore desirable to protect only those
elements in the locations that will lead to large slowdowns.

The question is how to identify those locations with large slow-
downs. Figures 1(a)(c) show that, for the two matrices, errors occur-
ring in the middle iterations tend to result in larger slowdowns than
those occurring at the start or end of the computation. At a given
iteration, it has been shown [7, 11] that the slowdown caused by
an error in the 𝑖-th element is strongly correlated with the 2-norm
of matrix 𝐴 at the corresponding row, i.e.,

∥𝐴𝑖∗∥2 =

√√√√ 𝑁∑︁
𝑗=1

𝐴2
𝑖, 𝑗
. (2)

Figures 1(b)(d) show that such a correlation indeed exists at different
iterations for both matrices. Overall, the above results suggest that
one could use the iteration number and the matrix’s row 2-norm
to make good predictions on the impact of a soft error at a given
location, which we will leverage in the design of our selective
protection strategy.
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3 DYNAMIC SELECTIVE PROTECTION
In this work, we assume the use of system-level replication as a
general-purpose technique to transparently protect the application
from soft errors.1 The protection is done by duplicating the compu-
tations corresponding to the protected elements. Any soft errors
can then be detected by comparing the results of the duplicate
computations and the affected iteration can be re-executed.

3.1 Resilience Overhead
We measure the performance of a protection scheme using the
resilience overhead. Recall that 𝑁 denotes the dimension of the
solution vector, which represents the number of elements that need
to be computed at each iteration. Let 𝑛𝑡 denote the number of
elements that are protected and hence additionally computed at
iteration 𝑡 . The total number of computed elements at iteration 𝑡 is
therefore given by 𝑁 +𝑛𝑡 . The resilience overhead is defined as the
total amount of additional computation that is done throughout
the entire execution compared to the error-free run, i.e.,

𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =

∑𝐼𝑒
𝑡=1

(
𝑁 + 𝑛𝑡

)
− 𝐼𝑜𝑁

𝐼𝑜𝑁
. (3)

There exists a trade-off between the amount of per-iteration
protection and the expected slowdown. On the one hand, fully
protecting all the elements at all iterations (i.e., 𝑛𝑡 = 𝑁 ) incurs
a large per-iteration overhead but will cause no slowdown (i.e.,
𝐼𝑒 = 𝐼𝑜 ), since any error will be immediately mitigated. Based on
Equation (3), this gives an overall resilience overhead of 100%. On
the other hand, protecting no elements (i.e., 𝑛𝑡 = 0) exposes the
application to soft errors, which could result in large slowdowns
(i.e., 𝐼𝑒 ≫ 𝐼𝑜 ) and thus high resilience overhead if errors occur in
critical locations.

Our goal is to reduce the resilience overhead by selectively pro-
tecting those elements at each iteration that will lead to large slow-
downs if struck by soft errors. We note that a static approach [11]
could choose to protect the same number of elements for all it-
erations, but it may not lead to ideal performance as the impacts
of errors happening at different iterations could be different, as
shown in Figure 1. In this work, we aim at designing a dynamic ap-
proach that could protect a varying number of elements at different
iterations based on the predicted error impacts.

3.2 ML Prediction of Error Impacts
We apply machine learning (ML) as a way to predict the impact of
a soft error, namely, the slowdown, if it occurs in a certain location.
Based on the results of Section 2.2, we leverage the following two
features in the training of ML models:
• Iteration number;
• Row 2-norm of matrix.

For each matrix we consider, we conduct 300 experiments, and
use 200 of them for training and 100 for testing. In each experiment,
a soft error is injected at a random iteration chosen uniformly in

1We note that some application-level resilience techniques for sparse iterative solvers
(e.g., by using ABFT [2, 8, 12]) could incur a lower resilience overhead but require
tapping into the numerical libraries of the solver. We consider only system-level
techniques in this paper.

(a) (b)

Figure 2: The distributions of slowdowns caused by soft errors
for the two matrices: "cbuckle" (a) and "bcsstk18" (b).

the range [1, 𝐼𝑜 ] and at a random element chosen uniformly in the
range [1, 𝑁 ].

As a first attempt, we tried to predict exactly the slowdown
induced by a soft error at a particular location by considering it as
a regression problem. However, the prediction results turned out to
be quite poor due to the uneven distribution of the slowdowns, as
shown in Figure 2. While many errors tend to result in very small
slowdowns (e.g., below 2), or in the case of "bcsstk18" relatively
large slowdowns (e.g., 100 or higher), the errors covering other
slowdown values (e.g., in the median range) are quite scarce, thus
leading to bad performance of the regression models.

In fact, since our protection decisions are binary (i.e., either pro-
tect an element or not protect an element), we can consider the
problem as a classification problem by predicting whether the slow-
down will exceed a certain threshold, in which case the decision
would be to protect the element, and otherwise we would not pro-
tect the element. To set the threshold, intuitively, any slowdown
that is equal or larger than 2 (i.e., 𝐼𝑒 ≥ 2𝐼𝑜 ) implies that the total
amount of computation to be done will at least double that of the
error-free run, thus inducing an overhead of at least 100% (which
can be achieved by the full-protection scheme). Since our objec-
tive is to achieve an overhead lower than 100%, we opt to set the
threshold at 2, thus having two classes:
• Class 1: 𝑠𝑙𝑜𝑤𝑑𝑜𝑤𝑛 ≥ 2;
• Class 0: 𝑠𝑙𝑜𝑤𝑑𝑜𝑤𝑛 < 2.

We trained four ML models for the above classification prob-
lem using the scikit-learn library2. The following shows four well-
known and commonly used classifiers with some important hy-
perparameters that have been found to work well for our problem
using a simple hyperparameter search.
• Logistic Regression (LR): with L2 regularization and an in-
verse of regularization strength of 𝐶 = 1.
• Support Vector Machine (SVM): with the RBF kernel and an
inverse of regularization strength of 𝐶 = 1.
• Random Forest (RF): with 30 estimators (i.e., decision trees)
and a maximum tree depth of 200.
• K-Nearest Neighbors (KNN): with the Euclidean distance
and 𝐾 = 5 neighbors.

Furthermore, we set a higher weight for Class 1 than for Class
0, with a weight ratio of 2.5:1, for all the ML models except for

2https://scikit-learn.org/
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KNN. This is to increase the prediction accuracy for the errors that
would incur a large slowdown (≥2), as the potential cost (in terms
of overhead) of failing to protect against those errors is higher
compared to mistakenly protecting some additional elements that
would incur a small slowdown thus should not be protected.

Table 1 summarizes the prediction results of the four classi-
fiers (in terms of accuracy, recall, precision, and F1 score) for the
testing datasets of the two matrices ("cbuckle" and "bcsstk18"). We
observe that the performance of the four classifiers is similar for the
"cbuckle" matrix, which is generally better than the performance
for the "bcsstk18" matrix. Overall, RF tends to produce consistently
good results in terms of the prediction measures for both matrices.
Thus, we will use RF as the prediction algorithm for evaluating our
dynamic selective protection scheme.

Table 1: Prediction results (accuracy, recall, precision, and F1
score) of four classifiers for two matrices.

"cbuckle" "bcsstk18"
Acc. Recall Prec. F1 Acc. Recall Prec. F1

LR 0.91 0.8 0.97 0.88 0.57 1 0.57 0.73
SVM 0.92 0.8 1 0.89 0.57 1 0.57 0.73
RF 0.93 0.9 0.93 0.91 0.8 0.9 0.78 0.84
KNN 0.94 0.95 0.91 0.93 0.76 0.84 0.76 0.80

3.3 Evaluation Results
Our dynamic ML-based selective protection scheme will protect
those elements at each iteration that are predicted to be in Class 1
(i.e., those with a slowdown of at least 2). Its performance in terms
of the resilience overhead is shown in Table 2 by averaging over
the 100 testing experiments of the two matrices. Also shown in the
table is the performance of a few other protection schemes.

Table 2: Average resilience overheads of five protection
schemes for two matrices.

"cbuckle" "bcsstk18"

zero-protection 816% 3143%
full-protection 100% 100%
static-rand (best) 91.4% (89%) 99% (99%)
static-r2n (best) 56.3% (30%) 88.4% (88%)
dynamic-ml 43.7% 87.6%

First, we can see that our dynamic protection scheme (dynamic-
ml) has the best performance compared to the other four protection
schemes, with a 43.7% overhead for the "cbuckle" matrix and a 87.6%
overhead for the "bcsstk18" matrix.

For the two baseline algorithms, the zero-protection scheme pro-
tects no elements at all and it performs badly with very high over-
heads for both matrices, which is due to the severe slowdowns
caused by errors in certain critical locations. The full-protection
scheme also incurs a relatively high overhead of 100% by duplicat-
ing the entire computation.

We also evaluated two static selective protection schemes, which
protect a fixed percentage of elements at all iterations. Given a
protection percentage, static-rand [9] randomly selects the corre-
sponding number of elements to protect at each iteration, while

static-r2n [11] selects the elements that correspond to the largest
row 2-norms of the matrix. For both schemes, we experimented
with different protection percentages (from 1% to 99%) and chose
the one (shown in parenthesis) that leads to the best overhead.
The results show that both static schemes are able to achieve a
resilience overhead below 100%, with static-r2n offering better per-
formance due to the use of row-2 norms that better correlate with
the error impacts. However, these static schemes do not capture the
errors’ varying behaviors across iterations. Our dynamic scheme
overcomes this limitation and achieves lower overhead.

4 CONCLUSION AND FUTUREWORK
In this paper, we conducted an initial study on the use of dynamic
selective protection to protect the PCG solver from soft errors. Our
preliminary results have shown that the combined use of ML pre-
diction and dynamic element selection offers a promising solution
for reducing the resilience overhead at the system level.

We plan to investigate the following directions in our future
work: (1) improve the prediction accuracy by exploring more ML
algorithms or including additional features (e.g., runtime charac-
teristics of the solution vector); (2) explore alternative thresholds
for deciding the protected elements, possibly leveraging analytical
models that incorporate error probabilities; (3) further validate our
approach by experimenting with more sparse matrices and other
iterative solvers (e.g., MINRES, GMRES); (4) train a single ML model
that works simultaneously for multiple matrices (e.g., by captur-
ing the sparse matrix structures) rather than one model for each
individual matrix (our current approach).
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