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Abstract—We study the resilient scheduling of moldable parallel jobs on high-performance computing (HPC) platforms. Moldable jobs

allow for choosing a processor allocation before execution, and their execution time obeys various speedup models. The objective is to

minimize the overall completion time or the makespan, when jobs can fail due to silent errors and hence may need to be re-executed

after each failure until successful completion. Our work generalizes the classical scheduling framework for failure-free jobs. To cope

with silent errors, we introduce two resilient scheduling algorithms, LPA-LISTand BATCH-LIST, both of which use the LISTstrategy to

schedule the jobs. Without knowing a priori how many times each job will fail, LPA-LIST relies on a local strategy to allocate processors to

the jobs, while BATCH-LIST schedules the jobs in batches and allows only a restricted number of failures per job in each batch. We prove

approximation ratios for the two algorithms under several prominent speedup models (e.g., roofline, communication, Amdahl, power,

monotonic, and a mix model). An extensive set of simulations is conducted to evaluate different variants of the two algorithms, and the

results show that they consistently outperform some baseline heuristics. Overall, our best algorithm is within a factor of 1.6 of a lower

bound on average over the entire set of experiments, and within a factor of 4.2 in the worst case.

Index Terms—Resilient scheduling, parallel jobs, moldable jobs, speedup model, failure scenario, transient errors, silent errors, list schedule,

batch schedule, approximation ratios

Ç

1 INTRODUCTION

SCHEDULING parallel jobs on high-performance computing
(HPC) platforms is crucial for improving the application

and system performance. In the scheduling literature, a
moldable job is a parallel job that can be executed on an arbi-
trary but fixed number of processors, with an execution
time depending on the number of processors on which it is
executed. More precisely, a moldable job allows a variable
set of resources for scheduling, but requires a fixed set of
resources to execute. Hence, the job scheduler must allocate
resources before starting the job. This corresponds to a vari-
able static resource allocation, as opposed to a fixed static
allocation (rigid jobs) and to a variable dynamic allocation
(malleable jobs) [12]. Moldable jobs can easily adapt to the
number of available resources, contrarily to rigid jobs, while
being easy to design and implement, contrarily to malleable
jobs. Thus, many computational kernels in scientific libraries

are provided as moldable jobs that can be deployed on a
wide range of processor numbers.

Because of the importance and wide availability of mold-
able jobs, scheduling algorithms for such jobs have been
extensively studied. An important objective is to minimize
the overall completion time, or makespan, for a set of jobs
that are either all known before execution (offline setting) or
released on-the-fly (online setting). Many prior works have
published approximation algorithms or inapproximability
results for both settings. These results notably depend upon
the speedup model of the jobs. Indeed, consider a job whose
execution time is tðpÞ with p processors (1 � p � P , and P
denotes the total number of processors on the platform). An
arbitrary speedup model allows tðpÞ to take any value, but
realistic models call for tðpÞ non-increasing with p: after all,
if tðpþ 1Þ > tðpÞ, then why use that extra processor? Sev-
eral speedup models have been introduced and analyzed,
including the roofline model, the communication model,
the Amdahl’s model, the power model, and the (more gen-
eral) monotonic model, where the area of the job p� tðpÞ is
non-decreasing with p. Section 2 presents a survey of some
important results for all these models.

In this paper, we revisit the problem of scheduling mold-
able jobs in a resilience framework. Unlike the classical
problem without job failures, we consider failure-prone jobs
that may need to be re-executed several times before suc-
cessful completion. This is primarily motivated by the threat
of silent errors (a.k.a. silent data corruptions or SDCs), which
strike large-scale high-performance computing (HPC) plat-
forms at a rate proportional to the number of floating-point
(CPU) operations and/or the memory footprint of the appli-
cations (bit flips) [32], [41]. When a silent error strikes, even
though any bit can be corrupted, the execution continues
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(unlike fail-stop errors), hence the error is transient, but it
may dramatically impact the result of a running application.
Coping with silent errors is a major challenge on today’s
HPC platforms [28] and it will become even more important
at exascale [17]. Fortunately, many silent errors can be accu-
rately detected by verifying the integrity of data using dedi-
cated, lightweight detectors (e.g., [7], [15], [38]). When
considering job failures caused by silent errors, we assume
the availability of ad-hoc detectors.

To model this resilient scheduling problem, we focus on
a general setting, where the aim is to schedule a set of mold-
able jobs subject to a failure scenario that specifies the num-
ber of failures for each job before successful completion.
The failure scenario is, however, not known a priori, but
only discovered as failed executions manifest themselves
when the jobs complete. Hence, the scheduling decisions
must be made dynamically on-the-fly: whenever an error has
been detected, the job must be re-executed. As a result, even
for the same set of jobs, different schedules may be pro-
duced, depending on the failure scenario that occurred in a
particular execution. Intuitively, the problem lies in
between an offline problem (where all the jobs are known
before the execution starts) and an online problem (where
the jobs are revealed on-the-fly). The goal is to minimize the
makespan for any set of jobs under any failure scenario.
Since the problem is NP-complete (as it generalizes the
NP-complete failure-free scheduling problem), we aim at
designing approximation algorithms that guarantee a make-
span within a provable factor of the optimal makespan,
independently of the jobs’ failure scenarios.

Extending the literature on scheduling moldable jobs in
the failure-free setting, this work lays the theoretical and
practical foundation for scheduling such jobs on failure-
prone platforms. Our key contributions are the design and
analysis of two resilient scheduling algorithms with new
approximation results for various speedup models. We fur-
ther show that the two algorithms achieve good practical
performance using an extensive set of simulations. The fol-
lowing summarizes our main results:

� We present a formal model for the problem of resil-
ient scheduling of moldable jobs on failure-prone
platforms. The model formulates both the worst-case
and average-case performance of an algorithm for
general speedup models and under arbitrary failure
scenarios.

� We design a resilient scheduling algorithm, called
LPA-LIST, that relies on a local processor allocation
strategy and list scheduling to achieve Oð1Þ-approxi-
mation for some prominent speedup models, includ-
ing the roofline model, the communication model,
the Amdahl’s model, and a mix model. For the com-
municationmodel, our approximation ratio improves
on that of the literature for failure-free jobs. We also
show that the algorithm isQðP 1=4Þ-approximation for
the power model and QðP 1=2Þ-approximation for the
general monotonic model. All of these results apply
to bothworst-case and average-case performance.

� We design another resilient scheduling algorithm,
called BATCH-LIST, which schedules the jobs in batches
using the list strategy, and each job is allowed only a

restricted number of failures per batch. We prove a
tight Qðlog 2fmaxÞ-approximation for the algorithm
under arbitrary speedup model in the worst case,
where fmax is the maximum number of failures of any
job in a failure scenario. We also prove an vð1Þ lower
bound on the average-case performance of the
algorithm.

� We conduct an extensive set of simulations to evalu-
ate and compare different variants of the two algo-
rithms. The results show that they consistently
outperform some baseline heuristics. In particular,
the first algorithm (LPA-LIST) performs better for the
roofline and communication models, while the sec-
ond algorithm (BATCH-LIST) performs better for the
other models. Overall, our best algorithm is within a
factor of 1.6 of a lower bound on average andwithin a
factor of 4.2 in theworst case for all speedupmodels.

The rest of this paper is organized as follows. Section 2
surveys related work. The formal model and problem state-
ment are presented in Section 3. In Section 4, we describe
the two main algorithms and analyze their performance,
providing several new approximation results. Section 5
presents an extensive set of simulation results and high-
lights the main findings. Finally, Section 6 concludes the
paper and discusses future directions.

2 RELATED WORK

We first review related work for offline scheduling of indepen-
dent moldable jobs in the failure-free setting. All jobs are
known a priori along with each job’s execution time tðpÞ as
a function of the processor allocation p.

With the communication model, assuming a communica-
tion overhead when using more than one processor, Havill
and Mao [16] presented a shortest execution time (SET) algo-
rithm, which selects a number of processors that minimizes
the job’s execution time (they use around

ffiffiffiffiffiffiffiffi
w=c

p
processors

when tðpÞ ¼ w=pþ ðp� 1Þc), and schedules each job as early
as possible. They showed that SET has an approximation ratio
around 4. In this paper, we present an improved algorithm
with an approximation ratio of 3. Furthermore, the algorithm
is able to handle job failures. Dutton and Mao [11] presented
an earliest completion time (ECT) algorithm, which allocates
processors for each job that minimizes its completion time
based on the current schedule. They proved tight approxi-
mation ratios of ECT for P � 4 processors and presented a
general lower bound of 2.3 for arbitrary P . Kell and Havill
[24] presented algorithms with improved approximation
ratios for P � 3 processors.

Themonotonicmodel assumes that the execution time is a
non-increasing function and the area (product of processor
allocation and execution time) is a non-decreasing function
of the processor allocation. Examples of this model include
Amdahl’s speedup [1], i.e., tðpÞ ¼ w

�
1�g
p þ g

�
with g 2 ½0; 1�,

and the power speedup tðpÞ ¼ w=pd [14], [35] with d 2 ½0; 1�.
Belkhale and Banerjee [2] presented a 2=ð1þ 1=P Þ-approxi-
mation algorithm by starting from a sequential LPT schedule
and then iteratively incrementing the processor allocations.
B»a _zewicz et al. [6] presented a 2-approximation algorithm
while relying on an optimal continuous schedule, in which
the processor allocation of a job may not be integral. Mouni�e
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et al. [30] presented a ð ffiffiffi
3
p þ �Þ-approximation algorithm

using a two-phase approach and dual approximation. Using
the same techniques, they later improved the approximation
ratio to 1:5þ � [31]. Jansen and Land [20] showed the same
1:5þ � ratio in special cases and proposed a PTAS.

In the arbitrary model, the execution time tðpÞ is an unre-
stricted function of the processor allocation p. This model can
be reduced to the monotonic model by scanning all possible
allocations and discarding those with both larger execution
time and area. Turek et al. [36] presented a 2-approximation
list-based algorithm and a 3-approximation shelf-based algo-
rithm. Ludwig and Tiwari [27] improved the 2-approxima-
tion result with lower runtime complexity. When each job
only admits a subset of all possible processor allocations, Jan-
sen [19] presented a ð1:5þ �Þ-approximation algorithm,
which is the strongest result possible for any polynomial-
time algorithm, since the problem does not admit an approxi-
mation ratio better than 1.5 unless P ¼ NP [23]. However,
when the number of processors is a constant or polynomially
bounded by the number of jobs, Jansen et al. [21] showed that
a PTAS exists.

We now review work on online scheduling, where jobs are
released one by one to the scheduler, and each released job
must be scheduled irrevocably before the next job is
revealed. As some algorithms discussed in the offline case
(e.g., [11], [16], [24]) make scheduling decisions indepen-
dently for each job, their results can be directly applied to
this online problem with the corresponding competitive
ratios. In contrast, other algorithms rely on information
about all jobs to make global scheduling decisions, so these
algorithms and their approximation results are not directly
applicable to the online problem. In this online problem
under the arbitrary speedup model, Ye et al. [39] presented a
technique to transform any r-bounded algorithm1 for rigid
jobs to a 4r-competitive algorithm for moldable jobs. Then,
relying on a 6.66-bounded algorithm for rigid jobs [18], [40],
they gave a 26.65-competitive algorithm for moldable jobs.
Both algorithms are based on building shelves. They also
provided an improved 16.74-competitive algorithm [39].

The problem studied in this paper can be considered as
semi-online, since all jobs are known to the scheduler offline
but their failure scenarios are revealed online. We point out
that the transformation technique by Ye et al. [39] does not
apply here, since it implicitly assumes the independence of
all jobs, whereas the different executions of the same job in
our problem (due to failures) have linear dependence.

Finally, we discuss the problem of scheduling moldable
jobs with dependencies modeled as directed acyclic graphs
(DAGs). Under the roofline model, Wang and Cheng [37]
showed that the earliest completion time (ECT) algorithm is a
ð3� 2=P Þ-approximation. Feldmann et al. [13] proposed an
online algorithm that maintains a system utilization at least a
for some a 2 ð0; 1�. By choosing a carefully, they showed that
the algorithm achieves 2.618-competitiveness, even when the
job execution times and the DAG structure are unknown.
Under the monotonic model, Belkhale and Banerjee [3]

presented a 2.618-approximation algorithm while relying on
the availability of an optimal processor allocation strategy to
minimize the maximum of critical path length and total area.
When assuming that the area of a job is a concave function of
the number of processors, Jensen and Zhang [22] proposed a
3.29-approximation algorithm via a linear programming for-
mulation. Chen and Chu [8] improved the ratio to around
2.95 by further assuming that the execution time of a job is
strictly decreasing in the number of allocated processors.

For the problem studied in this paper, the jobs can be
considered to form multiple linear chains, where each chain
represents a job and the number of nodes in a chain repre-
sents the number of executions for the job. However, the
failure scenario (thus the complete graph) is not known a
priori, which prevents the above algorithms (except the
ones in [13], [37]) from being directly applicable, since they
all rely on knowing the complete graph in advance.

3 MODELS

In this section, we formally describe the models, and pres-
ent the resilient scheduling problem.

3.1 Job and Speedup Models

We consider a set J ¼ fJ1; J2; . . . ; Jng of n parallel jobs to be
executed on a platform consisting of P identical processors.
All jobs are released at the same time, corresponding to the
batch scheduling scenario in an HPC environment. We
focus on moldable jobs, which can be executed using any
number of processors at launch time. The number of pro-
cessors allocated cannot be changed once a job has started
executing. For each job Jj 2 J , tjðpjÞ denotes its execution
time when allocated pj 2 f1; 2; . . . ; Pg processors,2 and the
area of the job is defined as ajðpjÞ ¼ pj � tjðpjÞ.

Let wj denote the total work of job Jj (or its sequential
execution time tjð1Þ). The parallel execution time tjðpjÞ of
the job when allocated pj processors depends on the
speedup model. We consider several speedup models:

� Roofline model: linear speedup up to a bounded
degree of parallelism �pj 2 ½1; P �, i.e., tjðpjÞ ¼ wj=pj
for pj � �pj, and tjðpjÞ ¼ wj=�pj for pj > �pj;

� Communication model: there is a communication over-
head cj � 0 per processor when more than one pro-
cessor is used, i.e., tjðpjÞ ¼ wj=pj þ ðpj � 1Þcj;

� Monotonic model: the execution time (resp. area) is a
non-increasing (resp. non-decreasing) function of the
number of allocated processors, i.e., tjðpjÞ � tjðpj þ 1Þ
and ajðpjÞ � ajðpj þ 1Þ;

� Amdahl’s model: this is a particular case of the mono-
tonic model with tjðpjÞ ¼ wj

� 1�gj
pj
þ gj

�
, where gj 2

½0; 1� denotes the inherently sequential fraction of the
job;

� Mix model: this model combines Roofline, Communi-
cation and Amdahl’s models with tjðpjÞ ¼ wjð1�gjÞ

minðp; �pjÞ þ
wjgj þ ðpj � 1Þcj, which could capture more realisti-
cally the speedups of some complex applications;

1. An algorithm for rigid jobs is r-bounded if its makespan is at most

r times the lower bound L ¼ max
�P

j
tjpj

P ;maxjtj

�
, where tj is the exe-

cution time of job Jj, and pj is its processor allocation.

2. In this work, we do not allow fractional processor allocation,
which could otherwise be implemented by time-sharing a processor
among multiple jobs.
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� Power model: this is another particular case of the
monotonic model with tjðpjÞ ¼ wj=p

dj
j , where dj 2

½0; 1� is a constant parameter;
� Arbitrary model: there are no constraints on tjðpjÞ.
In all of these models, the speedup of job Jj with pj pro-

cessors is given by sjðpjÞ ¼ tjð1Þ
tjðpjÞ .

3.2 Failure Model

We consider silent errors (or SDCs) that could cause a job to
produce erroneous results after an execution attempt. Fortu-
nately, such errors can often be detected using lightweight
detectors (e.g., [7], [15], [38]) at the end of the job execution.
The overhead of running these detectors is typically low and
can also be reduced from parallel execution. Throughout this
paper, we assume that the execution time of the job includes
the cost of running a detector. If errors are detected, the job
needs to be re-executed followed by another error detection.
This process repeats until the job completes successfully
without errors.

Let f ¼ ðf1; f2; . . . ; fnÞ denote a failure scenario, i.e., a vec-
tor of the number of failed execution attempts for all jobs,
during a particular execution of the job set J . Note that the
number of times a job will fail is unknown to the scheduler
a priori, and the failure scenario f becomes known only after
all jobs have successfully completed without errors.

3.3 Problem Statement

We study the following resilient scheduling problem: Given a
set of n moldable jobs, find a schedule on P identical pro-
cessors under any failure scenario f. In this context, a sched-
ule is defined by the following two decisions:

� Processor allocation: a collection p ¼ ð~p1;~p2; . . . ;~pnÞ of
processor allocation vectors for all jobs, where vector
~pj ¼ ðpð1Þj ; p

ð2Þ
j ; . . . ; p

ðfjþ1Þ
j Þ specifies the number of

processors allocated to job Jj at different execution
attempts until success. Note that processor allocation
can change for each new execution attempt of a job.

� Starting time: a collection s ¼ ð~s1;~s2; . . . ;~snÞ of
starting time vectors for all jobs, where vector ~sj ¼
ðsð1Þj ; s

ð2Þ
j ; . . . ; s

ðfjþ1Þ
j Þ specifies the starting times for

job Jj at different execution attempts until success.
The objective is to minimize the overall completion time

of all jobs, or makespan, under any failure scenario. Suppose
an algorithm makes decisions p and s for a job set J during
a failure scenario f. Then, the makespan of the algorithm for
this scenario is defined as

T ðJ ; f;p; sÞ ¼ max
1�j�n

�
s
ðfjþ1Þ
j þ tjðpðfjþ1Þj Þ

�
: (1)

Both scheduling decisions should be made with the fol-
lowing two constraints: (1) the number of processors used
at any time should not exceed the total number P of avail-
able processors; (2) a job cannot be re-executed if its previ-
ous execution attempt has not yet been completed.

As the problem generalizes the failure-free moldable job
scheduling problem, which is known to be NP-complete for
P � 5 processors [10], the resilient scheduling problem is
also NP-complete. We therefore consider approximation

algorithms. A scheduling algorithm Alg is said to be an
r-approximation3 if its makespan is at most r times that of an
optimal scheduler for any job set J under any failure sce-
nario f, i.e.,

sup
J ;f

TAlgðJ ; f;p; sÞ
TOptðJ ; f;p�; s�Þ ¼ r; (2)

where TOptðJ ; f;p�; s�Þ denotes the makespan produced by
an optimal scheduler with scheduling decisions p� and s�.

3.4 Worst-Case versus Average-Case Analysis

The problem above is agnostic of the failure scenario, which
is given as an input of the scheduling problem. A schedul-
ing algorithm is an r-approximation only if it achieves a
makespan at most r times the optimal for any possible failure
scenario. This can be viewed as the worst-case analysis.

In contrast, some practical settings may call for an average-
case analysis. In practice, each job Jj 2 J could fail with a
probability qj in each execution attempt, independent of the
number of previous failures. For instance, consider silent
errors that strike CPUs and registers during the execution of
a job: the probability of having a silent error is determined
solely by the number of flops of the job, or equivalently, by
its sequential execution time. On the contrary, the number of
processors used to execute the job does not matter, even if
the parallel execution time depends on the number of allo-
cated processors. Suppose the occurrence of silent errors fol-
lows an exponential distribution with rate �, then the failure
probability for job Jj is given by:

qj ¼ 1� e��tjð1Þ; (3)

where tjð1Þ denotes the sequential execution time of job Jj.
Then, the probability that the job fails fj times before suc-
ceeding on the fj þ 1-st execution is qjðfjÞ ¼ q

fj
j ð1� qjÞ.

Assuming that errors occur independently for different
jobs, the probability that a failure scenario f ¼ ðf1; f2; . . .; fnÞ
happens can then be computed as QðfÞ ¼Qn

j¼1 qjðfjÞ.
In general, given the probability QðfÞ of each failure sce-

nario f, we can define the expected approximation ratio of an
algorithm ALG for a job set J as follows4:

E
TAlgðJ Þ
TOptðJ Þ

� �
¼

X
f

QðfÞ 	 TAlgðJ ; f;p; sÞ
TOptðJ ; f;p�; s�Þ ; (4)

3. We consider the studied problem offline, although the failure sce-
nario is unknown to the scheduler a prior and only revealed on-the-fly
as jobs complete. One can also view the problem as semi-online, in which
case all of our obtained approximation ratios can be interpreted as com-
petitive ratios.

4. While we use expectation of ratios to define the average-case perfor-
mance of an algorithm, some studies in stochastic scheduling and
online algorithms (e.g., [25], [29]) have used ratio of expectations, i.e.,

EðTAlgÞ
EðTOptÞ ¼

P
f QðfÞ 	 TAlgðJ ; f;p; sÞP

f QðfÞ 	 TOptðJ ; f;p�; s�Þ :

This approach, however, has not been favored by recent studies, since
EðTAlgÞ could be dominated by “a few” instances with large objective
functions, thus the ratio may not reflect the actual performance of the
algorithm for “most” instances. See [33], [34] for a discussion on the
two approaches.
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and the algorithm is said to be an r-approximation in expecta-
tion if its expected approximation ratio is at most r for any
job set J , i.e.,

sup
J

E
TAlgðJ Þ
TOptðJ Þ

� �
¼ r: (5)

While the approximation ratio of a scheduling algorithm
under any failure scenario shows its worst-case perfor-
mance, the expected approximation ratio shows its average-
case performance. Note that a worst-case ratio directly
translates to the average case, because if the ratio holds for
every failure scenario, it also holds for the weighted sum.
However, the converse may not be the case: an algorithm
could have a very good expected approximation ratio, but
perform arbitrarily worse than the optimal in some (low
probability) failure scenarios.

In the theoretical analysis (Section 4), we mainly focus on
bounding the worst-case approximation ratios of the pro-
posed algorithms (except in Section 4.6, where we study the
average-case performance of the BATCH-LIST algorithm). For
the experimental evaluations (Section 5), we will instantiate
the failure model with the silent error probability for each
job as defined in Equation (3), and report both worst-case
and average-case performance of the algorithms under a
variety of experimental scenarios.

4 RESILIENT SCHEDULING ALGORITHMS

In this section, we present two resilient scheduling algo-
rithms (LPA-LIST and BATCH-LIST), and derive their approxi-
mation ratios for some common speedup models. Note that,
due to lack of space, some of the proofs can be found in the
Web Supplementary Material (WSM), which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TC.2021.3104747.

4.1 A Lower Bound on the Makespan

We first consider a simple lower bound on the makespan of
any scheduling algorithm under a given failure scenario.
This generalizes the well-known lower bound [27], [36] for
the failure-free case.

Let p denote the processor allocation decision made by a
scheduling algorithm ALG for job set J under failure
scenario f. Then, we define, respectively, the maximum
cumulative execution time and total cumulative area of the jobs
under algorithm ALG to be

tmaxðJ ; f;pÞ ¼ max
1�j�n

Xfjþ1
i¼1

tjðpðiÞj Þ; (6)

AðJ ; f;pÞ ¼
Xn
j¼1

Xfjþ1
i¼1

ajðpðiÞj Þ: (7)

The following quantity serves as a lower bound on the
makespan of the algorithm for job set J under failure
scenario f

LðJ ; f;pÞ ¼ max
�
tmaxðJ ; f;pÞ; AðJ ; f;pÞ

P

�
: (8)

Thus, we have

TAlgðJ ; f;p; sÞ � LðJ ; f;pÞ; (9)

regardless of the scheduling decision s of the algorithm.

4.2 LPA-LIST Scheduling Algorithm

Our first algorithm, called LPA-LIST, adopts a two-phase
approach [27], [36]. The first phase uses a Local Processor
Allocation (LPA) strategy to decide processor allocation p of
the jobs, and the second phase uses LIST scheduling to deter-
mine the starting time s of the jobs.

4.2.1 LIST Scheduling Strategy

We first discuss LIST scheduling for the second phase,
assuming a given processor allocation p. Algorithm 4.2.1
shows the pseudocode. The strategy first organizes all jobs
in a list based on some priority. Then, at time 0 or whenever
a running job Jk completes and hence releases processors,
the algorithm detects if job Jk has errors. If so, the job will
be inserted back into the list, again based on its priority, to
be re-scheduled later. It finally scans the list of pending jobs
and schedules all jobs that can be executed at the current
time with the available processors. We point out that the
algorithm essentially resembles a greedy backfilling strat-
egy. In our analysis below, we will show that the worst-case
approximation ratio is independent of the job priorities
used, although it may affect the algorithm’s practical perfor-
mance. In Section 5, we will consider some commonly used
priority rules for the experimental evaluation.

Algorithm 1. LIST (Scheduling Strategy)

Organize all jobs in a list L according to some priority rule;
Pavail  P ;
fj  0; 8j;
when at time 0 or a running job Jk completes execution do
Pavail  Pavail þ p

ðfkþ1Þ
k ;

if job Jk failed then
L:insert with priorityðJkÞ;
fk  fk þ 1;

end
for j ¼ 1; . . . ; jLj do
Jj  LðjÞ;
if Pavail � p

ðfjþ1Þ
j then

execute job Jj at the current time;

Pavail  Pavail � p
ðfjþ1Þ
j ;

L:removeðJjÞ;
end

end
end

The following lemma shows the worst-case performance
of the LIST scheduling strategy. Note that the job set J is
dropped from the notations since the context is clear.

Lemma 1. Given a processor allocation decision p for the jobs,
the makespan of a LIST schedule (that determines the starting
times s) under any failure scenario f satisfies

TListðf;p; sÞ�
2Aðf;pÞ

P ; if pmin � P
2

Aðf;pÞ
P�pmin

þ ðP�2pminÞ	tmaxðf;pÞ
P�pmin

; if pmin < P
2

(
;
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where pmin � 1 denotes the minimum number of utilized pro-
cessors at any time during the schedule.

Proof. This proof builds on the observation that LIST only
allocates and de-allocates processors upon job comple-
tions. Hence, the entire schedule can be divided into a set
of consecutive and non-overlapping intervals I ¼
fI1; I2; . . . ; Ivg, where jobs start (or complete) at the begin-
ning (or end) of an interval, and v denotes the total num-
ber of intervals. Then, a case study on the value of pmin

leads to the result (see the Web Supplementary Material
(WSM)), available online. tu
While Lemma 1 bounds the general performance of a LIST

schedule for a given processor allocation p, the following
lemma shows its approximation ratio when the processor
allocation strategy satisfies certain properties.

Lemma 2. Given any failure scenario f, if the processor alloca-
tion decision p satisfies

Aðf;pÞ � a 	 Aðf;p�Þ ; tmaxðf;pÞ � b 	 tmaxðf;p�Þ;

where p� denotes the processor allocation of an optimal
schedule, then a LIST schedule using processor allocation p
is rða;bÞ-approximation, where

rða;bÞ ¼ 2a; if a � b
P

P�1aþ P�2
P�1b; if a < b

	
: (10)

Proof. This proof builds on Lemma 1, see the WSM. tu

4.2.2 Local Processor Allocation (LPA)

We now discuss the LPA strategy for the first phase of the
algorithm. Given the result of Lemma 2, LPA allocates pro-
cessors locally for each job. Algorithm 4.2.2 shows its pseu-
docode. For each job Jj, the strategy first computes its
minimum possible execution time and area. Then, it chooses
a processor allocation that leads to the smallest ratio rða;bÞ
defined in Equation (10) based on the job’s local bounds
(a and b) on the area and execution time. If all jobs satisfy
the same bounds, then the bound will also hold globally.

Once the processor allocation of a job has been decided,
the same allocation will be used by the LIST scheduling strat-
egy in the second phase throughout the execution until the
job completes successfully without failures.

4.3 Worst-Case Performance of LPA-LIST for Some
Common Speedup Models

We now analyze the worst-case performance of the LPA-LIST

algorithm for moldable jobs that exhibit some common
speedupmodels, as well as for the general monotonicmodel.
All derived approximation ratios are independent of the fail-
ure scenarios, hence based on Equations (4) and (5). The
same ratios also apply to the average-case performance of
the algorithm for the respective speedupmodels.

4.3.1 Roofline Model

In the roofline model, the execution time of a job Jj when
allocated p processors satisfies tjðpÞ ¼ wj

minðp;�pjÞ for a bounded
degree of parallelism 1 � �pj � P .

Theorem 1. LPA-LIST is a 2-approximation for jobs with the roof-
line model, and this bound is tight.

Algorithm 2. LPA (Processor Allocation Strategy)

for j ¼ 1; 2; . . . ; n do
tmin  1; amin  1;
for p ¼ 1; 2; . . . ; P do
if tjðpÞ < tmin then
tmin  tjðpÞ;

end
if p 	 tjðpÞ < amin then
amin  p 	 tjðpÞ;

end
end
pj  0; rmin  1;
for p ¼ 1; 2; . . . ; P do
a p 	 tjðpÞ=amin;
b tjðpÞ=tmin;
compute rða;bÞ from Equation (10);
if rða;bÞ < rmin then
pj  p, rmin  rða;bÞ;

end
end

end

Proof. In the roofline speedup model, the minimum execu-
tion time of a job Jj is tmin ¼ wj=�pj and the minimum area
of the job is amin ¼ wj. These two quantities can be
achieved by simply allocating pj ¼ �pj processors to the
job. This leads to the bounds of a ¼ 1 and b ¼ 1 for each
job as well as globally under any failure scenario. Hence,
based on Lemma 2, we get an approximation ratio of
2a ¼ 2.

To show that this bound is tight, suppose P ¼ 2K for
some K > 0, and consider two identical jobs with w ¼
K þ 1 and �p ¼ K þ 1. Allocating K þ 1 processors
achieves a ¼ b ¼ 1, thus clearly minimizing the ratio
rða;bÞ for both jobs. Suppose jobs do not fail. The make-
span will then be T ¼ 2, since the two jobs must be proc-
essed sequentially one after the other. However, the
optimal algorithm would allocate K processors to both
jobs and execute them in parallel, resulting in a make-
span of TOpt ¼ 1þ 1

K . This gives an approximation ratio
of T

TOpt
¼ 2

1þ 1
K

¼ 2� 2
Kþ1 , which can be arbitrarily close to

2 whenK is large enough. tu

4.3.2 Communication Model

In the communication model [11], [16], the execution time of
a job Jj when allocated p processors is given by tjðpÞ ¼
wj=pþ ðp� 1Þcj, where cj � 0 denotes the per-processor
communication overhead.

Theorem 2. LPA-LIST is a 3-approximation for jobs with the com-
munication model.

Proof. For the communication model, we consider a proces-
sor allocation pj for a job Jj and show that it achieves a ¼
b ¼ 3

2 , i.e., ajðpjÞ � 3
2 amin and tjðpjÞ � 3

2 tmin. Hence, based
on Lemma 2, we get an approximation ratio of 2a ¼ 3.
The detailed proof can be found in the WSM. tu
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Remarks. Our result improves upon the 4-approximation
of the SET algorithm [16], which is the best ratio known for
the communication model.5 Our result further extends the
one in [16] in two ways: (1) The model in [16] assumes the
same communication overhead c for all jobs, while we con-
sider an individual overhead cj for each job Jj; (2) The algo-
rithm in [16] applies to failure-free job executions, while our
algorithm is able to handle job failures.

Theorem 3. The approximation ratio of LPA-LIST is at least 2.5
for jobs with the communication model.

The proof can be found in the WSM.

4.3.3 Amdahl’s Model

In Amdahl’s model [1], the execution time of a job Jj when
allocated p processors satisfies tjðpÞ ¼ wj

� 1�gj
p þ gj

�
, where

gj 2 ½0; 1� denotes the inherently sequential fraction of the
job. It is a particular case of the monotonic model as
described in Section 3.1. For convenience, we consider an
equivalent form of the model in the analysis: tjðpÞ ¼ wj

p þ dj,
where wj denotes the parallelizable work of the job and dj
denotes the inherently sequential work.

Theorem 4. LPA-LIST is a 4-approximation for jobs with the
Amdahl’s model.

Proof. In Amdahl’s model, the minimum execution time of
a job Jj is tmin ¼ wj

P þ dj (achieved by allocating P process-
ors), and the minimum area of the job is amin ¼ wj þ dj
(achieved by allocating one processor). We consider a
processor allocation of pj ¼ minðdwj

dj
e; P Þ for the job.

For the area, we have ajðpjÞ ¼ wj þ pjdj � wj þ
dwj

dj
edj � wj þ ðwj

dj
þ 1Þdj ¼ 2wj þ dj � 2amin. Thus, we get

a ¼ 2.
For the execution time, we consider two cases: (1) If

dwj

dj
e � P , then pj ¼ dwj

dj
e, and we have tjðpjÞ ¼ wj

pj
þ dj �

wj

wj=dj
þ dj ¼ 2dj � 2tmin. In this case, we get b ¼ 2; (2) If

dwj

dj
e > P , then pj ¼ P , and we have tjðpjÞ ¼ wj

P þ dj ¼
tmin. In this case, we get b ¼ 1.

Hence, based on Lemma 2, we get an approximation
ratio of 2a ¼ 4. tu

Theorem 5. The approximation ratio of LPA-LIST is at least 3 for
jobs with the Amdahl’s model.

The proof can be found in the WSM.

4.3.4 Mix Model

We now consider the mix model combining Roofline, Com-
munication and Amdahl’s models as follows: tjðpÞ ¼
wjð1�gjÞ
minðp;�pjÞ þ wjgj þ ðp� 1Þcj, which could capture more realis-

tically the speedups of some complex applications. In this
model, we only need to consider p � �pj, since any p > �pj
will obviously be a bad choice. To simplify the analysis, and
since we assume that all parameters are strictly positive, we
can factorize the function by cj and obtain the following

equivalent form: tjðpÞ ¼ cj

�
w0
j

p þ d0j þ ðp� 1Þ
�
, with w0j ¼

wjð1�gjÞ
cj

and d0j ¼
wjgj
cj

.

Theorem 6. LPA-LIST is a 6-approximation for jobs with the mix
model.

Proof. For this mix model, we provide a processor
allocation pj for a job Jj and show that it achieves a ¼ b ¼
3, i.e., ajðpjÞ � 3amin and tjðpjÞ � 3tmin. Hence, based on
Lemma 2, we get an approximation ratio of 2a ¼ 6. The
detailed proof can be found in the WSM. tu

Theorem 7. The approximation ratio of LPA-LIST is at least 3 for
jobs with the mix model.

Proof. When cj is small enough, the mix model can get arbi-
trarily close to Amdahl’s model, for which LPA-LIST is at
least a 3-approximation. tu

4.3.5 Power Model

In the power model, the execution time of a job Jj when allo-
cated p processors satisfies tjðpÞ ¼ wj=p

dj , where dj 2 ½0; 1� is
a constant parameter. This speedup has been observed in
some linear algebra applications [14], [35] and it is also an
example of themonotonicmodel.

Theorem 8. LPA-LIST is a QðP 1=4Þ-approximation for jobs with
the power model.

Proof. In the power model, the minimum execution time of
a job Jj is tmin ¼ wj

P dj
(achieved by allocating P processors),

and the minimum area of the job is amin ¼ wj (achieved
by allocating one processor).

We consider a processor allocation of pj ¼ dP dje. In
this case, we get a ¼ ajðpjÞ

amin
¼ p

1�dj
j � P djð1�djÞ and b ¼

tjðpjÞ
tmin
¼ ðPpjÞ

dj � P djð1�djÞ � a. Thus, based on Lemma 2,
we get an approximation ratio of 2a ¼ 2dP dje1�dj <
2ðP dj þ 1Þ1�dj < 2ðP djð1�djÞ þ 1Þ. The last inequality is
because ðxþ 1Þm < xm þ 1 for any x > 0 and 0 < m <
1. Furthermore, the value of djð1� djÞ is maximized at
dj ¼ 1=2. This results in an approximation ratio of
2ðP 1=4 þ 1Þ.

To show that the above ratio is asymptotically tight for
the algorithm, consider a single job with dj ¼ 1=2, so we
have a ¼ p

1=2
j and b ¼ ðPpjÞ

1=2. Clearly, LPA-LIST will allo-
cate at most P 1=2 processors to the job; otherwise, we
would have a > b, and according to Lemma 2, the ratio
rða;bÞ ¼ 2a ¼ 2p

1=2
j will increase with the processor allo-

cation. Thus, the execution time of the job under LPA-LIST

will be at least T � wj

P1=4 , whereas the optimal execution
time is TOpt ¼ wj

P1=2 by allocating P processors. This gives
an approximation ratio T

TOpt
� P 1=4. tu

4.3.6 Monotonic Model

We now consider the general monotonic model. Recall that a
job Jj is monotonic, if tjðpÞ � tjðp0Þ and ajðpÞ � ajðp0Þ for any
p � p0. This means that the execution time of the job will not
increase with the processor allocation and the area will not
decrease with the processor allocation. In particular, the area
assumption implies that the speedup efficiency of the job
will not increase as more processors are allocated to it, i.e.,
sjðpÞ=p � sjðp0Þ=p0, a property that has been observed in
many practical parallel applications.

Theorem 9. LPA-LIST is an Oð ffiffiffiffi
P
p Þ-approximation for jobs with

the monotonic model.
5. The SET algorithm [16] minimizes the execution time of each job,

resulting in a ¼ 2 and b ¼ 1, hence an approximation ratio of 2a ¼ 4.
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Proof. In a general monotonic model, the minimum execu-
tion time of a job Jj is achieved with P processors, i.e.,
tmin ¼ tjðP Þ, and the minimum area is achieved with one
processor, i.e., amin ¼ ajð1Þ ¼ tjð1Þ.

Consider an allocation pj ¼ b
ffiffiffiffi
P
p c. Based on the mono-

tonic assumption, we get ajðpjÞ ¼ pjtjðpjÞ �
ffiffiffiffi
P
p 	 tjð1Þ ¼ffiffiffiffi

P
p 	 amin, and tjðpjÞ � P

pj
tjðP Þ ¼ Oð ffiffiffiffi

P
p Þ 	 tmin. Thus,

based on Lemma 2, we get an approximation ratio of
Oð ffiffiffiffi

P
p Þ. tu

We show that the above ratio is asymptotically tight for
any algorithm that makes local processor allocation decisions
based on individual job characteristics. Examples of such
algorithms include the LPA algorithm considered in this
paper and the SET algorithm studied in [16]. The result holds
even under the additional assumption that the speedup pro-
files of the jobs are concave [22] and that jobs do not fail. In the
next section, we will propose another algorithm that over-
comes this limitation bymaking coordinated processor alloca-
tion decisions for a set of jobs.

Theorem 10. Any scheduling algorithm that relies on local pro-
cessor allocation for each individual job is Vð ffiffiffiffi

P
p Þ-approxima-

tion for jobs with the monotonic model.

Proof. Assume that
ffiffiffiffi
P
p

is an integer and P � 4. We con-
sider a job with a concave speedup profile6 that contains
two piece-wise linear segments defined by three points:
sð1Þ ¼ 1, sð ffiffiffiffi

P
p Þ ¼ 2 and sðP Þ ¼ ffiffiffiffi

P
p

(see Fig. 1a). Sup-
pose the execution time of the job with one processor is
tð1Þ ¼ 1. We can then derive the execution time profile of
the job as follows (see Fig. 1b):

tðpÞ ¼
ffiffiffi
P
p �1

pþ ffiffiffi
P
p �2 if p � ffiffiffiffi

P
p

;

P� ffiffiffi
P
p

pð ffiffiffi
P
p �2ÞþP if p >

ffiffiffiffi
P
p

;

8<
:

and the area profile of the job as follows (see Fig. 1c):

aðpÞ ¼
pð ffiffiffi

P
p �1Þ

pþ ffiffiffi
P
p �2 if p � ffiffiffiffi

P
p

;

pðP� ffiffiffi
P
p Þ

pð ffiffiffi
P
p �2ÞþP if p >

ffiffiffiffi
P
p

:

8<
:

The job is obviously monotonic.

Suppose there are n identical such jobs in the system,
where n depends on the processor allocation algorithm
(denoted as ALG). Since the jobs are identical and process-
ors are allocated locally, the processor allocation p for
each job should be the same. We consider two cases.

Case 1. If p � ffiffiffiffi
P
p

, then there is only n ¼ 1 job. In this
case, the algorithm has a makespan of TAlg � tð ffiffiffiffi

P
p Þ ¼ 1

2
and the optimal makespan is TOpt ¼ tðP Þ ¼ 1ffiffiffi

P
p by allocat-

ing P processors to the job.
Case 2. If p >

ffiffiffiffi
P
p

, then there are n ¼ P jobs. In this
case, the makespan of the algorithm satisfies TAlg �
n	aðpÞ
P � að ffiffiffiffi

P
p Þ ¼

ffiffiffi
P
p
2 , and the optimal makespan is TOpt ¼

1 by allocating one processor to each job.
Thus, in both cases, we have TAlg

TOpt
�

ffiffiffi
P
p
2 . tu

4.4 BATCH-LIST Scheduling Algorithm

We now present the second algorithm, called BATCH-LIST.
Unlike the LPA-LIST algorithm, which allocates processors
locally for each job, BATCH-LIST coordinates the processor
allocation decisions for different jobs. While not knowing
the failure scenario in advance, the algorithm organizes the
execution attempts of the jobs in multiple batches, where
each batch executes the pending jobs (i.e., the jobs that have
not been successfully completed so far) up to a certain num-
ber of attempts that doubles after each batch. The idea is
inspired by the doubling strategy [9] that has been commonly
applied in many online problems. The following describes
the details of the BATCH-LIST algorithm.

Let Bk denote the kth batch created by the algorithm,
where k � 1. Letnk denote the number of pending jobs imme-
diately before Bk starts, and let J k ¼ fJk;1; Jk;2; . . . ; Jk;nkg
denote this set of pending jobs. For convenience, we define
gk ¼ 2k�1. In batchBk, we allow each pending job Jk;j to have
at most fk;j ¼ gk � 1 failures, i.e., each job is allowed to make
gk execution attempts in the batch; if the job is still not suc-
cessfully completed after that, it will be handled by the next
batch Bkþ1. Let fk ¼ ðfk;1; fk;2; . . . ; fk;nkÞ denote this worst-
case failure scenario for the jobs in batch Bk. Given fk, each
job Jk;j can be represented by a chain J

ð1Þ
k;j ! J

ð2Þ
k;j ! 	 	 	 !

J
ðgkÞ
k;j of gk sub-jobs with linear precedence constraint, where

each sub-job represents an execution attempt of Jk;j in the
batch. Thus, all sub-jobs in batch Bk form a set of nk linear
chains, one for each pending job.

To allocate processors for all the sub-jobs (or the different
execution attempts of the pending jobs) in batch Bk,
we adopt the pseudo-polynomial time algorithm, called

Fig. 1. (a) Speedup, (b) execution time, and (c) area profiles of the job used in the proof of Theorem 10.

6. The speedup profile is concave because s0ðpÞ ¼ 1ffiffiffi
P
p �1 for any p 2

½1; ffiffiffiffi
P
p Þ, and s0ðpÞ ¼

ffiffiffi
P
p �2
P� ffiffiffi

P
p <

ffiffiffi
P
p

P� ffiffiffi
P
p ¼ 1ffiffiffi

P
p �1 for any p 2 ð ffiffiffiffi

P
p

; P �.
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MT-ALLOTMENT, proposed in [26] for series-parallel prece-
dence graphs (of which a set of independent linear chains is
a special case). Specifically, the algorithm determines an
allocation p

ðmÞ
k;j for each sub-job J

ðmÞ
k;j (or the mth execution

attempt of job Jk;j). Let ~pk;j ¼ ðpð1Þk;j ; p
ð2Þ
k;j ; . . . ; p

ðfk;jþ1Þ
k;j Þ be the

vector of processor allocations for job Jk;j, and let pk ¼
ð~pk;1;~pk;2; . . . ;~pk;nkÞ be the processor allocations for all jobs in
batch Bk. The following lemma shows the property of the
allocation pk returned by MT-ALLOTMENT for jobs with any
arbitrary speedup model.

Lemma 3. For any � > 0, MT-ALLOTMENT can compute, with
complexity polynomial in 1=�, a processor allocation pk for all
jobs in batch Bk that approximates the minimum makespan
lower bound as defined in Equation (8) as follows:

LðJ k; fk;pkÞ � ð1þ �Þ 	min
p

LðJ k; fk;pÞ : (11)

We refer to [26] for a detailed description of the MT-
ALLOTMENT algorithm and its analysis.7 Once the processor
allocation pk has been decided, BATCH-LIST schedules all
pending jobs in a batch Bk using the LIST strategy as shown
in Algorithm 4.2.1, while restricting each job to execute at
most gk times. After batch Bk completes and if there are still
pending jobs, the algorithm will create a new batch Bkþ1 to
schedule the remaining pending jobs.

4.5 Worst-Case Performance of BATCH-LIST for
Arbitrary Speedup Model

We analyze the worst-case performance of BATCH-LIST for
moldable jobs with any arbitrary speedup model.

First, we define the following concept: a job set J 0 with
failure scenario f0 is said to be dominated by a job set J with
failure scenario f, denoted by ðJ 0; f0Þ 
 ðJ ; fÞ, if for every
job Jj 2 J 0, we have Jj 2 J and f 0j � fj. The following
lemma gives two trivial properties without proof for a dom-
inated pair of job set and failure scenario.

Lemma 4. If ðJ 0; f0Þ 
 ðJ ; fÞ, then we have:

(a) LðJ 0; f0;pÞ � LðJ ; f;pÞ;
(b) TOptðJ 0; f0;p0�; s0�Þ � TOptðJ ; f;p�; s�Þ.

Lemma 5. Suppose a job set J with failure scenario f is executed
by BATCH-LIST. Then, any job Jj 2 J will successfully complete
in bj ¼ dlog 2ðfj þ 2Þe batches, and in any batch Bk, where 1 �
k � bj, we have fk;j � fj.

Proof. Since the algorithm allows the number of execution
attempts of a job to double in each new batch, the maxi-
mum number of execution attempts of the job in a total of
b batches is given by

Pb
k¼1 2

k�1 ¼ 2b � 1. Thus, if a job Jj
fails fj times (i.e., executes fj þ 1 times), then the number
of batches it takes to complete the job is bj ¼ dlog 2ðfj þ
2Þe ¼ 1þ blog 2ðfj þ 1Þc.

In any batch Bk until job Jj completes, where 1 � k �
bj, we have fk;j ¼ 2k�1 � 1 � 2blog 2ðfjþ1Þc � 1 � fj. tu

The following theorem shows the approximation ratio of
BATCH-LIST for jobs with arbitrary speedup model.

Theorem 11. BATCH-LIST is an Oðð1þ �Þlog 2ðfmaxÞÞ-approxi-
mation for jobs with arbitrary speedup model, where fmax ¼
maxjfj denotes the maximum number of failures of any job in a
failure scenario.

Proof. According to Lemma 5, the total number of batches
for any job set J with failure scenario f is given by bmax ¼
dlog 2ðfmax þ 2Þe. Further, for any batch Bk, where 1 � k �
bmax, we have ðJ k; fkÞ 
 ðJ ; fÞ.

Let f0k ¼ ðf 0k;1; f 0k;2; . . . ; f 0k;nkÞ denote the actual failure
scenario for the jobs in batch Bk. Clearly, we have f 0k;j �
fk;j for any Jj 2 J k, and thus, ðJ k; f

0
kÞ 
 ðJ k; fkÞ.

Since BATCH-LIST uses the MT-ALLOTMENT algorithm to
allocate processors and the LIST strategy to schedule all
jobs in each batch, according to Lemmas 1, 3 and 4, we
can bound the execution time of any batch Bk as follows:

TListðJ k; f
0
k;pk; skÞ � 2 	 LðJ k; f

0
k;pkÞ

� 2 	 LðJ k; fk;pkÞ
� 2ð1þ �Þ 	 LðJ k; fk;p

�
kÞ

� 2ð1þ �Þ 	 TOptðJ k; fk;p
�
k; s
�
kÞ

� 2ð1þ �Þ 	 TOptðJ ; f;p�; s�Þ :

Therefore, the makespan of BATCH-LIST satisfies

TBatch�ListðJ ; f;p; sÞ ¼
Xbmax

k¼1
TListðJ k; f

0
k;pk; skÞ

� 2ð1þ �Þdlog 2ðfmax þ 2Þe 	 TOptðJ ; f;p�; s�Þ:
tu

We now show that the approximation ratio of BATCH-LIST

is tight up to a constant factor.

Theorem 12. BATCH-LIST is Vðlog 2ðfmaxÞÞ-approximation.

Proof. We consider a set J ¼ fJ1; J2; . . . ; JKg of K jobs and
at least as many processors, so that each job can be exe-
cuted on a dedicated processor. For each job Jj, where 1 �
j � K, its (sequential) execution time is tj ¼ 1

2j
, and it fails

fj ¼ 2j�1 � 1 times (i.e., executes 2j�1 times). Given this
failure scenario f, the total time to complete job Jj is given
by 2j�1 	 1

2j
¼ 1

2 . The optimal makespan for this failure sce-
nario is therefore TOptðJ ; fÞ ¼ 1

2 .
In the above failure scenario, the maximum number of

failures of any job is fmax ¼ fK ¼ 2K�1 � 1. Based on
Lemma 5, BATCH-LIST will complete each job Jj in
dlog 2ðfj þ 2Þe ¼ j batches, and will complete all jobs in
dlog 2ðfmax þ 2Þe ¼ K batches. Fig. 2 illustrates the execu-
tion of this failure scenario for K ¼ 5. In each batch Bk,
where 1 � k � K, the set of pending jobs is given by
J k ¼ fJk; Jkþ1; . . . ; JKg. For the first batch B1, it takes
t1 ¼ 1

2 time to complete job J1 and thus the entire batch.
For any batch Bk, where 2 � k � K � 1, it takes tkþ1 ¼

1
2ðkþ1Þ time for each execution attempt of job Jkþ1, which
will have 2k�1 execution attempts. Thus, batch Bk will
take 2k�1 	 1

2ðkþ1Þ ¼ 1
4 time to complete. The makespan of

BATCH-LIST for the entire job set J then satisfies

7. In a nutshell, the algorithm uses dynamic programming to decide
whether there exists an allocation p such that LðJ k; fk;pÞ � ð1þ �Þ 	X
for a positive integer boundX, and performs a binary search onX.
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TBatch�ListðJ ; fÞ � 1

2
þ ðK � 2Þ 	 1

4

¼ K

4
¼ dlog 2ðfmax þ 2Þe

2
	 TOptðJ ; fÞ:

tu

4.6 A Lower Bound on the Average-Case
Performance of BATCH-LIST

The preceding section shows that the worst-case approxi-
mation ratio of BATCH-LIST grows linearly with the number b
of batches. However, when jobs have fixed failure probabili-
ties, the probability of having b batches tends to 0 as b
approaches infinity. Thus, one might expect a constant
approximation in expectation. In this section, we show that
it is not true by providing an vð1Þ lower bound. Despite this
negative result, the experimental evaluation (in Section 5)
shows that the average-case performance of the algorithm is
very close to the optimal under many practical settings.
Deriving an upper bound on the average-case approxima-
tion ratio of BATCH-LIST remains an open question.

Theorem 13. The expected approximation ratio of BATCH-LIST is
vð1Þ, if all jobs have constant failure probabilities.
The proof of this theorem can be found in the WSM. We

point out that the above lower bound applies when the jobs’
failure probabilities are either arbitrarily defined or related
to their sequential execution times as defined in Equa-
tion (3). In fact, Theorem 13 holds generally true as long as
the failure probability qj of each job Jj is upper-bounded by
a constant r, i.e., qj � r < 1 for all j ¼ 1; . . . ; n.

4.7 An Illustrative Example

In this section, we provide a simple example to illustrate the
behavior of the LPA-LIST and BATCH-LIST algorithms. The
problem instance consists of a set fJ1; J2; J3; J4g of n ¼ 4 jobs
to be scheduled on P ¼ 4 processors, assuming J3 and J4
will fail exactly once while J1 and J2 will not fail. The execu-
tion times of the jobs and the values of rða;bÞ as functions of
the processor allocation are given in the following table:

Job tð1Þ tð2Þ tð3Þ tð4Þ rð1Þ rð2Þ rð3Þ rð4Þ
J1 11 7 5 4 3.2 2.9 2.7 2.9
J2 10 9.8 9.6 9.5 2.04 3.9 5.8 7.6
J3 4 3 3 2.5 2.4 3 4.5 5
J4 3 2 1.7 1.4 2.76 2.73 3.4 3.7

Under these settings, LPA will allocate 3 processors to J1
with an execution time of 5, 1 processor to J2 with an execu-
tion time of 10, 1 processor to J3 with an execution time of 4,
and 2 processors to J4 with an execution time of 2, as

highlighted in red in the table. The jobswill then be scheduled
using the LIST strategy. Assuming that jobs are prioritized
from J1 to J4, the schedule produced by the LPA-LIST algo-
rithm is shown in Fig. 3 (top), with a makespan of 13. The
main drawback of this algorithm is that the allocation of each
job is fixedwithout considering the state of the system nor the
remaining jobs to be scheduled at runtime. For instance, at
time t ¼ 9, onlyJ3 remains to be scheduled, sowe could easily
speed it up by allocatingmore processors: using the other two
available processorswould reduce themakespan by 1.

BATCH-LIST, on the contrary, will first schedule the four
jobs in a batch B1, assuming they will not fail. In this case, it
will be able to find processor allocations that minimize the
makespan lower bound by setting a small �. Specifically, it
will allocate 2 processors to J1 and 1 processor to all the other
jobs, resulting in an optimal lower bound of 10. The execu-
tion time for this first batch will also match this lower bound
by using the LIST strategy to schedule the jobs. After the exe-
cution of the first batch, BATCH-LIST will plan for both failed
jobs J3 and J4 to be executed two more times in a second
batch B2. The processor allocations in this batch that mini-
mize the makespan lower bound would be 2 processors for
J3 and 1 processor for J4 for both of their potential execu-
tions. However, the two jobs complete successfully after one
execution attempt, giving an execution time of 3 for this sec-
ond batch and an overall makespan of 13, as shown in Fig. 3
(middle). In contrast to the LPA-LIST algorithm, the processor
allocation of BATCH-LIST does take into account all available
jobs in a batch, but the idle time between batches leads to an
extra 3 units of time in makespan. Indeed, for this example,
scheduling the second execution attempts of J3 and J4 as
soon as possible would lead to an optimal schedule with a
makespan of 10, as shown in Fig. 3 (bottom).

5 PERFORMANCE EVALUATION

In this section, we evaluate and compare the performance of
different scheduling algorithms using simulations on syn-
thetic moldable jobs that follow various speedup models.

Fig. 2. An illustration of the lower bound instance for the BATCH-LIST algo-
rithm shown in Theorem 12 withK ¼ 5 jobs.

Fig. 3. An illustrative example showing the schedules produced by LPA-
LIST (top), BATCH-LIST (middle), and the optimal algorithm (bottom).
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5.1 Simulation Setup

Evaluated Algorithms. We evaluate the performance of our
two scheduling algorithms, namely, LPA-LIST (or LPA in
short) and BATCH-LIST (or BATCH in short). For BATCH, we set
� ¼ 0:3 for its processor allocation procedure (Lemma 3).
Their performance is also compared against that of the fol-
lowing two baseline heuristics:

� MINTIME: allocates processors to minimize the execu-
tion time of each job and schedules all jobs using the
LIST strategy (Algorithm 4.2.1). This is also known as
the shortest execution time (SET) algorithm in [16];

� MINAREA: allocates processors to minimize the area
of each job and schedules all jobs using the LIST

strategy.
Priority Rules. We consider three priority rules that have

been shown to give good performance when (rigid) jobs are
scheduled with the LIST strategy [5], which is used in all
four evaluated algorithms (recall that BATCH uses LIST in
each batch). The three priority rules are:

� LPT (Longest Processing Time): a job with a longer
processing time has a higher priority;

� HPA (Highest Processor Allocation): a job with a
higher processor allocation has a higher priority;

� LA (Largest Area): a job with a larger area has a
higher priority.

Speedup Models. We generate synthetic moldable jobs that
follow six speedup models: roofline, communication,
Amdahl, mix (in two different versions) and power. Each
job Jj is defined by two parameters: the total work wj (i.e.,
the sequential execution time), which is drawn uniformly in
½5000; 4000000�, and another parameter that depends on the
speedup model.

� Roofline: the maximum degree of parallelism �pj is an
integer drawn uniformly in ½100; 4000�;

� Communication: the communication overhead is set
as cj ¼ a 	 2r, where r is an integer uniformly chosen
in [0,3] and a is drawn uniformly in ½1; 2�.

� Amdahl: the sequential fraction is set as gj ¼ a
10r ,

where r is an integer uniformly chosen in ½2; 7� and a

is drawn uniformly in ½0; 10�.
� Mix: we consider two different parameter settings:

the first one, called mix-low-com, uses the same set of
parameters as what is chosen for the roofline, com-
munication, and Amdahl’s model. The second one,
called mix, uses 3cj instead of cj for the communica-
tion overhead.

� Power: the parameter dj is chosen uniformly in [0,1].
Failure Distribution. To generate failures for the jobs, we

assume that silent errors follow the exponential distribu-
tion [17]. Let � denote the error rate per unit of work, so a
job will be struck by a silent error for every 1=� unit of work
executed on average. Following our failure model (Sec-
tion 3), we assume parallelizing a job does not change the
total number of computational operations (it may increase
the communication, which we consider protected). Hence,
the failure probability of a job will not depend on its proces-
sor allocation nor its execution time, but solely on its total
work. For a job Jj with total work wj, its failure probability
is given by qj ¼ 1� e��wj .

In the simulations, we set � ¼ 10�7 by default. Given the
chosen values of wj, this corresponds to a failure probability
between 0.0005 and 0.33 for a job. We also set the default
number of processors and number of jobs to be P ¼ 7500
and n ¼ 500, but we will also vary all of these parameters to
evaluate their impact on the performance.

Evaluation Methodology. The evaluation is done as fol-
lows: we generate 30 different sets of jobs, and for each set,
100 failure scenarios are drawn randomly from the failure
distribution described above. For each of the failure scenar-
ios, the simulated makespan of an algorithm is normalized
by a lower bound (described below), which is then averaged
over the 100 failure scenarios to estimate the expected ratio
for the job set. Lastly, this ratio is averaged over the 30 job
sets to compute the final expected performance of the algo-
rithm. In addition, we also estimate the worst-case perfor-
mance of the algorithm by using its largest normalized
makespan over all job sets and failure scenarios.

Given job set J and a failure scenario f, the makespan
lower bound given in Equation (8) depends on the proces-
sor allocation and hence the scheduling algorithm. To
ensure that the performance of all algorithms is normalized
by the same quantity, we use the following rather loose
lower bound, which is, however, independent of the sched-
uling decision

L0ðJ ; fÞ ¼ max
�
t0maxðJ ; fÞ;

A0ðJ ; fÞ
P

�
;

where t0maxðJ ; fÞ ¼ maxjminpðfj þ 1ÞtjðpÞ is the minimum
possible maximum execution time of all jobs, and A0ðJ ; fÞ ¼P

j minpðfj þ 1ÞajðpÞ is the minimum possible total area.
Since this lower bound gives a pessimistic estimation on the
optimal schedule, the actual performance of the algorithms
is likely to be better than reported.

The simulation code for all experiments is publicly avail-
able at http://www.github.com/vlefevre/job-scheduling.
Due to lack of space, we report here mainly results for the
mix model, since it captures Roofline, Amdahl, and Com-
munication as special cases. Full results can be found in the
Web Supplementary Material (WSM), available online.

5.2 Comparison of Algorithms and Priority Rules

We first compare the performance of different algorithms
and study the impact of priority rules on their performance.

Fig. 4 (top) shows the normalized makespans for the 11
combinations of algorithms and priority rules under the mix
speedup model, with �¼10�7, P ¼ 7500, and n¼500. For
the MINAREA algorithm, priority rules LA and LPT are iden-
tical, as the algorithm allocates one processor to all jobs, so
only the results of LPT are reported. As we can see, MINA-
REA fares poorly in most cases, because it allocates one pro-
cessor to each job in order to minimize the area. This results
in very long job execution (and re-execution) times, which
leads to extremely large makespan. Moreover, allocating
only one processor per job also results in idle processors
thus resource inefficiency whenever the number of process-
ors is higher than the number of jobs. The LPA and BATCH

algorithms maintain a good balance between the execution
time and area of a job, thus they perform well (and this
remains true for all speedup models) in terms of both
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expected performance (bars) and worst-case performance
(top endpoints of lines). BATCH performs the best for the mix
model. MINTIME also performs relatively well with this set
of parameters.

Fig. 4 (bottom) further shows the results of four combi-
nations of P and n with similar performance trends. We
notice that these two parameters do have an impact on
the performance of BATCH, in particular at P ¼1000 and
n¼500. Indeed, when P is significantly larger than n,
BATCH tends to reduce all jobs to similar length and exe-
cute them at the same time, which gives the best tradeoff
between the area and maximum execution time. In that
case, the first batch, where all jobs are executed exactly
once, is done almost perfectly. As the makespan of the
first batch is dominant under �¼10�7, the overall make-
span is closer to the lower bound. However, with P ¼
1000 and n¼500, there are not enough processors to exe-
cute all jobs at the same time. Thus, the performance of
BATCH becomes close to LPA.

Note also that the performance of MINTIME under the mix
models becomes better when the number of processors is
large compared to the number of jobs (e.g., P ¼ 10000;
n ¼ 100). Indeed, MINTIME is able to simultaneously mini-
mize the execution time of all jobs in this case without using
all the processors, thus achieving near-optimal perfor-
mance. This is not possible with fewer processors, as mini-
mizing the execution time alone for each job will increase
the total area, which also plays an important role under
such circumstance to have overall good performance.

Comparing the three priority rules, no significant differ-
ence is observed. In general, LPT and LA give similar results,
and slightly better results than HPA. This is consistent with
the results observed in [5] for scheduling rigid jobs. Given
these results, we will only consider the LPT priority rule in
the subsequent evaluation. We will also omit the MINAREA

algorithm, and focus on comparing the expected perfor-
mance of the remaining algorithms.

5.3 Impact of Different Parameters

We now study the impact of different parameters on the
performance of the algorithms. We start from P ¼7500, n¼
500, and �¼10�7, and vary one of these parameters in each
experiment. We still focus on the mix model (recall that
results for other speedup models are available in the WSM.

Impact of Number of Processors (P ). Fig. 5a shows the per-
formance when the number of processors P is varied
between 1000 and 15000. BATCH outperforms LPA despite the
idle time at the end of each batch. This is due to BATCH’s
ability to better balance the job execution times globally,
which becomes more important in this case. Moreover, the
trend is not affected by the number of processors. Since
both algorithms tend to allocate a relatively small number
of processors for each job, the maximum degree of parallel-
ism is not reached and the communication cost is relatively
small. Note that the performance of MINTIME is getting bet-
ter with increasing number of processors. Indeed, the mini-
mum execution time of a job is achieved with a reasonable
number of processors because of the communication over-
head. Thus, when P is high enough such that all jobs can be
processed in parallel while minimizing their execution
times, MINTIME’s allocation becomes close to optimal.

Impact of Number of Jobs (n). Fig. 5b shows the performance
when the number of jobs n is varied between 100 and 1000.
Again, we can see that BATCH has the best performance,
except for small number of jobs. The number of jobs has a
small impact for BATCH, but only impacts MINTIME as seen
with varying P . Overall, as the number of jobs increases, the
trend in the relative performance of the algorithms is consis-
tent with the previous results we have observed in Fig. 5a
when the number of processors decreases.

Impact of Error Rate (�). Fig. 5c shows the impact of the
error rate �when it is varied between 10�8 (corresponding to
0.03 error per job on average) and 10�6 (corresponding to 12
errors per job on average). Once again, the relative perfor-
mance of the three algorithms remains the same as before.
While the performance of LPA is barely affected, which is not
surprising considering that its processor allocation is per-
formed locally and separately from job scheduling, the per-
formance of BATCH gets worse with increasing error rate �
(and hence the number of failures), which corroborates the
theoretical analysis (Theorem 11). In particular, when the
error rate is small, there are very few failures and almost all
jobs will complete in one batch. In this case, the processor
allocation procedure of BATCH (Lemma 3) is very precise.
With increased error rate, more failures will occur and thus
more batches will be introduced, causing scheduling ineffi-
ciencies from both idle times between the batches and possi-
ble imprecision in the processor allocations (especially with

Fig. 4. Performance of different algorithms and priority rules under the mix model with �¼10�7, P ¼ 7500, n¼500 (left) and four other different com-
binations of P and n (right). The bars represent expected performance and the top endpoints of the lines represent worst-case performance.
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a large batch, since the actual number of failuresmay deviate
significantly from the anticipated values). Finally, although
the processor allocation is also performed locally for MIN-

TIME, the effect of increasing � is similar to that of increasing
P (or the opposite to that of increasing n): when there are
more failures, we spend more time processing few large jobs
that fail a lot, meaning that after some time only very few
jobs are not finished yet. This effectively increases the total
number of processors for these jobs or reduces the total num-
ber of jobs.

5.4 Summary of Results

Table 1 summarizes the makespan ratios of the four algo-
rithms over the entire set of experiments, in terms of both
average-case performance (expected ratio) and worst-case
performance (maximum ratio). Overall, the results confirm
the efficiency of our two resilient scheduling algorithms
(LPA and BATCH), which outperform the baseline heuristics
(MINTIME and MINAREA) in all settings. For the simplest roof-
line model, LPA is equivalent to MINTIME, both achieving a
makespan very close to the lower bound (with a ratio
around 1.06 on average). For the other models, we can
observe significant performance difference between our
best algorithm and the baseline. In particular, LPA achieves
good performance with an expected ratio around 1.3 for the
communication model, and an expected ratio less than 2 for
the other models. We also notice that the maximum ratios
are only slightly larger than the ones in the average case,
and they remain much lower than those predicted by the
theoretical bounds (except for the power model where the
ratio is more than 9). BATCH also achieves excellent results

thanks to its coordinated processor allocation and failure
handling ability. It achieves a better average ratio (less than
1.6) for all models, but has larger worst-case ratios com-
pared to LPA (except for the power model). On the other
hand, the two baseline heuristics, although doing well in
some scenarios, tend to have more irregular performance
that depends on the model and parameter. In contrast, our
algorithms exhibit more robust performance under various
models and parameter settings.

6 CONCLUSION AND FUTURE WORK

In this paper, we have studied the problem of scheduling
moldable parallel jobs to cope with silent errors. We present
a formal model of the problem and design two resilient
scheduling algorithms (LPA and BATCH). While not knowing
the failure scenarios of the jobs in advance, LPA utilizes a deli-
cate local processor allocation strategy and BATCH extends
the notion of batches to coordinate the processor allocations.
Both algorithms use an extended LIST strategy with failure-
handling ability to schedule the jobs. On the theoretical side,
we derived new approximation results for both algorithms
under several classical speedup models. In particular, LPA is
shown to be a constant approximation for the rooflinemodel,
the communication model, the Amdahl’s model, as well as a
mix model. We also derived its approximation ratios for the
power model and general monotonic model. On the other
hand, BATCH achieves Qðlog 2fmaxÞ-approximation for arbi-
trary speedup models, where fmax is the maximum number
of failures of any job in a failure scenario. All of these results
are worst-case results: they hold for any failure scenario. We

Fig. 5. Impact of (a) number of processors P , (b) number of jobs n, and (c) error rate � on the performance of the algorithms for themixmodel.

TABLE 1
Summary of the Performance for the Four Algorithms (With LPT Priority Rule) Under the Six Speedup Models

Speedup Model Roofline Communication Amdahl Mix-low-com Mix Power

LPA
Expected 1.057 1.312 1.961 1.896 1.867 1.861
Maximum 1.219 2.241 2.349 1.987 1.995 9.655

BATCH
Expected 1.158 1.434 1.529 1.548 1.571 1.549
Maximum 1.999 2.449 2.874 3.674 4.164 3.975

MINTIME
Expected 1.057 2.044 15.567 2.810 2.704 20.386
Maximum 1.219 2.666 49.795 12.611 27.174 61.726

MINAREA
Expected 114.079 122.199 23.594 16.875 9.686 2.571
Maximum 1217.13 871.38 199.572 259.163 120.9 27.109
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also derived anvð1Þ lower bound on the average-case perfor-
mance of BATCH. Extensive simulations show good perfor-
mance of the two proposed algorithms compared to some
baseline heuristics, demonstrating their practical usefulness
and robustness under common job speedups and parameter
settings.

Future work will be devoted to the investigation of alter-
native failure models, such as fail-stop errors (as opposed to
silent errors) or schedule-dependent failure probabilities
(that depend on the number of processors allocated to a job,
and hence on its area). One may also consider checkpointing
and rollback recovery for long-running jobs to avoid re-exe-
cuting a failed job from scratch. On the practical side, we
seek to validate the performance of our algorithms by evalu-
ating them using datasets extracted from job execution logs
with realistic speedup profiles and failure traces.
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