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ABSTRACT
The problem of scheduling moldable tasks on multiprocessor sys-

tems with the objective of minimizing the overall completion time

(or makespan) has been widely studied, in particular when tasks

have dependencies (i.e., task graphs), or when tasks are released

on-the-fly (i.e., online). However, few studies have focused on both

(i.e., online scheduling of moldable task graphs). In this paper, we

design a new online algorithm and derive constant competitive

ratios for this problem under several common yet realistic speedup

models (i.e., roofline, communication, Amdahl, and a general com-

bination). We also prove, for each model, a lower bound on the

competitiveness of our algorithm, which is very close to the con-

stant competitive ratio. Finally, we provide the first lower bound

on the competitive ratio of any deterministic online algorithm for

the arbitrary speedup model, which is not constant but depends on

the number of tasks in the longest path of the graph.
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1 INTRODUCTION
This work investigates the online scheduling of parallel task graphs

on a set of identical processors, where each task in the graph is

moldable. In the scheduling literature, a moldable task (or job) is a

parallel task that can be executed on an arbitrary but fixed number

of processors. The execution time of the task depends upon the

number of processors used to execute it, which is chosen once and
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for all when the task starts its execution but cannot be modified

later on during execution. This corresponds to a variable static

resource allocation, as opposed to a fixed static allocation (rigid

tasks) and to a variable dynamic allocation (malleable tasks) [8].

Moldable tasks offer a nice trade-off between rigid and and mal-

leable tasks: they easily adapt to the number of available resources,

contrarily to rigid tasks, while being easy to design and implement,

contrarily to malleable tasks. This explains that many computa-

tional kernels in scientific libraries for numerical linear algebra

and tensor computations are provided as moldable tasks that can

be deployed on a wide range of processor numbers. We assume

that the scheduling of each task is non-preemptive and without

restarts [9], which is a highly desirable approach to avoid high over-

heads incurred by checkpointing partial results, context switching,

and task migration.

Because of the importance and wide availability of moldable

tasks, scheduling algorithms for such tasks have received consider-

able attention. The scheduling problem comes in many flavors:

• Offline Scheduling vs. Online Scheduling. In the offline ver-

sion of the scheduling problem, all tasks are known in advance,

before the execution starts. The problem is NP-complete, and

the goal is to design good approximation algorithms. On the

contrary, in the online version of the problem, tasks are released

on the fly, and the objective is to derive competitive ratios [19]

for the performance of a scheduling algorithm against an opti-

mal offline scheduler, which knows in advance all the tasks and

and their dependencies in the graph. The competitive ratio is

established against all possible strategies devised by an adversary

trying to force the online algorithm to take bad decisions.

• Independent Tasks vs. Task Graphs. There are two versions of
the online problem, with independent tasks or with task graphs.

For the version with independent tasks, the tasks are released

on the fly and the scheduler discovers their characteristics only

upon release. For the version with task graphs, the whole graph

is released at the start, but the scheduler discovers a new task

and its characteristics only when all of its predecessors have

completed execution. In other words, the shape of the graph and

the nature of the tasks are not known in advance and are revealed

only as the execution progresses.

In this work, we investigate the most difficult instance of the

problem, namely, the online scheduling of moldable tasks graphs,

https://doi.org/10.1145/3545008.3545049
https://doi.org/10.1145/3545008.3545049
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Table 1: Competitive ratios for our online algorithm.
Model Roofline Comm. Amdahl General

Upper bound 2.62 3.61 4.74 5.72

Lower bound 2.61 3.51 4.73 5.25

with the goal of minimizing the overall completion time, or the

makespan. Our main contribution resides in the design of a new on-

line algorithm and in several new competitive ratios, which greatly

depend upon the speedup model of the tasks. Several common

yet realistic speedup models have been introduced and analyzed,

including the roofline model, the communication model, the Am-

dahl’s model, and a general combination of them (see Section 3.1

for definitions). We provide a constant competitive ratio for each

of these four models. For each model, we also prove a lower bound

on the competitiveness of our online algorithm, and this lower

bound is very close to the constant competitive ratio. All of these

new results are summarized in Table 1. Finally, we derive a new

lower bound on the competitiveness of any deterministic online

algorithm under the arbitrary speedup model. To the best of our

knowledge, a competitive ratio was previously known only for task

graphs under the roofline model [9], while we derive new results

(upper and lower bounds) for several other speedup models.

The rest of this paper is organized as follows. Section 2 surveys

related work. The formal model and problem statement are pre-

sented in Section 3. Section 4 is the heart of the paper: we introduce

a new online algorithm and prove its competitive ratios for differ-

ent speedup models; we also prove a lower bound for each model.

Section 5 is devoted to proving a lower bound of any deterministic

online algorithm for the arbitrary speedup model. Finally, Section 6

concludes the paper and suggests future directions.

2 RELATEDWORK
Several prior studies have considered offline scheduling of inde-

pendent moldable tasks, and derived approximation results. While

some results depend on specific speedup models for the tasks, other

results hold for the arbitrary model. Turek et al. [20] designed a

2-approximation list-based algorithm for the arbitrary model. Fur-

thermore, when each task only admits a subset of all possible pro-

cessor allocations, Jansen [11] presented a (1.5 + 𝜖)-approximation

algorithm, which is tight since it was also shown that the prob-

lem cannot have an approximation ratio better than 1.5 unless

P = NP [15]. For the monotonic model, where the execution time

is non-increasing and the area (processor allocation times execu-

tion time) is non-decreasing with the number of processors, Jansen

and Land [12] further proposed a polynomial-time approximation

scheme (PTAS).

For online scheduling of independent moldable tasks that are

released on-the-fly, Ye et al. [23] designed a 16.74-competitive al-

gorithm. They also explained how to transform an algorithm for

rigid tasks whose makespan is at most 𝜌 times the lower bound

into a 4𝜌-competitive algorithm for moldable tasks. Further, some

algorithms designed in the offline setting will also work online if

they make scheduling decisions independently for each task; see

for instance [7, 10, 17], which studied the communication model.

For offline scheduling of moldable tasks with dependencies,

Wang and Cheng [21] showed that the earliest completion time al-

gorithm is a (3− 2/𝑃)-approximation for the roofline model, where

Table 2: Instances of the scheduling problem.
Problem Instance Offline Online

Independent moldable tasks [11, 12, 20] [7, 10, 17, 23]

Moldable task graphs [6, 14, 18, 21] [9], [This paper]

𝑃 denotes the total number of processors on the platform. For the

monotonic model, Lepère et al. [18] proposed an algorithm with

approximation ratio 3 +
√

5, which was later improved to 4.73 by

Jansen and Zhang [14]. Chen and Chu [6] further proposed im-

proved approximations for a more restrictive model, where the area

is a concave function and the execution time is strictly decreasing

with the number of processors.

Feldmann et al. [9] designed an online algorithm for moldable

tasks with dependencies, under the roofline model. By keeping the

system utilization above a given bound and by carefully tuning

this bound, their algorithm achieves 2.618-competitiveness, even

when the task execution times and the DAG structure are unknown.

Canon et al. [5] focused on hybrid platforms with several types of

processors (for instance, CPUs and GPUs), and derived competitive

ratios depending on the number of such resources, but they did not

consider moldable tasks.

Benoit et al. [3, 4] recently investigated the problem of scheduling

independent moldable tasks subject to failures, where tasks need

to be re-executed after a failure until a successful completion. This

corresponds to a semi-online setting, since all tasks are known

at the beginning, but failed tasks are only discovered on-the-fly.

We do not consider task failures in this paper, but rather focus on

the general online scheduling of moldable task graphs (as in [9]).

However, our results can readily carry over to the failure scenario.

Table 2 summarizes the instances of different scheduling prob-

lems and the related papers under each instance.

3 PROBLEM STATEMENT
In this section, we formally present the online scheduling model

and the objective function. We also show a simple lower bound

on the optimal makespan, against which the performance of our

online algorithms will be measured.

3.1 Model and Objective
We consider the online scheduling of a directed acyclic graph (DAG)

of moldable tasks on a platform with 𝑃 identical processors. Let𝐺 =

(𝑉 , 𝐸) denote the task graph, where 𝑉 = {1, 2, . . . , 𝑛} represents
a set of 𝑛 tasks and 𝐸 ⊆ 𝑉 × 𝑉 represents a set of precedence

constraints (or dependencies) among the tasks. An edge (𝑖, 𝑗) ∈ 𝐸
indicates that task 𝑗 depends on task 𝑖 , and therefore it cannot be

executed before task 𝑖 is completed. Task 𝑖 is called the predecessor of

task 𝑗 , and task 𝑗 is called the successor of task 𝑖 . We do not consider

costs associated with the data transfers between dependent tasks.

The tasks are assumed to be moldable, meaning that the number

of processors allocated to a task can be determined by the sched-

uling algorithm at launch time, but once the task has started exe-

cuting, its processor allocation cannot be changed. The execution

time 𝑡 𝑗 (𝑝 𝑗 ) of a task 𝑗 is a function of the number 𝑝 𝑗 of processors

allocated to it, and we assume that the processor allocation must be

an integer between 1 and 𝑃 . In this paper, we focus on the following
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execution time function:

𝑡 𝑗 (𝑝 𝑗 ) =
𝑤 𝑗

min(𝑝 𝑗 , 𝑝 𝑗 )
+ 𝑑 𝑗 + 𝑐 𝑗 (𝑝 𝑗 − 1) , (1)

where 𝑤 𝑗 denotes the total parallelizable work of the task, 𝑝 𝑗 de-

notes the maximum degree of parallelism of the task, 𝑑 𝑗 denotes

the sequential work of the task, and 𝑐 𝑗 denotes the communication

overhead when more than one processor is used. The execution

time function in Equation (1) generalizes several speedup mod-

els commonly observed for parallel applications. In particular, it

contains the following well-known models as special cases:

• Roofline Model [22] (with 𝑑 𝑗 = 0 and 𝑐 𝑗 = 0):

𝑡 𝑗 (𝑝 𝑗 ) =
𝑤 𝑗

min(𝑝 𝑗 , 𝑝 𝑗 )
. (2)

This model assumes that the task has a linear speedup until

a maximum degree of parallelism 𝑝 𝑗 ≤ 𝑃 .
• Communication Model [10] (with 𝑝 𝑗 ≥ 𝑃 and 𝑑 𝑗 = 0):

𝑡 𝑗 (𝑝 𝑗 ) =
𝑤 𝑗

𝑝 𝑗
+ 𝑐 𝑗 (𝑝 𝑗 − 1) . (3)

This model assumes that the work of the task can be perfectly

parallelized, but there is a communication overhead when

more than one processor is allocated, and that overhead

increases linearly with the number of allocated processors.

• Amdahl’s Model [2] (with 𝑝 𝑗 ≥ 𝑃 and 𝑐 𝑗 = 0):

𝑡 𝑗 (𝑝 𝑗 ) =
𝑤 𝑗

𝑝 𝑗
+ 𝑑 𝑗 . (4)

This model assumes that the task has a perfectly paralleliz-

able fraction with work 𝑤 𝑗 and an inherently sequential

fraction with work 𝑑 𝑗 .

From the execution time function of the task 𝑗 , we can further

define the area of the task as a function of the processor allocation

as follows: 𝑎 𝑗 (𝑝 𝑗 ) = 𝑝 𝑗 × 𝑡 𝑗 (𝑝 𝑗 ). Intuitively, the area represents the
total amount of processor resources utilized over the entire period

of task execution.

In this work, we consider the online scheduling model, where a

task becomes available only when all of its predecessors have been

completed. This represents a common scheduling model for dy-

namic task graphs, whose dependencies are only revealed upon task

completions [1, 5, 9, 16]. Furthermore, when a task 𝑗 is available, all

of its execution time parameters (i.e.,𝑤 𝑗 , 𝑝 𝑗 , 𝑑 𝑗 , 𝑐 𝑗 ) become known

to the scheduling algorithm. The goal is to find a feasible schedule

of the task graph that minimizes its overall completion time or

makespan, denoted by 𝑇 . The performance of an online scheduling

algorithm is measured by its competitive ratio: the algorithm is

said to be 𝑐-competitive if, for any task graph, its makespan 𝑇 is

at most 𝑐 times the makespan 𝑇opt produced by an optimal offline

scheduler, i.e., 𝑇 ≤ 𝑐 ×𝑇opt. Note that the optimal offline scheduler

may know all the tasks and their speedup models, as well as all

dependencies in the graph, in advance. The competitive ratio is

established against all possible strategies by an adversary trying to

force the online algorithm to take bad decisions.

3.2 Lower Bound on Optimal Makespan
Given the execution time function in Equation (1), let us define 𝑠 𝑗 =√︁
𝑤 𝑗/𝑐 𝑗 . We can then compute the maximum number of processors

that should be allocated to the task as:

𝑝max

𝑗 = min

(
𝑃, 𝑝 𝑗 , 𝑝 𝑗

)
, (5)

where

𝑝 𝑗 =

{
⌊𝑠 𝑗 ⌋, if 𝑡 𝑗 (⌊𝑠 𝑗 ⌋) ≤ 𝑡 𝑗 (⌈𝑠 𝑗 ⌉)
⌈𝑠 𝑗 ⌉, otherwise

Indeed, allocating more than 𝑝max

𝑗
processors to the task will no

longer decrease its execution time while only increasing its area.

Thus, we can safely assume that the processor allocation of the task

should never exceed 𝑝max

𝑗
under any reasonable algorithm.

Furthermore, the task is said to satisfy the monotonic prop-

erty [18] if the following two conditions hold:

• The execution time is a non-increasing function of the proces-

sor allocation, i.e., 𝑡 𝑗 (𝑝) ≥ 𝑡 𝑗 (𝑞) for all 1 ≤ 𝑝 < 𝑞 ≤ 𝑝max

𝑗
;

• The area is a non-decreasing function of the processor allo-

cation, i.e., 𝑎 𝑗 (𝑝) ≤ 𝑎 𝑗 (𝑞) for all 1 ≤ 𝑝 < 𝑞 ≤ 𝑝max

𝑗
.

Lemma 1. A taskwith execution time function given in Equation (1)

is monotonic if its processor allocation is in the range [1, 𝑝max

𝑗
].

Proof. When the processor allocation is in the range [1, 𝑝max

𝑗
],

we have 𝑝 𝑗 ≤ 𝑝max

𝑗
≤ 𝑝 𝑗 . Thus, the execution time function

simplifies to 𝑡 𝑗 (𝑝 𝑗 ) =
𝑤𝑗
𝑝 𝑗
+ 𝑑 𝑗 + 𝑐 𝑗 (𝑝 𝑗 − 1). This is a convex

function whose minimum value is achieved at 𝑝 𝑗 . Since we also

have 𝑝 𝑗 ≤ 𝑝max

𝑗
≤ 𝑝 𝑗 , it shows that the execution time is a non-

increasing function of 𝑝 𝑗 in the range [1, 𝑝max

𝑗
].

Similarly, when 𝑝 𝑗 ≤ 𝑝max

𝑗
≤ 𝑝 𝑗 , the area becomes 𝑎 𝑗 (𝑝 𝑗 ) =

𝑝 𝑗 × 𝑡 𝑗 (𝑝 𝑗 ) = 𝑤 𝑗 + 𝑑 𝑗𝑝 𝑗 + 𝑐 𝑗 (𝑝2

𝑗
− 𝑝 𝑗 ), which is non-decreasing for

any 𝑝 𝑗 ≥ 1. □

Thus, based on Lemma 1, theminimum execution time of the task

is 𝑡min

𝑗
= 𝑡 𝑗 (𝑝max

𝑗
) and theminimum area of the task is𝑎min

𝑗
= 𝑎 𝑗 (1).

Note that the second condition of the monotonic property also

shows that the task cannot achieve superlinear speedup, i.e.,

𝑡 𝑗 (𝑝)
𝑡 𝑗 (𝑞)

≤ 𝑞

𝑝
for all 1 ≤ 𝑝 < 𝑞 ≤ 𝑝max

𝑗 . (6)

We now define two quantities that can be used as a lower bound

of the optimal makespan.

Definition 1. The minimum total area 𝐴min of the task graph is

the sum of the minimum area of all tasks, i.e., 𝐴min =
∑𝑛
𝑗=1

𝑎min

𝑗
.

Definition 2. The minimum length 𝐿min (𝑓 ) of a path1 𝑓 in the

graph is the sum of the minimum execution time of all tasks along

that path, i.e., 𝐿min (𝑓 ) =
∑
𝑗 ∈𝑓 𝑡

min

𝑗
. The minimum critical path

length 𝐶min of the graph is the longest minimum length of any path

in the graph, i.e., 𝐶min = max𝑓 𝐿min (𝑓 ).

Clearly, the optimal makespan cannot be smaller than
𝐴min

𝑃
and 𝐶min. This follows from the well-known area and critical-path

bounds for scheduling any task graph. The minimum choice for

both quantities ensures that they can serve as the lower bounds on

the optimal makespan. The following lemma states this result.

Lemma 2. 𝑇opt ≥ max

(
𝐴min

𝑃
,𝐶min

)
.

1
A path 𝑓 consists of a sequence of tasks with linear dependency, i.e., 𝑓 =

( 𝑗𝜋 (1) , 𝑗𝜋 (2) , . . . , 𝑗𝜋 (𝑣) ) , where the first task 𝑗𝜋 (1) in the sequence has no prede-

cessor in the graph, the last task 𝑗𝜋 (𝑣) has no successor, and, for each 2 ≤ 𝑖 ≤ 𝑣, task
𝑗𝜋 (𝑖 ) is a successor of task 𝑗𝜋 (𝑖−1) .
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4 ONLINE ALGORITHM
In this section, we present an online scheduling algorithm and

derive its competitive ratio for the general speedup model (Equa-

tion (1)) and its three special cases. We also prove lower bounds on

the competitiveness of our algorithm under these speedup models.

4.1 Algorithm Description
Algorithm 1 presents the pseudocode of the online scheduling al-

gorithm, which at any time maintains the set of available tasks in a

waiting queue 𝑄 . At time 0 or whenever a running task completes

execution, it checks if new tasks have become available. If so, for

each newly available task 𝑗 , it finds a processor allocation 𝑝 𝑗 for

the task (using Algorithm 2) before inserting it into the queue 𝑄 .

Then, it applies the well-known list scheduling strategy by scanning

through all the available tasks in 𝑄 and executing each one right

away if there are enough processors. Note that tasks are inserted

into the queue without any priority considerations, although in

practice certain priority rules may work better.

Algorithm 2 presents the details of the processor allocation strat-

egy for any task 𝑗 . It consists of two steps. The first step performs

an initial allocation for the task, which is inspired by the Local Pro-

cessor Allocation (LPA) strategy proposed in [3, 4]. Specifically, for

each possible allocation 𝑝 ∈ [1, 𝑝max

𝑗
], we define the ratio between

the area of the task and the minimum area to be 𝛼𝑝 = 𝑎 𝑗 (𝑝)/𝑎min

𝑗
,

and the ratio between the execution time of the task and the min-

imum execution time to be 𝛽𝑝 = 𝑡 𝑗 (𝑝)/𝑡min

𝑗
. We then find an al-

location that minimizes 𝛼𝑝 subject to the constraint 𝛽𝑝 ≤ 1−2𝜇

𝜇 (1−𝜇) ,

where 𝜇 ≤ 3−
√

5

2
≈ 0.382 is a constant whose exact value will be

determined based upon the speedup model under consideration.

The justification for this strategy as well as for the choice of 𝜇 will

be presented in the next section. Since 𝛼𝑝 is non-decreasing with 𝑝

and 𝛽𝑝 is non-increasing with 𝑝 , the above optimization problem

can be efficiently solved in linear time.

In the second step, the algorithm reduces the initial allocation

to ⌈𝜇𝑃⌉ if it is more than ⌈𝜇𝑃⌉; otherwise the allocation will be

unchanged. Let 𝑝 𝑗 denote the initial allocation for the task and 𝑝 ′
𝑗

the final allocation. Thus, after the second step, we have:

𝑝 ′𝑗 =

{
⌈𝜇𝑃⌉, if 𝑝 𝑗 > ⌈𝜇𝑃⌉
𝑝 𝑗 , otherwise

. (7)

This step adopts the technique first proposed in [18] and subse-

quently used in [13, 14]. The purpose is to enable the execution

of more tasks at any time, thus potentially increasing the overall

resource utilization of the platform and reducing the makespan.

4.2 General Analysis Framework
We now outline a general analysis framework, under which the

competitive ratio of the proposed online algorithm will be derived

for different speedup models. The framework combines the analysis

shown in [13, 14, 18] for list scheduling as well as the analysis used

in [3, 4] for local processor allocation. Together, the result nicely

connects the makespan of the online algorithm to the lower bound

(Lemma 2), thus proving the competitive ratio.

Recall that 𝑇 denotes the makespan of the online scheduling

algorithm. Since the algorithm allocates and de-allocates processors

Algorithm 1: Online_Scheduling_Algorithm
1 initialize a waiting queue𝑄

2 when at time 0 or a running task completes execution do
// Processor Allocation

3 for each new task 𝑗 that becomes available do
4 Allocate_Processor(𝑗 )

5 insert task 𝑗 into the waiting queue𝑄

6 end
// List Scheduling

7 for each task 𝑗 in the waiting queue𝑄 do
8 if there are enough processors to execute the task then
9 execute task 𝑗 now

10 end
11 end
12 end

Algorithm 2: Allocate_Processor( 𝑗 )
// Step 1: Initial Allocation

1 Compute 𝑝max

𝑗
based on Equation (5)

2 Compute 𝑡min

𝑗 = 𝑡 𝑗 (𝑝max

𝑗
) and 𝑎min

𝑗 = 𝑎 𝑗 (1)
3 Find an allocation 𝑝 𝑗 ∈ [1, 𝑝max

𝑗
] from the following optimization problem:

min

𝑝
𝛼𝑝 =

𝑎 𝑗 (𝑝)
𝑎min

𝑗

s.t. 𝛽𝑝 =
𝑡 𝑗 (𝑝)
𝑡min

𝑗

≤ 1 − 2𝜇

𝜇 (1 − 𝜇)

// Step 2: Allocation Adjustment

4 if 𝑝 𝑗 > ⌈𝜇𝑃 ⌉ then 𝑝′𝑗 ← ⌈𝜇𝑃 ⌉ else 𝑝′𝑗 ← 𝑝 𝑗

upon task completions, the schedule can be divided into a set I =

{𝐼1, 𝐼2, . . . } of non-overlapping intervals, where tasks only start (or

complete) at the beginning (or end) of an interval, and the number

of utilized processors does not change during an interval. For each

interval 𝐼 ∈ I, let 𝑝 (𝐼 ) denote its processor utilization, i.e., the

total number of processors used by all tasks running in interval 𝐼 .

Following the analysis of [18], we classify the set of intervals into

the following categories.

• I1: subset of intervals that satisfy 𝑝 (𝐼 ) ∈ (0, ⌈𝜇𝑃⌉);
• I2: subset of intervals that satisfy 𝑝 (𝐼 ) ∈ [⌈𝜇𝑃⌉, ⌈(1 − 𝜇)𝑃⌉);
• I3: subset of intervals that satisfy 𝑝 (𝐼 ) ∈ [⌈(1 − 𝜇)𝑃⌉, 𝑃].
Let |𝐼 | denote the duration of an interval 𝐼 , and let𝑇1 =

∑
𝐼 ∈I1 |𝐼 |,

𝑇2 =
∑
𝐼 ∈I2 |𝐼 | and 𝑇3 =

∑
𝐼 ∈I3 |𝐼 | be the total durations of the

three categories of intervals, respectively. Since I1, I2 and I3 are
obviously disjoint and partition I, we have 𝑇 = 𝑇1 +𝑇2 +𝑇3.

The next two lemmas relate these durations to the minimum

total area and minimum critical path length of the task graph, given

certain conditions on the initial processor allocations of the tasks.

Lemma 3. If there exists a constant 𝛼 such that, for each task 𝑗 , its

initial processor allocation satisfies 𝑎 𝑗 (𝑝 𝑗 ) ≤ 𝛼 × 𝑎min

𝑗
, then we have:

𝜇𝑇2 + (1 − 𝜇)𝑇3 ≤ 𝛼 ×
𝐴min

𝑃
. (8)

Proof. As the area of each task 𝑗 is non-decreasing with its

processor allocation and 𝑝 ′
𝑗
≤ 𝑝 𝑗 , the final area of the task should

satisfy 𝑎 𝑗 (𝑝 ′𝑗 ) ≤ 𝑎 𝑗 (𝑝 𝑗 ) ≤ 𝛼 × 𝑎
min

𝑗
. Thus, the total area 𝐴′ of all

tasks after their final allocations will satisfy 𝐴′ =
∑
𝑗 𝑎 𝑗 (𝑝 ′𝑗 ) ≤

𝛼 ×∑
𝑗 𝑎

min

𝑗
= 𝛼 ×𝐴min.
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Since at least ⌈𝜇𝑃⌉ ≥ 𝜇𝑃 processors are utilized during𝑇2 and at

least ⌈(1 − 𝜇)𝑃⌉ ≥ (1 − 𝜇)𝑃 processors are utilized during 𝑇3, we

have 𝜇𝑇2 + (1 − 𝜇)𝑇3 ≤ 𝐴′
𝑃
≤ 𝛼 × 𝐴min

𝑃
. □

Lemma 4. If there exists a constant 𝛽 such that, for each task 𝑗 ,

its initial processor allocation satisfies 𝑡 𝑗 (𝑝 𝑗 ) ≤ 𝛽 × 𝑡min

𝑗
and 𝛽 ≤ 1

𝜇 ,

then we have:

𝑇1

𝛽
+ 𝜇𝑇2 ≤ 𝐶min . (9)

Proof. During 𝑇1 and 𝑇2, the processor utilization is at most

⌈(1 − 𝜇)𝑃⌉ − 1, so there are at least 𝑃 − (⌈(1 − 𝜇)𝑃⌉ − 1) ≥ ⌈𝜇𝑃⌉
available processors. Based on Algorithm 2, any task is allocated

at most ⌈𝜇𝑃⌉ processors. Thus, there are enough processors to

execute any new task (if one is available). This implies that there

is no available task in the queue Q during 𝑇1 and 𝑇2. When a task

graph is scheduled by the list scheduling algorithm, it is well known

that there exists a path 𝑓 in the graph such that some task along

that path will be running whenever there is no available task in the

queue [9, 14, 18].

For any task 𝑗 along path 𝑓 running during 𝑇1, its processor

allocation must be less than ⌈𝜇𝑃⌉, hence is not reduced by Step 2

of Algorithm 2, i.e., 𝑝 ′
𝑗
= 𝑝 𝑗 . Thus, its execution time should satisfy

𝑡 𝑗 (𝑝 ′𝑗 ) = 𝑡 𝑗 (𝑝 𝑗 ) ≤ 𝛽 × 𝑡
min

𝑗
.

For any task 𝑗 along path 𝑓 running during 𝑇2, its processor

allocation may or may not be reduced. If it is not reduced, then

similarly we can get 𝑡 𝑗 (𝑝 ′𝑗 ) ≤ 𝛽 × 𝑡
min

𝑗
≤ 1

𝜇 × 𝑡
min

𝑗
. Otherwise, if

it is reduced, and based on Equation (6), the task execution time

should satisfy

𝑡 𝑗 (𝑝′𝑗 )
𝑡min

𝑗

=
𝑡 𝑗 ( ⌈𝜇𝑃 ⌉)
𝑡 𝑗 (𝑝max

𝑗
) ≤

𝑝max

𝑗

⌈𝜇𝑃 ⌉ ≤
𝑃
𝜇𝑃

= 1

𝜇 .

Now, let 𝐿′
min
(𝑓 ) (resp. 𝐿′′

min
(𝑓 )) denote the minimum length for

the portion of path 𝑓 executed during 𝑇1 (resp. 𝑇2). The argument

above implies that 𝑇1 ≤ 𝛽 × 𝐿′
min
(𝑓 ) and 𝑇2 ≤ 1

𝜇 × 𝐿
′′
min
(𝑓 ). Thus,

we have
𝑇1

𝛽
+ 𝜇𝑇2 ≤ 𝐿′

min
(𝑓 ) + 𝐿′′

min
(𝑓 ) ≤ 𝐿min (𝑓 ) ≤ 𝐶min. □

Based on the results of Lemmas 3 and 4, we can now derive

a bound on the makespan of the online scheduling algorithm as

shown below.

Lemma 5. If there exist two constants 𝛼 and 𝛽 such that, for each

task 𝑗 , its initial processor allocation satisfies 𝑎 𝑗 (𝑝 𝑗 ) ≤ 𝛼 × 𝑎min

𝑗
and

𝑡 𝑗 (𝑝 𝑗 ) ≤ 𝛽 × 𝑡min

𝑗
with 𝛽 ≤ 1−2𝜇

𝜇 (1−𝜇) , then we have:

𝑇 ≤ 𝜇𝛼 + 1 − 2𝜇

𝜇 (1 − 𝜇) ×𝑇opt . (10)

Proof. As the makespan is given by 𝑇 = 𝑇1 + 𝑇2 + 𝑇3, we can

multiply both sides by
1−𝜇
𝛼 and apply Equation (8) to remove the

𝑇3 term, which gives
1−𝜇
𝛼 𝑇 ≤ 1−𝜇

𝛼 𝑇1 + 1−2𝜇
𝛼 𝑇2 +𝑇opt.

We can then multiply both sides of the above inequality by
𝜇𝛼

1−2𝜇

and use Equation (9) to remove the𝑇2 term (since 𝛽 ≤ 1−2𝜇

𝜇 (1−𝜇) =
1

𝜇 −
1

1−𝜇 ≤
1

𝜇 ). This gives
𝜇 (1−𝜇)
1−2𝜇 𝑇 ≤

(
𝜇 (1−𝜇)
1−2𝜇 −

1

𝛽

)
𝑇1+

(
𝜇𝛼

1−2𝜇 + 1

)
𝑇opt.

Finally, if 𝛽 ≤ 1−2𝜇

𝜇 (1−𝜇) , the first term in the above inequality

becomes non-positive and hence can be removed without affecting

the inequality. By rearranging the factors, we can then obtain the

result as shown in Equation (10). □

The result of Lemma 5 shows that the competitive ratio of the

online algorithm increases with 𝛼 , for a given 𝜇. This suggests that

the initial processor allocation should try to minimize 𝛼 subject

to the constraint 𝛽 ≤ 1−2𝜇

𝜇 (1−𝜇) , which is what is done in Step 1 of

Algorithm 2. Since 𝛽 ≥ 1, the value of 𝜇 needs to satisfy
1−2𝜇

𝜇 (1−𝜇) ≥ 1,

and solving it gives 𝜇 ≤ 3−
√

5

2
≈ 0.382.

4.3 Competitive Ratios
In this section, we prove competitive ratios for the online algorithm

under different speedupmodels. Based on Lemma 5, the competitive

ratio is given by
𝜇𝛼+1−2𝜇

𝜇 (1−𝜇) subject to 𝛽 ≤ 1−2𝜇

𝜇 (1−𝜇) . We will show that

there exists a processor allocation parameterized by a parameter 𝑥

and that achieves specific values of 𝛼 and 𝛽 for any task under each

considered speedup model. By carefully choosing the values of 𝑥

and 𝜇, we can minimize the ratio while satisfying the constraint.

In the following, we first consider the three special speedup

models (i.e., roofline, communication and Amdahl) before tackling

the general model. As the analysis focuses on bounding 𝛼 and 𝛽 for

each individual task, we drop the task index 𝑗 for simplicity.

4.3.1 RooflineModel. Recall that a task follows the roofline speedup
model if its execution time satisfies 𝑡 (𝑝) = 𝑤

min(𝑝,𝑝) for some 𝑝 ≤ 𝑃 .

Lemma 6. For any task that follows the roofline speedup model,

there exists a processor allocation that achieves 𝛼 = 1 and 𝛽 = 1.

Proof. Setting the processor allocation to 𝑝 clearly achieves the

minimum execution time 𝑡min = 𝑤
𝑝 for the task. It also achieves

the minimum area 𝑎min = 𝑤 , which is not affected by the processor

allocation in [1, 𝑝] due to the task’s linear speedup in this range.

Thus, this gives 𝛼 = 𝛽 = 1. □

Theorem 1. Algorithm 1 is 2.62-competitive for any graph of

tasks that follow the roofline speedup model. This is achieved with

𝜇 =
3−
√

5

2
≈ 0.382.

Proof. With 𝛽 = 1, the condition
1−2𝜇

𝜇 (1−𝜇) ≥ 𝛽 = 1 can be satis-

fied with 𝜇 ≤ 3−
√

5

2
. Since 𝛼 = 1, the competitive ratio is given by

𝜇+1−2𝜇

𝜇 (1−𝜇) =
1

𝜇 . By setting 𝜇 =
3−
√

5

2
≈ 0.382, the ratio is minimized at

1

𝜇 =
3+
√

5

2
< 2.62. □

The above ratio retains the same result by Feldmann et al. [9]
2
.

They also proved a matching lower bound for any online deter-

ministic algorithm under the “non-clairvoyant" setting, where the

work𝑤 of a task is also unknown to the scheduler.

4.3.2 Communication Model. Recall that a task follows the com-

munication model if its execution time satisfies 𝑡 (𝑝) = 𝑤
𝑝 +𝑐 (𝑝 − 1),

with 𝑐 > 0 (if 𝑐 = 0, it simplifies to a special case of the roofline

model). For the ease of analysis, we rewrite the execution time

function as: 𝑡 (𝑝) = 𝑐 ( 𝑤′𝑝 + 𝑝 − 1) with𝑤 ′ = 𝑤
𝑐 .

2
In [9], each task has a parallelism 𝑝 , and can be virtualized if 𝑝′ ≤ 𝑝 processors are

used for execution, with a linear slowdown. This is equivalent to the roofline model.
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Lemma 7. For any task that follows the communication model

and for any 𝑥 ∈ [
√

13−1

6
, 1

2
], there exists a processor allocation that

achieves 𝛼𝑥 = 1 + 𝑥2 + 𝑥
3
and 𝛽𝑥 = 3

5𝑥 +
3𝑥
5
.

Proof. Recall that 𝑝max
denotes the number of processors that

minimizes the execution time function 𝑡 (𝑝), i.e., 𝑡 (𝑝max) = 𝑡min
.

Clearly, we have either 𝑝max = 𝑃 or ⌊
√
𝑤 ′⌋ ≤ 𝑝max ≤ ⌈

√
𝑤 ′⌉. Also,

the area function is given by 𝑎(𝑝) = 𝑝 × 𝑡 (𝑝) = 𝑐 (𝑤 ′ + 𝑝 (𝑝 − 1)),
and the minimum area is obtained with one processor, i.e., 𝑎min =

𝑎(1) = 𝑐𝑤 ′. We consider two cases.

Case 1:𝑤 ′ ≤ 9. In this case, we must have 𝑝max ≤ 3. We further

divide this case into three subcases and, for each subcase, we will

show that there always exists a processor allocation 𝑝 that achieves

𝛼 ≤ 4

3
and 𝛽 ≤ 3

2
.

• If 𝑝max = 1, we can set 𝑝 = 1 and get 𝛼 = 𝛽 = 1.

• If 𝑝max = 2, we can set 𝑝 = 1 and get 𝛼 = 1. Moreover,

𝑡 (2) ≤ 𝑡 (3) ⇒ 𝑤′
2
+ 1 ≤ 𝑤′

3
+ 2 ⇒ 𝑤 ′ ≤ 6. We then have

𝛽 =
𝑡 (1)
𝑡min

= 𝑤′
𝑤′
2
+1
≤ 𝑤′

𝑤′
2
+𝑤′

6

= 3

2
.

• If 𝑝max = 3, we can set 𝑝 = 2. In this case, 𝑡 (2) ≥ 𝑡 (3) ⇒
𝑤 ′ ≥ 6, and we also supposed 𝑤 ′ ≤ 9. Thus, 𝛼 =

𝑎 (2)
𝑎min

=

𝑤′+2
𝑤′ , which decreasing with 𝑤 ′, and plugging in 𝑤 ′ ≥ 6,

we get 𝛼 ≤ 4

3
. Furthermore, 𝛽 =

𝑡 (2)
𝑡min

=
𝑤′
2
+1

𝑤′
3
+2

= 3𝑤′+6
2𝑤′+12

,

which is increasing with𝑤 ′, and plugging in𝑤 ′ ≤ 9, we get

𝛽 ≤ 11

10
.

Case 2:𝑤 ′ > 9. In this case, for any 𝑥 ∈ [
√

13−1

6
, 1

2
], we can set

𝑝 = min(⌈𝑥
√
𝑤 ′⌉, 𝑃). First, if we allow the processor allocation to

take non-integer values, the execution time function 𝑡 (𝑝) would
be minimized at 𝑝∗ =

√
𝑤 ′. Thus, the minimum execution time

should satisfy 𝑡min ≥ 𝑡 (𝑝∗) = 𝑐 (2
√
𝑤 ′ − 1). We further consider

two subcases.

• If 𝑝 = ⌈𝑥
√
𝑤 ′⌉, we apply 𝑥

√
𝑤 ′ ≤ 𝑝 ≤ 𝑥

√
𝑤 ′ + 1 to get

𝛼 =
𝑎 (𝑝)
𝑎min

=
𝑤′+𝑝 (𝑝−1)

𝑤′ ≤ 1+𝑥2 + 𝑥√
𝑤′
≤ 1+𝑥2 + 𝑥

3
= 𝛼𝑥 , and

𝛽 =
𝑡 (𝑝)
𝑡min
≤
√
𝑤′
𝑥
+𝑥
√
𝑤′

2

√
𝑤′−1

=
1/𝑥+𝑥

2−1/
√
𝑤′
≤ 1/𝑥+𝑥

2−1/3 = 3

5
( 1

𝑥 + 𝑥) = 𝛽𝑥 .

• If 𝑝 = 𝑃 < ⌈𝑥
√
𝑤 ′⌉, then as 𝑥 ≤ 1

2
, we must have

√
𝑤 ′ > 𝑃

and thus 𝑝 = 𝑝 = 𝑃 . In this case, we clearly have 𝛽 = 1 ≤ 𝛽𝑥 .
Moreover, we still have 𝑝 ≤ 𝑥

√
𝑤 ′ + 1, thus 𝛼 =

𝑎 (𝑝)
𝑎min

≤
1 + 𝑥2 + 𝑥

3
= 𝛼𝑥 holds.

Lastly, we need to make sure that 𝛼𝑥 ≥ 4

3
and 𝛽𝑥 ≥ 3

2
, because

the ratios must hold for Case 1 as well. We can easily check that

𝑥 ≤ 1

2
⇒ 𝛽𝑥 ≥ 3

2
and 𝑥 ≥

√
13−1

6
⇒ 𝛼𝑥 ≥ 4

3
, thus the result holds

for any 𝑥 ∈ [
√

13−1

6
, 1

2
]. □

Theorem 2. Algorithm 1 is 3.61-competitive for any graph of tasks

that follow the communication model. This is achieved with 𝜇 ≈ 0.324.

Proof. From result of Lemma 7, we aim tominimize𝛼𝑥 = 1+𝑥2+
𝑥
3
while satisfying the constraint 𝛽𝑥 = 3

5𝑥 +
3𝑥
5
≤ 1−2𝜇

𝜇 (1−𝜇) . For a fixed
𝜇, multiplying both sides of the constraint by 𝑥 and rearranging

terms, we get a second-degree inequality:
3

5
𝑥2 − 1−2𝜇

𝜇 (1−𝜇) 𝑥 +
3

5
≤ 0.

The smallest 𝑥 satisfying this inequality can be computed to be

𝑥∗𝜇 = 5

6

(
1−2𝜇

𝜇 (1−𝜇) −
√︃(

1−2𝜇

𝜇 (1−𝜇)
)
2 − 36

25

)
.

Now, plugging the above expression of 𝑥∗𝜇 into 𝛼𝑥 = 1 + 𝑥2 + 𝑥
3

and plugging the result into the competitive ratio
𝜇𝛼𝑥+1−2𝜇

𝜇 (1−𝜇) , we get

a function with only a single variable 𝜇. Minimizing this function

numerically for 𝜇 ∈ (0, 3−
√

5

2
], we can get the optimal competitive

ratio to be at most 3.61, which is obtained at 𝜇∗ ≈ 0.324. This results

in the value 𝑥∗𝜇 ≈ 0.446, which is indeed in [
√

13−1

6
, 1

2
], thus is a

valid choice. □

4.3.3 Amdahl’s Model. Recall that a task follows the Amdahl’s

model if its execution time function is 𝑡 (𝑝) = 𝑤
𝑝 + 𝑑 , with 𝑑 > 0 (if

𝑑 = 0, it simplifies to a special case of the roofline model). Thus the

area function is given by 𝑎(𝑝) = 𝑝 × 𝑡 (𝑝) = 𝑤 + 𝑑𝑝 .

Lemma 8. For any task that follows the Amdahl’s model and for

any 𝑥 > 0, there exists a processor allocation that achieves 𝛼𝑥 = 1 + 𝑥
and 𝛽𝑥 = 1 + 1

𝑥 .

Proof. The minimum execution time of the task is obtained

by allocating all 𝑃 processors, i.e., 𝑡min = 𝑡 (𝑃) = 𝑤
𝑃
+ 𝑑 , and the

minimum area is obtained with one processor, i.e., 𝑎min = 𝑎(1) =
𝑤 + 𝑑 .

For any 𝑥 > 0, we can set 𝑝 = min(⌈𝑥 𝑤
𝑑
⌉, 𝑃). This implies 𝑝 ≤

⌈𝑥 𝑤
𝑑
⌉ ≤ 𝑥 𝑤

𝑑
+ 1. Thus, we have 𝛼 =

𝑎 (𝑝)
𝑎min

=
𝑤+𝑑𝑝
𝑤+𝑑 ≤

𝑤+𝑑 (𝑥 𝑤𝑑 +1)
𝑤+𝑑 =

𝑤+𝑑+𝑥𝑤
𝑤+𝑑 = 1 + 𝑥𝑤

𝑤+𝑑 ≤ 1 + 𝑥 = 𝛼𝑥 . Furthermore, if 𝑝 = ⌈𝑥 𝑤
𝑑
⌉ ≥ 𝑥 𝑤

𝑑
,

we have 𝛽 =
𝑡 (𝑝)
𝑡min
≤

𝑤

𝑥 𝑤
𝑑

+𝑑
𝑤
𝑃
+𝑑 ≤

𝑑
𝑥
+𝑑
𝑑

= 1 + 1

𝑥 = 𝛽𝑥 . Otherwise, if

𝑝 = 𝑃 , we get 𝑡 (𝑝) = 𝑡min
and thus 𝛽 = 1 < 𝛽𝑥 . □

Theorem 3. Algorithm 1 is 4.74-competitive for any graph of tasks

that follow the Amdahl’s model. This is achieved with 𝜇 ≈ 0.271.

Proof. Again, we need to minimize 𝛼𝑥 = 1 + 𝑥 subject to the

constraint 𝛽𝑥 = 1 + 1

𝑥 ≤
1−2𝜇

𝜇 (1−𝜇) . For a fixed 𝜇, the smallest 𝑥

satisfying the above inequality can be computed as: 𝑥∗𝜇 =
𝜇 (1−𝜇)
𝜇2−3𝜇+1 .

Plugging 𝑥∗𝜇 into 𝛼𝑥 = 1 + 𝑥 , and then plugging the result into

the competitive ratio
𝜇𝛼𝑥+1−2𝜇

𝜇 (1−𝜇) and simplifying, we can get the fol-

lowing function: 𝑓 (𝜇) = −2𝜇3+5𝜇2−4𝜇+1
−𝜇4+4𝜇3−4𝜇2+𝜇 . Minimizing this function

numerically for 𝜇 ∈ (0, 3−
√

5

2
], we can get the optimal competitive

ratio to be at most 4.74, which is obtained at 𝜇∗ ≈ 0.271 (thus

𝑥∗𝜇 ≈ 0.759). □

4.3.4 General Model. We finally consider the general speedup

model as given in Equation (1). For the ease of analysis, we rewrite

the execution time function as: 𝑡 (𝑝) = 𝑐

(
𝑤′

min(𝑝,𝑝) + 𝑑
′ + 𝑝 − 1

)
with𝑤 ′ = 𝑤

𝑐 and 𝑑 ′ = 𝑑
𝑐 .

Lemma 9. For any task that follows the general model and for any

𝑥 > 1, there exists a processor allocation that achieves 𝛼𝑥 = 1+ 1

𝑥 +
1

𝑥2

and 𝛽𝑥 = 𝑥 + 1 + 1

𝑥 .

Proof. If we allow the processor allocation to take non-integer

values and assuming unbounded 𝑝 , the execution time function 𝑡 (𝑝)
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would be minimized at 𝑝∗ =
√
𝑤 ′. Thus, the minimum execution

time should satisfy 𝑡min ≥ 𝑐 (2
√
𝑤 ′ + 𝑑 ′ − 1). Note that this bound

will hold true regardless of the value of 𝑝: it is obviously true if

𝑝 ≥ 𝑝∗, otherwise 𝑡min
is achieved at 𝑝 , with a value also higher

than 𝑐 (2
√
𝑤 ′ + 𝑑 ′ − 1). Furthermore, the minimum area is obtained

with one processor, i.e., 𝑎min = 𝑎(1) = 𝑐 (𝑤 ′ + 𝑑 ′).
Recall that 𝑝max

denotes the number of processors that mini-

mizes the execution time, i.e., 𝑡 (𝑝max) = 𝑡min
. Clearly, we have

either 𝑝max = 𝑃 , or ⌊
√
𝑤 ′⌋ ≤ 𝑝max ≤ ⌈

√
𝑤 ′⌉, or 𝑝max = 𝑝 . We

consider two cases.

Case 1: 𝑤 ′ ≤ 1. In this case, it must be that 𝑝max = 1. We can

then set the processor allocation to be 𝑝 = 1 and have 𝛼 = 𝛽 = 1.

Case 2: 𝑤 ′ > 1. In this case, for any 𝑥 > 1, we can set 𝑝 =

min(⌈ 𝑤′+𝑑′
𝑥 (
√
𝑤′+𝑑′)

⌉, 𝑝, 𝑃), thus have 𝑎(𝑝) = 𝑐 (𝑤 ′ + 𝑝 (𝑑 ′ + 𝑝 − 1)).

Since 𝑝 ≤ ⌈ 𝑤′+𝑑′
𝑥 (
√
𝑤′+𝑑′)

⌉ ≤ 𝑤′+𝑑′
𝑥 (
√
𝑤′+𝑑′)

+ 1, we obtain:

𝛼 =
𝑎(𝑝)
𝑎min

=
𝑤 ′ + 𝑝 (𝑑 ′ + 𝑝 − 1)

𝑤 ′ + 𝑑 ′

≤
𝑤 ′ +

(
𝑤′+𝑑′

𝑥 (
√
𝑤′+𝑑′)

+ 1

) (
𝑑 ′ + 𝑤′+𝑑′

𝑥 (
√
𝑤′+𝑑′)

)
𝑤 ′ + 𝑑 ′

=

𝑤 ′ + 𝑑 ′ 𝑤′+𝑑′
𝑥 (
√
𝑤′+𝑑′)

+
(

𝑤′+𝑑′
𝑥 (
√
𝑤′+𝑑′)

)
2

+ 𝑑 ′ + 𝑤′+𝑑′
𝑥 (
√
𝑤′+𝑑′)

𝑤 ′ + 𝑑 ′

= 1 + 𝑑 ′ + 1

𝑥 (
√
𝑤 ′ + 𝑑 ′)

+ 𝑤 ′ + 𝑑 ′

𝑥2 (
√
𝑤 ′ + 𝑑 ′)2

≤ 1 + 1

𝑥
+ 1

𝑥2
= 𝛼𝑥 .

The last inequality above comes from𝑤 ′ > 1 and 𝑑 ′ > 0.

Since𝑤 ′ > 1, we get 𝑡min > 𝑐 (
√
𝑤 ′ +𝑑 ′). To derive 𝛽 , we further

consider two subcases.

• If 𝑝 = ⌈ 𝑤′+𝑑′
𝑥 (
√
𝑤′+𝑑′)

⌉, then 𝑝 × 𝑡min > 𝑐 𝑤
′+𝑑′
𝑥 = 𝑎min

𝑥 . We can

then get 𝛽 =
𝑡 (𝑝)
𝑡min

< 𝑥
𝑡 (𝑝)𝑝
𝑎min

= 𝑥
𝑎 (𝑝)
𝑎min
≤ 𝑥𝛼𝑥 = 𝑥 +1+ 1

𝑥 = 𝛽𝑥 .

• If 𝑝 < ⌈ 𝑤′+𝑑′
𝑥 (
√
𝑤′+𝑑′)

⌉, then we must have 𝑝 = min(𝑝, 𝑃) <

⌈ 𝑤′+𝑑′
𝑥 (
√
𝑤′+𝑑′)

⌉. Since 𝑝 is an integer, it is necessarily the case

that 𝑝 < 𝑤′+𝑑′
𝑥 (
√
𝑤′+𝑑′)

≤ 𝑤′+𝑑′√
𝑤′+𝑑′

≤
√
𝑤 ′ (because 𝑤 ′ > 1).

Therefore, we should also have 𝑝max = min(𝑝, 𝑃) = 𝑝 , and
thus 𝛽 = 1. □

Theorem 4. Algorithm 1 is 5.72-competitive for any graph of tasks

that follow the general speedup model given in Equation (1). This is

achieved with 𝜇 ≈ 0.211.

Proof. Once again, we aim at minimizing 𝛼𝑥 = 1+ 1

𝑥 +
1

𝑥2
subject

to 𝛽𝑥 = 𝑥 + 1 + 1

𝑥 ≤
1−2𝜇

𝜇 (1−𝜇) . For a fixed 𝜇, the constraint above

corresponds to a second-degree inequality: 𝑥2 − 𝜇2−3𝜇+1
𝜇 (1−𝜇) 𝑥 + 1 ≤ 0.

The largest 𝑥 satisfying this inequality can be computed as 𝑥∗𝜇 =

1

2

(
𝜇2−3𝜇+1
𝜇 (1−𝜇) +

√︂(
𝜇2−3𝜇+1
𝜇 (1−𝜇)

)
2

− 4

)
.

Plugging the above 𝑥∗𝜇 into 𝛼𝑥 = 1 + 1

𝑥 +
1

𝑥2
and then plugging

the result into the competitive ratio
𝜇𝛼𝑥+1−2𝜇

𝜇 (1−𝜇) , we get a function

with only a single variable 𝜇. Minimizing this function numerically
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Figure 1: A generic task graph used to prove lower bounds.

for 𝜇 ∈ (0, 3−
√

5

2
], we obtain that the optimal competitive ratio

is at most 5.72, obtained at 𝜇∗ ≈ 0.211. This results in the value

𝑥∗𝜇 ≈ 1.972. □

4.4 Lower Bounds
In Section 4.3, we have derived the competitive ratios of our online

algorithm under several common speedup models. In this section,

we show (almost tight) lower bounds on the competitive ratios of

our algorithm for these speedup models.

4.4.1 Generic Task Graph and Main Idea. To prove lower bounds,

we use a generic task graph as shown in Figure 1. There are (𝑋 +
1)𝑌 + 1 tasks, partitioned into three different groups: T𝐴,T𝐵 and

T𝐶 . Here, 𝑋 and 𝑌 are integers that will be defined differently

for each speedup model. Specifically, there are 𝑌 identical tasks

in T𝐴 , labeled as (𝐴𝑖 )𝑖∈[1,𝑌 ] , 𝑋𝑌 identical tasks in T𝐵 , labeled as

(𝐵𝑖, 𝑗 )𝑖∈[1,𝑌 ], 𝑗 ∈[1,𝑋 ] , and one task in T𝐶 , labeled as𝐶 . The tasks are

organized in layers and have the following precedence constraints:

for any 1 ≤ 𝑖 < 𝑌 , task 𝐴𝑖 is the predecessor of task 𝐴𝑖+1 and of

tasks 𝐵𝑖+1, 𝑗 for 1 ≤ 𝑗 ≤ 𝑋 ; and task 𝐴𝑌 is the predecessor of task𝐶 .

The execution time parameters of tasks will also be defined based

on the considered speedup model.

The main idea is to set the parameters in such as way that the

schedule of our online algorithm may have the shape as shown

in Figure 2(a), with layers scheduled one after another, while the

optimal algorithm could deal with the dependencies first to optimize

both the critical path and the area, as shown in Figure 2(b).

4.4.2 Roofline Model.

Theorem 5. Algorithm 1 with 𝜇 =
3−
√

5

2
≈ 0.382 is not better

than 2.61-competitive for the roofline model.

Proof. For this special case, we only need one task, thus 𝑋 =

𝑌 = 0. For task 𝐶 , we set 𝑤 = 𝑃 and 𝑝 = 𝑃 , thus 𝑡 (𝑝) = 𝑃
𝑝 . Let

𝑝𝐶 denote the processor allocation chosen by our algorithm for

the task. Clearly, our algorithm will choose 𝑝𝐶 = ⌈𝜇𝑃⌉, and the

makespan will satisfy 𝑇 = 𝑡 (𝑝𝐶 ) ≥ 𝑡 (𝜇𝑃 + 1) = 1

𝜇+1/𝑃 .
The optimal algorithm could allocate all 𝑃 processors to the task,

resulting in a makespan of 𝑇opt = 1. Therefore, when 𝑃 gets large

enough, we obtain: lim𝑃→∞
𝑇
𝑇opt

= 1

𝜇 =
3+
√

5

2
> 2.61. □

4.4.3 Communication Model.

Theorem 6. Algorithm 1 with 𝜇 ≈ 0.324 is not better than 3.51-

competitive for the communication model.
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Figure 2: Shapes of our algorithm’s schedule (a) and the optimal schedule (b) for the graph of Figure 1.

Proof. Let 𝑝𝐴 (resp. 𝑝𝐵 , 𝑝𝐶 ) denote the processor allocation

chosen by our algorithm for tasks in T𝐴 (resp. T𝐵 and T𝐶 ). In this

model, we have 𝜇 ≈ 0.324 and define 𝛿 =
1−2𝜇

𝜇 (1−𝜇) ≈ 1.61. We also

fix 𝑃 > 3, 𝑋 =

⌊
(1−𝜇)𝑃

2

⌋
+ 1 and 𝑌 = 𝑃 − 3. Finally, we choose the

execution time functions for the tasks in the three groups to be:

𝑡𝐴 (𝑝) = 𝑤𝐴
𝑝 +𝑐𝐴 (𝑝−1) = 1

𝑝 , 𝑡𝐵 (𝑝) =
𝑤𝐵
𝑝 +𝑐𝐵 (𝑝−1) =

6𝛿
3−𝛿 +

1

𝑃

𝑝 +𝑝−1,

and 𝑡𝐶 (𝑝) = 𝑤𝐶
𝑝 + 𝑐𝐶 (𝑝 − 1) = 𝛿𝑋𝑤𝐵

𝑝 + 𝑋𝑤𝐵
(

1

2
− 𝛿

6

)
(𝑝 − 1).

Processor allocation. For the tasks in T𝐴 , the area is constant, and
𝑡𝐴 (𝜇𝑃 )
𝑡min

𝐴

= 1

𝜇 > 𝛿 . Because 𝑡𝐴 (𝑝) is decreasing with 𝑝 , to satisfy the

constraint 𝛽𝑝 =
𝑡𝐴 (𝑝)
𝑡min

𝐴

≤ 𝛿 , the initial allocation 𝑝 from Step 1 of

Algorithm 2 must be larger than 𝜇𝑃 . Therefore, the final allocation

is exactly 𝑝𝐴 = ⌈𝜇𝑃⌉ and we get 𝑡𝐴 (𝑝𝐴) ≥ 𝑡𝐴 (𝜇𝑃 + 1) = 1

𝜇𝑃+1 .

For the tasks in T𝐵 , we can compute 𝑡𝐵 (1) = 6𝛿
3−𝛿 +

1

𝑃
, 𝑡𝐵 (2) =

3𝛿
3−𝛿 +

1

2𝑃
+ 1, 𝑡𝐵 (3) = 2𝛿

3−𝛿 +
1

3𝑃
+ 2, and 𝑡𝐵 (4) = 3𝛿

6−2𝛿
+ 1

4𝑃
+ 3.

We have 𝑡𝐵 (2) − 𝑡𝐵 (3) = 𝛿
3−𝛿 − 1 + 1

2𝑃
− 1

3𝑃
> 𝛿

3−𝛿 − 1 > 0 and

𝑡𝐵 (4) − 𝑡𝐵 (3) = 1 − 𝛿
6−2𝛿

+ 1

4𝑃
− 1

3𝑃
> 2

3
− 𝛿

6−2𝛿
> 0, therefore

𝑡min

𝐵
= 𝑡𝐵 (3). Furthermore, the initial allocation 𝑝 must be larger

than 1, because:

𝑡𝐵 (1)
𝑡min

𝐵

=

6𝛿
3−𝛿 +

1

𝑃

2𝛿
3−𝛿 +

1

3𝑃
+ 2

=

6𝛿
3−𝛿 +

1

𝑃

6

3−𝛿 +
1

3𝑃

= 𝛿

6

3−𝛿 +
1

𝑃𝛿

6

3−𝛿 +
1

3𝑃

> 𝛿 .

The last inequality is because 𝛿 < 3. However, 𝑝 = 2 would be an

acceptable choice, because:

𝑡𝐵 (2)
𝑡min

𝐵

=

3𝛿
3−𝛿 +

1

2𝑃
+ 1

2𝛿
3−𝛿 +

1

3𝑃
+ 2

=
3 + 2𝛿 + 3−𝛿

2𝑃

6 + 3−𝛿
3𝑃

<
3 + 2𝛿 + 3−𝛿

2

6

< 𝛿 .

The last inequality can be verified by replacing 𝛿 with its value.

Since ⌈𝜇𝑃⌉ ≥ 2 with 𝑃 > 3, we can conclude that the final allocation

is 𝑝𝐵 = 2, and 𝑡𝐵 (𝑝𝐵) = 3𝛿
3−𝛿 +

1

2𝑃
+ 1 =

𝑤𝐵
2
+ 1.

Finally, for task𝐶 , we have 𝑡𝐶 (3) = 𝛿𝑋𝑤𝐵
3
+𝑋𝑤𝐵− 𝛿𝑋𝑤𝐵3

= 𝑋𝑤𝐵 ,

𝑡𝐶 (1) = 𝛿𝑋𝑤𝐵 = 𝛿𝑡𝐶 (3), 𝑡𝐶 (2) = 𝛿𝑋𝑤𝐵
2
+ 𝑋𝑤𝐵

2
− 𝛿𝑋𝑤𝐵

6
= 𝑋𝑤𝐵 ( 12 +

𝛿
3
) > 𝑡𝐶 (3) because 𝛿

3
> 1

2
, and 𝑡𝐶 (4) = 𝑋𝑤𝐵

(
3

2
− 𝛿

4

)
> 𝑡𝐶 (3)

because
𝛿
4
< 1

2
. Therefore, 𝑡min

𝐶
= 𝑡𝐶 (3) and an initial allocation

𝑝 = 1 (thus a final allocation 𝑝𝐶 = 1) would satisfy the constraint

while minimizing the area. We finally have 𝑡𝐶 (𝑝𝐶 ) = 𝛿𝑋𝑤𝐵 .

Schedule and makespan. By construction, the total number of

processors needed to process a layer of tasks in T𝐴 and T𝐵 is at least

𝑋𝑝𝐵 + 𝑝𝐴 ≥ 2(
⌊
(1−𝜇)𝑃

2

⌋
+ 1) + 𝜇𝑃 > (1 − 𝜇)𝑃 + 𝜇𝑃 = 𝑃 . Therefore,

a layer cannot be processed in parallel. Assuming in the worst case

that our algorithm always prioritizes tasks from TB first, it may at

best schedule all tasks in TB in parallel and then the only task in TA
for that layer, with a total execution time of 𝑡𝐵 (𝑝𝐵) + 𝑡𝐴 (𝑝𝐴). The
same applies to all 𝑌 layers, after which the last task 𝐶 is executed.

The makespan of our algorithm is then:

𝑇 = 𝑌
(
𝑡𝐴 (𝑝𝐴) + 𝑡𝐵 (𝑝𝐵)

)
+ 𝑡𝐶 (𝑝𝐶 )

> (𝑃 − 3)
(𝑤𝐵

2

+ 1

)
+ 𝛿𝑋𝑤𝐵

=

(
𝑃 + 2

1 − 𝜇

) (𝑤𝐵
2

+ 1

)
+ 𝛿𝑋𝑤𝐵 −

(
3 + 2

1 − 𝜇

) (𝑤𝐵
2

+ 1

)
>

2𝑋

1 − 𝜇

(𝑤𝐵
2

+ 1

)
+ 𝛿𝑋𝑤𝐵 − 30 =

𝑋 (𝑤𝐵 + 2)
1 − 𝜇 + 𝛿𝑋𝑤𝐵 − 30 .

The second inequality above is due to the following two facts:

• 𝑃 + 2

1−𝜇 ≥
2𝑋
1−𝜇 ⇔ (1 − 𝜇)𝑃 + 2 ≥ 2𝑋 ⇔ 𝑋 ≤ (1−𝜇)𝑃

2
+ 1

•
(
3 + 2

1−𝜇

) (𝑤𝐵
2
+ 1

)
< 30 (verified by plugging in values)

Lower bound on competitive ratio. Wenow consider an alternative

schedule that works as follows: First, allocate all 𝑃 processors to

each task in T𝐴 (with execution time 𝑡∗
𝐴
= 𝑡𝐴 (𝑃) = 1

𝑃
), and execute

them sequentially. Then, allocate 1 processor to each task in T𝐵
(with execution time 𝑡∗

𝐵
= 𝑡𝐵 (1) = 𝑤𝐵 ) and 3 processors to task

𝐶 (with execution time 𝑡∗
𝐶

= 𝑡𝐶 (3) = 𝑋𝑤𝐵 ). It will execute task

𝐶 whenever the tasks in T𝐴 are completed, and the remaining

processors are used to execute the tasks in T𝐵 in groups of 𝑃 − 3.

The optimalmakespanwould be at least as good as the one produced

by this schedule, which is given by:

𝑇opt ≤ 𝑌𝑡∗𝐴 +max(𝑡∗𝐶 , 𝑋𝑡
∗
𝐵)

≤ 1 + 𝑋𝑤𝐵 .

Therefore, when 𝑃 gets large enough (thus 𝑋 gets large enough),

we obtain the following lower bound on the competitive ratio:

lim

𝑃→∞
𝑇

𝑇opt
≥ lim

𝑃→∞

𝑋 (𝑤𝐵+2)
1−𝜇 + 𝛿𝑋𝑤𝐵 − 30

1 + 𝑋𝑤𝐵

= lim

𝑋→∞

𝑋 (𝑤𝐵+2)
1−𝜇 + 𝛿𝑋𝑤𝐵

𝑋𝑤𝐵

=
1

1 − 𝜇 +
2

(1 − 𝜇)𝑤𝐵
+ 𝛿

>
1

𝜇
+ 𝜇

1 − 2𝜇
− 1

3(1 − 𝜇) > 3.51 . □
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4.4.4 Amdahl’s Model.

Theorem 7. Algorithm 1 with 𝜇 ≈ 0.271 is not better than 4.73-

competitive for the Amdahl model.

Proof. Again, let 𝑝𝐴 (resp. 𝑝𝐵 , 𝑝𝐶 ) denote the processor alloca-

tion chosen by our algorithm for tasks inT𝐴 (resp.T𝐵 andT𝐶 ). In this
model, we have 𝜇 ≈ 0.271 and 𝛿 =

1−2𝜇

𝜇 (1−𝜇) ≈ 2.32. We fix an integer

𝐾 > 3, 𝑃 = 𝐾2
, 𝑋 =

⌊
𝐾2 (1−𝜇)
𝑝𝐵

⌋
+ 1 and 𝑌 =

⌊
𝐾 (𝐾−𝛿)

𝑋

⌋
. We choose

the execution time functions for the tasks to be: 𝑡𝐴 (𝑝) = 𝑤𝐴
𝑝 +𝑑𝐴 =

𝐾
𝑝 , 𝑡𝐵 (𝑝) =

𝑤𝐵
𝑝 + 𝑑𝐵 = 𝐾

𝑝 + 1, and 𝑡𝐶 (𝑝) = 𝑤𝐶
𝑝 + 𝑑𝐶 =

(𝛿−1)𝐾
𝑝 + 𝐾 .

Processor allocation. For the tasks in T𝐴 , the area is constant, and
𝑡𝐴 (𝜇𝑃 )
𝑡min

𝐴

= 1

𝜇 > 𝛿 . Because 𝑡𝐴 (𝑝) is decreasing with 𝑝 , to satisfy the

constraint 𝛽𝑝 =
𝑡𝐴 (𝑝)
𝑡min

𝐴

≤ 𝛿 , the initial allocation 𝑝 from Step 1 of

Algorithm 2 must be larger than 𝜇𝑃 . Therefore, the final allocation

is exactly 𝑝𝐴 = ⌈𝜇𝑃⌉ and we get 𝑡𝐴 (𝑝𝐴) ≥ 𝑡𝐴 (𝜇𝑃 + 1) = 𝐾
𝜇𝑃+1 .

For the tasks in T𝐵 , we first let 𝑝∗ be the processor allocation if

relaxing the constraint that 𝑝 must be an integer. From the opti-

mization problem in Algorithm 2, as 𝛼𝑝 increases with 𝑝 and 𝛽𝑝
decreases with 𝑝 , to minimize 𝛼𝑝 subject to 𝛽𝑝 ≤ 𝛿 , we must have:

𝑡𝐵 (𝑝∗)
𝑡min

𝐵

= 𝛿 ⇔ 𝐾

𝑝∗
+ 1 = 𝛿

(
𝐾

𝐾2
+ 1

)
⇔ 𝑝∗ =

𝐾

𝛿 ( 1

𝐾
+ 1) − 1

⇒ 𝐾

𝛿 − 1

− 2 ≤ 𝑝∗ ≤ 𝐾

𝛿 − 1

.

The right inequality of the last implication is immediate, whereas

the left inequality comes from:

𝐾

𝛿 − 1

− 2 ≤ 𝐾

𝛿 ( 1

𝐾
+ 1) − 1

⇔ (𝐾 − 2𝛿 + 2) ( 𝛿
𝐾
+ 𝛿 − 1) ≤ 𝛿𝐾 − 𝐾

⇔ 5𝛿 − 2𝛿2 − 2 − 2𝛿

𝐾
(𝛿 − 1) ≤ 0

⇐ 5𝛿 − 2𝛿2 − 2 ≤ 0

The last inequality above is true due to our choice of 𝜇. Now,

to respect the constraint 𝛽𝑝 ≤ 𝛿 and to minimize 𝛼𝑝 , the initial

processor allocation must satisfy 𝑝 = ⌈𝑝∗⌉, which implies
𝐾
𝛿−1
−2 ≤

𝑝 ≤ 𝐾
𝛿−1
+ 1. Finally, we can show that 𝑝 ≤ 𝐾

𝛿−1
+ 1 ≤ 𝜇𝐾2 ≤ ⌈𝜇𝑃⌉

for any integer 𝐾 > 3. Thus, the final allocation is 𝑝𝐵 = 𝑝 , and we

have 𝑡𝐵 (𝑝𝐵) ≥ 𝑡𝐵 ( 𝐾𝛿−1
+ 1) = 𝐾

𝐾
𝛿−1
+1 + 1.

Lastly, for task𝐶 , we have 𝑡min

𝐶
≥ 𝑑𝐶 = 𝐾 and 𝑡𝐶 (1) = (𝛿 −1)𝐾 +

𝐾 = 𝛿𝐾 ≤ 𝛿𝑡min

𝐶
. Therefore, allocating 1 processor respects the

constraint 𝛽𝑝 ≤ 𝛿 and clearly minimizes 𝛼𝑝 . Thus, we have 𝑝𝐶 = 1

and 𝑡𝐶 (𝑝𝐶 ) = 𝛿𝐾 .

Schedule and makespan. By construction, the total number of

processors needed to process a layer of tasks in T𝐴 and T𝐵 is at least

𝑋𝑝𝐵+𝑝𝐴 ≥
( ⌊
𝐾2 (1−𝜇)
𝑝𝐵

⌋
+ 1

)
𝑝𝐵+𝜇𝐾2 >

𝐾2 (1−𝜇)
𝑝𝐵

𝑝𝐵+𝜇𝐾2 = 𝐾2=𝑃 .

Therefore, a layer cannot be processed in parallel. Assuming in the

worst case that our algorithm always prioritizes tasks from TB
first, it may at best schedule all tasks in TB in parallel and then

the only task in TA for that layer, with a total execution time of

𝑡𝐵 (𝑝𝐵) + 𝑡𝐴 (𝑝𝐴). The same applies to all 𝑌 layers, after which the

last task 𝐶 is executed. The makespan of our algorithm is then:

𝑇 = 𝑌
(
𝑡𝐴 (𝑝𝐴) + 𝑡𝐵 (𝑝𝐵)

)
+ 𝑡𝐶 (𝑝𝐶 )

≥
(
𝐾 (𝐾 − 𝛿)

𝑋
− 1

) (
𝐾

𝜇𝐾2 + 1

+ 𝐾

𝐾
𝛿−1
+ 1

+ 1

)
+ 𝛿𝐾

>
©« 𝐾 (𝐾 − 𝛿)
𝐾2 (1−𝜇)
𝑝𝐵

+ 1

− 1
ª®¬
(

𝐾

𝐾
𝛿−1
+ 1

+ 1

)
+ 𝛿𝐾

≥
©«

𝐾 − 𝛿
1−𝜇
1

𝛿−1
− 2

𝐾

+ 1

𝐾

− 1

ª®®¬
(

1

1

𝛿−1
+ 1

𝐾

+ 1

)
+ 𝛿𝐾 .

Lower bound on competitive ratio. Wenow consider an alternative

schedule that works as follows: First, allocate all 𝑃 processors to

each task in T𝐴 (with execution time 𝑡∗
𝐴
= 𝑡𝐴 (𝑃) = 1

𝐾
), and execute

them sequentially. Then, allocate 1 processor to each task in T𝐵
(with execution time 𝑡∗

𝐵
= 𝑡𝐵 (1) = 𝐾 + 1) and ⌈(𝛿 − 1)𝐾⌉ < 𝛿𝐾

processors to task𝐶 (with execution time 𝑡∗
𝐶
≤ 𝑡𝐶 ((𝛿−1)𝐾) = 1+𝐾 ).

The total number of processors required for all tasks in T𝐵 and

task𝐶 is less than 𝑋𝑌 +𝛿𝐾 ≤ 𝐾 (𝐾 −𝛿) +𝛿𝐾 = 𝐾2 = 𝑃 , so they can

be executed in parallel. The optimal makespan would be at least as

good as the one produced by this schedule, which is given by:

𝑇opt ≤ 𝑌𝑡∗𝐴 +max(𝑡∗𝐵, 𝑡
∗
𝐶 ) =

𝑌

𝐾
+ 𝐾 + 1 <

𝐾

𝑋
+ 𝐾 + 1

≤ 𝑝𝐵

𝐾 (1 − 𝜇) + 𝐾 + 1 ≤ 2

1 − 𝜇 + 𝐾 + 1 < 𝐾 + 4 .

The second last inequality above uses 𝑝𝐵 ≤ 𝐾
𝛿−1
+ 1 ≤ 2𝐾 .

Therefore, when 𝐾 gets large enough, we obtain the following

lower bound on the competitive ratio:

lim

𝐾→∞
𝑇

𝑇opt
≥ lim

𝐾→∞

(
𝐾−𝛿

1−𝜇
1

𝛿−1
− 2

𝐾

+ 1

𝐾

− 1

) (
1

1

𝛿−1
+ 1

𝐾

+ 1

)
+ 𝛿𝐾

𝐾 + 4

= lim

𝐾→∞

(
𝐾

(𝛿−1) (1−𝜇) − 1

)
(𝛿 − 1 + 1) + 𝛿𝐾

𝐾

=
𝛿

(𝛿 − 1) (1 − 𝜇) + 𝛿 > 4.73 . □

4.4.5 General Model.

Theorem 8. Algorithm 1 with 𝜇 ≈ 0.211 is not better than 5.25-

competitive for the general model.

Proof. We can use the exact same instance as for the Amdahl

model (Section 4.4.4), but with 𝜇 ≈ 0.211 and 𝛿 =
1−2𝜇

𝜇 (1−𝜇) ≈ 3.47.

Indeed, all the derivations still hold, including the condition 5𝛿 −
2𝛿2 − 2 ≤ 0. We get lim𝐾→∞

𝑇
𝑇opt
≥ 𝛿
(𝛿−1) (1−𝜇) + 𝛿 > 5.25. □

5 A LOWER BOUND OF ANY DETERMINISTIC
ONLINE ALGORITHM FOR ARBITRARY
SPEEDUP MODEL

So far, we have focused on the general speedup model of Equa-

tion (1) and its special instances. In this section, we show that the



ICPP ’22, August 29-September 1, 2022, Bordeaux, France Anne Benoit, Lucas Perotin, Yves Robert, and Hongyang Sun

competitive ratio of any deterministic online algorithm (including

ours) can be unbounded under an arbitrary speedup model
3
.

Theorem 9. Any deterministic online algorithm is at leastΩ(ln(𝐷))-
competitive for scheduling moldable task graphs under an arbitrary

speedup model, where𝐷 denotes the number of tasks along the longest

(critical) path of the graph.

Proof. We fix an arbitrary integer ℓ > 1 and set 𝐾 = 2
ℓ
. The

instance consists of 𝑛 = 2
𝐾 − 1 independent linear task chains

organized in groups. Specifically, for any 𝑖 ∈ [1, 𝐾], group 𝑖 contains
2
𝐾−𝑖

linear chains, each with exactly 𝑖 tasks. Thus, the number of

tasks along the longest path of the graph is given by𝐷 = 𝐾 . Figure 3

shows such an instance for ℓ = 2, 𝐾 = 4 and 𝑛 = 15. All tasks in the

graph are identical, with an execution time function 𝑡 (𝑝) = 1

lg(𝑝)+1 .
Here, lg denotes logarithm to the base 2. We set the total number

of processors to be 𝑃 = 𝐾 × 2
𝐾−1

.

We show that the optimal offline algorithm completes the above

instance with a makespan at most 1, whereas any deterministic

online algorithmmay produce a makespan at least ln(𝐾)− ln(ℓ)− 1

ℓ ,

thus showing the result.

First, the optimal offline algorithm could schedule the tasks as

follows: for any group 𝑖 ∈ [1, 𝐾], it allocates 2
𝑖−1

processors to each

linear chain in the group. The total number of required processors is

then

∑𝐾
𝑖=1

2
𝑖−1 × 2

𝐾−𝑖 = 𝐾 × 2
𝐾−1 = 𝑃 . Thus, all linear chains could

be executed in parallel. Furthermore, they will all be completed

at time 1, since each linear chain in group 𝑖 has 𝑖 tasks, and each

task has an execution time 𝑡 (2𝑖−1) = 1

lg(2𝑖−1)+1 = 1

𝑖 . Figure 4(a)

illustrates the schedule for this instance with ℓ = 2.

Now, we establish a lower bound on the makespan of any deter-

ministic online algorithm. For any 𝑖 ∈ [1, 𝐾 − 1], let 𝐿𝑖 denote the
set of linear chains in all groups 𝑗 ≤ 𝑖 , and let 𝐿′

𝑖
denote the set of

3
Here, an arbitrary speedup model means that the execution time 𝑡 (𝑝) of a task can

take any arbitrary function of its processor allocation 𝑝 .

15(1) 15(2) 15(3) 15(4)

14(1) 14(2) 14(3)

13(1) 13(2) 13(3)

11(1) 11(2) 12(1) 12(2)

9(1) 9(2) 10(1) 10(2)

5 6 7 8

1 2 3 4

Group 1

Group 2

Group 3

Group 4

Figure 3: A lower bound instance in Theorem 9 with ℓ = 2,
𝐾 = 4, and 𝑛 = 15 linear task chains. Each circle represents a
task and the number inside each circle indicates the ID of the
linear chain the task is in (and the number in the parenthesis
indicates the task’s position in that linear chain).

linear chains in all groups 𝑗 > 𝑖 . Let us define 𝑡𝑖 to be the first time

a linear chain in 𝐿′
𝑖
completes 𝑖 tasks. We further define 𝑡0 = 0 and

let 𝑡𝐾 denote the makespan of the online algorithm.

Lemma 10. Any deterministic online algorithm could produce a

schedule that satisfies: 𝑡𝑖 − 𝑡𝑖−1 ≥ 1

ℓ+𝑖 , ∀𝑖 ∈ [1, 𝐾].

Proof. Since all tasks are identical, an online algorithm cannot

distinguish the linear chains. Thus, for any 𝑖 ∈ [1, 𝐾], an adversary

could make all linear chains that first complete 𝑖 tasks by the online

algorithm be chains from 𝐿𝑖 . Therefore, at time 𝑡𝑖 , all linear chains

containing exactly 𝑖 tasks (i.e., the ones from group 𝑖) are already

completed, and at time 𝑡𝑖−1, no linear chain has started its 𝑖-th task

by definition (this also holds for 𝑡0 and 𝑡𝐾 ). Hence, all tasks in the 𝑖-

th position of the linear chains in group 𝑖 must be entirely processed

between 𝑡𝑖 and 𝑡𝑖−1, and the number of such tasks is 2
𝐾−𝑖

.

For the sake of contradiction, suppose we have 𝑡𝑖 − 𝑡𝑖−1 <
1

ℓ+𝑖 . Thus, the execution time of these tasks must satisfy 𝑡 (𝑝) =
1

lg(𝑝)+1 ≤
1

ℓ+𝑖 , hence their processor allocation must be at least

𝑝 ≥ 2
ℓ+𝑖−1 = 𝐾 × 2

𝑖−1
. As the area of the task 𝑎(𝑝) = 𝑝 × 𝑡 (𝑝) =

𝑝

lg(𝑝)+1 is increasing with the number of processors, the total area

of all tasks that needs to be processed between 𝑡𝑖 and 𝑡𝑖−1 is at least

2
𝐾−𝑖 × 𝑎(𝐾 × 2

𝑖−1) = 2
𝐾−𝑖×𝐾×2

𝑖−1

lg(𝐾×2
𝑖−1)+1 = 𝐾×2

𝐾−1

ℓ+𝑖 = 𝑃
ℓ+𝑖 . Since we have

𝑃 processors, the total time required to process this area is at least

1

ℓ+𝑖 , which contradicts 𝑡𝑖 − 𝑡𝑖−1 < 1

ℓ+𝑖 . □

One strategy to cope with the worst-case scenario above is to

allocate the same number of processors to each linear chain (or

more precisely allocate one more processor to some linear chains

in order to utilize all the processors). Figure 4(b) illustrates this

strategy for the same instance with ℓ = 2.

Finally, we can use the result of Lemma 10 to lower bound the

makespan of an online algorithm, which is given by 𝑡𝐾 =
∑𝐾
𝑖=1
(𝑡𝑖 −

𝑡𝑖−1). Since for all 𝑗 , ln( 𝑗) + 𝛾 <
∑𝑗

𝑖=1

1

𝑖 < ln( 𝑗) + 𝛾 + 1

𝑗 where 𝛾 is

the Euler constant, we obtain:

𝑡𝐾 ≥
𝐾∑︁
𝑖=1

1

ℓ + 𝑖 >

𝐾∑︁
𝑖=ℓ+1

1

𝑖
=

𝐾∑︁
𝑖=1

1

𝑖
−

ℓ∑︁
𝑖=1

1

𝑖

> (ln(𝐾) + 𝛾 ) −
(
ln(ℓ) + 𝛾 + 1

ℓ

)
= ln(𝐾) − ln(ℓ) − 1

ℓ
. □

6 CONCLUSION AND FUTUREWORK
In this paper, we have studied the online scheduling of moldable

task graphs to minimize makespan with tasks obeying different

speedup models. To the best of our knowledge, no competitive ratio

was known under this setting, except for the roofline model [9].

Owing to the design of a new online algorithm, we have extended

the result and derived competitive ratios for several other speedup

models, including the communication model, Amdahl’s model and a

general combination. For each of these models, we have also derived

a lower bound on the competitiveness of our online algorithm that

is very close to the upper bound. Finally, we have considered the

arbitrary speedup model and established a lower bound for any

deterministic online algorithm. Altogether, these new results lay

the foundations for further study of this important but difficult

scheduling problem.
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Figure 4: For the lower bound instance of Figure 3: (a) An offline schedule with a makespan of 1; (b) An online algorithm’s
schedule, allocating (approximately) the same number of processors to all linear chains and producing a makespan of 𝑡4 ≈ 1.23.

For future work, we will aim at further improving the algo-

rithm and the competitive ratios obtained in this work under the

considered speedup models, as well as extending them to other

common speedup models. We also plan to extend our algorithm

and analysis to other online scheduling settings (e.g., for indepen-

dent tasks released over time, and for special task graphs such as

fork-join graphs or trees). Finally, we will expand this study to a

more practical side by experimentally evaluating the performance

of our algorithm using realistic workflows. We anticipate that our

algorithm will perform much better practically than that predicted

by the worst-case competitive ratios.
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