
Dynamic Resource Management for Cloud-native
Bulk Synchronous Parallel Applications

Evan Wang, Yogesh Barve, Aniruddha Gokhale
Dept of CS, Vanderbilt University

Nashville, TN, USA
evan618@gmail.com,{yogesh.d.barve,a.gokhale}@vanderbilt.edu

Hongyang Sun
Dept of EECS, University of Kansas

Lawrence, KS, USA
hongyang.sun@ku.edu

Abstract—Many traditional high-performance computing ap-
plications including those that follow the Bulk Synchronous
Parallel (BSP) communication paradigm are increasingly being
deployed in cloud-native virtualized and multi-tenant container
clusters. However, such a shared, virtualized platform limits the
degree of control that BSP applications can have in effectively
allocating resources. This can adversely impact their performance,
particularly when stragglers manifest in individual BSP supersteps.
Existing BSP resource management solutions assume the same
execution time for individual tasks at every superstep, which is
not always the case. To address these limitations, we present a
dynamic resource management middleware for cloud-native BSP
applications comprising a heuristics algorithm that determines
effective resource configurations across multiple supersteps while
considering dynamic workloads per superstep, and trading off
performance improvements with reconfiguration costs. Moreover,
we design dynamic programming and reinforcement learning
approaches that can be used as pluggable strategies to determine
whether and when to enforce a reconfiguration. Empirical evalua-
tions of our solution show between 10% and 25% improvement in
performance over a baseline static approach even in the presence
of reconfiguration penalty.

Index Terms—Bulk Synchronous Parallel jobs, Resource man-
agement, Cloud-native, workload forecasting

I. INTRODUCTION

In the Bulk Synchronous Parallel (BSP) model [1] [2], work
is accomplished in parallel by multiple distributed tasks (e.g.,
threads, processes, containers), but where the computation
results per task must be synchronized periodically in what are
known as supersteps. Examples include Google’s Pregel [3]
and digital twins, which involve interacting co-simulations [4].

One challenge for BSP applications is to determine the right
resource configuration, i.e., a partition of the available resources
among all the tasks. Such a resource configuration is then used
to gang-schedule [5] the tasks onto the computing resources.
Although recent efforts address this problem [6], they make
the simplifying assumption that the workloads and execution
times of the tasks of a BSP application remain the same in
all the supersteps. Thus, a resource configuration is computed
only once and applied in every superstep thereafter.

This paper overcomes this significant limitation in the prior
work by considering dynamic BSP applications with different
workloads and execution times for individual tasks in successive
supersteps. Hence, each superstep may give rise to a different

straggler. Figure 1 illustrates the assumption made in the prior
work and the relaxation of this assumption in this work.

(a) Static BSP application (prior work)

(b) Dynamic BSP application (this research)

Figure 1: Examples of (a) a static BSP application vs. (b) a
dynamic BSP application.

The problem is further complicated by the fact that BSP ap-
plications are increasingly being transformed into cloud-native
environments for easy deployment in container clusters, such
as those managed using Kubernetes. This move to the cloud,
however, significantly hinders control over resource allocation
strategies that has hitherto been under user control when these
applications were hosted in controlled environments, such as
traditional high-performance clusters. The cloud, in contrast,
is a virtualized, shared environment where multi-tenancy is
common and hence, delivering predictable performance via
dynamic resource management is even more challenging.

To address these challenges, this paper describes a data-
driven approach that identifies effective resource configurations
for individual tasks of a BSP application to minimize both strag-
gler behavior and resource reconfiguration costs. It supports
a pluggable design where different reconfiguration planners
can be strategized with several examples of such strategies.
Empirical evaluations comparing our approach with a baseline
static approach show between 10% and 25% improvement in
performance over a baseline static approach [6] even in the
presence of reconfiguration penalty.

The rest of this paper is organized as follows: Section II
compares our work with relevant prior efforts; Section III
provides details of our approach; Section IV describes the
pluggable middleware design; Section V provides the empirical
evaluation results; and finally Section VI provides concluding
remarks alluding to limitations and future work.979-8-3503-3902-4/23/$31.00 ©2023 IEEE

II. RELATED WORK

We present a sampling of prior efforts related to our research
along the directions of resource configurations for cloud-based
BSP applications and model-based resource management.

A. Cloud-based Resource Configurations for BSP Jobs

In [7], the authors presented a Kubernetes co-simulation
platform for cloud computing environments but this work does
not use a gang-scheduling approach like we do. Authors of [8]
proposed a hierarchical virtual machine (VM)-based workload-
aware resource allocation for the federates of a simulation in
cloud data center. However, the workload characteristics of
the federates were restricted to single-threaded applications. A
recent effort [9] has similar objectives as ours. It supports high
performance applications with a dataflow architecture. The
authors define a novel modeling approach that incorporates
expected workloads, dataset sizes, resource scale-out impacts,
and execution runtimes to make decisions on resource config-
urations. The BSP model we use is not a dataflow, however,
our work can benefit from the additional parameters used by
these authors in constructing the models.

This paper overcomes the limitations in our prior work
on EXPPO [6], which assumes that tasks in each superstep
have the same workload and computation cost. This is a
significant limitation that we overcome with dynamic resource
management approaches.

B. Model-based Resource Management

A significant amount of literature exists that uses machine-
learned models of workload patterns or resource impact
on application performance to conduct dynamic resource
management. A common limitation in these works is that
none of them are tailored to address the dynamic resource
management of distributed and cloud-native BSP applications.

Our prior work in [10] presented a strategy for making
reconfiguration plans that minimize a given cost. Like our
prior work, our current work also uses time-series methods
to make predictions about future workloads. Based on these
predictions, prior work used a model-predictive approach based
on receding horizon [11] to identify the optimal configuration.

The authors of [12] proposed Ernest, which predicts the
performance of cloud-based applications for a given resource
type and accordingly chooses the optimal resource configu-
ration for the job. Such strategies can become part of future
considerations for our work. However, since our work relies on
the use of container clusters managed by Kubernetes, we are
oblivious to the underlying physical hardware. Thus, additional
efforts will be required to incorporate similar ideas.

III. METHODOLOGY

We define a four-step solution approach shown in Figure 2.
We use a mock BSP application created using synthetic datasets
to describe our approach.

We choose synthetic datasets for the purposes of illustrating
the approach and ease of reproducibility. Moreover, by showing
the approach on a single concrete BSP application would have

Figure 2: A Four-step Design Approach.

come across to the reader as not being generic but rather a point
solution. In practice, we expect BSP application developers to
provide the artifacts described below to our middleware prior
to actual deployment. The rest of this section explains the four
steps in detail.

A. Step 1: Workload Profiling

We profile each task of a BSP application for a variety of
resource configurations and workload sizes. This provides the
middleware information on how tasks perform with different
workload and resource allocation combinations, which in turn
is used to inform resource management decisions.

1) Benchmark Tasks and Profiling: To highlight the impacts
of resource allocation and workload size, we use eight synthetic
tasks from the stress-ng benchmarks [13] as shown in Table I.

Table I: The stress-ng Benchmarks used as BSP Tasks.

Task Name Description

affinity Rapidly change CPU Affinity

atomic Exercise GCC atomic *() built in
operations

bsearch Performs binary search on sorted array

cap Make calls to capget(2) system calls

chmod Change file mode bits of a single file
with chmod(2) and fchmod(2) system calls

memcpy Copy data from shared region to a buffer

vecmath Perform calculations on 128 bit vectors

zero Make reads on /dev/zero

Each task (synthetic or real) is profiled with different
CPU configurations: 1000M to 9000M CPU shares (with
500M increments). Here, 1000M CPU shares is equivalent to
1vCPU .1 We define the workload size of a task as an integer
between 10 and 50 (with an increment of 5), representing a
multiplier on the number of operations that task must execute.
Thus, a workload size of 50 means that a task must execute 5
times as many operations as a workload size of 10. For each
CPU configuration and workload size, the task is profiled a few
times in K8s pods and the average execution time is recorded.

2) Utilizing Benchmarking Results: The benchmarking
results reveal that larger workload sizes lead to higher durations,
while more CPU shares lead to lower durations. From this we

1Note that in this work we have shown the impact of CPU resources only
but the work can readily be extended to cover other resource types.

learn how a task responds to changes in CPU resources and
workload sizes. These insights are then used to train a model
for each task’s execution time, which in turn can predict task
performance given any combination of workload size and CPU
resources. For the model prediction logic, we have used the
SciPy interpolation libraries [14].

B. Step 2: Workload Forecasting

To proactively configure resources in a BSP application, we
also need to predict the task’s workload in future supersteps.
Thus, we need variable workload traces to mimic workloads
for our synthetic tasks. To that end, we have used time-series
datasets from the Numenta Anomaly Benchmark that model
fluctuations in workload sizes [15]. These datasets provide
real-world time-series variations that exhibit realistic trends
and patterns. Each of our eight synthetic tasks from Step 1 is
assigned a separate sequence of time-series data for simulating
changes in its workload. Every task also has its own time-series
model that trains on historical patterns from that task’s dataset.

1) Time-series Datasets: We use the following three time-
series datasets from the Numenta Anomaly Benchmark since
they illustrate variability in workload patterns.

• NYC Taxi: Number of passengers for NYC taxi cabs.
Data is recorded every 30 minutes.

• Ambient System Temperature Failure: The temperature
in an office where data is recorded hourly.

• Artificial Daily Small Noise: Artificially-generated
dataset which fluctuates daily with added noise.

Some of these datasets are split into multiple parts to be used
by different tasks. For instance, both nyc taxi 1 and nyc taxi 2
originate from the NYC Taxi dataset but come from disjoint
sections, and form individual datasets for different tasks. Each
task’s datasets has roughly 2,000 data points. Table II shows
the assignment of these datasets to the synthetic tasks.

Table II: Each Synthetic Task and its corresponding Time-series
Dataset used to model its Workload Fluctuations.

Task Name Time-Series Dataset

affinity nyc taxi 1

atomic nyc taxi 2

bsearch nyc taxi 3

cap nyc taxi 4

chmod art daily small noise

memcpy ambient temperature system failure 1

vecmath ambient temperature system failure 2

zero ambient temperature system failure 3

2) Forecasting Methodology: We use Long Short-Term
Memory (LSTM) neural networks from the Keras suite for
forecasting workloads from the provided time-series. For each
task, we process the corresponding dataset and train the model
using the following steps [16]:

1) Convert dataset into a sequence of differences, where each
value xi is converted into the difference with previous
value, i.e., yi = xi − xi−1.

2) Normalize all difference values yi’s between -1 and 1.
3) Split the dataset into two halves, with the first half used

for training and the second half for testing.
4) Convert training and test sets into supervised learning

datasets. For each yi in the sequence, create a mapping
that has yi as the input and (yi+1,, yi+s) as the output,
where s is the size of the forecasting window.

5) Train an LSTM model on the (input, output) pairs from
the supervised training set.

6) Make predictions on the supervised test set.
7) Invert the transformations in (1) and (2) to get predictions

for the actual dataset.
For every point in each dataset, we now have the predicted

values for the next s points, where s is the size of the forecasting
window and is configurable. Although a larger forecasting
window can provide more information, the prediction accuracy
will suffer. We use a maximum forecasting window of s = 20.

3) Forecasting Error: To convert our predictions into actual
workload sizes, we normalize them within our workload size
range of (10, 50). For each dataset and each look-ahead window
s from 1 to 20, we measure the forecasting error by calculating
the Root Mean Square Error (RMSE) between our predicted
value and the actual value s steps in the future. Figure 3 plots
the forecasting error for each dataset. As expected, the error
begins relatively low but increases when we attempt to predict
further into the future.

Figure 3: Forecasting Error for each Time-series Dataset with
different Look-ahead Windows.

C. Step 3: Resource Configuration over an N -step Horizon

At the start of every superstep, the middleware needs to
decide whether to keep the current configuration: keeping
it will preserve the existing containers in the next superstep,
however, performance may suffer if workloads change; whereas
changing it will require a new configuration. An exponential
number of ways to allocate resources among all tasks exist, so
an exhaustive search is infeasible. Note that reconfiguration
also incurs a cost as containers may need to be migrated and
their states need to be checkpointed.

If the middleware decides to keep a configuration for multiple
supersteps, it must optimize the configuration over that entire
timeframe, i.e., minimize the cumulative duration over all
these supersteps. An algorithm for creating such an optimal

resource configuration needs to take into account the workload
conditions at each superstep in that timeframe. Our algorithm
extends the static configuration approach from [6] and greedily
computes a resource configuration for dynamic workloads over
an N -step horizon, where N is a configurable parameter. Our
algorithm starts with the minimum amount of resources for
each task in a superstep. It then aggregates all tasks that are
predicted to be the slowest in a given superstep, and uses
a “what-if” analysis approach to determine the improvement
due to additional resources given to those tasks. We choose
the straggler with the largest improvement to give additional
resources. This process then repeats until there are no more
available resources left.

Our algorithm prioritizes performance improvements in
earlier supersteps over later ones in the future. Since the
forecasting error will become increasingly inaccurate for later
supersteps (as shown in Figure 3), this is accounted for by
applying a discount factor for “improvements” at each superstep.
We use an exponentially decaying discount factor of the form
discount(t) = 0.95t for each superstep t in the timeframe.

D. Step 4: Reconfiguration Decision Planner

While the previous step computes a resource configuration
for an N -step timeframe, changes in predicted workloads could
lead us to abandon the configuration earlier than anticipated.
Hence, a decision we must make before the start of each
superstep is whether to keep the current configuration or to
compute a new one using our algorithm. If the decision is to
compute a new one, then we need to determine for how much
duration should the configuration be optimized for.

Since the longest timeframe the middleware could keep a
configuration is s (the size of our forecasting window), there
are s+1 possible actions we can take. We define these actions
as {a0, a1, . . . , as}, where a0 denotes keeping the current
configuration and aj (1 ≤ j ≤ s) denotes creating a new
configuration optimized for the next j supersteps. We further
define a decision plan as a sequence of actions to take at
each superstep. Our middleware is designed to accept different
algorithms as pluggable decision planners.

IV. PLUGGABLE STRATEGIES FOR RESOURCE
RECONFIGURATION DECISION PLANNER

In this section we design three resource reconfiguration
strategies: a static strategy, a dynamic strategy (with a model
predictive control variation), and a reinforcement learning
strategy, which can be used as pluggable decision planners for
our middleware. Each strategy knows the predictions for the
tasks’ workloads (up to the next s = 20 supersteps), our current
resource configuration, and performance models for each task
of the BSP application. At each superstep, the strategy outputs
an action from {a0, a1, . . . , as}, which informs the system on
the planning of next resource configuration.

A. Static Window Strategy

Our first strategy, called the static window strategy, is a
naı̈ve approach that automatically updates the configuration

every K supersteps, where K ≤ s is the size of the static
window. The new configuration is optimized for the next K
supersteps and kept for exactly K supersteps. This means that
we take action ak every K supersteps and a0 (i.e., keep the
current configuration) the rest of the time. The optimal size
of the static window depends on the benefit of reconfiguration
compared to the checkpoint cost. High checkpoint costs bias
towards larger static windows, and vice versa.

B. Dynamic Strategies

Recall that at each superstep t, we have s + 1 possible
actions to take: either keep the current configuration (a0) or
create a new configuration for anywhere between a single
superstep (a1) and the end of the forecasting window (as). If
the BSP application consists of a large number of supersteps
in total, we will also have a large number of reconfiguration
plans to consider. To limit the search space, we first develop a
dynamic window strategy, in which we assume that if action
aj (where 1 ≤ j ≤ s) is taken, then we will always keep that
configuration for exactly j supersteps, i.e., action aj followed
by action a0 exactly j − 1 times. This is similar to the static
window strategy but the size of the configuration window is
dynamically computed. We then develop a Model Predictive
Control (MPC) variation, where a new configuration could be
computed at any superstep but with a smaller time horizon for
better predictive performance.

1) Dynamic Window Strategy: At any superstep t where a
new configuration is needed (e.g., at the start of the application
or when the existing configuration expires), the goal is to find
an action aj∗ , where 1 ≤ j∗ ≤ s, that minimizes the duration
of the application from step t to step t+ s− 1 (the end of the
forecasting window).

2) Model Predictive Control (MPC): The effectiveness
of the dynamic window strategy hinges on the optimality
of configurations generated by our algorithm. However, as
shown in Figure 3, the forecasting error increases as the time
horizon increases and hence the algorithm will not generate
optimal configurations for a given superstep. To address this
limitation, using MPC we consider a limited horizon where
the forecasting predictions have better accuracy. We select the
size of the horizon to be s′ = 10 supersteps. We then update
the configuration plan at each superstep of the application and
take the first action of the plan. We repeat this process at every
superstep until the end of the application.

C. Reinforcement Learning Strategy

If we have perfect knowledge of the future workloads, the
dynamic strategies above can be used to compute the entirety
of our configuration plan. However, it suffers from forecasting
errors, and even though MPC copes with forecasting errors
to some extent, it does not consider that predictions at some
supersteps can have higher errors than others, and thus does not
allow the model to learn from these forecasting errors. To that
end, we develop a reinforcement learning approach based Deep
Q-Learning. We use the execution time as the reward function,
and consider m look-ahead supersteps as the set of states and

{a0, a1, . . . , an} as the set of actions. We implemented this
approach using OpenAI Gym.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Our experimental setup uses four virtual machines that form
the nodes of our Kubernetes (K8s) cluster instantiated on a
powerful bare-metal instance of the Chameleon Cloud. The
K8s cluster specifications are shown in Table III.

Table III: Specifications of Experimental Kubernetes Cluster.

Kubernetes Cluster Specifications

Number of Nodes 4

CPU Cores per Node 10vCPU

Memory per Node 10GB

Operating System Ubuntu 20.04

Kubernetes Distribution Microk8s

The BSP tasks are run in K8s pods using custom Docker
containers. Resource requirements and benchmark-specific
parameters are specified in the job template. The BSP model
is realized using Apache ZooKeeper (ZK) [17], where the ZK
barrier is used for task synchronization between successive
supersteps. Workload sizes are passed to individual tasks using
ZK queues. Our reconfiguration strategies are tested on a
synthetic BSP application comprising eight tasks from Table I.

The BSP application is evaluated for 400 supersteps, where
task workloads are modeled using the datasets in Table II. The
checkpoint cost for these experiments is set to 15 seconds.

B. Evaluated Strategies

We evaluated the following strategies:

• EXPPO: This is the approach from [6], where task
workloads are assumed to be constant in each superstep.
We used the average workloads for each task to create
a configuration by EXPPO, which is then used at every
superstep of the execution. This strategy is used as the
baseline for performance comparison.

• Static Window (of size K): This is the static window
strategy (Section IV-A), where a new configuration is
created every K supersteps. In the experiment, we tested
static windows from size 1 to size 9.

• Dynamic MPC: This is the dynamic model predictive
control strategy (Section IV-B2) that uses a horizon of 10
supersteps. It always outperforms the dynamic window
strategy (Section IV-B1), so the plain dynamic strategy is
not evaluated in our experiments.

• Deep Q-Learning: This is the reinforcement learning
strategy (Section IV-C). We trained an agent with a set
of 4 actions {a0, a1, a2, a3} and a look-ahead window of
6 supersteps resulting in a Q-table with 4× 6 entries.

C. Results with Known Workloads

Since many strategies are influenced by forecasting errors,
we first evaluate them when future workloads in the forecasting
window are known (i.e., zero forecasting error). This is
produced by substituting the predicted workloads with the
real workloads and testing each strategy.

Figure 4 shows the execution times for the Static Window
and Dynamic MPC strategies in terms of their percentage
improvements over the EXPPO baseline, which takes approxi-
mately 65,126 seconds to complete the execution. The Deep
Q-Learning strategy is not evaluated here since it is specifically
designed to cope with forecasting errors. As expected, the
Static Window 1 strategy produces the best result (with ∼37%
improvement over EXPPO) when we do not account for any
checkpoint cost from reconfiguration. This is the strategy that
creates a new configuration at every superstep. Therefore, it is

Figure 4: Results for the Static Window and Dynamic MPC
strategies assuming perfect knowledge of future workloads. The
left Y-axis shows the percentage improvement in execution time
with and without checkpoint penalty over EXPPO (which takes
approximately 65,126 seconds), and the right Y-axis shows the
number of checkpoints.

also creating the most number of checkpoints, thus incurring
a high checkpoint penalty. As the window size increases, the
number of checkpoints reduces along with their cost, but at the
expense of sub-optimal configuration for each superstep. The
Dynamic MPC strategy performs the best when accounting for
checkpoint cost. It improves upon EXPPO by around 31% and
has an execution time that is 816 seconds faster than the best
Static Window strategy (with window size 2).

D. Results with Model Predictions

We then evaluate all the strategies using model predictions.
Each strategy now has to make decisions based on the
predicted workloads. The results displayed in Figure 5 showcase
how the strategies handle forecasting errors. Once again, all
strategies outperform the EXPPO strategy, which never adapts
the configuration. However, for the case when workloads
are predicted, the non-EXPPO strategies all perform worse
compared to their own performance when future workloads
are known. In this experiment, the Dynamic MPC strategy
improves upon EXPPO by around 24% and is 467 seconds

faster than the best Static Window strategy (with window size
3) when considering checkpoint cost. It also reconfigures more
often than in the previous experiment (194 vs. 132 times),
showing that it has to frequently abandon poor configurations
that result from inaccurate predictions.

Figure 5: Results for each strategy using forecasted future
workloads. The left Y-axis shows the percentage improvement
in execution time with and without checkpoint penalty over
EXPPO (which takes approximately 65,126 seconds), and the
right Y-axis shows the number of checkpoints.

The Deep Q-Learning strategy has the best performance with
24.4% improvement over EXPPO, is 159 seconds faster than
the dynamic MPC strategy and takes 40 fewer checkpoints
(194 vs. 154). The improvement likely stems from the shorter
prediction window (6 time steps) and the smaller set of
actions {a0, a1, a2, a3} used to train the reinforcement learning
strategy, which makes it less vulnerable to prediction errors.

E. Summary and Discussion

Overall, our experimental results show the benefit of adapting
resource configurations to workload fluctuations. All strategies
perform better than EXPPO, which keeps only a single
resource configuration. This improvement is more significant
when we have perfect knowledge of the future workloads. In
particular, the dynamic MPC strategy has the best performance
with this information. However, the benefit of the dynamic
strategy is reduced when decisions are made based on less
accurate predictions. When the prediction uncertainty is high,
reinforcement learning becomes an attractive choice. Finally,
we point out that, when using the dynamic strategy, one must
also consider the overhead of the algorithm itself. For long-
running applications, the algorithm will likely provide more
significant performance benefits. However, for short-running
applications, the overhead associated with the algorithm may
outweigh the performance gains it provides.

VI. CONCLUSIONS

This paper presents a dynamic resource management mid-
dleware for cloud-native Bulk Synchronous Parallel (BSP)
applications, where individual tasks of the BSP application may
become stragglers in individual supersteps owing to imperfect
allocation of resources in a multi-tenant shared environment
and differing workload size/computations of these tasks.

The presented approach comprises a four-step resource
management process that alleviates the straggler problem while
being aware of reconfiguration costs. Empirical results evalu-
ating our solution show between 10% and 25% improvement
in performance over a baseline static approach [6] even in the
presence of reconfiguration/checkpointing penalty.

The software artifacts in this work are available at github.
com/doc-vu/Kube Gang Scheduling.

REFERENCES

[1] L. G. Valiant, “A Bridging Model for Parallel Computation,” Communi-
cations of the ACM, vol. 33, no. 8, pp. 103–111, 1990.

[2] T. Cheatham, A. Fahmy, D. Stefanescu, and L. Valiant, “Bulk Syn-
chronous Parallel Computing - A Paradigm for Transportable Software,”
in Tools and Environments for Parallel and Distributed Systems. Springer,
1996, pp. 61–76.

[3] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: A System for Large-scale Graph Processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, 2010, pp. 135–146.

[4] K. N. Amponsah, “A Framework for Evaluating the Impact of Commu-
nication on Performance in Large-scale Distributed Urban Simulations,”
Ph.D. dissertation, University of Nottingham, 2021.

[5] D. G. Feitelson and L. Rudolph, “Parallel Job Scheduling: Issues and
Approaches,” in Workshop on Job Scheduling Strategies for Parallel
Processing. Springer, 1995, pp. 1–18.

[6] Y. D. Barve, H. Neema, Z. Kang, H. Vardhan, H. Sun, and A. Gokhale,
“EXPPO: EXecution Performance Profiling and Optimization for CPS
Co-simulation-as-a-Service,” Journal of Systems Architecture, vol. 118,
p. 102189, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S138376212100134X

[7] K. Rehman, O. Kipouridis, S. Karnouskos, O. Frendo, H. Dickel, J. Lipps,
and N. Verzano, “A Cloud-based Development Environment using
HLA and Kubernetes for the Co-simulation of a Corporate Electric
Vehicle Fleet,” in 2019 IEEE/SICE International Symposium on System
Integration (SII). IEEE, 2019, pp. 47–54.

[8] Z. Li, X. Li, L. Wang, and W. Cai, “Hierarchical resource management
for enhancing performance of large-scale simulations on data centers,”
in Proceedings of the 2nd ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation. ACM, 2014, pp. 187–196.

[9] D. Scheinert, L. Thamsen, H. Zhu, J. Will, A. Acker, T. Wittkopp, and
O. Kao, “Bellamy: Reusing performance models for distributed dataflow
jobs across contexts,” in 2021 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 2021, pp. 261–270.

[10] N. Roy, A. Dubey, and A. Gokhale, “Efficient Autoscaling in the
Cloud Using Predictive Models for Workload Forecasting,” in IEEE
4th International Conference on Cloud Computing, 2011, pp. 500–507.

[11] S. Abdelwahed, N. Kandasamy, and S. Neema, “A control-based frame-
work for self-managing distributed computing systems,” in Proceedings of
the 1st ACM SIGSOFT Workshop on Self-Managed Systems, ser. WOSS
’04. New York, NY, USA: ACM, 2004, p. 3–7.

[12] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica,
“Ernest: Efficient Performance Prediction for {Large-Scale} Advanced
Analytics,” in 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16), 2016, pp. 363–378.

[13] C. I. King, “Stress-ng,” URL: http://kernel.ubuntu.com/git/cking/stressng-
.git/, 2017.

[14] P. Virtanen, R. Gommers, et al, and SciPy 1.0 Contributors, “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,” Nature
Methods, vol. 17, pp. 261–272, 2020.

[15] A. Lavin and S. Ahmad, “Evaluating Real-time Anomaly Detection
Algorithms–The Numenta Anomaly Benchmark,” in IEEE 14th Inter-
national Conference on Machine Learning and Applications (ICMLA).
IEEE, 2015, pp. 38–44.

[16] J. Brownlee, “Multistep Time Series Forecasting with
LSTMs in Python,” https://machinelearningmastery.com/
multi-step-time-series-forecasting-long-short-term-memory-networks-python/,
2017.

[17] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-Free
Coordination for Internet-Scale Systems,” in Proceedings of the USENIX
Annual Technical Conference. USA: USENIX, 2010, p. 11.

