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ABSTRACT
The scheduling literature has traditionally focused on a single type

of resource (e.g., computing nodes). However, scientific applications

in modern High-Performance Computing (HPC) systems process

large amounts of data, hence have diverse requirements on different

types of resources (e.g., cores, cache, memory, I/O). All of these

resources could potentially be exploited by the runtime scheduler to

improve the application performance. In this paper, we study multi-

resource scheduling to minimize the makespan of computational

workflows comprised of parallel jobs subject to precedence con-

straints. The jobs are assumed to be moldable, allowing the sched-

uler to flexibly select a variable set of resources before execution.

We propose a multi-resource, list-based scheduling algorithm, and

prove that, on a system with d types of schedulable resources, our

algorithm achieves an approximation ratio of 1.619d + 2.545
√
d + 1

for any d , and a ratio of d + O( 3
√
d2) for large d . We also present

improved results for independent jobs and for jobs with special

precedence constraints (e.g., series-parallel graphs and trees). Fi-

nally, we prove a lower bound of d on the approximation ratio of

any list scheduling scheme with local priority considerations. To

the best of our knowledge, these are the first approximation results

for moldable workflows with multiple resource requirements.

KEYWORDS
List scheduling, multiple resources, moldable jobs, precedence con-

straint, makespan, approximation ratio
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1 INTRODUCTION
Many complex scientific workflows that are running in today’s

High-Performance Computing (HPC) systems can be modeled as

Directed Acyclic Graphs (DAGs), where the nodes represent the
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constituent jobs of the workflows and the edges represent the prece-

dence constraints or dependencies among the jobs. While HPC sys-

tems often rely on dynamic runtime schedulers, such as KAAPI [14],

StarPU [1] or PaRSEC [3], to ensure the efficient execution of these

workflows, most existing schedulers focus only on the management

of the computational resources (i.e., computing nodes or cores).

However, many of today’s scientific applications need to process

large amounts of data, and thus require not only the computational

resources but also strong data management supports. Indeed, mod-

ern HPC systems are equipped with more levels of memory/storage

(e.g., NVRAMs, SSDs, burst buffers [22]), as well as more advanced

architecture and software features (e.g., high-bandwidth memory

[30], cache partitioning [34], bandwidth reservation [4]) to facili-

tate efficient data transfer. All of these different types of resources

could potentially be partitioned among the concurrently running

jobs and thus exploited by the runtime schedulers to improve the

overall application performance and system utilization.

In this paper, we study multi-resource scheduling for a compu-

tational workflow that is comprised of a set of parallel jobs with

DAG-based precedence constraints. The goal is to simultaneously

explore the availability of multiple types of resources by designing

effective scheduling solutions that minimize the overall completion

time, or makespan, of the workflow. We focus on parallel jobs that

are moldable [11], which allows the scheduler to select a variable

set of resources for a job, but once the job starts execution, the

resource allocations cannot be changed. In contrast to rigid jobs,

whose resource allocations are all static and hence fixed, moldable

jobs can easily adapt to the different amounts of available resources,

while in contrast to malleable jobs, whose resource allocations can

be dynamically varied during runtime, moldable jobs are much

easier to design and implement. Given these advantages, moldable

jobs have been offered by many computational kernels in scientific

libraries. Moreover, the moldable job model is also amenable to the

resource allocation patterns currently supported by many different

resource types (e.g., computing cores, memory blocks, cache lines).

As the considered multi-resource scheduling problem contains

the single-resource problem as a special case, it is known to be

strongly NP-complete [10]. Thus, we focus on designing good ap-

proximation algorithms. In contrast to the single-resource problem,

however, the multi-resource problem needs to consider the com-

bined effect of multiple types of resources on the execution time

of the jobs, which poses additional challenges to the scheduling

problem. By adopting a two-phase approach [32] widely used for

scheduling moldable jobs, we design a multi-resource, list-based

scheduling algorithm. In particular, our algorithm first computes an

approximate resource allocation for all jobs on different resource

https://doi.org/10.1145/3472456.3472487
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types, and then applies an extended list scheduling scheme to sched-

ule the jobs. As list scheduling is easy to implement, the proposed

algorithm can be readily applied to practical systems.

We prove the following main results for a system consisting of

d types of schedulable resources, under reasonable assumptions on

the job execution times and speedups:

• An approximation ratio of 1.619d + 2.545
√
d + 1 for any d ,

and a ratio of d +O( 3
√
d2) for large d ;

• Improved approximations for some special graphs (e.g., series-

parallel graphs, trees and independent jobs) with ratios of

1.619d + 1 for any d and d +O(
√
d) for large d .

• A lower bound of d on the approximation ratio of any list

scheduling scheme with local priority considerations.

To the best of our knowledge, these are the first approximation re-

sults for moldable workflows with multiple resource requirements.

They also improve upon the 2d-approximation previously shown

in [31] for independent moldable jobs. The results demonstrate that

our algorithm essentially achieves the optimal asymptotic approxi-

mation up to the dominating factor (i.e., d) among the generic class

of local list scheduling schemes, thus matching the same asymptotic

performance for rigid [13] and malleable [16] jobs. Altogether, these

results lay the theoretical foundation for multi-resource scheduling

of parallel workflows.

The rest of this paper is organized as follows. Section 2 reviews

some related work on moldable and multi-resource scheduling.

Section 3 formally introduces the scheduling model and derives

a lower bound on the optimal makespan. Section 4 presents our

multi-resource scheduling algorithm and analyzes its approxima-

tion ratios for general job graphs. Section 5 proves improved re-

sults for some special graphs, including series-parallel graphs, trees

and independent jobs. Section 6 shows a lower bound on the per-

formance of local list scheduling schemes, and finally, Section 7

concludes the paper and briefly discusses open questions.

2 RELATEDWORK
This section reviews some related work on scheduling moldable

parallel jobs, as well as onmulti-resource scheduling under different

job models and objectives.

Moldable Job Scheduling. Scheduling moldable parallel jobs to

minimize the makespan is strongly NP-hard on P ≥ 5 processors

[10], and the problem has been extensively studied in the literature

from the perspective of approximation algorithms. Most prior work,

however, has focused on a single type of resource while assuming

different speedup models for the jobs.

For scheduling independentmoldable jobswith arbitrary speedups,

Turek et al. [32] presented a 2-approximation list-based algorithm

and a 3-approximation algorithm based on building shelves. Ludwig

and Tiwari [23] later improved the 2-approximation result with

lower computational complexity. For monotonic jobs, whose execu-

tion time t(p) is non-decreasing in the number p of allocated proces-

sors and whose work functionw(p) = p ·t(p) is non-decreasing in p,
Mounié et al. [24] presented a (1.5+ϵ)-approximation algorithm us-

ing dual approximation. Jansen and Land [17] showed a lower com-

plexity algorithm that achieves the same (1.5 + ϵ)-approximation

as well as a PTAS, when the execution time functions of the jobs

admit compact encodings.

For scheduling moldable jobs with precedence constraints, Lep-

ère et al. [21] presented a 5.236-approximation algorithm for mono-

tonic jobs. Jansen and Zhang [19] improved the approximation ratio

to around 4.73 for the same model, and recently, Chen [5] further

improved it to around 3.42 using an iterative approximation method.

Additionally, better approximation results have been obtained for

jobs with special dependency graphs (e.g., series-parallel graphs

and trees [20, 21]) or special speedup models (e.g., concave speedup

[6, 18] and roofline speedup [12, 33]).

Multi-Resource Scheduling. Some approximation algorithms have

been proposed on multi-resource scheduling to minimize makespan

under different parallel job models.

Garey and Graham [13] considered scheduling n sequential jobs

onm identical machines with d additional types of resources. Fur-

ther, each job has a fixed resource requirement from each resource

type, making it essentially a rigid job scheduling model. They pre-

sented a list-scheduling algorithm and proved three results: (1) anm-

approximation for jobs with precedence constraints and when there

is only one type of resource, i.e., d = 1; (2) a (d + 1)-approximation

for independent jobs and when the number of machines is not a con-

straining factor, i.e.,m ≥ n; (3) a (d + 2 − 2d+1
m )-approximation for

independent jobs with anym ≥ 2. For the case of d = 1, Demirci et

al. [9] presented an improvedO(logn)-approximation for jobs with

precedence constraints, and Niemeier and Wiese [25] presented an

improved (2 + ϵ)-approximation for independent jobs.

He et al. [15, 16] considered parallel jobs that are represented

as direct acyclic graphs (DAGs) consisting of unit-size tasks, each

of which requests a single type of resource from a total of d re-

source types. Further, the amount of resources allocated to a job

can be dynamically changed during runtime, making it essentially

amalleable job scheduling model. They showed that list scheduling

achieves (d + 1)-approximation for this model. Shmoys et al. [28]

considered a similar model while further restricting the tasks of

each job to be processed sequentially. They called it the DAG-shop

scheduling model, and presented a polylog approximation result in

number of machines and job length.

Sun et al. [31] considered scheduling independent moldable jobs

on d types of resources. They presented a 2d-approximation list-

based algorithm and a (2d+1)-approximation shelf-based algorithm,

thus generalizing the single-resource results in [32]. They also

presented a technique to transform any c-approximation algorithm

for a single resource type to a cd-approximation algorithm for

d types of resources. This work is the closest to ours, while we

consider moldable jobs with precedence constraints. When jobs are

independent, our main approximation result also improves the one

in [31] for a large number of resource types.

3 MODELS
This section presents the multi-resource scheduling model, gives a

formal statement of the problem, and derives a lower bound on the

optimal schedule.
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3.1 Scheduling Model
We consider the problem of scheduling a set of n moldable jobs

on d distinct types of resources (e.g., processor, memory, cache).

Each resource type i has a total amount P (i) of available resource.
The jobs are moldable, i.e., they can be executed using different

amounts of resources from each resource type, but the resource

usage cannot be changed once a job has started executing. For each

job j, its execution time tj (pj ) depends on the resource allocation

pj = (p(1)j ,p
(2)
j , · · · ,p

(d )
j ), which specifies the amount of resource

p
(i)
j ≥ 0 allocated to the job for each resource type i = 1, 2, . . . ,d .

We make the following reasonable assumptions on the resource

allocation and execution time of the jobs.

Assumption 1 (Integral Resources). All resource allocations

p
(i)
j ’s for the jobs and the total amount of resources P (i)’s for all
resource types are integers.

This is a natural assumption for discrete resources, such as pro-

cessors. Other resource types, such as memory or cache, are typ-

ically allocated in discrete chunks as well (e.g., memory blocks,

cache lines) in practical systems.

Assumption 2 (Known Execution Times). For each job j, its
execution time function tj (pj ) is known for every possible resource

allocation pj .

In practice, the execution time function of an application could be

obtained through one or more of the following approaches: applica-

tion modeling or profiling, performance prediction or interpolation

from historic data. Here, we are not concerned about how such a

function is obtained.

Assumption 3 (Monotonic Jobs). Given two resource allocations

pj and qj for a job j , we say that pj is at most qj , denoted by pj ⪯ qj ,

if p
(i)
j ≤ q

(i)
j for all 1 ≤ i ≤ d . The execution times of the job under

these two allocations satisfy:

tj (qj ) ≤ tj (pj ) ≤
(
max

i=1...d
q
(i)
j /p

(i)
j

)
· tj (qj ) .

This generalizes the monotonic job assumption under a single

resource type [21, 24], which has been observed formany real-world

applications. In particular, the first inequality specifies that the

execution time of a job is non-increasing in the amount of resource

allocated to the job
1
, and the second inequality restricts the job to

have non-superlinear speedup with respect to any resource type
2
.

Note that we do not make any assumptions on a job j’s relative
execution times under two resource allocations pj and qj that are
non-comparable, i.e., pj ⪯̸ qj and qj ⪯̸ pj .

Additionally, a set of precedence constraints is specified for the

jobs, which form a directed acyclic graph (DAG), G = (V ,E). Each
node j ∈ V in the graph represents a job and a directed edge

(j1 → j2) ∈ E requires that job j2 cannot start executing until

the completion of job j1. In this case, j1 is called an immediate

predecessor of j2, and j2 is called an immediate successor of j1.

1
This assumption, however, is not restrictive, as we can discard any allocation that

uses more resource than another allocation but results in a higher job execution time.

2
Some parallel applications can achieve superlinear speedups with a combined effect

of increased allocations in two or more resource types (e.g., the cache effect [27] when

increasing both processor and cache allocations). We do not consider such superlinear

speedup model in this paper.

3.2 Problem Statement
The objective is to find a schedule for the jobs to minimize the max-

imum completion time, or the makespan. Specifically, a schedule is

defined by the following two decisions:

• Resource allocation decision: p = (p1,p2, . . . ,pn );
• Starting time decision: s = (s1, s2, . . . , sn ).

Given a pair of scheduling decisions p and s, the completion time

of a job j is defined as c j = sj + tj (pj ), and the makespan of the

jobs is given by T = maxj c j . A schedule is valid if it respects the

following constraints:

• For each resource type i , the amount of resource utilized

by all running jobs at any time does not exceed the total

amount P (i) of available resource;
• If two jobs j1 and j2 have a precedence constraint, i.e., j1 →
j2, then the starting time of j2 is no earlier than the comple-

tion time of j1, i.e., sj2 ≥ c j1 .

The above multi-resource scheduling problem is clearly NP-

complete, as it contains the single-resource scheduling problem

[19, 21] as a special case. Thus, we aim at designing approximation

algorithms with bounded performance guarantees. An algorithm

is said to be r -approximation if its makespan satisfies
T
Topt ≤ r for

any set of jobs, where Topt denotes the optimal makespan.

3.3 Lower Bound on Optimal Makespan
We now derive a lower bound on the optimal makespan. To that

end, we define the following concepts given a resource allocation

decision p = (p1,p1, . . . ,pn ) for the jobs.

Definition 1. For each job j:

• w
(i)
j (pj )=p

(i)
j · tj (pj ): work on resource type i ;

• a
(i)
j (pj )=

w (i )j (pj )
P (i )

: area (or normalized work) on resource type

i ;

• aj (pj )= 1

d
∑d
i=1 a

(i)
j (pj ): average area over all resource types.

Definition 2. For the set of jobs:

• W (i)(p)=∑n
j=1w

(i)
j (pj ): total work on resource type i ;

• A(i)(p)=W (i )(p)
P (i )

=
∑n
j=1 a

(i)
j (pj ): total area on resource type

i ;
• A(p)= 1

d
∑d
i=1A

(i)(p)=∑n
j=1 aj (pj ): average total area over

all resource types;

• C(p, f )=∑j ∈f tj (pj ): total execution time of all the jobs along

a particular path f in the graph
3
;

• C(p)=maxf C(p, f ): critical path length, i.e., total execution

time of the jobs along a critical (longest) path in the graph;

• L(p) = max(A(p),C(p)): maximum of average total area A(p)
and critical path length C(p).

We further define Lmin = minp L(p) to be the minimum value of

L(p) among all possible resource allocations, and let p∗ denote a
resource allocation such that L(p∗) = Lmin. The following lemma

shows that Lmin serves as a lower bound on the optimal makespan.

3
A path is a sequence of jobs with linear precedence, i.e., f = (jπ (1) → jπ (2) →
· · · → jπ (v )), where the first job jπ (1) does not have any predecessor in the graph

and the last job jπ (v ) does not have any successor.
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Lemma 1. Topt ≥ Lmin.

Proof. We first show that, given any resource allocation p, the
makespan produced by any schedulemust satisfyT ≥ max(A(p),C(p)).
The bound T ≥ C(p) is trivial, since the jobs along the critical path

must be executed sequentially, so the makespan is at least C(p). To
derive the bound T ≥ A(p), we observe that the average total area
A(p) in any valid schedule with makespan T must satisfy:

A(p) = 1

d

d∑
i=1

n∑
j=1

w
(i)
j (pj )

P (i)

=
1

d

d∑
i=1

1

P (i)

n∑
j=1

w
(i)
j (pj )

≤ 1

d

d∑
i=1

1

P (i)
· (P (i) ·T ) = T .

The inequality

∑n
j=1w

(i)
j (pj ) ≤ P (i) · T is because P (i) · T is the

maximum amount of work that can be allocated to the jobs within

time T on any resource type i with total amount of resource P (i).
Suppose the optimal schedule uses a resource allocation popt.

Then, its makespan must satisfy:

Topt ≥ max

(
A(popt),C(popt)

)
= L(popt) ≥ L(p∗) = Lmin.

The last inequality is because L(p∗) is the minimum L(p) among all

possible resource allocations, including popt. □

4 A MULTI-RESOURCE SCHEDULING
ALGORITHM AND APPROXIMATION
RESULTS

In this section, we present a multi-resource scheduling algorithm

and analyze its approximation ratio for general DAGs. The algo-

rithm adopts the two-phase approach that has been widely used for

scheduling moldable jobs on a single type of resource [19, 21, 32].

4.1 Phase 1: Resource Allocation
4.1.1 Discrete Time-Cost Tradeoff (DTCT) Problem. To allocate

resources for the jobs, we consider a relevant discrete time-cost

tradeoff problem [8], which has been studied in the literature of

operations research and project management.

Definition 3 (Discrete Time-Cost Tradeoff (DTCT)). Sup-

pose a project consists of n precedence-constrained tasks. Each task j
can be executed using several different alternatives and each alterna-

tive i takes time tj,i and has cost c j,i . Further, for any two alternatives
i1 and i2, if i1 is faster than i2, then i1 is more costly than i2, i.e.,

tj,i1 ≤ tj,i2 ⇒ c j,i1 ≥ c j,i2 . (1)

Given a project realization σ that specifies which alternative is chosen

for each task, the total project duration D(σ ) is defined as the sum

of times of the tasks along the critical path, and the total cost B(σ )
is defined as the sum of costs of all tasks. The objective is to find a

realization σ ∗ that minimizes the total project duration D(σ ∗) and
the total cost B(σ ∗).

The above DTCT problem is obviously bicriteria, and a tradeoff

exists between the total project duration and the total cost. Two

problem variants have been commonly studied, both of which are

shown to be NP-complete [7]:

• Budget Problem: Given a total cost budget B, minimize the

project duration D(σ ) subject to B(σ ) ≤ B;
• Deadline Problem: Given a project deadline D, minimize the

total cost B(σ ) subject to D(σ ) ≤ D.

For both problems, Skutella [29] presented a polynomial-time

algorithm, which, given any feasible budget-deadline pair (B,D),
finds a realization σ for the project that satisfies: D(σ ) ≤ D

ρ and

B(σ ) ≤ B
1−ρ , for any ρ ∈ (0, 1).4

4.1.2 Allocating Resources to Jobs. We transform our resource

allocation problem to the DTCT problem and solve it using the

approximation result in [29]. To that end, a task j is created for

each job j in the graph, with the set of alternatives for the task

corresponding to the set of resource allocations for the job. The

execution time tj,i of task j with alternative i is then defined as

the execution time tj (pj ) of job j with the corresponding resource

allocation pj , and the cost c j,i is defined as the average area aj (pj ).
Let S denote the set of all Q =

∏d
i=1 P

(i)
possible resource

allocations for a job. To ensure that Condition (1) in Definition 3 is

satisfied, we discard, for each job j , the subsetDj ⊂ S of dominated

allocations, which is defined as:

Dj = {pj | ∃qj , tj (qj ) < tj (pj ) and aj (qj ) < aj (pj )} , (2)

and only use the remaining set of non-dominated allocations, de-

noted by Nj = S\Dj , to create the alternatives of the task. Thus, a

realization σ for the project corresponds to a resource allocation

decision p for the jobs. The total project duration D(σ ) then corre-

sponds to the total execution time C(p) of the jobs, and the total

cost B(σ ) corresponds to the average total area A(p).
A resource allocation decision p = (p1,p2, . . . ,pn ) is said to be

non-dominated if the allocation for every job is non-dominated,

i.e., pj ∈ Nj for all j = 1, . . . ,n. The following lemma shows that

the minimum makespan lower bound Lmin can be achieved by a

non-dominated resource allocation.

Lemma 2. There exists a non-dominated resource allocation p∗ =
(p∗
1
,p∗

2
, . . . ,p∗n ) that achieves L(p∗) = Lmin.

Proof. Consider any resource allocation q∗ = (q∗
1
,q∗

2
, . . . ,q∗n )

that achieves L(q∗) = Lmin, and suppose it contains a dominated

allocation q∗j ∈ Dj for a job j. Then, by replacing q∗j with a non-

dominated allocation q′∗j ∈ Nj that dominates q∗j , i.e., tj (q
′∗
j ) <

tj (q∗j ) and aj (q
′∗
j ) < aj (q∗j ), we get a new resource allocation q′∗ =

(q∗
1
, . . . ,q∗j−1,q

′∗
j ,q
∗
j+1, . . . ,q

∗
n ), which satisfiesA(q′∗) < A(q∗) and

C(q′∗) ≤ C(q∗). This implies L(q′∗) ≤ L(q∗) = Lmin. Repeating the

process above for every job with a dominated allocation results in

an overall non-dominated allocation p∗ and proves the lemma. □

We can now find a resource allocation p′ for the jobs (or equiva-
lently a realization σ ′ in the corresponding DTCT problem), with

the following property.

4
In essence, this bicriteria approximation algorithm first transforms each task of the

project into a set of virtual tasks, and then constructs a relaxed linear program (LP) for

the transformed problem. The relaxed LP either minimizes D(σ ) subject B(σ ) ≤ B
or minimizes B(σ ) subject D(σ ) ≤ D . In either case, the result can be obtained by

rounding the optimal fractional solution to the relaxed LP based on the parameter ρ .
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Lemma 3. For any ρ ∈ (0, 1), a resource allocation p′ = (p′
1
,p′

2
, . . . ,p′n )

can be found in polynomial time that satisfies:

C(p′) ≤ Topt
ρ
, (3)

A(p′) ≤ Topt
1 − ρ . (4)

Proof Sketch. The result can be obtained by adapting the algo-

rithm in [29], which minimizes the project duration (or total cost)

subject to a known budget B (or deadline D) for the DTCT prob-

lem. Without knowing the value of this constraint a priori, we can

still achieve the same approximations by adopting the technique

used in [19] for the problem with a single resource type. Specifi-

cally, the relaxed LP originally formulated in [29] can be modified

and applied to our problem as follows: minimize the lower bound

L(p) instead, subject to two additional constraints C(p) ≤ L(p) and
A(p) ≤ L(p). Then, by rounding the optimal fractional solution

p̄∗ to this modified LP, we can get a resource allocation p′ that
satisfies: C(p′) ≤ C(p̄∗)

ρ ≤ L(p̄∗)
ρ and A(p′) ≤ A(p̄∗)

1−ρ ≤
L(p̄∗)
1−ρ . Since

the optimal fractional solution p̄∗ must result in an objective not

greater than the one achieved by any (non-dominated) integral

solution p∗, and based on Lemma 2, we have L(p̄∗) ≤ L(p∗) = Lmin.

The result then directly follows by applying the makespan lower

bound in Lemma 1. □

4.1.3 Adjusting Resource Allocation. Lastly, we adjust the re-
source allocation p′ (obtained above with a value of ρ to be deter-

mined later) to get the final resource allocation p for the jobs. The

aim is to limit the maximum resource utilization of any job under

any resource type, thus facilitating more efficient list scheduling

(see Section 4.2). As with the case for a single type of resource

[19, 21], we choose a parameter µ ∈ (0, 0.5), whose value will also
be determined later, and define the resource allocation for each job

j on each resource type i as follows:

p
(i)
j =

{
⌈µP (i)⌉, if p′(i)j > ⌈µP

(i)⌉
p′(i)j , otherwise

(5)

where p′(i)j is the corresponding resource allocation in p′. The p(i)j ’s

will then form the final resource allocation p.
A job j is said to be adjusted if its final resource allocation pj is

reduced from the initial allocation p′j in any resource type; other-

wise, the job is said to be unadjusted. The following lemma shows

the properties of any adjusted job.

Lemma 4. For any adjusted job j, its execution time satisfies:

tj (pj ) ≤
tj (p′j )
µ
, (6)

and its area on any resource type i is bounded by:

a
(i)
j (pj ) ≤ d · aj (p′j ) , (7)

if the total amount of resource type i satisfies P (i) ≥ 1

µ2 .

Proof. For any adjusted job j , let x
(i)
j =

p′(i )j

p(i )j
denotes its resource

reduction factor on any resource type i , and letk = argmini=1...d x
(i)
j

denote the resource type with the largest reduction factor for j.

Algorithm 1: Resource Allocation (Phase 1)

Input: For each job j , the execution time tj (pj ) and the average

normalized work aj (pj ) under all possible resource allocations,
given values for the parameters ρ and µ .

Output: Resource allocation decision p= (p1, p2, . . . , pn ) for all jobs.
begin

(Step 1): For each job j , discard the subset Dj ⊂ S of dominated

resource allocations as defined in Equation (2);

(Step 2): Transform the resource allocation problem to the DTCT

problem and adapt the algorithm in [29] to obtain an initial

allocation decision p′ that satisfies Equations (3) and (4);

(Step 3): For each job j and each resource type i , adjust the initial
allocation in p′ based on Equation (5) to obtain a final resource

allocation decision p that satisfies Equations (6) and (7).

end

Since the job’s final resource allocation pj is at most its initial

allocation p′j , i.e., pj ⪯ p′j , and according to the adjustment pro-

cedure in Equation (5), we have x
(k )
j ≤ P (k )

⌈µP (k ) ⌉ ≤
1

µ . Thus, based

on Assumption 3, we can get tj (pj ) ≤
(
maxi=1...d x

(i)
j
)
· tj (p′j ) =

x
(k )
j · tj (p

′
j ) ≤

tj (p′j )
µ .

To prove the area bound, we distinguish three cases.

Case (1): For resource type k with the largest reduction factor, we

havew
(k )
j (pj ) = p

(k )
j · tj (pj ) ≤

p′(k )j

x (k )j

· (x (k)j · tj (p
′
j )) = p

′(k)
j · tj (p′j ) =

w
(k )
j (p

′
j ). Thus, the area of the job on resource type k satisfies

a
(k )
j (pj ) =

w (k )j (pj )
P (k )

≤
w (k )j (p′j )
P (k )

≤ ∑d
ℓ=1

w (ℓ)j (p′j )
P (ℓ)

= d · aj (p′j ).
Case (2): For any resource type i , k with p

(i)
j ≤ ⌊µP

(i)⌋ ≤ µP (i),

and since p
(k )
j = ⌈µP (k )⌉ ≥ µP (k ), we have a(i)j (pj ) =

w (i )j (pj )
P (i )

=

p(i )j ·tj (pj )
P (i )

≤ µP (i ) ·tj (pj )
P (i )

≤ µ · x (k )j · tj (p′j ) = µ ·
p′(k )j ·tj (p′j )

p(k )j

≤

µ ·
w (k )j (p′j )
µP (k )

=
w (k )j (p′j )
P (k )

≤ ∑d
ℓ=1

w (ℓ)j (p′j )
P (ℓ)

= d · aj (p′j ).

Case (3): For any resource type i , k with p
(i)
j = ⌈µP (i)⌉ ≤

µP (i) + 1, by following the derivation steps in Case (2), we can

get a
(i)
j (pj ) ≤

(
1 + 1

µP (i )

) w (k )j (p′j )
P (k )

≤ ∑d
ℓ=1

w (ℓ)j (p′j )
P (ℓ)

+
w (k )j (p′j )
µP (i )P (k )

−
w (i )j (p′j )
P (i )

=
∑d

ℓ=1

w (ℓ)j (p′j )
P (ℓ)

+
tj (p′j )
P (i )

(
p′(k )j

µP (k )
− p′(i)j

)
. Since p

′(k )
j ≤ P (k )

and p
′(i)
j ≥ ⌈µP (i)⌉ ≥ µP (i), we have

p′(k )j

µP (k )
− p′(i)j ≤ 1

µ − µP (i),

which is at most 0 when P (i) ≥ 1

µ2 . In this case, we get a
(i)
j (pj ) ≤∑d

ℓ=1

w (ℓ)j (p′j )
P (ℓ)

= d · aj (p′j ). □

Algorithm 1 summarizes all three steps involved in this first

phase of the multi-resource scheduling algorithm.

4.2 Phase 2: List Scheduling
4.2.1 Algorithm Description. The second phase schedules the

jobs by making a starting time decision s, given the resource alloca-

tion decision p determined by the first phase. This is done through

a modified list scheduling strategy, as shown in Algorithm 2, that

extends to multiple types of resources.
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Algorithm 2: List Scheduling (Phase 2)

Input: Resource allocation decision p= (p1, p2, . . . , pn ) for all jobs,
and their precedence constraints.

Output: A list schedule for the jobs with starting time decision

s= (s1, s2, . . . , sn ).
begin

insert all ready jobs into a queue Q;
P (i )avail ← P (i ), ∀i ;
when at time 0 or a job k completes execution do

curr_t ime ← дetCurrentT ime();
P (i )avail ← P (i )avail + p

(i )
k , ∀i ;

for each job k ′ that becomes ready do
insert job k ′ into queue Q;

end
for each job j ∈ Q do

if P (i )avail ≥ p
(i )
j , ∀i then

sj ← curr_t ime and execute job j now;

P (i )avail ← P (i )avail − p
(i )
j , ∀i ;

remove job j from queue Q;
end

end
end

end

A job is said to be ready if all of its immediate predecessors in

the precedence graph have been completed or if the job has no

immediate predecessor. The algorithm starts by inserting all ready

jobs into a queue Q. Then, at time 0 or whenever a running job

k completes and hence releases resources, the algorithm inserts,

into the queue Q, any new job k ′ that becomes ready due to the

completion of job k . It then goes through the list of all ready jobs in

Q and schedules each job j that can be executed at the current time

if its resource allocation pj can be met by the amount of available

resources in all resource types.

We point out that the ready jobs can be inserted into the queue

in any order without affecting the approximation ratio of the algo-

rithm. In practice, giving priority to certain jobs (e.g., with longer

execution time or on the critical path) may yield better performance.

4.2.2 Properties of List Scheduling. We now derive some prop-

erties of the list scheduling algorithm, which will be used later in

the analysis of the overall multi-resource scheduling algorithm.

We first define some notations. Let T denote the makespan of

a list schedule. We note that the algorithm only allocates and de-

allocates resources upon job completions. Hence, the entire sched-

ule’s duration [0,T ] can be partitioned into a set I = {I1, I2, . . . }
of non-overlapping intervals, where jobs only start (or complete)

at the beginning (or end) of an interval, and the amount of utilized

resource for any resource type does not change during an interval.

For any resource type i , let P
(i)
util (I ) denote the total amount of

utilized resources from all jobs that are running during interval

I ∈ I. We further classify the set of intervals into the following

three categories.

• I1: set of intervals during which the amount of utilized re-

sources is at most ⌈µP (i)⌉ − 1 for all resource type i , i.e.,

I1 = {I | ∀i, P (i)util (I ) ≤ ⌈µP (i)⌉ − 1}.

• I2: set of intervals during which there exists a resource type

k that utilizes at least ⌈µP (k )⌉ amount of resources, but the

amount of utilized resources is at most ⌈(1−µ)P (i)⌉ −1 for all
resource type i , i.e., I2 = {I | ∃k, P (k )util (I ) ≥ ⌈µP

(k )⌉ and ∀i,
P
(i)
util (I ) ≤ ⌈(1 − µ)P

(i)⌉ − 1}.
• I3: set of intervals during which there exists a resource type

k that utilizes at least ⌈(1 − µ)P (k)⌉ amount of resources, i.e.,

I3 = {I | ∃k, P (k)util (I ) ≥ ⌈(1 − µ)P
(k)⌉}.

Let |I | denote the duration of an interval I , and letT1 =
∑
I ∈I1 |I |,

T2 =
∑
I ∈I2 |I | and T3 =

∑
I ∈I3 |I | be the total durations of the

three categories of intervals, respectively. Since I1, I2 and I3 are
obviously disjoint and partition I, we have T = T1 +T2 +T3.

Furthermore, for each job j and each interval I , we define βj, I to
be the fraction of the job executed during that interval. For instance,

if one third of job j is executed in interval I and two thirds of the

job is executed in interval I ′, we have βj, I = 1/3 and βj, I ′ = 2/3.
Note that the fraction is defined in terms of either the execution

time or the area (work) of the job, which are equivalent here since

the resource allocation of the job has been fixed. Thus, for each job

j, we have
∑
I ∈I βj, I = 1.

The following lemma bounds the durations of the first two cate-

gories of intervals in terms of the execution time along the critical

path of the initial resource allocation p′.

Lemma 5 (Critical-Path Bound). For any choice of µ ∈ (0, 0.5),
we have T1 + µT2 ≤ C(p′).

Proof. For any interval I ∈ I1 ∪ I2, the amount of utilized

resource for any resource type i is at most ⌈(1 − µ)P (i)⌉ − 1, so the

amount of available resource is at least P (i) + 1 − ⌈(1 − µ)P (i)⌉ ≥
⌈µP (i)⌉. According to the resource allocation algorithm, any job is

allocated at most ⌈µP (i)⌉ amount of resource for resource type i .
Thus, there is sufficient resource available to execute any additional

job (if one is ready) during any interval I ∈ I1 ∪ I2. This implies

that there is no ready job in the queue Q, since otherwise the list
scheduling algorithm would have scheduled the job.

In list scheduling, it is known that there exists a path f in the

graph such that whenever there is no ready job in the queue, some

job along that path is running [12, 19, 21]. Thus, during any interval

I ∈ I1 ∪ I2, some job along path f is running, and we let j(I ) ∈ f
denote such a job.

Now, consider the initial resource allocation p′. During any in-

terval I ∈ I1, the amount of utilized resource for any resource type i

is at most ⌈µP (i)⌉ − 1, so job j(I )must be unadjusted. Thus, we have

tj(I )(pj(I )) = tj(I )(p′j(I )). However, during any interval I ∈ I2, job
j(I ) could be adjusted, and thus, according to Lemma 4 (Inequality

(6)), we have µ · tj(I )(pj(I )) ≤ tj(I )(p′j(I )). We can then derive:

T1 + µT2 =
∑
I ∈I1

tj(I )(pj(I )) · βj(I ), I + µ
∑
I ∈I2

tj(I )(pj(I )) · βj(I ), I

≤
∑
I ∈I1

tj(I )(p′j(I )) · βj(I ), I +
∑
I ∈I2

tj(I )(p′j(I )) · βj(I ), I

≤
∑
j ∈f

(
tj (p′j ) ·

∑
I ∈I1∪I2

βj, I

)
≤
∑
j ∈f

tj (p′j ) = C(p
′, f ) ≤ C(p′) . □
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The following lemma bounds the durations of the last two cate-

gories of intervals in terms of the average total area of the initial

resource allocation p′.

Lemma 6 (Area Bound). For any choice of µ ∈ (0, 0.5), if Pmin =

mini P
(i) ≥ 1

µ2 , we have µT2 + (1 − µ)T3 ≤ d · A(p′).

Proof. For any interval I ∈ I2, there exists a resource type i

such that the amount of utilized resource is at least ⌈µP (i)⌉ based on
the definition of I2. Therefore, the total work done on resource type
i from all jobs during this interval satisfies:

∑n
j=1 βj, I ·w

(i)
j (pj ) ≥

|I | · ⌈µP (i)⌉ ≥ |I | ·µP (i). Thus, we have: µ · |I | ≤ ∑n
j=1 βj, I ·

w (i )j (pj )
P (i )

=∑n
j=1 βj, I ·a

(i)
j (pj ) ≤ d

∑n
j=1 βj, I ·aj (p′j ). The last inequality is due to

Lemma 4 (Inequality (7)), if P (i) ≥ 1

µ2 . Note that Inequality (7) was

proven for any adjusted job but it obviously holds for unadjusted

jobs as well. Thus, if Pmin = mini=1...d P
(i) ≥ 1

µ2 , we can derive:

µT2 = µ
∑
I ∈I2
|I |

≤ d
∑
I ∈I2

n∑
j=1

βj, I · aj (p′j )

= d
n∑
j=1

(
aj (p′j ) ·

∑
I ∈I2

βj, I

)
. (8)

For any interval I ∈ I3, there exists a resource type i such that

the amount of utilized resource is at least ⌈(1 − µ)P (i)⌉. Using the
same argument, we can derive:

(1 − µ)T3 ≤ d
n∑
j=1

(
aj (p′j ) ·

∑
I ∈I3

βj, I

)
. (9)

Thus, combining Inequalities (8) and (9), we can get:

µT2 + (1 − µ)T3 ≤ d
n∑
j=1

(
aj (p′j ) ·

∑
I ∈I2∪I3

βj, I

)
≤ d

n∑
j=1

aj (p′j ) = d · A(p
′) . □

4.3 Approximation Results
Wenow derive themain approximation results of themulti-resource

scheduling algorithm,which combines the resource allocation phase

(Algorithm 1) and the list scheduling phase (Algorithm 2). The fol-

lowing theorem shows its approximation ratio for any number d of

resource types.

Theorem 1. For any d ≥ 1 and if Pmin ≥ 7, the performance of

the multi-resource scheduling algorithm satisfies:

T

Topt
≤ ϕd + 2

√
ϕd + 1 ≤ 1.619d + 2.545

√
d + 1 ,

where ϕ = 1+
√
5

2
is the golden ratio. The result is achieved at µ∗ =

1 − 1

ϕ ≈ 0.382 and ρ∗ = 1√
ϕd+1

≈ 1

1.272
√
d+1

.

We point out that Pmin ≥ 7 represents a reasonable condition on

the total amount of most discrete resource types (e.g., processors,

memory blocks, cache lines).

Proof. Based on the analysis of the list scheduling algorithm,

by substituting T1 from Lemma (5) and T3 from Lemma (6) into

T = T1 +T2 +T3, and if Pmin ≥ 1

µ2 , we get:

T ≤ C(p′) + d

1 − µA(p
′) +

(
1 − µ − µ

1 − µ

)
T2 .

Then, applying the bounds for C(p′) and A(p′) in Lemma 3 from

the resource allocation algorithm, and when (1 − µ)2 ≤ µ, i.e.,

µ ≥ 3−
√
5

2
= 1 − 1

ϕ , which makes the last term above at most zero,

we can derive:

T ≤
(
1

ρ
+

d

(1 − µ)(1 − ρ)

)
Topt ≜ fd (µ, ρ) ·Topt .

Clearly, fd (µ, ρ) is an increasing function of µ for all d . Thus, to
minimize the function, we can set µ∗ = 1− 1

ϕ . In this case, we require

Pmin ≥ 1

(µ∗)2 ≈ 6.854 and we define fd (ρ) ≜ fd (µ∗, ρ) = 1

ρ +
ϕd
1−ρ .

Now, by setting f ′d (ρ) = −
1

ρ2
+

ϕd
(1−ρ)2 = 0 and by checking that

f ′′d (ρ) > 0 for all ρ, we get ρ∗ = 1√
ϕd+1

that minimizes fd (ρ). Thus,

the approximation ratio is given by fd (µ∗, ρ∗) = ϕd +2
√
ϕd +1. □

We point out that, when there is only one type of resource (i.e.,

d = 1), Theorem 1 gives an approximation ratio of 5.164, which

improves upon the ratio of 5.236 by Lepère et al. [21]. Jansen and

Zhang [19] showed that the algorithm actually achieves an even

better ratio of 4.73 by proving a tighter critical-path bound than

the one shown in Lemma 5. Unfortunately, their analysis cannot be

generalized to the case with more than one type of resources.

While Theorem 1 proves the approximation ratio of the multi-

resource scheduling algorithm for any d , the following theorem

shows an improved result for large d . The proof is omitted here due

to space constraint and can be found in the complete version of the

paper [26].

Theorem 2. For d ≥ 22 and if Pmin ≥ d2/3, the performance of

the multi-resource scheduling algorithm satisfies:

T

Topt
≤ d + 3

3

√
d2 +O( 3

√
d) .

The result is achieved at µ∗ ≈ 1

3
√
d
and ρ∗ =

√
1−2µ∗

√
1−2µ∗+

√
dµ∗

.

Although Theorem 2 holds for a large number of resource types

(i.e., d ≥ 22) and is unlikely to be practical in today’s resource

management systems, the result does have significant theoreti-

cal importance. In particular, it gives the first approximation for

general list-based algorithm that is asymptotically tight up to the

dominating factor d in the context of multi-resource moldable job

scheduling (see Theorem 6).

5 IMPROVED APPROXIMATION RESULTS
FOR SOME SPECIAL GRAPHS

In the preceding section, we have derived the approximation ra-

tios of the multi-resource scheduling algorithm for general graphs.

In this section, we will show improved approximation results for

some special graphs, namely, series-parallel graphs or trees, and

independent jobs without any precedence constraints.
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5.1 Results for SP Graphs or Trees
We first consider jobs whose precedence constraints form a series-

parallel graph or a tree. A directed acyclic graph (DAG) is a series-

parallel (SP) graph [2] if it has only two nodes (i.e., a source and a

sink) connected by an edge, or can be constructed (recursively) by

a series composition or a parallel composition of two SP graphs.
5

Trees are simply special cases of general SP graphs.

In this case, we rely on an FPTAS (Fully Polynomial-Time Ap-

proximation Scheme) proposed in [21] to find a near-optimal re-

source allocation. The algorithm was proposed in the context of a

single resource type, but can be readily adapted to work for multi-

ple types of resources (by first discarding the subset of dominated

resource allocations as shown in Step 1 of Algorithm 1). In essence,

the FPTAS first decomposes an SP graph into atomic parts, then

uses dynamic programming to decide if an allocation p′ that sat-
isfies L(p′) ≤ X can be found for a positive integer X , and finally

performs a binary search on X . The following lemma shows the

result. More details about the algorithm can be found in [21].

Lemma 7. For a set of jobs whose precedence constraints form a

series-parallel graph or a tree, and for any ϵ ≥ 0, an FPTAS (i.e.,

polynomial in 1/ϵ) exists, which can compute a resource allocation

p′ = (p′
1
,p′

2
, . . . ,p′n ) that satisfies:

L(p′) = max(A(p′),C(p′)) ≤ (1 + ϵ)·Lmin ≤ (1 + ϵ)·Topt .
We can now use the above FPTAS to replace Step 2 in resource

allocation (Algorithm 1) and combine it with list scheduling (Algo-

rithm 2). The following theorem shows the approximation ratio for

any number d of resource types.

Theorem 3. For any d ≥ 1 and if Pmin ≥ 7, the performance of

the multi-resource scheduling algorithm for SP graphs or trees satisfies

the following:

T

Topt
≤ (1 + ϵ) · (ϕd + 1) ≤ (1 + ϵ) · (1.619d + 1) ,

where ϕ = 1+
√
5

2
is the golden ratio. The result is achieved at µ∗ =

1 − 1

ϕ ≈ 0.382.

Proof. Following the proof of Theorem 1 by substituting T1
from Lemma (5) and T3 from Lemma (6) into T = T1 +T2 +T3, and
if Pmin ≥ 1

µ2 , we get:

T ≤ C(p′) + d

1 − µA(p
′) +

(
1 − µ − µ

1 − µ

)
T2 .

Then, by applying the bounds in Lemma 7, and when (1−µ)2 ≤ µ,

i.e., µ ≥ 3−
√
5

2
= 1 − 1

ϕ , we can derive:

T ≤ (1 + ϵ) ·
(
1 +

d

(1 − µ)

)
Topt ≜ fd (µ) ·Topt .

Clearly, fd (µ) is an increasing function of µ for all d . Thus, the
minimum value is obtained by setting µ∗ = 1 − 1

ϕ . In this case, the

approximation ratio is given by fd (µ∗) = (1+ ϵ) · (ϕd + 1), with the

condition Pmin ≥ 1

(µ∗)2 ≈ 6.854. □

5
Given two SP graphs G1 and G2 , the parallel composition is the union of the two

graphs while merging their sources to create the new source and merging their sinks

to create the new sink, and the series compositionmerges the sink ofG1 with the source

ofG2 and uses the source ofG1 as the new source and the sink ofG2 as the new sink.

The approximation ratio can be improved with d ≥ 4 resource

types, as shown in the following theorem.

Theorem 4. For any d ≥ 4 and if Pmin ≥ d + 2

√
d − 1, the

performance of the multi-resource scheduling algorithm for SP graphs

or trees satisfies the following:

T

Topt
≤ (1 + ϵ) ·

(
d + 2

√
d − 1

)
.

The result is achieved at µ∗ = 1√
d−1+1

.

Proof. Following the proof of Theorem 1 but by substitutingT2
and T3 into T = T1 +T2 +T3, and if Pmin ≥ 1

µ2 , we get:

T ≤ 1 − 2µ
µ(1 − µ)C(p

′) + d

1 − µA(p
′) +

(
1 − 1 − 2µ

µ(1 − µ)

)
T1 .

Applying the bounds in Lemma 7, and when 1 − 1−2µ
µ(1−µ) ≤ 0, i.e.,

µ ≤ 3−
√
5

2
, we can derive:

T ≤ (1 + ϵ) ·
(
1 − 2µ
µ(1 − µ) +

d

1 − µ

)
Topt

= (1 + ϵ) ·
(
1

µ
+
d − 1
1 − µ

)
≜ дd (µ) ·Topt .

By setting д′d (µ) = −
1

µ2 +
d−1
(1−µ)2 = 0 and by checking that

д′′d (µ) > 0, we get µ∗ = 1√
d−1+1

, which is at most
3−
√
5

2
for d ≥ 4.

Thus, with the condition Pmin ≥ 1

(µ∗)2 = d + 2

√
d − 1 and d ≥ 4,

we get the approximation ratio:

дd (µ∗) = (1 + ϵ) ·
©«
√
d − 1 + 1 + d − 1

1 − 1√
d−1+1

ª®¬
= (1 + ϵ) ·

(
d + 2

√
d − 1

)
. □

5.2 Results for Independent Jobs
We finally consider independent jobs without any precedence con-

straints. For this case, Sun et al. [31] presented a 2d-approximation

algorithm for any d ≥ 1, while we show improved results for d ≥ 3.

Here, we rely on an optimal multi-resource allocation algorithm

proposed in [31] as Step 2 of our Algorithm 1. The algorithm com-

putes the resource allocation in polynomial time as shown in the

lemma below. More details of the algorithm can be found in [31].

Lemma 8. For a set of independent jobs, a resource allocation p′ =
(p′
1
,p′

2
, . . . ,p′n ) can be found in polynomial time, such that:

L(p′) = max(A(p′),C(p′)) = Lmin ≤ Topt ,
where C(p′) = maxj=1...n tj (p′j ) denotes the maximum execution

time of any job under allocation p′, which becomes the critical path

when there is no precedence constraint.

For independent jobs, while the area bound (Lemma 6) remains

unchanged, we show a modified critical-path bound.

Lemma 9 (Modified Critical-Path Bound). For any choice of

µ ∈ (0, 0.5), we have:
• If I1 = ∅, µT2 ≤ C(p′);
• If I1 , ∅, T1 +T2 ≤ C(p′).
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Proof. Recall that there are three categories of intervals I1,
I2 and I3. Based on the proof of Lemma 5, during any interval

I ∈ I1 ∪ I2, there is no ready job in the queue. Since all jobs

are independent, it means that all jobs have been scheduled. This

implies that all intervals in I2 happen before all intervals in I1,
since there is no new job arrival and jobs only complete. Further,

all intervals in I3 happen before all intervals in I2 using the same

argument. Now, consider a job j that completes the last in the

schedule. We know that j must have started during I3 or at the
beginning of I2. We consider two cases.

Case (1): I1 = ∅. In this case, job j is executed during all intervals
in I2 and it could be adjusted. Thus, according to Lemma 4 (Inequal-

ity (6)), we have µT2 ≤ µ · tj (pj ) ≤ tj (p′j ) ≤ maxj=1...n tj (p′j ) =
C(p′).

Case (2): I1 , ∅. In this case, job j is executed during all intervals
in I2 as well as all intervals in I1. Thus, job j must be unadjusted

(since it is executed during I1). Thus, we have T1 +T2 ≤ tj (pj ) =
tj (p′j ) ≤ maxj=1...n tj (p′j ) = C(p

′). □

Theorem 5. The performance of multi-resource scheduling for

independent jobs satisfies T /Topt ≤ r , where:

r =


2d, if d = 1, 2, and Pmin ≥ 1

1.619d + 1, if d = 3, and Pmin ≥ 7

d + 2
√
d − 1, if d ≥ 4, and Pmin ≥ d + 2

√
d − 1

Proof. When d = 1, 2, we can just apply the multi-resource

scheduling algorithm in [31] to get 2d-approximation. Otherwise,

we consider both cases as stated in Lemma 9.

Case (1):I1 = ∅. In this case, themakespan is given byT = T2+T3.
Substituting µT2 ≤ C(p′) from Lemma 9 and µT2 + (1 − µ)T3 ≤
d · A(p′) from Lemma 6 into T , we get:

T ≤ 1 − 2µ
µ(1 − µ)C(p

′) + d

1 − µA(p
′)

≤
(
1 − 2µ
µ(1 − µ) +

d

1 − µ

)
·Topt (by Lemma 8)

≜ дd (µ) ·Topt .

Case (2): I1 , ∅. In this case, the makespan is given by T =
T1 + T2 + T3. Substituting T1 + T2 ≤ C(p′) from Lemma 9 and

µT2 + (1 − µ)T3 ≤ d · A(p′) from Lemma 6 into T , we get:

T ≤ C(p′) + d

1 − µA(p
′) − µ

1 − µT2

≤
(
1 +

d

1 − µ

)
·Topt (by Lemma 8)

≜ fd (µ) ·Topt .

The overall approximation ratio is given by max(fd (µ),дd (µ)),
with the condition Pmin ≥ 1

µ2 . Thus, when d = 3, by following the

proof of Theorem 3 and setting µ∗ ≈ 0.382, the ratio is fd (µ∗) ≤
1.619d + 1. When d ≥ 4, we can follow the proof of Theorem 4

by setting µ∗ = 1√
d−1+1

. In this case, the ratio is дd (µ∗) = d +

2

√
d − 1. □

Figure 1: Lower bound instance with an approximation ra-
tio of d for any deterministic list scheduling algorithm with
local job priority considerations.

6 LOWER BOUND FOR LIST SCHEDULING
Lastly, we prove a lower bound of d on the approximation ratio

of any deterministic algorithm that, for the second phase, uses list

scheduling with only local priority considerations (i.e., without

taking into account the precedence graphs when assigning priori-

ties to the jobs). This lower bound holds regardless of the resource

allocation scheme for the first phase. The result shows that our

multi-resource scheduling algorithms essentially achieve tight ap-

proximation ratios up to the dominating factor for large d among

the generic class of local list scheduling schemes.

Theorem 6. Any deterministic list scheduling algorithm with local

job priority considerations is no better than d-approximation for the

multi-resource scheduling problem.

Proof. The lower bound is constructed by using a set of jobs

whose precedence constraints form a tree. Each job takes unit-time

to complete, and only requires a unit resource allocation from a

single resource type. For each resource type i , there is a total amount

P (i) = 2 of available resource. Figure 1 illustrates our lower bound

instance with n = 2Md jobs, where M is an integer multiple of 3.

The nodes represent the jobs, the arrows represent the precedence

constraints, and the color of a node represents the single resource

type the corresponding job requires.

The optimal schedule can be obtained by prioritizing the job

dependencies going downward, resulting in a makespan of Topt =
M + d − 1. Any deterministic list scheduling algorithm with only

local priority considerations cannot distinguish jobs that require

the same resource type. Hence, in the worst-case, it could only
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Table 1: Summary of approximation results.

Precedence Approximation Ratio

General

Graphs

• 1.619d + 2.545
√
d + 1 for d ≥ 1

• d + 3 3
√
d2 +O( 3

√
d) for d ≥ 22

SP Graphs

or Trees

• (1 + ϵ) (1.619d + 1) for d ≥ 1

• (1 + ϵ)
(
d + 2

√
d − 1

)
for d ≥ 4

Independent

Jobs

• 2d for d ≥ 1 [31]

• 1.619d + 1 for d = 3

• d + 2
√
d − 1 for d ≥ 4

utilize one type of resource at any time, resulting in a makespan

of T = M(d − 1) + 4M
3
= Md + M

3
. Choosing M > 3(d2 − d), the

worst-case approximation ratio is:

T

Topt
=

Md + M
3

M + d − 1 =
d + 1

3

1 + d−1
M

>
d + 1

3

1 + 1

3d

= d .

This completes the proof of the theorem. □

7 CONCLUSION
In this paper, we have studied the problem of scheduling parallel

jobs with precedence constraints under multiple types of schedu-

lable resources. We focused on moldable jobs, which allow the

scheduler to flexibly select a variable set of resources before the

execution of the jobs, and the goal is to minimize the overall com-

pletion time, or the makespan. We have proposed a multi-resource

scheduling algorithm that adopts the two-phase approach by com-

bining an approximate resource allocation and an extended list

scheduling scheme. We have proven approximation ratios of the

algorithm for the general precedence graph, as well as for some

special graphs including SP-DAGs or trees and independent jobs.

The results are summarized in Table 1. We have also proven a

lower bound on the approximation ratio of any local list schedul-

ing scheme, which shows that our algorithm achieves the optimal

asymptotic performance up to the dominating factor.

We point out that the lower bound proven in Theorem 6 does

not rule out the possibility of a global list scheduling algorithm that

considers the structure of the precedence graph when determining

the priorities for the jobs (e.g., giving priority to the jobs on the

critical path). It remains an open question to find such an algorithm

by showing a better approximation ratio than d , or to prove a

matching lower bound for any list-based scheduling scheme.
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