
1

Resilient Scheduling of Moldable Parallel Jobs
to Cope with Silent Errors

Web Supplementary Material
Anne Benoit, Valentin Le Fèvre, Lucas Perotin, Padma Raghavan, Yves Robert, Hongyang Sun

Abstract—We study the resilient scheduling of moldable parallel jobs on high-performance computing (HPC) platforms. Moldable jobs
allow for choosing a processor allocation before execution, and their execution time obeys various speedup models. The objective is to
minimize the overall completion time or the makespan, when jobs can fail due to silent errors and hence may need to be re-executed
after each failure until successful completion. Our work generalizes the classical scheduling framework for failure-free jobs. To cope
with silent errors, we introduce two resilient scheduling algorithms, LPA-LIST and BATCH-LIST, both of which use the LIST strategy to
schedule the jobs. Without knowing a priori how many times each job will fail, LPA-LIST relies on a local strategy to allocate processors
to the jobs, while BATCH-LIST schedules the jobs in batches and allows only a restricted number of failures per job in each batch. We
prove approximation ratios for the two algorithms under several prominent speedup models (e.g., roofline, communication, Amdahl,
power, monotonic, and a mix model). An extensive set of simulations is conducted to evaluate different variants of the two algorithms,
and the results show that they consistently outperform some baseline heuristics. Overall, our best algorithm is within a factor of 1.6 of a
lower bound on average over the entire set of experiments, and within a factor of 4.2 in the worst case.

Index Terms—Resilient scheduling, parallel jobs, moldable jobs, speedup model, failure scenario, transient errors, silent errors, list
schedule, batch schedule, approximation ratios.

F

1 PROOF OF LEMMA 1
Lemma 1. Given a processor allocation decision p for the jobs,
the makespan of a LIST schedule (that determines the starting
times s) under any failure scenario f satisfies:

TLIST(f ,p, s)≤
{

2A(f ,p)
P , if pmin ≥ P

2
A(f ,p)
P−pmin

+ (P−2pmin)·tmax(f ,p)
P−pmin

, if pmin <
P
2

where pmin ≥ 1 denotes the minimum number of utilized
processors at any time during the schedule.

Proof. We first observe that LIST only allocates and de-
allocates processors upon job completions. Hence, the entire
schedule can be divided into a set of consecutive and non-
overlapping intervals I = {I1, I2, . . . , Iv}, where jobs start
(or complete) at the beginning (or end) of an interval, and v
denotes the total number of intervals. Let |I`| denote the
length of interval I`. The makespan under a failure sce-
nario f can then be expressed as TLIST(f ,p, s) =

∑v
`=1 |I`|.

Let p(I`) denote the number of utilized processors dur-
ing an interval I`. Since the minimum number of utilized
processors during the schedule is pmin, we have p(I`) ≥
pmin for all I` ∈ I . We consider the following two cases:

Case 1: pmin ≥ P
2 . In this case, we have p(I`) ≥ pmin ≥ P

2
for all I` ∈ I . Based on the definition of total cumulative

• A preliminary version of this work has been published in the proceedings
of the IEEE Cluster’20 conference. Anne Benoit, Lucas Perotin and Yves
Robert are with the LIP laboratory at Ecole Normale Supérieure de Lyon,
France. Yves Robert is also with University of Tennessee Knoxville,
USA. Valentin Le Fèvre is with Barcelona Supercomputing Center, Spain.
Padma Raghavan is with Vanderbilt University, USA. Hongyang Sun is
with University of Kansas, USA. Contact: anne.benoit@ens-lyon.fr

area, we have A(f ,p) =
∑v

`=1 |I`| · p(I`) ≥ P
2 ·TLIST(f ,p, s).

This implies that:

TLIST(f ,p, s) ≤ 2A(f ,p)

P
.

Case 2: pmin < P
2 . Let Imin denote the last interval in

the schedule with processor utilization pmin, and consider
a job Jj that is running during interval Imin. Necessarily,
we have pj ≤ pmin. We now divide the set I of intervals
into two disjoint subsets I1 and I2, where I1 contains the
intervals in which job Jj is running (including all of its
execution attempts), and I2 = I\I1. Let T1 =

∑
I∈I1 |I| and

T2 =
∑

I∈I2 |I| denote the total lengths of all intervals in I1
and I2, respectively. Based on the definition of maximum
cumulative execution time, we have T1 =

∑fj+1
i=1 tj(p

(i)
j) ≤

tmax(f ,p).
For any interval I ∈ I2 that lies between the i-th

execution attempt and the (i+ 1)-th execution attempt of Jj
in the schedule, where 0 ≤ i ≤ fj , the processor utilization
of I must satisfy p(I) > P − pmin, since otherwise there are
at least pmin ≥ pj available processors during interval I and
hence the i+ 1-st execution attempt of Jj would have been
scheduled at the beginning of I .

For any interval I ∈ I2 that lies after the (fj +1)-th (last)
execution attempt of Jj , there must be a job Jk running
during I and that was not running during Imin (meaning
no attempt of executing Jk was made during Imin). This
is because p(I) > pmin, hence the job configuration must
differ between I and Imin. The processor utilization during
interval I must also satisfy p(I) > P −pmin, since otherwise
the processor allocation of Jk will be pk ≤ p(I) ≤ P −

2

pmin, implying that the first execution attempt of Jk after
interval Imin would have been scheduled at the beginning
of Imin.

Thus, for all I ∈ I2, we have p(I) > P − pmin. Based on
the definition of total cumulative area, we have A(f ,p) ≥
(P − pmin) · T2 + pmin · T1. The makespan of LIST under
failure scenario f can then be derived as:

TLIST(f ,p, s) = T1 + T2

≤ T1 +
A(f ,p)− pmin · T1

P − pmin

=
A(f ,p)

P − pmin
+

(P − 2pmin) · T1
P − pmin

≤ A(f ,p)

P − pmin
+

(P − 2pmin) · tmax(f ,p)

P − pmin
.

2 PROOF OF LEMMA 2

Lemma 2. Given any failure scenario f , if the processor allocation
decision p satisfies:

A(f ,p) ≤ α ·A(f ,p∗) ,

tmax(f ,p) ≤ β · tmax(f ,p∗) ,

where p∗ denotes the processor allocation of an optimal schedule,
then a LIST schedule using processor allocation p is r(α, β)-
approximation, where

r(α, β) =

{
2α, if α ≥ β
P

P−1α+ P−2
P−1β, if α < β

(1)

Proof. Based on Lemma 1, when pmin ≥ P
2 , we have:

TLIST(f ,p, s) ≤ 2A(f ,p)

P
≤ 2α ·A(f ,p∗)

P
≤ 2α·TOPT(f ,p∗, s∗).

The last inequality above is due to the makespan lower
bound.

When pmin <
P
2 , we can derive:

TLIST(f ,p, s) ≤ A(f ,p)

P − pmin
+

(P − 2pmin) · tmax(f ,p)

P − pmin

≤ α ·A(f ,p∗)
P − pmin

+
β(P − 2pmin) · tmax(f ,p∗)

P − pmin

≤ (α+ β)P − 2βpmin

P − pmin
· TOPT(f ,p∗, s∗)

=
(
α+ β + (α− β)

pmin

P − pmin

)
· TOPT(f ,p∗, s∗).

We have 1
P−1 ≤

pmin

P−pmin
< 1, since 1 ≤ pmin < P

2 .
Therefore, if α ≥ β, we get:

TLIST(f ,p, s) ≤ 2α · TOPT(f ,p∗, s∗),

and if α < β, we get:

TLIST(f ,p, s) ≤
(P

P − 1
α+

P − 2

P − 1
β
)
· TOPT(f ,p∗, s∗).

Note that, in this case, P
P−1α+ P−2

P−1β > 2α.

3 PROOF OF THEOREM 2

Theorem 2. LPA-LIST is a 3-approximation for jobs with the
communication model.

Proof. In the communication model tj(p) = wj/p + (p −
1)cj , the minimum execution time tmin of a job Jj depends
on the values of wj and cj . Let pmin denote the processor
allocation that achieves tmin, and based on the model, we
get that pmin ≈

√
wj

cj
. The minimum area of the job is amin =

wj , achieved by allocating one processor.

We consider a processor allocation of pj ≈ 1
2

√
wj

cj
for the

job, and show that it achieves the bounds α = 3
2 and β = 3

2 ,
i.e., aj(pj) ≤ 3

2amin and tj(pj) ≤ 3
2 tmin. Hence, based on

Lemma 2, we get an approximation ratio of 2α = 3. We
discuss several cases.

Case 1: If 1
2

√
wj

cj
> P , we set pj = P .

Note that we also have pmin = P in this case, since
tj(p) = wj/p + (p − 1)cj is a strictly decreasing function
of p in [1, P]. Thus, we have tj(pj) =

wj

P +(P −1)cj = tmin.
The area of the job satisfies aj(pj) = wj + P (P − 1)cj ≤
wj + P 2cj < wj + 1

4wj = 5
4amin.

Case 2: If 1
2

√
wj

cj
< 3

2 , then the minimum of tj(p) is

achieved at p∗ =
√

wj

cj
∈ (0, 3). We consider three subcases

depending on the values of p∗ and/or pmin.
Case 2.1: If pmin = 1, we set pj = 1.
In this case, we must have p∗ ∈ (0, 2]. Therefore, tj(pj) =

tmin and aj(pj) = amin.
Case 2.2: If p∗ ∈ (1, 2] and pmin = 2, we set pj = 1.

In this case, since p∗ =
√

wj

cj
≤ 2, we have cj ≥ 1

4wj . The
area of the job using pj = 1 is aj(pj) = amin. The minimum
execution time of the job is tmin =

wj

2 + cj ≥ 3
4wj , and the

execution time using pj = 1 satisfies tj(pj) = wj ≤ 4
3 tmin.

Case 2.3: If p∗ ∈ (2, 3), we set pj = 2.

In this case, since p∗ =
√

wj

cj
> 2, we have cj < 1

4wj .
Also, we must have pmin = 2 or 3. The area of the job using
pj = 2 is aj(pj) = wj + pj(pj − 1)cj = wj + 2cj <

3
2wj =

3
2amin. The minimum execution time of the job satisfies
tmin =

wj

pmin
+(pmin−1)cj ≥ wj

3 +cj , and the execution time
using pj = 2 satisfies tj(pj) =

wj

2 +cj ≤ 3
2 (

wj

3 +cj) ≤ 3
2 tmin.

Case 3: If 3
2 ≤ 1

2

√
wj

cj
≤ P , then we have cj ≤ 1

9wj .

The minimum of tj(p) is achieved at p∗ =
√

wj

cj
. Thus, the

minimum execution time of the job satisfies tmin ≥ tj(p∗) =
2
√
wjcj − cj .

Let 1
2

√
wj

cj
= q + r, where q denotes the largest integer

such that q ≤ 1
2

√
wj

cj
and r = 1

2

√
wj

cj
− q denotes the

remaining fraction. We set pj by rounding 1
2

√
wj

cj
as follows:

pj =

{
q, if r ≤ 0.2
q + 1, if r > 0.2

(2)

and we consider two subcases depending on the value of pj .

Case 3.1: If pj = q, we have 1
2

√
wj

cj
− 0.2 ≤ pj ≤ 1

2

√
wj

cj
.

The area of the job using pj is aj(pj) = wj + pj(pj − 1)cj ≤

3

wj + p2jcj ≤ 5
4wj = 5

4amin. The execution time of the job
using pj satisfies:

tj(pj) =
wj

pj
+ (pj − 1)cj

≤ wj

1
2

√
wj

cj
− 0.2

+
(1

2

√
wj

cj
− 1
)
cj

≤ 3

2

(
2
√
wjcj − cj

)
≤ 3

2
tmin .

The second last inequality above is shown below:

wj

1
2

√
wj

cj
− 0.2

+
(1

2

√
wj

cj
− 1
)
cj ≤

3

2

(
2
√
wjcj − cj

)
⇐ wj

1
2

√
wj

cj
− 0.2

≤ 5

2

√
wjcj −

1

2
cj

⇐ wj ≤
(5

2

√
wjcj −

1

2
cj
)(1

2

√
wj

cj
− 0.2

)
⇐ 3

4

√
wjcj ≤

1

4
wj +

1

10
cj

⇐ 3

4

√
wjcj ≤

1

4
wj

⇐ cj ≤
1

9
wj

Case 3.2: If pj = q + 1, we have 1
2

√
wj

cj
≤ pj ≤ 1

2

√
wj

cj
+

0.8. The area of the job using pj satisfies:

aj(pj) = wj + pj(pj − 1)cj

≤ wj +
(1

2

√
wj

cj
+ 0.8

)(1

2

√
wj

cj
− 0.2

)
cj

= wj +
(wj

4cj
+

3

10

√
wj

cj
− 0.16

)
cj

≤ 5

4
wj +

3

10

√
wjcj

≤ 5

4
wj +

1

10
wj <

3

2
amin .

The second last inequality above is because of cj ≤ 1
9wj .

The execution time of the job using pj satisfies:

tj(pj) =
wj

pj
+ (pj − 1)cj

≤ wj

1
2

√
wj

cj

+
(1

2

√
wj

cj
+ 0.8− 1

)
cj

≤ 5

2

√
wjcj − 0.2cj

≤ 3

2

(
2
√
wjcj − cj

)
≤ 3

2
tmin .

The second last inequality above is shown below:

5

2

√
wjcj − 0.2cj ≤

3

2

(
2
√
wjcj − cj

)
⇐ 13

10
cj ≤

1

2

√
wjcj

⇐ cj ≤
(5

13

)2
wj

⇐ cj ≤
1

9
wj

Thus, in all cases, we have shown aj(pj) ≤ 3
2amin and

tj(pj) ≤ 3
2 tmin. This completes the proof of the theorem.

4 PROOF OF THEOREM 3
Theorem 3. The approximation ratio of LPA-LIST is at least 2.5
for jobs with the communication model.

Proof. We consider n = 2K identical jobs to be processed on
P = 2K processors for someK > 2. Supposew = (2K+2)2

and c = 1 for all jobs and that the jobs do not fail. We will
show the following under these settings:

1) If p ≤ K + 1, α(p) ≤ β(p);
2) If p ≥ K + 2, α(p) ≥ β(p);
3) When K is large enough, r(α(p), β(p)) is decreasing

with p in [1,K+1] and increasing with p in [K+2, 2K];
4) When K is large enough, LPA-LIST will allocate p∗ ∈
{K + 1,K + 2} processors to each job;

5) When K approaches infinity, the approximation ratio
approaches 2.5.

First, t(p) = w
p + p − 1 decreases for p ∈ [1,

√
w]. As

√
w > P , we have tmin = t(P) = (2K+2)2

2K + 2K − 1 =
4K+3+ 2

K . This also shows that t(p) is (strictly) decreasing
with p, and so is β(p), while a(p) = w+ p(p− 1) is (strictly)
increasing with p, and so is α(p). This means there exists at
most one value p̄ that satisfies α(p̄) = β(p̄), and if it exists,
then p ≤ p̄ ⇔ α(p) ≤ β(p). We will show that such p̄ exists
and is in [K + 1,K + 2], which proves the first two points.

α(p̄) = β(p̄)⇔ a(p̄)

amin
=
t(p̄)

tmin
=
p̄t(p̄)

p̄tmin
=

a(p̄)

p̄tmin

⇔ p̄ =
amin

tmin

⇔ p̄ =
K(2K + 2)2

4K2 + 3K + 2

⇔ p̄ = K + 1 +
K2 +K − 2

4K2 + 3K + 2

The above shows p̄ ∈ [K + 1,K + 2]. Therefore, when
p ≥ K + 2, we have α(p) ≥ β(p), thus based on Lemma 2,
r(α(p), β(p)) = 2α(p), which is clearly increasing with p in
[K + 2, 2K + 1]. On the other hand, when p ≤ K + 1, we
have α(p) ≤ β(p), so r(α(p), β(p)) = P

P−1α(p)+ P−2
P−1β(p) ,

f(p). In the following, we will show that, when K is large
enough, f(p) is decreasing with p in [1,K+1], which proves
the third point.

f(p) =
P

P − 1

t(p)p

amin
+

P − 2

P − 1

t(p)

tmin

=
2K

2K − 1

(2K + 2)2 + p(p− 1)

(2K + 2)2

+
2K − 2

(2K − 1)tmin

(
(2K + 2)2

p
+ p− 1

)
,

f ′(p) =
2K(2p− 1)

(2K − 1)(2K + 2)2
+

2K − 2

(2K − 1)tmin

(
1− (2K + 2)2

p2

)
.

We can see that f ′(p) is clearly increasing with p, so f(p)
will be decreasing with p in [1,K + 1] if f ′(K + 1) < 0,
which is true when K is large enough as shown below.

f ′(K + 1) < 0⇔ (2K − 1)f ′(K + 1) < 0

⇔ 2K(2K + 1)

(2K + 2)2
+

2K − 2

4K + 3 + 2
K

<
(2K − 2)(2K + 2)2

(4K + 3 + 2
K)(K + 1)2

4

In the last inequality above, the left-hand side is equiva-
lent to 4K2

4K2 + 2K
4K whenK approaches infinity thus converges

to 1.5, whereas the right-hand side is equivalent to 8K3

4K3 thus
converges to 2. This means that, when K is large enough,
f ′(K + 1) < 0 and thus r(α(p), β(p)) is decreasing with p
in [1,K + 1]. All together, we can conclude that the smallest
ratio r(α(p), β(p)) is achieved with p∗ ∈ {K + 1,K + 2},
which proves the fourth point.

Given the results above, we can now estimate the
makespan of LPA-LIST. Since at least K + 1 processors
will be allocated to each job, no job may be processed in
parallel, and the execution time of each job will be at least
min (t(K + 2), t(K + 1)) = t(K + 2) = (2K+2)2

K+2 + K + 1.
Thus, the makespan of LPA-LIST satisfies:

T ≥ 2K

(
(2K + 2)2

K + 2
+K + 1

)
=

10K3 + 22K2 + 12K

K + 2
,

which is equivalent to 10K2 when K approaches infinity.
The optimal algorithm, on the other hand, would schedule
each job on a single processor, resulting in a makespan of
TOPT = (2K + 2)2, which is equivalent to 4K2 when K
approaches infinity. This shows that, for any ε > 0, T

TOPT
can

be larger than 2.5 − ε, and thus LPA-LIST is at least a 2.5-
approximation for jobs with the communication model.

5 PROOF OF THEOREM 5

Theorem 5. The approximation ratio of LPA-LIST is at least 3
for jobs with the Amdahl’s model.

Proof. We consider n = 2K+1 identical jobs to be processed
on P = 2K + 1 processors for some K > 2. Suppose w =
2K + 1 and d = 1 for all jobs and that the jobs do not
fail. Under these settings, we have tmin = 2 and amin =

2K + 2, thus α(p) = w+dp
amin

= 2K+1+p
2K+2 and β(p) =

w
p +d

tmin
=

2K+1+p
2p . Clearly, α(p) strictly increases with p while β(p)

strictly decreases with p. Further, there exists a unique p∗

that satisfies α(p∗) = β(p∗), as shown below:

α(p∗) = β(p∗)⇔ 2p∗(2K + 1 + p∗) = (2K + 2)(2K + 1 + p∗)

⇔ p∗ = K + 1

We will show that p∗ = K + 1 minimizes r(α(p), β(p)).
To that end, we first notice that, when p ≥ p∗, we have
α(p) ≥ β(p), so based on Lemma 2, r(α(p), β(p)) = 2α(p),
which is clearly increasing with p in [p∗, P]. Otherwise,
when p ≤ p∗, we have α(p) ≤ β(p), so r(α(p), β(p)) =
P

P−1α(p) + P−2
P−1β(p) , f(p). We will show that, for K > 2,

f(p) is decreasing with p in [1, p∗]. Altogether, these results
will show that p∗ minimizes r(α(p), β(p)), hence will be
chosen by the LPA-LIST algorithm.

Now, to show that f(p) is decreasing with p in [1, p∗], we
plug in P = 2K + 1 and obtain:

f(p) =
2K + 1

2K
· 2K + 1 + p

2K + 2
+

2K − 1

2K

(
1

2
+

2K + 1

2p

)
,

f ′(p) =
2K + 1

4K(K + 1)
− (2K − 1)(2K + 1)

4Kp2
.

We can see that f ′(p) is increasing with p, so f(p) will be
decreasing with p in [1, p∗] if f ′(p∗) < 0, which is true when
K > 2 as shown below.

f ′(p∗) =
2K + 1

4K(K + 1)
− (2K − 1)(2K + 1)

4K(K + 1)2

=
(2K + 1)(2−K)

4K(K + 1)2
< 0 .

Thus, LPA-LIST will allocate p∗ = K + 1 processors to
each job. Since there are P = 2K + 1 processors in total, all
jobs will be executed sequentially and the makespan will be
T = (2K + 1)

(
2K+1
K+1 + 1

)
= (2K+1)(3K+2)

K+1 .

However, the optimal algorithm would allocate one pro-
cessor to each job, resulting in a makespan of TOPT = 2K+2.
Thus, the approximation ratio is:

T

TOPT

=
(2K + 1)(3K + 2)

(K + 1)(2K + 2)

=
3K + 2

K + 1
− 3K + 2

(K + 1)(2K + 2)

= 3− 1

K + 1
− 3K + 2

(K + 1)(2K + 2)
.

When K is large enough, the above ratio can be larger
than 3− ε for any ε > 0. This shows that LPA-LIST is at least
a 3-approximation for jobs with the Amdahl’s model.

6 PROOF OF THEOREM 6

Theorem 6. LPA-LIST is a 6-approximation for jobs with the
mix model.

Proof. In the mix model with tj(p) = cj
(
w′j
p + d′j + (p− 1)

)
,

we provide a processor allocation pj for a job Jj and show
that it achieves the bounds α = β = 3, i.e., aj(pj) ≤ 3amin

and tj(pj) ≤ 3tmin. Hence, based on Lemma 2, we get an
approximation ratio of 2α = 6. We discuss two cases.

Case 1: w′j ≤ 1. In this case, both execution time and area
are increasing with the processor allocation, so allocating
pj = 1 processor gives the optimal time and area.

Case 2: w′j > 1. In this case, the execution time of a job Jj
is minimized at p =

√
w′j , which gives tmin ≥ cj(2

√
wj +

d′j − 1) > cj(
√
w′j + d′j). The minimum area of the job is

amin = cj(w
′
j + d′j), achieved by allocating one processor.

We consider two sub-cases depending on the value of p̄j .

Case 2.1: p̄j ≥
⌈

w′j+d′j√
w′j+d′j

⌉
. In this case, we consider a

processor allocation p′j =

⌈
w′j+d′j√
w′j+d′j

⌉
. With this choice, we

have p′jtmin ≥ amin, which implies
tj(p

′
j)

tmin
≤ aj(p

′
j)

amin
. We will

now upper bound the latter:

5

aj(p
′
j)

amin
=
w′j + p′j(d

′
j + p′j − 1)

w′j + d′j

< 3 ·
w′j +

(
w′j+d′j√
w′j+d′j

+ 1

)(
d′j +

w′j+d′j√
w′j+d′j

)
w′j + 2(w′j + d′j)

< 3 ·
w′j
(√

w′j + d′j
)2

w′j
(√

w′j + d′j
)2

+ 2(w′j + d′j)
(√

w′j + d′j
)2

+ 3 ·

(
w′j + d′j +

√
w′j + d′j

)(
d′j
(√

w′j + d′j
)

+ w′j + d′j
)

w′j
(√

w′j + d′j
)2

+ 2(w′j + d′j)
(√

w′j + d′j
)2

< 3 ·
w′j
(√

w′j + d′j
)2

+ 2(w′j + d′j)
(
w′j + 2d′j

√
w′j + d′j

2
)

w′j
(√

w′j + d′j
)2

+ 2
(
w′j + d′j

)(
w′j + 2d′j

√
w′j + d′j

2
)

= 3 .

The last inequality is obtained by applying
√
w′j < w′j and

1 <
√
w′j on top. Thus, we get

tj(p
′
j)

tmin
≤ aj(p

′
j)

amin
< 3.

Case 2.2: p̄j <

⌈
w′j+d′j√
w′j+d′j

⌉
. In this case, we consider a

processor allocation p′′j that minimizes tj(p), i.e., tj(p′′j) =
tmin. Since p′′j ≤ p̄j < p′j and aj(p) is increasing with p, we
have aj(p′′j) < aj(p

′
j) < 3amin, as shown in Case 2.1.

7 PROOF OF THEOREM 13
Theorem 13. The expected approximation ratio of BATCH-LIST
is ω(1), if all jobs have constant failure probabilities.

Before proving the theorem, we first compute the proba-
bility that BATCH-LIST produces exactly b batches.

Lemma 3. The probability that there are exactly b batches in a
BATCH-LIST schedule, where b ≥ 1, is given by:

Qb =
n∏

j=1

(1− q2b−1j)−
n∏

j=1

(1− q2b−1−1
j) .

Proof. For any b ≥ 0, let Rb denote the probability that
there are at most b batches in the schedule. According to
the BATCH-LIST algorithm, this happens when the number
of failures fj of any job Jj satisfies fj ≤ 2b − 2, for all
1 ≤ j ≤ n. Thus, we can compute Rb as follows:

Rb =
n∏

j=1

P(fj ≤ 2b − 2)

=
n∏

j=1

2b−2∑
k=0

P(fj = k)

=
n∏

j=1

2b−2∑
k=0

(1− qj)qkj

=
n∏

j=1

(1− q2b−1j) .

The probability that there are exactly b batches is there-
fore given by Qb = Rb −Rb−1, for any b ≥ 1.

(Proof of Theorem 13). To prove the claim, we show that,
for any given constant C > 0, there exists an instance such
that the expected approximation ratio of the BATCH-LIST
algorithm is strictly larger than C .

We construct the instance similarly to the one in the
proof of Theorem 9. Specifically, we consider a set J =
{J1, J2, . . . , JK} of K sequential jobs and at least as many
processors, so that each job can be executed on a dedicated
processor. For each job Jj , where 1 ≤ j ≤ K , its (sequential)
execution time is given by tj = 1

2j and its failure probabil-
ity qj is defined arbitrarily but upper-bounded by a constant
ρ < 1.

Consider a failure scenario f , in which each job Jj fails
until batch BK+j where it finally completes successfully.
Hence, the total number of execution attempts of job Jj is at
most 2K+j , and the time to complete the job is at most 2K+j ·
1
2j = 2K . The optimal makespan for this failure scenario
therefore satisfies TOPT(J , f) ≤ 2K .

Consider the BATCH-LIST algorithm under the same
failure scenario f . In each batchBK+j , where 1 ≤ j ≤ K−1,
job Jj+1 does not complete successfully and is thus executed
2K+j−1 times. The execution time of this batch is therefore
at least 2K+j−1 · 1

2(j+1) = 2K−2. The total time to com-
plete batches BK+1 to B2K−1, and hence the makespan of
BATCH-LIST, is at least TBATCH-LIST(J , f) ≥ (K − 1)2K−2 ≥
K−1
4 · TOPT(J , f).

Now, suppose the above failure scenario f happens with
probability Q(f) > 1

2 . Then, based on Equation (5) (see
paper), the expected approximation ratio of BATCH-LIST
satisfies:

E
[
TBATCH-LIST(J)

TOPT(J)

]
> Q(f) · TBATCH-LIST(J , f)

TOPT(J , f) >
K − 1

8
.

If we fix K > 8C + 1, we would get the results if
Q(f) > 1

2 is true, given any bounded probabilities for the
jobs. Intuitively, if a job has a very low failure probability,
the probability that it completes successfully in the required
batch is also very low. To resolve this issue, we use the
following technique: replace each job Jj with a cluster Cj
of nj jobs that are all identical to Jj , i.e., each with an
execution time tj and a failure probability qj . We also
scale up the number of processors accordingly so that each
job can still be executed on a dedicated processor. Then,
by choosing nj wisely, we can make sure that cluster Cj
completes successfully in batch BK+j with high probability,
and thus, collectively, the failure scenario f happens with
high probability. In particular, we choose nj as follows:

nj =

⌊
2K+j−1 ln(1/qj)

q2
K+j−1−1

j

⌋
.

Lemma 4. Under the above choice of nj and when K is large
enough, the probability that any cluster Cj , where 1 ≤ j ≤ K ,
takes exactly K + j batches to complete satisfies:

Sj ≥ 1− 2Kρ2
K − ρ2K−1

.

Proof. Based on Lemma 3, the probability that cluster Cj
takes exactly K + j batches to complete is given by:

Sj =
(

1− q2K+j−1
j

)nj −
(

1− q2K+j−1−1
j

)nj

. (3)

6

We now apply the following inequalities that hold for
any x ∈ [0, 1] and n ∈ N:

1− nx ≤ (1− x)n ≤ e−nx .
In particular, the first inequality comes from the Bernoulli’s
Inequality, and the second inequality can be derived from
the well-known inequality (1 + 1/x)x < e for any x ≥ 1.
Applying these two inequalities to Equation (3), we get:

Sj ≥
(

1− q2K+j

j

)nj −
(

1− q2K+j−1−1
j

)nj

≥ 1− njq2
K+j

j − e−njq
2K+j−1−1
j . (4)

We will now provide upper bounds for the second term

Xj = njq
2K+j

j and the third term Yj = e−njq
2K+j−1−1
j .

To bound the second term, we note that ln(x) ≤ x for
any x > 0 and nj ≤ 2K+j−1 ln(1/qj)

q2
K+j−1−1

j

. The second term then

satisfies:

Xj ≤
2K+j−1 ln(1/qj)

q2
K+j−1−1

j

q2
K+j

j

≤ 2K+j−1

q2
K+j−1

j

q2
K+j

j

= 2K+j−1q2
K+j−1

j

≤ 2K+j−1ρ2
K+j−1

.

Further, we can easily check that xρx is a decreasing func-
tion of x when x ln(ρ) < −1. Thus, when K is large
enough, and since j ≥ 1, we have 2K+j−1ρ2

K+j−1 ≤ 2Kρ2
K

.
Therefore, we can get the following upper bound for the
second term:

Xj ≤ 2Kρ2
K

. (5)

To bound the third term, we note that nj ≥
2K+j−1 ln(1/qj)

2·q2K+j−1−1
j

, so we can get:

Yj ≤ e
− 2K+j−1 ln(1/qj)

2·q2
K+j−1−1

j

q2
K+j−1−1

j

= e−2
K+j−2 ln(1/qj)

= q2
K+j−2

j

≤ ρ2K+j−2

≤ ρ2K−1

. (6)

The lemma is then proved by substituting Inequalities
(5) and (6) into Inequality (4).

Based on the result of Lemma 4, the probability of the
desired failure scenario f can be computed as:

Q(f) =
K∏
j=1

Sj

≥
(

1− 2Kρ2
K − ρ2K−1

)K
≥ 1−K2Kρ2

K −Kρ2K−1

.

The last inequality is again due to the Bernoulli’s Inequality.
For any constant ρ < 1, two terms above, namely,

K2Kρ2
K

and Kρ2
K−1

both tend to 0 as K → ∞. There-
fore, there must exist a K∗ such that Q(f) ≥ 1

2 . Setting
K = max(K∗, 8C + 1) proves the theorem.

8 EXPERIMENTAL RESULTS FOR ALL SPEEDUP
MODELS

Recall that the simulation code for all experiments is
publicly available at http://www.github.com/vlefevre/
job-scheduling. We present here results for all speedup
models.

6.1. Comparison of Algorithms and Priority Rules (for All
Speedup Models)
We first compare the performance of different algorithms
and study the impact of priority rules on their performance.

Figure 1 shows the normalized makespans for the 11
combinations of algorithms and priority rules under all
speedup models. For the MINAREA algorithm, priority rules
LA and LPT are identical, as the algorithm allocates one
processor to all jobs, so only the results of LPT are reported.
As we can see, MINAREA fares poorly in most cases, be-
cause it allocates one processor to each job in order to mini-
mize the area. This results in very long job execution (and re-
execution) times, which leads to extremely large makespan.
Moreover, allocating only one processor per job also results
in idle processors thus resource inefficiency whenever the
number of processors is higher than the number of jobs. The
MINTIME algorithm performs well for the roofline and mix
models, but as more overhead is introduced in the commu-
nication, Amdahl and power models, it continues to allocate
a large number of processors to the jobs in order to minimize
the execution time. This leads to a significant increase in
the total area and hence degrades the performance. On the
other hand, the LPA and BATCH algorithms maintain a good
balance between the execution time and area of a job, thus
they perform well for all speedup models in terms of both
expected performance (bars) and worst-case performance
(top endpoints of lines). Independently of the priority rules,
LPA performs the best for the roofline and communication
models while BATCH performs the best for the other models.

Figure 2 further shows the results of four combinations
of P and n with similar performance trends. We notice that
these two parameters do have an impact on the performance
of BATCH under the communication, Amdahl and mix
models, in particular at P = 1000 and n = 500. Indeed,
under these models and when P is significantly larger
than n, BATCH tends to reduce all jobs to similar length
and execute them at the same time, which gives the best
tradeoff between the area and maximum execution time. In
that case, the first batch, where all jobs are executed exactly
once, is done almost perfectly. As the makespan of the first
batch is dominant under λ = 10−7, the overall makespan
is closer to the lower bound. However, with P = 1000 and
n= 500, there are not enough processors to execute all jobs
at the same time. Thus, the performance of BATCH becomes
worse than that of LPA.

We also notice that the performance of MINTIME under
the two mix models becomes better when the number of
processors is large compared to the number of jobs (e.g.,
P = 10000, n = 100). Indeed, MINTIME is able to simul-
taneously minimize the execution time of all jobs in this
case without using up all the processors, thus achieving
near-optimal performance. Note this is not possible with
fewer processors, as minimizing the execution time alone

http://www.github.com/vlefevre/job-scheduling
http://www.github.com/vlefevre/job-scheduling

77

Fig. 1. Performance of different algorithms and priority rules under six speedup models with P = 7500, n=500 and �=10�7. The bars represent
expected performance and the top endpoints of the lines represent worst-case performance.

for each job will increase the total area, which also plays
an important role under such circumstance to have overall
good performance.

Comparing the three priority rules, no significant dif-
ference is observed. In general, LPT and LA give simi-
lar results, and slightly better results than HPA. This is
consistent with the results observed in our previous work
for scheduling rigid jobs. Given these results, we will only
consider the LPT priority rule in the subsequent evaluation.
We will also omit the MINAREA and MINTIME algorithms
for the models under which they perform badly, while
focusing on comparing the expected performance of the
remaining algorithms.

6.2. Impact of Different Parameters (for All Speedup
Models)

We now study the impact of different parameters on the
performance of the algorithms. We start from P = 7500,
n=500, and �=10�7, and vary one of these parameters in
each experiment.

Impact of Number of Processors (P): Figure 3 shows the
performance when the number of processors P is varied
between 1000 and 15000 for different speedup models. For
the roofline model, all three algorithms return the same
processor allocation, i.e., the maximum degree of paral-
lelism or the maximum number of processors, for each job.
Further, both LPA and MINTIME use the LIST strategy for
scheduling, so the two algorithms have exactly the same
performance. In contrast, BATCH does not perform as well,
because it schedules the jobs in batches, and thus needs to

Fig. 1. Performance of different algorithms and priority rules under six speedup models with P = 7500, n=500 and λ=10−7. The bars represent
expected performance and the top endpoints of the lines represent worst-case performance.

for each job will increase the total area, which also plays
an important role under such circumstance to have overall
good performance.

Comparing the three priority rules, no significant dif-
ference is observed. In general, LPT and LA give simi-
lar results, and slightly better results than HPA. This is
consistent with the results observed in our previous work
for scheduling rigid jobs. Given these results, we will only
consider the LPT priority rule in the subsequent evaluation.
We will also omit the MINAREA and MINTIME algorithms
for the models under which they perform badly, while
focusing on comparing the expected performance of the
remaining algorithms.

6.2. Impact of Different Parameters (for All Speedup
Models)

We now study the impact of different parameters on the
performance of the algorithms. We start from P = 7500,
n= 500, and λ= 10−7, and vary one of these parameters in
each experiment.

Impact of Number of Processors (P): Figure 3 shows the
performance when the number of processors P is varied
between 1000 and 15000 for different speedup models. For
the roofline model, all three algorithms return the same
processor allocation, i.e., the maximum degree of paral-
lelism or the maximum number of processors, for each job.
Further, both LPA and MINTIME use the LIST strategy for
scheduling, so the two algorithms have exactly the same
performance. In contrast, BATCH does not perform as well,
because it schedules the jobs in batches, and thus needs to

88

Fig. 2. Performance of different algorithms and priority rules under six speedup models with �= 10�7 and four other different combinations of P
and n. The bars represent expected performance and the top endpoints of the lines represent worst-case performance.

wait for every job in a batch to finish before starting the
next one, which causes delays. The initial up-and-down of
the normalized makespans is due to the upper limit (i.e.,
4000) we set on the maximum degree of parallelism: when
P ⌧ 4000, few processors are wasted so the resulting
schedules are very efficient; when P � 4000, most jobs
are fully parallelized and thus completed faster. For BATCH,
however, the proportion of idle processors at the end of
a batch increases with P , which explains the widening of
performance gap from the other two algorithms.

For the communication model, parallelizing a job be-
comes less efficient due to the extra communication over-
head, so BATCH starts to perform better than MINTIME

thanks to its smarter processor allocation strategy. Here,
both BATCH and LPA have similar processor allocations, so
the performance difference between the two algorithms is
still induced by the idle times at the end of the batches,
which are again increasing with the number of processors.

For the Amdahl’s model, the results look very different,
as BATCH now outperforms LPA despite the idle time at the
end of each batch. This is due to BATCH’s ability to better
balance the job execution times globally, which becomes
more important in this case. Moreover, the trend is not
affected by the number of processors.

For the two mix models, LPA and BATCH behave simi-
larly as in the Amdahl’s model, because they tend to allocate

Fig. 2. Performance of different algorithms and priority rules under six speedup models with λ= 10−7 and four other different combinations of P
and n. The bars represent expected performance and the top endpoints of the lines represent worst-case performance.

wait for every job in a batch to finish before starting the
next one, which causes delays. The initial up-and-down of
the normalized makespans is due to the upper limit (i.e.,
4000) we set on the maximum degree of parallelism: when
P � 4000, few processors are wasted so the resulting
schedules are very efficient; when P � 4000, most jobs
are fully parallelized and thus completed faster. For BATCH,
however, the proportion of idle processors at the end of
a batch increases with P , which explains the widening of
performance gap from the other two algorithms.

For the communication model, parallelizing a job be-
comes less efficient due to the extra communication over-
head, so BATCH starts to perform better than MINTIME

thanks to its smarter processor allocation strategy. Here,
both BATCH and LPA have similar processor allocations, so
the performance difference between the two algorithms is
still induced by the idle times at the end of the batches,
which are again increasing with the number of processors.

For the Amdahl’s model, the results look very different,
as BATCH now outperforms LPA despite the idle time at the
end of each batch. This is due to BATCH’s ability to better
balance the job execution times globally, which becomes
more important in this case. Moreover, the trend is not
affected by the number of processors.

For the two mix models, LPA and BATCH behave simi-
larly as in the Amdahl’s model, because they tend to allocate

9
9

5000 10000 15000
P

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

m
ak

es
pa

n
roofline

Lpa

Batch

MinTime

5000 10000 15000
P

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

m
ak

es
pa

n

communication
Lpa

Batch

MinTime

5000 10000 15000
P

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

m
ak

es
pa

n

amdahl
Lpa

Batch

5000 10000 15000
P

100

101

N
or

m
al

iz
ed

m
ak

es
pa

n

mix-low-com
Lpa

Batch

MinTime

5000 10000 15000
P

100

101

N
or

m
al

iz
ed

m
ak

es
pa

n

mix
Lpa

Batch

MinTime

5000 10000 15000
P

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

m
ak

es
pa

n

power

Lpa

Batch

MinArea

Fig. 3. Performance of the algorithms for different speedup models with n=500, �=10�7 and P 2 [1000, 15000].

a relatively small number of processors for each job, thus the
maximum degree of parallelism is not reached and the com-
munication cost is relatively small. We also notice that the
performance of MINTIME is getting better with increasing
number of processors, especially under higher communica-
tion cost. Indeed, contrary to the Amdahl’s model (where
the execution time of a job is minimized when we allocate
all the processors), the minimum execution time of a job is
achieved with a reasonable number of processors because of
the communication overhead. Thus, when P is high enough
such that all jobs can be processed in parallel while minimiz-
ing their execution times, MINTIME’s allocation becomes
close to optimal.

Unlike the previous models, the power model has a
relatively slow-increasing speedup curve, thus allocating
one processor to each job as in MINAREA is not a bad
choice. For the same reason, MINTIME that allocates all the
processors to a job performs badly, so it is not showed here.
The relative performance of LPA and BATCH is similar to
that in the Amdahl’s and mix models, again due to BATCH’s
coordinated processor allocation strategy. Because of the
jobs’ slow speedup curves, the benefit of allocating more
processors also gets smaller, thus having more processors
barely impacts the performance of the algorithms.

Impact of Number of Jobs (n): Figure 4 shows the per-
formance when the number of jobs n is varied between
100 and 1000. Again, we can see that BATCH performs the
worst in the roofline model, gets better than MINTIME in
the communication model, and has the best performance in
the other models. While the varying number of jobs has a
small impact on the performance of LPA, the performance
of BATCH improves as the number of jobs increases in the
roofline and communication models. Indeed, with a con-
stant number of processors P , having more jobs decreases
the number of available processors per job, thus reduces
the performance gap between scheduling algorithms due to

the idle processors between batches. For the other models,
the number of jobs has a small impact even for BATCH.
Overall, as the number of jobs increases, the trend in the
relative performance of the algorithms is consistent with the
previous results we have observed in Figure 3 when the
number of processors decreases.

Impact of Error Rate (�): Figure 5 shows the impact of the
error rate � when it is varied between 10�8 (corresponding
to 0.03 error per job on average) and 10�6 (corresponding
to 12 errors per job on average). Once again, the relative
performance of the three algorithms remains the same as
before under the respective speedup models. While the per-
formance of LPA is barely affected, which is not surprising
considering that its processor allocation is performed locally
and separately from job scheduling, the performance of
BATCH gets worse with increasing error rate � (and hence
the number of failures), which corroborates the theoretical
analysis. In particular, when the error rate is small, there
are very few failures and almost all jobs will complete in
one batch. In this case, the processor allocation procedure
of BATCH is very precise. With increased error rate, more
failures will occur and thus more batches will be introduced,
causing scheduling inefficiencies from both idle times be-
tween the batches and possible imprecision in the processor
allocations (especially with a large batch, since the actual
number of failures may deviate significantly from the an-
ticipated values). Finally, although the processor allocation
is also performed locally for MINTIME and MINAREA, the
effect of increasing � is similar to that of increasing P
(or the opposite to that of increasing n): when there are
more failures, we spend more time processing few large
jobs that fail a lot, meaning that after some time only very
few jobs are not finished yet. This effectively increases the
total number of processors for these jobs or reduces the total
number of jobs.

Fig. 3. Performance of the algorithms for different speedup models with n=500, λ=10−7 and P ∈ [1000, 15000].

a relatively small number of processors for each job, thus the
maximum degree of parallelism is not reached and the com-
munication cost is relatively small. We also notice that the
performance of MINTIME is getting better with increasing
number of processors, especially under higher communica-
tion cost. Indeed, contrary to the Amdahl’s model (where
the execution time of a job is minimized when we allocate
all the processors), the minimum execution time of a job is
achieved with a reasonable number of processors because of
the communication overhead. Thus, when P is high enough
such that all jobs can be processed in parallel while minimiz-
ing their execution times, MINTIME’s allocation becomes
close to optimal.

Unlike the previous models, the power model has a
relatively slow-increasing speedup curve, thus allocating
one processor to each job as in MINAREA is not a bad
choice. For the same reason, MINTIME that allocates all the
processors to a job performs badly, so it is not showed here.
The relative performance of LPA and BATCH is similar to
that in the Amdahl’s and mix models, again due to BATCH’s
coordinated processor allocation strategy. Because of the
jobs’ slow speedup curves, the benefit of allocating more
processors also gets smaller, thus having more processors
barely impacts the performance of the algorithms.

Impact of Number of Jobs (n): Figure 4 shows the per-
formance when the number of jobs n is varied between
100 and 1000. Again, we can see that BATCH performs the
worst in the roofline model, gets better than MINTIME in
the communication model, and has the best performance in
the other models. While the varying number of jobs has a
small impact on the performance of LPA, the performance
of BATCH improves as the number of jobs increases in the
roofline and communication models. Indeed, with a con-
stant number of processors P , having more jobs decreases
the number of available processors per job, thus reduces
the performance gap between scheduling algorithms due to

the idle processors between batches. For the other models,
the number of jobs has a small impact even for BATCH.
Overall, as the number of jobs increases, the trend in the
relative performance of the algorithms is consistent with the
previous results we have observed in Figure 3 when the
number of processors decreases.

Impact of Error Rate (λ): Figure 5 shows the impact of the
error rate λ when it is varied between 10−8 (corresponding
to 0.03 error per job on average) and 10−6 (corresponding
to 12 errors per job on average). Once again, the relative
performance of the three algorithms remains the same as
before under the respective speedup models. While the per-
formance of LPA is barely affected, which is not surprising
considering that its processor allocation is performed locally
and separately from job scheduling, the performance of
BATCH gets worse with increasing error rate λ (and hence
the number of failures), which corroborates the theoretical
analysis. In particular, when the error rate is small, there
are very few failures and almost all jobs will complete in
one batch. In this case, the processor allocation procedure
of BATCH is very precise. With increased error rate, more
failures will occur and thus more batches will be introduced,
causing scheduling inefficiencies from both idle times be-
tween the batches and possible imprecision in the processor
allocations (especially with a large batch, since the actual
number of failures may deviate significantly from the an-
ticipated values). Finally, although the processor allocation
is also performed locally for MINTIME and MINAREA, the
effect of increasing λ is similar to that of increasing P
(or the opposite to that of increasing n): when there are
more failures, we spend more time processing few large
jobs that fail a lot, meaning that after some time only very
few jobs are not finished yet. This effectively increases the
total number of processors for these jobs or reduces the total
number of jobs.

10
10

100 300 500 750 1000
n

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

m
ak

es
pa

n

roofline
Lpa

Batch

MinTime

100 300 500 750 1000
n

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

m
ak

es
pa

n

communication
Lpa

Batch

MinTime

100 300 500 750 1000
n

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

m
ak

es
pa

n

amdahl
Lpa

Batch

100 300 500 750 1000
n

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

m
ak

es
pa

n

mix-low-com
Lpa

Batch

MinTime

100 300 500 750 1000
n

1.0

1.5

2.0

2.5

3.0

3.5
N

or
m

al
iz

ed
m

ak
es

pa
n

mix
Lpa

Batch

MinTime

100 300 500 750 1000
n

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

m
ak

es
pa

n

power
Lpa

Batch

MinArea

Fig. 4. Performance of the algorithms for different speedup models with P =7500, �=10�7 and n 2 [100, 1000].

10�8 10�7 10�6

�

1

2

3

N
or

m
al

iz
ed

m
ak

es
pa

n

roofline
Lpa

Batch

MinTime

10�8 10�7 10�6

�

1

2

3

N
or

m
al

iz
ed

m
ak

es
pa

n

communication
Lpa

Batch

MinTime

10�8 10�7 10�6

�

1

2

3

N
or

m
al

iz
ed

m
ak

es
pa

n

amdahl
Lpa

Batch

10�8 10�7 10�6

�

1

2

3

N
or

m
al

iz
ed

m
ak

es
pa

n

mix-low-com
Lpa

Batch

MinTime

10�8 10�7 10�6

�

1

2

3

N
or

m
al

iz
ed

m
ak

es
pa

n

mix
Lpa

Batch

MinTime

10�8 10�7 10�6

�

1

2

3

N
or

m
al

iz
ed

m
ak

es
pa

n

power
Lpa

Batch

MinArea

Fig. 5. Performance of the algorithms for different speedup models with P =7500, n=500 and �2 [10�8, 10�6].

Fig. 4. Performance of the algorithms for different speedup models with P =7500, λ=10−7 and n ∈ [100, 1000].

10

100 300 500 750 1000
n

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

m
ak

es
pa

n

roofline
Lpa

Batch

MinTime

100 300 500 750 1000
n

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

m
ak

es
pa

n

communication
Lpa

Batch

MinTime

100 300 500 750 1000
n

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

m
ak

es
pa

n

amdahl
Lpa

Batch

100 300 500 750 1000
n

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

m
ak

es
pa

n

mix-low-com
Lpa

Batch

MinTime

100 300 500 750 1000
n

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

m
ak

es
pa

n

mix
Lpa

Batch

MinTime

100 300 500 750 1000
n

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

m
ak

es
pa

n

power
Lpa

Batch

MinArea

Fig. 4. Performance of the algorithms for different speedup models with P =7500, �=10�7 and n 2 [100, 1000].

10�8 10�7 10�6

�

1

2

3

N
or

m
al

iz
ed

m
ak

es
pa

n

roofline
Lpa

Batch

MinTime

10�8 10�7 10�6

�

1

2

3

N
or

m
al

iz
ed

m
ak

es
pa

n

communication
Lpa

Batch

MinTime

10�8 10�7 10�6

�

1

2

3

N
or

m
al

iz
ed

m
ak

es
pa

n

amdahl
Lpa

Batch

10�8 10�7 10�6

�

1

2

3

N
or

m
al

iz
ed

m
ak

es
pa

n

mix-low-com
Lpa

Batch

MinTime

10�8 10�7 10�6

�

1

2

3

N
or

m
al

iz
ed

m
ak

es
pa

n

mix
Lpa

Batch

MinTime

10�8 10�7 10�6

�

1

2

3

N
or

m
al

iz
ed

m
ak

es
pa

n

power
Lpa

Batch

MinArea

Fig. 5. Performance of the algorithms for different speedup models with P =7500, n=500 and �2 [10�8, 10�6].
Fig. 5. Performance of the algorithms for different speedup models with P =7500, n=500 and λ∈ [10−8, 10−6].

	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 13
	Experimental Results for All Speedup Models

