
A knowledge-driven approach to multi-objective IoT task graph scheduling
in fog-cloud computing

Hadi Gholami , Hongyang Sun *

Department of EECS, University of Kansas, Lawrence, KS, USA

A R T I C L E I N F O

Keywords:
Cloud computing
Fog computing
Genetic algorithm
Multi-objective optimization
Random forest
Task graph scheduling

A B S T R A C T

Despite the significant growth of Internet of Things (IoT), there are prominent limitations of this emerging
technology, such as limited processing power and storage. Along with the expansion of IoT networks, the fog-
cloud computing paradigm has been developed to optimize the provision of services to IoT users by off
loading computations to the more powerful processing resources. In this paper, with the aim of optimizing
multiple objectives of makespan, energy consumption, and cost, we develop a novel automatic three-module
algorithm to schedule multiple task graphs offloaded from IoT devices to the fog-cloud environment. Our al
gorithm combines the Genetic Algorithm (GA) and the Random Forest (RF) classifier, which we call Hybrid GA-
RF (HGARF). Each of the three modules has a responsibility and they are repeated sequentially to extract
knowledge from the solution space in the form of IF-THEN rules. The first module is responsible for generating
solutions for the training set using a GA. Here, we introduce a chromosome encoding method and a crossover
operator to create diversity for multiple task graphs. By expressing a concept called bottleneck and two condi
tions, we also develop a mutation operator to identify and reduce the workload of certain processing centers. The
second module aims at generating rules from the solutions of the training set, and to that end employs an RF
classifier. Here, in addition to proposing features to construct decision trees, we develop a format for extracting
and recording IF-THEN rules. The third module checks the quality of the generated rules and refines them by
predicting the processing resources as well as removing less important rules from the rule set. Finally, the
developed HGARF algorithm automatically determines its termination condition based on the quality of the
provided solutions. Experimental results demonstrate that our method effectively improves the objective func
tions in large-size task graphs by up to 13.24 % compared to some state-of-the-art methods.

1. Introduction

The Internet of Things (IoT) ecosystem is becoming ubiquitous with
the increasing developments of web-based smart device sensors and
communication hardware to collect, process and send data. By bringing
the ability to access data and information in any place at any time, IoT is
helping to manage people’s lives and work in an unprecedented way.
Moreover, by serving requests automatically, it has also improved the
quality of business and services and reduced the need for human inter
vention. Therefore, IoT is increasingly being used with massive amounts
of diverse data generated by millions of users [1]. One type of data
generated by IoT users is graph data, which has a wide range of appli
cations in scientific fields (i.e., bioinformatics, physics, and earth
quakes) and smart cities. Task graph applications, which consist of a set
of tasks with edges that show the dependency (i.e., data flow) between

them, are typically described as Directed Acyclic Graphs (DAGs) [2].
The increased rate of data generation by IoT users, especially in task
graph applications with concurrent structure, poses a challenge for data
management and processing. Considering the limitations of IoT devices
in their processing power, storage, and energy, offloading requests to
cloud computing environment is often carried out to meet the Quality of
Service (QoS) requirement.

Cloud computing with a centralized processing paradigm has high
processing and storage capacity, which utilizes large Data Centers (DCs)
to provide IoT users with ubiquitous access for resource sharing and
supply [3]. Although virtualization mechanism in the cloud results in
the support of IoT development, the concentration of resources in cloud
environments causes the division of resources among IoT users and the
cloud, which entails network delay [4]. Delay degrades the QoS and is
detrimental to location-aware and delay-sensitive tasks (e.g., medical

* Corresponding author.
E-mail addresses: hadi.gholami@ku.edu (H. Gholami), hongyang.sun@ku.edu (H. Sun).

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

https://doi.org/10.1016/j.jpdc.2025.105069
Received 16 February 2024; Received in revised form 4 October 2024; Accepted 17 March 2025

Journal of Parallel and Distributed Computing 202 (2025) 105069

Available online 18 March 2025
0743-7315/© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://orcid.org/0000-0003-4515-9384
https://orcid.org/0000-0003-4515-9384
https://orcid.org/0000-0002-4379-4467
https://orcid.org/0000-0002-4379-4467
mailto:hadi.gholami@ku.edu
mailto:hongyang.sun@ku.edu
www.sciencedirect.com/science/journal/07437315
https://www.elsevier.com/locate/jpdc
https://doi.org/10.1016/j.jpdc.2025.105069
https://doi.org/10.1016/j.jpdc.2025.105069
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2025.105069&domain=pdf
http://creativecommons.org/licenses/by/4.0/

activities) [5]. While delay-tolerant tasks can be processed in the cloud,
high bandwidth and unreliable and inconsistent network access are
other challenges of this technology. Therefore, recent years have wit
nessed fog computing as a way to enhance the QoS and the processing
capacity of IoT requests. With Micro Data Centers (MDCs) that possess
moderate processing capability, the fog has a decentralized structure,
and its resources are abundantly available geographically to serve local
requests in their regions. Owing to its hardware that occupies smaller
space, the fog is closer to IoT devices and accelerates data aggregation,
processing, and storage. As such, the fog contributes to reducing the
time required for requests to reach resources, thereby increasing
response time [6]. It is evident that a combination of cloud and fog
technology, or the so-called fog-cloud computing, can respond to a
massive flow of requests generated by IoT devices and end-users.
However, deciding on the distribution of requests among processing
stations in the cloud or fog and scheduling resources effectively remain
difficult tasks.

From the perspective of fog-cloud providers, minimizing the energy
consumption of MDCs/DCs (from processors, cooling systems, power
supply systems, etc.) is also important, because failure to manage this
leads to increased financial costs and reduced profits. While hardware-
based techniques such as Dynamic Power Management (DPM) [7] and
Dynamic Voltage and Frequency Scaling (DVFS) [8] have been pre
sented for energy efficiency, studies on the development of
software-based methods such as scheduling algorithms have also been
shown as effective solutions. From the perspective of IoT users, mini
mizing the economic cost is one of their preferences too. Although IoT
users benefit from the processing, storage and communication capabil
ities of the fog-cloud, the cost-effectiveness of this offloading should be
carefully considered. Thus, leveraging fog-cloud processing capabilities
to reduce processing time needs to be balanced with the offloading costs;
logically, using services offered by more advanced equipment leads to an
increase in cost but a decrease in execution time, and vice versa. There is
a need for a good trade-off between the cost for the use of fog-cloud
resources and the application execution time.

Thus, an efficient scheduler should propose a suitable solution
considering the objectives of both fog-cloud providers and IoT users. In
addition, the scheduler’s performance becomes more prominent when it
receives multiple task graphs from multiple IoT devices per its sched
uling time slot. Although different prioritization policies can be adopted,
these policies alone cannot be a solution when facing multiple large-
scale task graphs. Hence, batch placement of task graphs is another
issue that affects the performance of the scheduler to improve the
objective functions. To achieve the goal of developing a good scheduling
solution, we argue that it is necessary to consider the following three
aspects.

The first aspect is considering the required arrangements for
learning-based methods. The use of intelligent planning in scheduling
problems has become widespread due to the ability to deduce rules via
the exploration and exploitation process [9]. In particular, the current
trend toward task graph offloading for IoT devices has led to increasing
employment of learning-based algorithms in the fog-cloud environments
[10–12]. While machine learning algorithms with their continuous re
finements can lead to increased accuracy and efficiency in
decision-making, it should be noted that they as data-driven models are
designed to address low-complexity and high-uncertainty problems
[13]. Although the high-uncertainty aspect includes the current state of
this problem, it should be kept in mind that the problem is NP-hard and
inherently of high-complexity [14]. Therefore, it is necessary to use a
method that, in addition to decentralizing the presentation of the solu
tion in the problem space, extracts rules so that better solutions can be
predicted by delving into the rules. In other words, since fog-cloud
providers have MDCs/DCs with different characteristics and at a dis
tance from each other, adopting a single rule for all MDCs/DCs may not
be suitable; rules are needed to take into account different conditions.

The second aspect is on the design of an efficient method for

allocating resources. Developing a method for task graph scheduling
often involves two phases: Task Prioritizing Phase (TPP) and Processor
Selection Phase (PSP) [15]. In TPP, tasks are prioritized based on their
significance, and in PSP, tasks are assigned to MDCs/DCs based on rules.
For TPP, many algorithms have been presented in the literature, among
which intelligent algorithms have been particularly helpful for better
understanding the problem space and providing efficient solutions [16].
Unlike TPP, fewer algorithms have been developed for PSP. Well-known
algorithms developed for this phase include Earliest Finish Time (EFT)
[17], which uses a greedy strategy to allocate processors, and Looking
Ahead Sequencing Algorithm (LASA) [18], which has a stochastic
structure to allocate processors based on a limited-lookahead rule. In the
literature [19–22], most algorithms have used the described near-sight
structures that significantly limit their capabilities. Therefore, the
need to develop far-sighted algorithms is imminent. Such algorithms
should be able to propose processors for allocation by considering the
position of a task among the tasks of a level in a graph, which in the
future will lead to the improvement of the objective functions. However,
providing an intelligent method that monitors the status of the tasks in
both phases and at the same time offers an effective solution is difficult.
It should be kept in mind that monitoring requires features that must be
carefully selected so that they have a complete representation of the
problem space and tasks. These features should strike a proper balance
between objectives that may conflict with each other (e.g., time and
cost). Similarly, there is a trade-off between cost and energy consump
tion [23]. Therefore, it is important to determine the features that can
help optimize the objectives of the problem.

The third aspect is the purposeful usage of the solutions generated by
meta-heuristic algorithms. In the literature, many meta-heuristics have
been developed for this group of NP-hard problems [20,24,25]. In each
iteration of these meta-heuristics, useful information is produced.
Although there are different selection operations in combination with
different approaches, the operators use only part of the information and
other useful information is wasted. This calls for methods that can
provide high-quality results by better extracting knowledge from his
torical information.

Motivated by the need to provide an intelligent solution from the
three aspects above in order to optimize energy consumption, time, and
economic cost as the objectives of the two agents in IoT and fog-cloud
computing (i.e., users and service providers), this paper studies the
problem of scheduling and offloading multiple task graphs between IoT
devices and fog-cloud. The main contributions of the paper are as
follows:

• We design a novel automatic three-module algorithm for knowledge
acquisition and resource allocation in PSP by using Genetic Algo
rithm (GA) and Random Forest (RF) classifier as the supervised
machine learning techniques.

• We present a new GA algorithm by proposing a crossover operator to
diversify the promising solutions in TPP for multiple IoT task graphs.
Moreover, by defining a concept called bottleneck, a new mutator is
developed in PSP to reduce the workload of MDCs/DCs by consid
ering two conditions.

• We present and characterize the features for an IF-THEN rule format
to place multiple IoT task graph applications in MDCs/DCs by an RF
ensemble learning algorithm.

• We develop a method to refine the rules that play less role in
improving the solution. In addition, a method to automatically adjust
the maximum number of iterations based on the quality of the pro
vided solutions without human intervention is proposed.

• We conduct intensive experiments to illustrate the accuracy of the
proposed classifier and verify the efficiency of the proposed solution.
The results demonstrate that the proposed algorithm outperforms
other state-of-the-art algorithms.

The remainder of the paper is organized as follows: the next section

H. Gholami and H. Sun Journal of Parallel and Distributed Computing 202 (2025) 105069

2

reviews the related works. Section 3 describes the system model and
problem formulations. The presented three-module method is explained
in Section 4. Section 5 evaluates the performance of the presented
method and compares it with the state-of-the-art algorithms. Section 6
summarizes the whole paper and suggests topics for future works.

2. Related works

This section briefly reviews some existing task scheduling algorithms
applied in fog and cloud systems. The algorithms studied here are
divided into three categories: meta-heuristic-based algorithms for multi-
objective optimization, knowledge-based algorithms, and algorithms
developed to improve the objective function in PSP. The end of this
section provides a brief summary to the reviewed papers.

2.1. Meta-heuristic-based algorithms

In the literature, evolutionary optimization algorithms have been
employed to find near-optimal solutions in fog-cloud computing envi
ronments to multi-objective task graph scheduling. Among nature-
inspired algorithms, GA-based algorithms have been often used. The
study in [26] proposed a Multi-Objective Genetic Algorithm (MOGA) to
solve task graph scheduling in cloud environment. The optimization
objective was to minimize makespan and energy consumption under the
deadline constraint. They introduced a gap search algorithm as a
neighborhood search to maximize the utilization of the resources. In
[24], the authors investigated the task graph scheduling problem in a
heterogeneous computing environment and developed a GA to optimize
the energy consumption and execution time of the IoT devices. To
maximize the number of tasks in parallel execution, they introduced a
dynamic and lightweight pre-scheduling technique. The authors of [20]
considered a three-layer system in which the cloud layer includes
high-performance systems. Then, they developed a GA-based algorithm
called Energy-efficient Makespan Cost-aware Scheduling (EMCS) that
could efficiently balance the workload between the fog layer and the
cloud layer to achieve good performance in terms of energy consump
tion, execution time, and cost. The study in [27] targeted the minimi
zation of cost, makespan, and energy consumption under the given
deadline and budget constraints by developing a hybrid Non-dominated
Sorting Genetic Algorithm II (NSGA-II)-Owl Search Algorithm (OSA)
algorithm. It introduced a hierarchical evolving method to ensure suit
able exploration and exploitation and a chaotic operator as a local
search method. Karimi et al. [21] developed an NSGA-II to reduce en
ergy consumption and makespan. They introduced an intelligent
semi-greedy algorithm to generate an efficient initial population and
used the weighted sum method for PSP. Like the previous work, Xia et al.
[22] also developed a heuristic for the initial population, showing that
the initial solution effectively improves the two objective functions of
makespan and energy consumption in their designed Adaptive Evolu
tionary Scheduling Algorithm (AESA). The approach in [28] uses a
Particle Swarm Optimization (PSO) algorithm to propose a strategy for
preventing premature convergence. The study, by using multiple
swarms of different species of particles, could optimize four objectives of
energy, makespan, cost, and load balancing for fog and cloud tiers.
Khaledian et al. [19] developed an Improved Krill Herd (IKH)
meta-heuristic algorithm, which optimized energy consumption,
makespan, and cost. The meta-heuristic algorithm uses the dynamic
frequency scaling search method in the initial population section to
achieve fast convergence. To optimize the three objective functions of
total tardiness, energy consumption, and cost, the authors of [29]
employed a Multi-objective Salp Swarm Algorithm (MSSA) to explore
the Pareto solutions and a local search method based on Iterative Greedy
Algorithm (IGA) to refine the found solutions. In summary, in the pre
sented papers, in addition to the techniques considered in the problem
space, the changes applied in the specific operators of the algorithms or
new neighborhood searches were introduced as contributions. However,

in each iteration of these meta-heuristic algorithms, different solutions
are produced, but it is not using past valuable experiences obtained in
previous iterations, which is considered as a gap in the mentioned
algorithms.

2.2. Knowledge-based algorithms

In order to benefit from past information, a learning schema by using
the algorithm of learning automata was presented in [30] for task graph
scheduling. The schema learns the optimal action through past experi
ences by a GA-based exploration method and repeats interactions with
the environment. The work in [15] developed a three-step learning-
based approach to scheduling IoT task graph applications. After explo
ration and recording the experiences in the first step, the second step
uses a method to learn from the experiences and suggests solutions by
interacting with the search space. The learning-based approach im
proves the solution in both TPP and PSP. To schedule IoT devices re
quests, the authors of [31] proposed a data mining-based algorithm. The
algorithm employs several meta-heuristics and after the training phase
and testing phase, it decides on which meta-heuristic to use to optimize
the objectives in the scheduler. Using the combination of a variant of the
subset sum problem and a k-means clustering technique, a two-phase
task graph scheduling algorithm for dynamic resource provision in
cloud environment is proposed in [32]. The study considered a
centralized data recovery model for data transferring when a processing
unit fails during a task execution. The evaluation results by considering
the deadline constraint showed the effectiveness of the proposed algo
rithm over two other algorithms. In [33], Abbasi et al. improved
Learning Classifier Systems (LCS) by introducing an intelligent Extended
Classifier System (XCS) to find an optimal state for workload balancing
in fog computing. They used a GA to search in the state set and a rein
forcement algorithm for selecting the best state. In addition, they pre
sented a classifier to avoid the random selection of actions by storing the
sequence of the input conditions of the system. A two-stage approach to
predict the task execution time was developed in [34]. The first stage
uses an ensemble learning algorithm to learn information about the
tasks and the environment, while the second stage predicts the final
execution time. The study in [35] developed a two-stage scheduling
approach called Parallel Reinforcement Learning Caledonian Crow
(PRLCC) by considering the New Caledonian Crow Learning Algorithm
(NCCLA)’s social and asocial learning behavior to create a global opti
mization algorithm. The capabilities of Q-learning algorithm in knowl
edge extraction and parallel computations in searching different
directions of the problem space are also used. To reduce the task graph
execution cost and execution time, Li et al. [10] presented a
Knowledge-based Multi-Objective Estimation of Distribution Algorithm
(KMOEDA) where four attributes of initial solutions, global search
strategy, reliability-aware search strategy, and elite enhancement
strategy showed its superior performance over other algorithms. The
study in [11] suggested a Weighted Double Deep Q-Network-based
Reinforcement Learning algorithm (WDDQN-RL) to minimize the
makespan and cost. In order to improve the accuracy of the target value
estimation in the WDDQN part, the authors introduced a dynamic
coefficient-based adaptive balancing method. In addition, a dynamic
sensing mechanism was presented for increasing the diversity of solu
tions. Dong et al. [12] introduced an actor-critic architecture to solve
task graph scheduling achieving the makespan minimization. The ar
chitecture employed a Pointer network which consists of two Recurrent
Neural Network (RNN) in TPP to extract the relevant information. The
simulation experiment indicates the efficiency of the desired structure.
However, most algorithms in this field have at least one of the following
three limitations: (1) PSP was not considered, or even if it was consid
ered, simple greedy-based heuristic algorithms like EFT were used; (2)
no attention has been paid to refining the knowledge that prevents the
algorithms from reaching optimal/near-optimal solutions; (3) the
gained knowledge is only used in a limited time period, and is

H. Gholami and H. Sun Journal of Parallel and Distributed Computing 202 (2025) 105069

3

completely replaced by new knowledge in later periods.

2.3. Algorithms to enhance PSP

Some research papers suggest that approaches other than the greedy-
based method of EFT [17] in PSP can show better performance. The
authors in [18] presented a concept called Emphasized Processor (EP) in
a heterogeneous distributed computing system to minimize the make
span of a task graph application. They state that although EFT is
considered to be an effective method, there is no foresight in it. It was
stated that, as the number of tasks of a level increases, EFT directs and
focuses tasks on specific processors. In this way, they added the property
EP to some tasks and added a processor ID to EP in TPP. This means that
in PSP, that task does not follow EFT and is processed on a processor
whose ID exists in EP. Although they showed that considering the EP
property for some tasks leads to an improvement in makespan, for which
task should EP be considered is an input parameter of the algorithm,
thus a human expert is still needed. The work in [15] used the weighted
sum method to select a suitable VM in cloud to assign a task to a VM in
order to optimize the two objectives of energy consumption and
makespan in PSP. After calculating the weighted sum for the available
VMs, they are sorted in ascending order in a queue based on the result of
the calculation. Then, it assigns a task to one of the three first VMs in the
queue using a probability-based rule. They also used EP in their pro
posed method, but a learning-based method is used to determine which
VM should a task be assigned to in PSP. An approach based on the A*
search technique was presented in [36]. The proposed A*-based method
demonstrated its efficiency in a competitive experiment. The authors of
[37] suggested the Jordan Normal Form (JNF) for trainable parameter
matrix following the Frobenius norm to Deep Kronecker Neural Network
(DKNN) so that a hybrid JNF-DKNN algorithm could effectively monitor
the available resources. They showed that monitoring can provide
valuable insight that can dramatically improve performance. However,
these efforts made to get rid of myopia in PSP have not led to the desired
success in providing realistic far-sighted solutions.

2.4. Motivation of this paper

The literature review shows that many studies have been conducted
in each aspect of the knowledge extraction, meta-heuristic-based

methods development, and PSP, along with their limitations. In this
paper, we consider all these aspects to present a holistic method. Our
study provides a way to use the information produced in each iteration
of a meta-heuristic as knowledge and improves decision-making in PSP
for processor allocation by applying the knowledge. Furthermore, the
developed algorithm can decide when to terminate by examining the
generated solutions. Table 1 identifies the key elements of some most
related works and compares them with our study.

3. System model and problem statement

In this section, we first explain the proposed architecture in the task
scheduling process and then describe the task graph application model.
We finally present a formal problem statement for the task scheduling
problem. A list of key notations used in this paper along with their de
scriptions is given in Table 2.

3.1. System architecture

We consider an architecture with multiple IoT devices, multiple Fog
Nodes (FNs), and multiple Cloud Nodes (CNs). The architecture is a
distributed computing platform that executes large-scale offloaded IoT
applications with collaboration between FNs and CNs. An overview of
our system model is shown in Fig. 1.

Table 1
Comparative analysis of related works.

Reference Application Properties Architectural Properties Solution Properties

Dependency
Mode

Batch
Placement

Fog
Number

Cloud
Number

Objective
Function
Number

Multi-objective
Optimization Method

Knowledge
Acquisition

Foresight in
PSP

Automated
Termination

[10] Dependent No Not Seen Single Bi-Objective Pareto Front Yes No No
[11] Dependent Yes Not Seen Single Bi-Objective Pareto Front Yes No No
[12] Dependent No Not Seen Single Single objective Weighted Sum Yes No No
[15] Dependent No Not Seen Single Bi-Objective Pareto Front Yes Yes No
[19] Dependent No Multiple Single Multi-objective Weighted Sum No No No
[20] Dependent No Multiple Single Multi-objective Weighted Sum No No No
[21] Dependent No Multiple Multiple Bi-Objective Pareto Front No No No
[22] Dependent No Not Seen Single Bi-Objective Pareto Front No No No
[24] Dependent Yes Multiple Multiple Bi-Objective Weighted Sum No No No
[26] Dependent No Not Seen Single Bi-Objective Weighted Sum No No No
[27] Dependent Yes Not Seen Multiple Multi-objective Pareto Front No No No
[28] Dependent No Multiple Single Multi-objective Weighted Sum No No No
[29] Dependent Yes Not Seen Multiple Multi-objective Pareto Front No No No
[30] Dependent No Not Seen Single Single objective - Yes No No
[31] Independent No Multiple Single Multi-objective Weighted Sum Yes No No
[32] Dependent No Not Seen Single Single objective - Yes No No
[33] Independent No Multiple Single Single objective - Yes No No
[34] Dependent No Not Seen Single Single objective - Yes No No
[35] Independent No Not Seen Single Single objective - Yes No No
[37] Dependent No Not Seen Multiple Multi-objective Weighted Sum Yes Yes No
Ours Dependent Yes Multiple Multiple Multi-objective Weighted Sum Yes Yes Yes

Table 2
List of key notations used in the paper.

Notation Description

N Set of PCs
Ny,d A PC in N, where y denotes the PC type (y = 0 if the PC is a FN, y = 1 if

the PC is a CN), d is the index of the PC in the specified PC type
TGn A task graph with index n
Vn Set of concurrent tasks of TGn

vn,i The ith task in TGn

tcpvn,i
Computation time of task vn,i on a PC

qcp
vn,i

Energy consumption required to compute task vn,i on a PC
ccp

vn,i
Computation cost of the task vn,i on a PC

pred
(
vn,i

)
Set of immediate predecessors of task vn,i

AFT
(
vn,i

)
Actual finish time of task vn,i on a VM among all PCs

EFTVM
vn,i

Earliest finish time of task vn,i on a VM

H. Gholami and H. Sun Journal of Parallel and Distributed Computing 202 (2025) 105069

4

The architecture has three layers in a hierarchical network. The
bottom layer is the IoT layer that includes heterogeneous IoT devices
such as wearable devices, smart home sensors, smartphones, tablets,
thin-client, healthcare devices, etc. The middle layer represents the fog
environment. It comprises of a set of FNs that consist of devices such as
gateways, switches, and MDCs to provide services such as computing,
storage, and networking. Each MDC includes homogeneous processor
units (server processors or personal computers) in which there are
several cores to process assigned requests. The cores can be controlled
independently. Each FN includes a fog broker to handle the MDC utili
zation of the same FN. Also, fog brokers are close to the IoT devices to
receive their requests and dispatch them among FNs and CNs in the
network. Of course, if a fog broker corresponding to a FN sees that a
request cannot be serviced in its own MDCs, it assigns that request to a
suitable FN or CN. FNs in this layer are connected to the cloud layer to
benefit from the advantages that CNs offer to improve service to IoT
users. The upper layer represents the cloud computing layer, in which
there is a pool of resources. In each CN, there are DCs and a cloud broker.
Like fog brokers, cloud brokers are responsible for assigning requests to
DCs or fog brokers. In fact, we can consider a broker (cloud broker or fog
broker) as a scheduler and the duty of resource management is the re
sponsibility of the broker. DCs include server processors as processor
units. Both MDCs and DCs support DVFS. Since MDCs and DCs support
virtualization technique, VMs are responsible to provide various services
to the requests. In this study, we assumed that the number of VMs is
equal to the number of cores of a processing unit and each VM can be
assigned to one of the available cores in one time unit. So, brokers assign
the requests to VMs in MDCs/DCs.

In this system, we consider each DC or MDC as a Processing Center
(PC) and denote the set of PCs as N =

{
Ny,d}, where y ∈ {0, 1} denotes

the type of each PC, and d denotes the index of the PC in the specified PC
type. Specifically, y = 0 if the PC is a FN and y = 1 if the PC is a CN.
Thus, the set of PCs can also be represented as N =

{
N0,1,N0,2, …, N0,nf ,

N1,1,N1,2, …, N1,nc}, where nf denotes the number of FNs, and nc de
notes the number of CNs. We assume that nodes of the fog layer are
connected through a Local Area Network (LAN) and the connection of
CNs with themselves and with FNs is through a Wide Area Network
(WAN). In this case, the bandwidth of each link depends on which of the
two PCs in N it is connecting. It is worth noting that link failures are not
assumed in this study.

3.2. Task graph application model

Task graph applications are modeled in the form of DAGs. The nodes
of a DAG are concurrent and have inter-dependencies. Since more than
one task graph may be released by IoT devices at the IoT layer, we assign
an index to each task graph. The application sent by the nth IoT device
for processing is represented by a DAG TGn = (Vn, En), ∀n ∈ {1, 2, …,

ND}, where Vn = ∪
|Vn |
i=1 vn,i denotes the set of concurrent tasks, En =

{
en,i,j

⃒
⃒vn,i, vn,j ∈ Vn, i ∕= j

}
represents the set of directed edges between

tasks, and ND denotes the number of IoT devices. Here, en,i,j represents a
precedence constraint between two tasks vn,i and vn,j, where vn,i is the
immediate predecessor of vn,j, and vn,j is the immediate successor of vn,i.
A task vn,i may have more than one predecessor; in this case, pred

(
vn,i

)
=

{
vn,í ∈ Vn

⃒
⃒en,í ,i ∈ En

}
indicates the set of immediate predecessors of task

vn,i. Similarly, succ
(
vn,i

)
=

{
vn,í ∈ Vn

⃒
⃒en,i,í ∈ En

}
indicates the set of im

mediate successors of task vn,i. We call a task vn,i the start task if
pred

(
vn,i

)
= ∅ and denote it as vn,s and vn,í the end task if succ

(
vn,í

)
= ∅

and denote it as vn,e. Each task vn,i has an amount of work that must be
processed on the computing units which we denote as vw

n,i. Besides, the
non-negative weight of en,i,í that represents the data transferred from
task vn,i to task vn,í is denoted by ew

n,i,í . In TGn, a task vn,i cannot be
processed until the executions of all tasks in pred

(
vn,i

)
have been

completed and all associated data is transferred from pred
(
vn,i

)
to vn,i.

We assume that preemptions are not allowed during the execution of a
task and that the processing of a task continues from the time it starts
until it is completed.

In a DAG TGn, there may be more than one vn,s or vn,e. In this case, we
add two dummy tasks vn,sd and vn,ed to the graph as start task and end
task, respectively, and consider vw

n,sd = 0, vw
n,ed = 0, ew

n,sd,s = 0, ew
n,ed,e = 0.

We then redefine vn,s = vn,sd and vn,e = vn,ed, so that the graph will have
only one start task and one end task.

3.3. Problem statement

The problem of task graph scheduling in this study is to determine a
mapping from the set of tasks Vn ∈ TGn to the set of PCs N in order to
achieve certain optimization objectives. Different mappings will result
in different sequences and orders of execution of the tasks, thus
impacting the optimization objectives. In this paper, we study an opti
mization problem with the aim of simultaneously minimizing the
makespan, cost, and energy consumption of MDCs/DCs. The following
formulates each of these three objectives.

3.3.1. Makespan model
The goal of makespan optimization is to find a sequence of nodes in

Vn for processing on N such that the execution time between the start
time of vn,s and the completion time of vn,e is minimized. For this pur
pose, the total time between the Earliest Start Time (EST) of task vn,s and
the Actual Finish Time (AFT) of task vn,e should be calculated.

In TGn, the EST of a start task is equal to zero (ESTvn,s = 0). The EST of
a task vn,i on a VM (ESTvm

vn,i
) is when the execution of pred

(
vn,i

)
is

completed and all dependent data are transferred to the task, which is
defined by Eq. (1).

ESTvm
vn,i

= maxvn,j∈pred(vn,i)

{
AFT

(
vn,j

)
+ tcm

en,j,i

}
(1)

where AFT
(
vn,j

)
is a function that returns the actual finish time of task

vn,j among the VMs in all PCs and tcmen,j,i
is the communication time be

tween the pair of dependent tasks vn,j and vn,i, and it is calculated by Eq.
(2).

tcm
en,i,j

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if vn,j and vn,i are processed on the same MDC or DC

ew
n,j,i

bwLAN
if vn,j and vn,i are both processed on MDCs

ew
n,j,i

bwWAN
otherwise

(2)

where bwLAN and bwWAN denote the bandwidths of LAN and WAN,
respectively.

Moreover, the Actual Start Time (AST) of a task vn,i on a VM (ASTvm
vn,i

)

Fig. 1. Our system architecture.

H. Gholami and H. Sun Journal of Parallel and Distributed Computing 202 (2025) 105069

5

is calculated by Eq. (3).

ASTvm
vn,i

= max
{

availvm, ESTvm
vn,i

}
(3)

where availvm is the time that vm has finished processing the previous
assigned task on it and is ready to start the execution of task vn,i. The
Earliest Finish Time (EFT) of task vn,i on a VM (EFTvm

vn,i
) is defined by Eq.

(4).

EFTvm
vn,i

= ASTvm
vn,i

+ tcp
vn,i

(4)

where tcp
vn,i is the computation time of task vn,i and is calculated based on

Eq. (5).

tcp
vn,i

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vw
n,i

cpuN0,d
if vn,i is processed on an MDC

vw
n,i

cpuN1,d
if vn,i is processed on a DC

(5)

In Eq. (5), cpuN0,d and cpuN1,d denote the computation power of the
MDCs and DCs, respectively. In this paper, we assume that DCs and
MDCs have different computation power, and that the computation
power of MDCs is less than that of the DCs.

Therefore, the overall execution time of TGn is defined as Eq. (6):

Tn = AFT
(
vn,e

)
(6)

3.3.2. Cost model
Like the execution time model, the cost of processing a DAG TGn also

includes two parts: the cost of computing the tasks by the PCs and the
cost of using the links to transfer the data between the PCs. The overall
cost of processing TGn is calculated by Eq. (7).

Cn = Ccp
TGn

+ Ccm
TGn

(7)

where Ccp
TGn

is the cost of computing all the tasks of the task graph TGn,
and Ccm

TGn
is the communication cost to transfer data from one PC to

another using the links between the PCs.
The computation cost depends on the processing cost of each Ny,d ∈

N and vw
n,i. Therefore, Ccp

TGn
is calculated by Eq. (8).

Ccp
TGn

=
∑

vn,i∈Vn
ccp

vn,i
(8)

Here, ccp
vn,i

is the computation cost of the task vn,i and is calculated as
Eq. (9).

ccp
vn,i

=

{
vw

n,i × cN0,d if vn,i is processed on an MDC
vw

n,i × cN1,d if vn,i is processed on a DC
(9)

where cN0,d and cN1,d are the cost for computing each unit of work of vn,i
on MDCs and DCs, respectively. In this paper, we assume that the costs of
PCs in FNs and CNs are different.

The communication cost Ccm
TGn

of the task graph is calculated by Eq.
(10).

Ccm
TGn

=
∑

en,i,j∈En
ccm

en,i,j
(10)

Here, ccm
en,i,j

is the communication cost of en,i,j, and is calculated from
Eq. (11) based on the corresponding link used to transfer the data.

ccm
en,i,j

=

{
ew

n,i,j × cLAN if vn,i and vn,j are both processed on MDCs
ew

n,i,j × cWAN otherwise (11)

where cLAN and cWAN correspond to the communication cost of LAN and
WAN, respectively.

3.3.3. Energy consumption model
The energy consumption of processing a DAG TGn can be defined as

the sum of the energy consumption when components involved in pro
cessing the DAG are active thus performing work (Qacv) and the energy
consumed when the PCs are idle (Qidl), as depicted in Eq. (12).

Qn = Qacv + Qidl (12)

The amount of energy consumption Qacv is defined as the sum of the
energy consumed for computing the tasks (Qcp

TGn
) and the energy

consumed for transmitting the data for each pair of dependent tasks
(Qcm

TGn
), as depicted in Eq. (13).

Qacv = Qcp
TGn

+ Qcm
TGn

(13)

The amount of energy consumption for computing the tasks is
defined as Eq. (14).

Qcp
TGn

=
∑

vn,i∈Vn
qcp

vn,i
(14)

Here, qcp
vn,i

is the energy consumed to compute task vn,i and is calcu
lated as Eq. (15).

qcp
vn,i

= tcp
vn,i

× Pacv (15)

where Pacv denotes the processing power of the PC when the PC is active.
The energy consumption due to data transmission between the tasks

is defined as Eq. (16).

Qcm
TGn

=
∑

en,i,j∈En
qcm

en,i,j
(16)

Here, qcm
en,i,j

is the energy consumed for data transmission between two
dependent tasks vn,i and vn,j, which is calculated as Eq. (17).

qcm
en,i,j

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ew
n,i,j

bwLAN
×PLAN if vn,i and vn,j are both processed on MDCs

ew
n,i,j

bwWAN
×PWAN otherwise

(17)

where PLAN and PWAN are the transmission power of LAN and WAN,
respectively.

The energy consumed by the PCs during idle time is calculated as Eq.
(18).

Qidl =
∑

Ny,d∈N
idleNy,d × Pidl (18)

where idleNy,d is the amount of idling time of the PC Ny,d, and Pidl is the
power of a PC during idle time. In this paper, we do not consider the idle
power for transmission because it is typically insignificant.

3.3.4. Objective functions
The objective is to find a mapping from the tasks of each IoT task

graph to the set of PCs N such that the three objectives of makespan (T),
cost (C), and energy consumption (Q) are simultaneously minimized by
a weighted sum. The objective function for each task graph TGn is
described by Eq. (19) below.

minF(TGn), ∀n ∈ {1,2,…,ND} (19)

where

F(TGn) = w1 × Tn + w2 × Cn + w3 × Qn (20)

Here, Tn, Cn, and Qn denote the makespan, cost, and energy con
sumption of the nth task graph. Besides, w1, w2, and w3 are the user-
defined weighting parameters for the three objectives Tn, Cn, and Qn,
respectively.

H. Gholami and H. Sun Journal of Parallel and Distributed Computing 202 (2025) 105069

6

4. Proposed method

In this section, we present a knowledge-driven method for sched
uling multiple task graphs in the fog-cloud environment. We propose a
Hybrid Genetic Algorithm-Random Forest (HGARF) algorithm, which is
based on Genetic Algorithm (GA) and Random Forest (RF) to extract
knowledge in the form of IF-THEN rules. To be specific, HGARF acquires
accurate and functional decision rules from the solutions created by a
meta-heuristic. The presented algorithm, which is considered as an
expert system, extracts knowledge without having prior knowledge
about the solution space and interacts with the environment by
extracting rules and validating them in order to provide near-optimal
solutions in this complex multi-objective problem. Therefore, GA is
responsible for generating the solutions for the training set and RF is
responsible for generating the rules from the solutions in the training set.
The process of the proposed scheduler based on HGARF is illustrated in
Fig. 2. After the task graphs are released by IoT devices, they are off
loaded to HGARF for scheduling. The scheduler is embedded in the fog-
cloud environment. HGARF then starts generating and deriving the
rules. Thereafter, the extracted rules are used to find the most suitable
solutions and present them to the related IoT devices.

The structure of HGARF comprises three modules: rule exploration,
rule generation, and rule usage, where the second module is naturally
executed after the results of the first module are obtained, and the third
module is executed after the execution of the second module. This three-
part sequence is repeatedly executed until the termination condition is
met. In the following, we illustrate the implementation details for the
three modules of HGARF.

4.1. Rule exploration

This section focuses on describing the GA-based rule exploration.
Exploring the rules is an important process for obtaining effective so
lutions. During this process, the goal is to explore the environment well
and to interpret rules for the environment in the training set. Since
duplicate or similar solutions in the population may be produced by
traditional GAs, in this paper, we pay special attention the diversity-
preserving mechanism, which aims at generating a more diverse and
unique set of solutions within a generation and across generations. Thus,
the solutions provided by the proposed GA operators are unique, which

helps to find the optimal/near-optimal rule faster. Such a diversity-
preserving mechanism is applied to the two operators of crossover and
mutation.

In the following, after introducing how to represent the solution, the
proposed GA will be explained.

4.1.1. Solution representation
One of the important decisions made in the early stages of devel

oping an algorithm is the representation of the solution. This leads to
ease in understanding the schedule and its flexibility, especially in
complex and large-scale problems. In the problem under study, the
mapping of Vn ∈ TGn to N, the proper sequencing of tasks in TPP, and the
recording of status of N in PSP are important topics that must be
considered in the representation. In addition, the variables of the
problem are numerical and discrete, and repeating tasks in each solution
is not allowed. Hence, this problem is susceptible to the use of
permutation-based encoding [38]. Besides, the need for producing
cost-effective and high-quality schedules and for considering the nature
of the problem in which there are two phases of TPP and PSP,
strengthens the use of list-based scheduling [39] to decode the solutions.
Thus, since the GA meta-heuristic is used, a two-dimensional chromo
some is constructed for representation.

We use an example to provide a clear description of the solution
representation. Suppose two DAGs TG1 and TG2 are generated by two
IoT devices (i.e. ND = 2) as depicted in Fig. 3. In this case, a sample
chromosome/individual in our representation is depicted in Fig. 4. As
can be seen, the solution has two rows, and the number of columns is
equal to the total number of tasks. In this representation, we call each
column a gene, which represents a task and related information. The
first row is called the task identifier (tID) and the second row the task
information (tInfo). Each cell of the tInfo row contains a tuple in which
there is some information related to the corresponding task.

Let vn,j be one of the predecessors of vn,i, so the information placed in
each tuple is listed as follows:

• tInfoA: the ID of the PC that processes the task vn,i,
• tInfoB: the computation time of the task vn,i on the existing PC in

tInfoA (tcpvn,i),
• tInfoC: the computation cost of the task vn,i on the existing PC in

tInfoA (ccp
vn,j),

• tInfoD: the energy consumption to compute the task vn,i on the
existing PC in tInfoA (qcp

vn,i),
• tInfoE: the ID of the task vn,j, where vn,j ∈ pred

(
vn,i

)
and its AFT is

larger than AFT of all members of pred
(
vn,i

)
,

• tInfoF: AFT
(
vn,j

)
,

• tInfoG: the ID of the PC that processes the task vn,j.

Note that in the TPP of rule exploration, the tInfo tuples are empty,

Fig. 2. Block diagram of the Hybrid GA-RF (HGARF) algorithm. Fig. 3. An example of two DAG applications.

H. Gholami and H. Sun Journal of Parallel and Distributed Computing 202 (2025) 105069

7

and after assigning tasks to PCs in the PSP, this information will be filled
in.

In order to traverse the DAGs to perform topological sort, the
Breadth-First Search (BFS) algorithm is used. The traversal starts from
vn,s and the tasks of each level of a DAG are placed in a group. Then, the
groups are appended to the individual according to the level and the
index of the graphs one by one. Since permutation leads to the emer
gence of a new solution, in the stated representation, permutation is
performed in each group. For further explanation, consider the solution
presented in Fig. 4 corresponding to the graphs of Fig. 3. The two tasks of
[[

v1,1], [v2,1
]]

are placed in the same group and their group position in
terms of level is one. Also, set

[
v1,1

]
is in the first position of group one

and set
[
v2,1

]
is in the second position of group one. Similarly, group

[[
v1,3, v1,2], [v2,2, v2,3

]]
is placed in the second position in terms of level,

the set
[
v1,3, v1,2

]
which contains tasks from the same DAG is in the first

position of the group, and the set
[
v2,2, v2,3

]
is in the second position of

the group. Besides, task v1,3 is in position one of the set and task v1,2 is in
the position two of the set.

4.1.2. Genetic algorithm
GA is one of the most widely used meta-heuristic algorithms that has

been applied to various optimization problems, particularly task graph
scheduling problems. GA is a stochastic search method that tries to
produce better solutions by creating a collection of potential solutions
(population) as initial solutions and evolving it in different generations
through genetic operators (e.g., selection, crossover, and mutation) [40,
41]. In the population, solutions are usually referred to as individuals or
chromosomes. Each individual is evaluated by its fitness, which is
determined by the associated value of the objective function. The pro
posed GA consists of the following steps:

1. generating an initial population with nPop individuals.
2. applying the individuals to the environment and evaluating their

fitness.
3. applying the crossover and mutation operators to generate new

individuals.
4. applying the new individuals to the environment and evaluating

their fitness.
5. appending the individuals to the training set.
6. applying the selection operator.
7. repeating steps 3 to 6 until the stopping criteria is met.

In this paper, we use GA for the exploration of the environment. This
is because according to the results obtained from the combined
compromise solution method in [42], GA is superior to the other
well-known meta-heuristics such as Ant Colony Optimization algorithm
(ACO) and PSO in terms of information collection. Details of our
implementation of the proposed GA for the problem under study are
given as follows.

4.1.2.1. Initial population. The first step of the optimization process
with GA is the generation of the initial population. The initial population
is consisting of nPop individuals. Each individual in this population
represents a candidate and possible solution to the problem, which is
also called the initial solution. The initial solutions are randomly and
uniquely scattered in the solution space. Therefore, a powerful and

unbiased search will be guaranteed in the developed GA. Note that nPop
is a constant value and is one of the control parameters of GA. Also, the
output of this step is the individuals whose row tID has tasks based on the
representation stated in Section 4.1.1.

4.1.2.2. Fitness function. After determining the sequence of tasks, it is
time to determine the fitness of an individual. This means, in PSP, the
individual is assigned to N to determine its fitness value. During this
process, the goodness of a solution according to the objective function
can be calculated. Algorithm 1 demonstrates how the fitness of an in
dividual is calculated.

An individual is assigned as an input value to Algorithm 1. Since the
tasks of graphs are added to the individual in separate groups based on
their levels, the groups of each level of graphs are selected in each
iteration of the for-loop in line #1. Then, the selected groups are added
to a container C in line #2. The container sorts the tasks in different
selected groups based on the positions of the tasks. In this way tasks with
position one of their groups are placed first, then tasks with position two,
and so on. Consider Fig. 4 for example. In the first iteration of the for-
loop in line #1, two tasks v1,1 and v2,1 are selected, thus [v1,1,v2,1] will
be the content of container C after the execution of line #2. Accordingly,
in the second iteration of the for-loop, the content of C after execution of
line #2 will be: [

[
v1,3, v1,2], [v2,2, v2,3

]
]. The while-loop in line #3 is

responsible for traversing the container C and assigning the tasks in the
container to a suitable PC. Thus, in line #4, a task is selected from the
beginning of C which has not been visited. In line #5, the value of tInfo.
tInfoA is checked to see if it is empty or not. If it was empty, line #6
would be executed, otherwise line #11. The non-emptiness of tInfo.
tInfoA occurs when the field tInfoA is set in some other parts of HGARF
(for example, in the mutation operator). This means that this task will be
processed without going through the process of finding the PC in line #6
and only by meeting the precedence constraints on the mentioned PC.
The for-loop in line #6 ensures that all PCs are examined for task
assignment, and the most appropriate center is allocated to the task
according to the objective function. Note that in the examining process,
it is assumed that the selected task is the final task in the current task
graph (we name it the hypothetical final task). Thus, in line #8, Eq. (20)
is utilized to evaluate the hypothetical final task in such a way that the
assignment leads to the simultaneous minimization of all three objec
tives. The for-loop in line #13 also calculates the sum of the fitness of all
the offloaded task graphs and returns it as the output of this algorithm
through variable retVal.

Fig. 4. A chromosome representing a sample solution.

Algorithm 1
Fitness function algorithm.

H. Gholami and H. Sun Journal of Parallel and Distributed Computing 202 (2025) 105069

8

4.1.2.3. Selection. Selection is a biased decision-making process
whereby a new population is created based on the fitness values of the
current population. This process is repeated in each generation of GA to
keep the good individuals. In this paper, we used a roulette wheel
method [43] in which two individuals are selected randomly and their
fitness values are compared. Then, the individual with the better fitness
value is transferred to the new population.

4.1.2.4. Crossover. The crossover operator is one of the main operators
of GA, which is very effective in improving the performance of GA. This
operator is used to search for new solutions (individuals) in the solution
space. In this way, by combining two individuals (called parents) or
making changes in an individual from the previous generation, new
individuals (called offsprings) or a new individual are produced in the
current generation. The process of producing new individuals is
repeated in all generations of GA with the aim of producing better
individuals.

In this study, according to the representation of the solution and the
structure of the task graph, a new crossover technique named Horizontal
Crossover Operator (HCO) is introduced. In order to create diversity in
the solution, this operator puts the path of working on tasks of the same
level on its agenda. HCO receives an individual as input and returns a
new individual as output after applying fundamental changes to it.

The procedure of HCO is shown in Algorithm 2. This algorithm is
repeated nCros times in each generation. To explain Algorithm 2, let us
assume that the illustrated individual in Fig. 4 is the selected individual
to apply HCO on. Therefore, we name the input individual as newIndv.
Since the length of the longest level of the task graphs in Fig. 3 is four,
newIndv has four levels. Suppose level 3 in newIndv is randomly selected
in line #3. This level has two sets [v1,4,v1,5] and [v2,5,v2,4,v2,6] where the
position of the former is one and the latter is two. If position two is
selected in line #4, then selGrp =

[
v2,5,v2,4,v2,6

]
. To change the position

of selGrp in selLev in line #5, we assume that the position of selGrp is
changed to one and the position of the other set is changed to two in
selLev. By executing line #6, the position of tasks in selGrp will change
randomly. For example, selGrp =

[
v2,4, v2,6, v2,5

]
could be one potential

output of this line. In this way, the contents of selLev could be equal to:
[[

v2,4,v2,6,v2,5], [v1,4,v1,5
]]

. As illustrated in the example, the positions of
the contents of level 3 in newIndv are changed and newIndv is passed to
the fitness function algorithm as input in line #7 to calculate its fitness
value. The variable nRep is an input value of this operator. The crossover
operator is defined as HCO(nRep), where nRep expresses the number of
repetitions of lines #3 to #6. In this way, HCO is active in TPP and deals
with diversity in solutions.

4.1.2.5. Mutation. The mutation operator is another operator of GA that
plays a substantial role in the evolution of the solutions. Adding random-
based new information to the solutions can lead the algorithm to escape
from local optima. In the proposed GA, a new mutation operator is

introduced, which is different from the traditional operators. This
operator, called Processor-based Mutation Operator (PMO), makes
changes to PSP in tInfo of tasks so that it can provide promising solutions
in each generation by refining the previous solutions. In addition, a
concept called bottleneck is introduced in PMO. The operator tries to
improve the objective function in the new individual by following the
bottleneck and considering it as a criterion for workload distribution in
the set of PCs N.

Definition. Let assume that
{
N0,A,N0,B,N0,C} ∈ N and wlA, wlB, and

wlC are the amount of assigned workloads to N0,A, N0,B, and N0,C

respectively. If wlA > wlB > wlC, we say that N0,A is a bottleneck PC
because the amount of workload assigned to it is greater than the others,
and this can lead to the objective function being suboptimal.

In the problem under study, due to the fact that the applications are
concurrent and consist of dependent tasks, and also because the greedy
EFT algorithm is used in PSP, we adapt the idea from solutions such as
EP [18] and PCs’ ranking [15] to reduce the accumulation on a PC/PCs.
In this study, a method to identify the bottleneck PC and a solution to
transfer the load from one PC to another are proposed. Since in the rule
exploration module of HGARF, creating diversity in solutions is on the
agenda, the randomness of some decisions is injected into PMO in order
to maintain the nature of mutation and to satisfy the goals of the rule
exploration.

Algorithm 3 illustrates proposed PMO. It is invoked as PMO(nRep),
where nRep is as input parameter. The algorithm receives an individual
at random and returns a new individual as a solution. It is repeated nMut
times in each generation and appends its output to the training set. The
PCs’ Participation Percentage (PPP) in line #2 is a method to identify
the bottleneck. Among the three objectives considered in this study, time
is influential because the increase in processing time in a PC leads to a
rise in energy consumption and cost and vice versa. Therefore, in the
first step of PPP, the sum of the times that each PC spent on processing
the assigned tasks in newIndv is calculated. Since PCs have different
processing capabilities (i.e., number of cores and processing power),
normalizing them in terms of processing capabilities is the second step in
PPP. Thus, the amount of time each PC is engaged in processing is
updated according to the processing capability. In line #3, PCs are
maintained in container C based on normalized time values and are
sorted in ascending order based on the time values. Therefore, the PC
that has been involved in more processing than other PCs is placed in the
last position of C with its time value higher than the others. Line #5
selects the task or tasks from the last PC in C and places it in selT. The
selected task must meet two conditions. First, the task should be one of
the tasks that are among the upper half of the levels of the DAG. Second,
the out-degree of the task should be more than those of other tasks. For
example, the task v1,2 of TG1 in Fig. 3 can be a candidate task that has
met both conditions. These two conditions are considered so that the
operator can be effective in transferring task/tasks from PCs that are
assigned a lot of workloads to other PCs for faster convergence. In line
#6 and #7, the field tInfoA is set in the task with a PC whose workload is
low (here, PCs located in the initial positions of C are chosen randomly).
Then, in line #8, the fitness value of newIndv is calculated. Note that the
lines #5 to #7 in the for-loop of line #4 is repeated nRep times.

4.1.2.6. Stopping criteria. One of the most common stopping criteria in
GA is the maximum number of generations. This study follows this
practice and uses nGen as an input parameter for the maximum number
of iterations. We point out that when the stopping criterion is met, the
best solution observed in this module is stored in a container called
eliteSet, which can be accessed jointly in two modules: rule exploration
and rule usage. The role of this container in the module of rule usage will
be discussed in Section 4.3.

Algorithm 2
Horizontal crossover operator.

H. Gholami and H. Sun Journal of Parallel and Distributed Computing 202 (2025) 105069

9

4.2. Rule generation

RF is a well-known ensemble-learning method that uses bootstrap
sampling and random feature subspace to generate and integrate mul
tiple decision trees at training step [44]. RF with its flexible and
easy-to-use structure can be applied to both classification and regression
problems. Among the advantages of this algorithm, RF is robust against
overfitting, has efficient performance on large data, and has quality
methods for estimating missing data. In addition, there are effective
mechanisms such as random oversampling and Synthetic Minority
Oversampling TEchnique (SMOTE) algorithm to deal with unbalanced
data sets [45]. All these advantages have led this algorithm to present
good performance in different fields. Therefore, RF is used in the rule
generation module so that the IF-THEN rules can be detached by
tracking the path from the root node to the leaf node of these trees.

In RF, a collection of k classifiers H = {h1, h2, …, hk} is constructed
based on attribute selection measures such as gain ratio and gini index.
Each classifier hi is a decision tree constructed independently by a
technique such as ID3, C4.5, or Classification and Regression Tree
(CART) through bootstrap sampling and feature randomization. The
classifiers of the collection H work in parallel on the given training set D.
In D = {(O1,G1),…, (On,Gn)}, there are n samples where a sample si =

(Oi,Gi) includes two parts: an order list Oi and a label Gi ∈ G. The order
list is represented as Oi =

(
(X1;Obj1),(X2;Obj2),…,

(
Xw;Objw

))
, where w

indicates the number of tasks in an individual, Xi ⊆ X indicates the set of
features related to a task vn,i, and Obji expressing the calculated objective
function value related to the task vn,i when considered as a hypothetical
final task. Note that, to calculate Obji, we use the three fields tInfoB,
tInfoC, and tInfoD of the task vn,i, as stated in the Fitness Function
(Section 4.1.2.2). The feature vector X =

(
X1,X2,…,Xz) includes z fea

tures that are divided into two categories. The first category is related to
the environment space and the second category is related to the solution
space. The one feature of the environment space includes PC used time,
energy, and cost (uPc), where if there are three PCs in N, then there will
be three values in it as attributes. To calculate the three parameters of
time, energy, and cost on a PC, we sum each of the three mentioned
parameters for all tasks in a solution on the PC and categorize it based on
what will be said about G. In the solution space category, there are four
features: the position of a group in a level (pGiL), the position of a task in
a set (pTiS), and the two fields of tInfoE and tInfoG that are extracted
from tInfo which we rename as infE and infG here. Therefore, z is equal to
five. We use the feature selection process presented in [46] to introduce
the five mentioned features. Moreover, we consider a multi-class clas
sification by the decision tree algorithm to classify the objective function
values. To that end, given the smallest and largest objective function
values of n samples in D, we determine three splitting points in the

objective function values and consider G =
[
Gc

1,Gc
2,Gc

3,Gc
4
]
, where Gc

i is a
class label with Gc

1 being a category with the lowest value of the
objective function.

The rule generation module consists of two steps. The first step is the
training step in which the RF is constructed using the labeled samples of
the training set. The rules will be generated in this step. In the second
step, which is the evaluation step, the rules are applied to the test set.
These two steps will be explained in the following in detail.

4.2.1. Training step
In this step, the k classifiers train in parallel on k different training

subsets to generate the rules. The subsets are generated from the training
set D using random sampling with replacement. To diversify the models
created by decision trees, the decision tree classifiers use both C4.5 and
CART algorithms, which are available in H with an equal number. The
output of this step is the rules that are transferred to the next step. We
call the rule generation procedure in this step rule generator, which is
presented in Algorithm 4.

Algorithm 4 takes D and k as inputs and returns a rule set R = {(R1ʹ ,

G1ʹ),…, (Rnʹ ,Gnʹ)} as output, where the Rí
ʹs represent the conditions and

the Gí
ʹs represent the conclusions. In the while-loop, the algorithm

generates w × k decision trees, extracts some rules and appends the rules

Algorithm 3
Processor-based mutation operator.

Algorithm 4
Rule generator.

H. Gholami and H. Sun Journal of Parallel and Distributed Computing 202 (2025) 105069

10

to the rule set R. In line #4, the bootstrapSampling() method is invoked to
prepare a class of samples Ds

i by bootstrap sampling. Note that for k it
erations of while-loop, there will be Ds =

{
Ds

1,Ds
2,…,Ds

k
}

classes of
samples where Ds

i is the class produced in ith iteration of the while-loop.
During the sampling period in the ith iteration, the samples that were
not selected to be placed in Ds

i are placed in DOOB
i , where DOOB

i ∈ DOOB is
the Out-Of-Bag (OOB) dataset. In this way, DOOB is built in parallel to Ds

where Ds ∩ DOOB = ∅ and Ds ∪ DOOB = D. It is worth mentioning that
DOOB is used to obtain the classification accuracy after the training step.
In this way, D is divided into two groups: the training set Ds and the
testing set DOOB. The repeat-until-loop is responsible for constructing the
decision tree based on the current technique used. If the technique is
C4.5, then gain ratio is used in each tree node’s splitting process as the
information-theoretic criterion, while if the technique is CART, then gini
index is used. After constructing the tree, it is time to traverse the tree to
extract the rules. In line #9, Depth-First Search (DFS) algorithm is used
for traversing the tree to extract rules. In order to express the IF-THEN
rules, we consider the format of IF〈condition〉THEN〈conclusion〉 as
stated in [47], and develop the customized format for the problem under
study. For instance, if vn,i and vn,j are two consecutive tasks in the same
individual, the rule structure related to Xi and Xi+1 can be expressed as
follows:

IF
〈
…,

(
(pGiL = 2)&

(
uPc = N0,1)&(pTiS = 3)&

(
infG = N1,2)

&
(
infE = vn,í

)
; u
)
,
((

uPc = N1,3)&(pGiL = 3)&(pTiS = 1)
&
(
infE = vn,j́

)
&
(
infG = N1,1); v

)
,…

〉
THEN

〈
Gc

2
〉

where the expressions on the right side of the “= ” sign are attributes of
the corresponding features (e.g., 2, N0,1, 3), u and v represent Obji and
Obji+1, respectively, 〈condition〉 represents Rí and 〈conclusion〉 stands for
Gí .

After extracting the rules, they are appended to the rule set R in line
#10.

4.2.2. Evaluation step
Accuracy is one of the most appropriate metrics to measure the

performance of RF. For this purpose, we use DOOB and test each member
of DOOB by its corresponding trained tree. (e.g., DOOB

k by the kth tree).
This test is done to see if the tree can correctly predict the class label Gi

of a test sample in DOOB
k ∈ DOOB or not. For this purpose, Eq. (21) is used

to obtain the accuracy.

acc =
1

⃒
⃒DOOB

⃒
⃒

∑|D
OOB|

i=1
p
(
DOOB

i
)

(21)

where |DOOB| indicates the number of members in DOOB, p
(
DOOB

i
)

gives
the classified result of the ith sample in DOOB by the rule sets, where the
result is 1 if the estimate is correct and 0 otherwise.

After all test samples from a DOOB
k ∈ DOOB have been examined, the

prediction accuracy is calculated for all members of the sample test. In
this study, if the accuracy is more than 50 %, the rules extracted from
tree k remain in the rule set. Otherwise, the relevant rules will be
deleted.

4.3. Rule usage

The knowledge obtained in the rule generation module should be
used in the search space to check whether the knowledge can make a
correct prediction to improve the objective function or not. For this
purpose, the rule usage module performs two steps. The first step is to
test the quality of the rules and this step is called processing center
prediction. In this step a suitable PC is suggested to a task of an indi
vidual using the rules in rule set, so the resource will be allocated to the
task. These suggestions are applied to all tasks. Afterwards, the tasks of

the individual are assigned to N based on Algorithm 1 and without
considering the rules. Then, the fitness function values obtained from
the assignments using rules and without using rules are compared. After
the first step, a second step is applied as a refinement step for the so
lutions proposed in the first step. The following discusses the details of
the two steps.

4.3.1. Processing center prediction step
The procedure of the processing center prediction step is shown in

Algorithm 5. This algorithm gets a population with nPop individuals, the
rule set R, and the container of eliteSet as input values. Determining the
sequence in the individuals of the population is random and unique. The
container eliteSet is not empty before the execution of Algorithm 5,
because this container, in the first iteration of HGARF, has kept the most
suitable solution in the rule exploration module. If the rule usage
module can find a better solution than that solution, it will replace the
previous solution found in rule exploration module. Thus, at the end of
the rule exploration and rule usage modules, there is only one solution in
eliteSet, which is the best solution found until then in terms of the value
of the objective function. In each iteration of HGARF, the individuals
whose objective function values are in the class Gc

1 ∈ G are appended to
this container. The for-loop in line #2 is repeated for all individuals of
the input population. The responsibility of the for-loop in line #4 is to
traverse the individual from position one to the end, where a not-visited
task is selected in each iteration. Then, in line #5, the selected task is
matched with the rules in R and the ID of PC Ny,d ∈ N that leads to the
minimum objective function value up to that moment is selected. The ID
is inserted to the field tInfoA in line #6. After the described process in
this for-loop is done for all tasks, the individual in line #7 is assigned to
N so that Ny,d ∈ N is allocated to the task based on the content of tInfoA.
The individual selected by the for-loop in line #2 is assigned to N
regardless of the rules in R in line #8. The values of the objective
function obtained in line #7 and line #8 are compared and if the values
belong to the same class of Gc

1 or Gc
2, a positive score is considered,

otherwise a negative score is considered. These scores are used to
automatically adjust the termination condition of HGARF. Thus, line
#15 checks if the sum of positive scores is more than the sum of negative
scores, in which case Algorithm 5 returns True as the output. This means

Algorithm 5
Processing center prediction.

H. Gholami and H. Sun Journal of Parallel and Distributed Computing 202 (2025) 105069

11

that the repetition of HGARF should be reduced. In line #13, if the
objective function value of the predicted solution using R belongs to the
class Gc

1, that individual is appended to the container eliteSet. To explain
the if-then-condition in line #16, let us assume that HGARF is in the first
iteration of its execution. In this case, when starting the rule usage
module, the container eliteSet will contain one individual. Let us also
assume that solutions belonging to class Gc

2 or Gc
3 are produced every

time the outer for-loop is repeated. In such a situation, eliteSet will
remain with one individual and the positive score will increase to the
point where it may lead to the return value retVal in this algorithm being
True. Therefore, the execution of HGARF will end even if its solution
may not be a competitive one. Further, even if there are a small number
of solutions in eliteSet, these solutions may not provide the minimum
fitness value. Therefore, line #16 is used to guarantee that the number of
solutions available in eliteSet is not less than a threshold in hope of
finding more competitive solutions.

4.3.2. Refinement step
The responsibility of this step is to refine the solutions in the

container eliteSet from the output of Algorithm 5. In each iteration of
Algorithm 5, many solutions may be appended to container eliteSet.
However, not all of them will lead to the improvement of the objective
function. Therefore, it is necessary to refine them and keep only one
solution that provides the most optimal fitness value in the container.
For this purpose, we apply the PMO mutator to each individual and
compare the effects of the mutator on the individual before and after the
PMO application. If the fitness value is improved after the execution of
PMO, we will keep that solution. The process of applying PMO is done
for all members of the container eliteSet. In the end, only one solution
whose fitness value is better than the others is kept. It is worth
mentioning that if the termination condition is satisfied (see Section
4.4), the solution in the container eliteSet is considered as the output of
HGARF.

4.4. Termination condition

One important topic often discussed in search problems is when to
end the search process to reach a solution. Maybe a suitable solution is
found at the beginning of the search process and the algorithm cannot
improve the solution until the end. Moreover, getting stuck in a local
optimum is another issue often observed in these problems. This study
considers the use of knowledge to overcome this issue by using past
experiences and interactions with the stochastic environment. There
fore, this part tries to automatically adjust the termination condition of
HGARF. To this end, it uses the output received from the first step
(processing center prediction) of the third module (rule usage) and a
simple calculation to decide whether the process of executing the three
modules of HGARF should be repeated or not.

For this purpose, in the first round of execution of HGARF, unique
and diverse solutions are generated, and the knowledge obtained in the
processing center prediction step is used. If the condition stated in line
#15 of Algorithm 5 is satisfied, this step receives a reward signal from
the output of the first step in retVal (= True). Reward means that the
algorithm believes that the provided solutions have a suitable quality
according to the objective function and can end its search process. On
the contrary, if the stated condition is not satisfied, this step receives the
punishment signal through retVal (= False), which means continuing
the search process. Therefore, there is an integer variable called endV in
this step, whose value indicates the number of repetitions of HGARF.
This variable is equal to zero at the beginning of the HGARF execution.
Whenever a reward signal is received, one unit is subtracted from it, and
if a punishment signal is received, three units are added to it. If the value
inside endV is zero or less, the repetition of HGARF ends.

4.5. Time complexity

The time complexity of the proposed HGARF is analyzed as follows.
The rule exploration module starts with the construction of a chromo
some in which the BFS algorithm takes O

(
ND×L2) time to visit all tasks

of all DAGs, where ND is the number of incoming task graphs to the
system and L is the maximum number of tasks for all task graphs. Al
gorithm 1 is executed for each chromosome. Therefore, the time
complexity of Algorithm 1 is O(L × N), where N is the number of PCs in
the systems. The time complexity of population initialization in the
worst time is O(np × L × N), where np is the size of nPop. Since chro
mosome construction and population initialization are only executed
once, their time complexities become insignificant, and we focus on the
time complexities of crossover, mutation, and selection operators for
this module. Regarding the crossover operator, it is easy to see that the
time complexity is C = O(nc × ((nrc × m)+ (L × N))), where nc is the
number of repetitions of Algorithm 2, nrc is the number of iterations of
the for-loop is line #2, and m is the time to shuffle the gene’s positions in
line #6. The time complexity of mutation operator is M = O(nm × (N +

NlogN + nrm + (L × N))), where nm is the number of repetitions of
Algorithm 3 and nrm is the number of iterations of the for-loop in Al
gorithm 3. In addition, we consider the time complexity of the number of
generations and selection operator as g and np, respectively. Therefore,
the overall time complexity of the first module is F = O(g × (C + M +

np)).
HGARF calls the rule generation module after the rule exploration

module. The time complexity of RF depends on the number of decision
trees in RF, the number of samples, and the number of features, which at
most can be executed k, n, and z times, respectively. Hence, the time
complexity of the second module in the worst case is S = O(k × z ×

nlogn). In the third module, the time complexity of the processing center
prediction step (Algorithm 5) is P = O(np × ((L × zlogz)+ (L × N))).
Moreover, the time complexity of the refinement step depends on the
size eliteSet before applying this step which we name es and its
complexity is R = O(es × (N +NlogN + nrm + (L ×N))). Therefore, the
time complexity of the third module is T = O(P + R). Finally, the
number of repetitions of HGARF depends on retVal, which we call x.
Hence, the overall time complexity of HGARF is O(x × (F + S + T)).

Finally, we note that although in this work we considered three
objectives (i.e., makespan, cost, and energy), it does not increase the
asymptotic complexity of HGARF, as the three objectives are combined
and evaluated as a single weighted sum. Thus, from the complexity’s
perspective, it is not much different from evaluating just a single
objective.

5. Experimental results

This section presents the results of our experimentation to evaluate
the performance of the proposed HGARF algorithm to solve the multiple
task graph scheduling problem. Section 5.1 introduces the experimental
settings, including the data set, characteristics of the problem space, the
baseline algorithms, and the parameter configuration. Then, a set of
performance metrics to measure the quality of the proposed method is
provided in Section 5.2. Finally, Section 5.3 evaluates the algorithms
using two statistical significance tests.

5.1. Experimental setup

5.1.1. Data set
The IoT task graph applications used in our experiments include four

types of real-world graphs from the Pegasus workflow Generator [48]:
CyberShake, Epigenomics, LIGO Inspiral, and SIPHT. These task graphs
have various structures with flexible operations in services and low
coupling specifications. Their graph structures are illustrated in Fig. 5.
To create diversity in the size of the task graphs to analyze scalability,
they are divided into small-size and large-size categories based on the

H. Gholami and H. Sun Journal of Parallel and Distributed Computing 202 (2025) 105069

12

number of tasks. In the small-size category, the number of tasks is 100,
while the number of tasks in the large-size is around 1000. With each
execution of the workflow generator, different task graphs with various
configurations in terms of task execution time and dependencies be
tween them in each type/size are generated. In order to create diversity
in the configuration of the task graphs, we ran the workflow generator
five times for each type of graph (CyberShake, Epigenomics, LIGO
Inspiral, and SIPHT). Therefore, the total number of task graphs for our
simulation is 4× 2× 5 = 40. Out of these graphs, 20 are small-size and
20 are large-size. To simulate the multiple task graphs submitted by IoT
users, we randomly selected a configuration from each type of task
graph and randomly put them together to build an application. Thus,
each application includes four different types of task graphs.

5.1.2. Environment setting
The PCs in the considered environment have different processing

capabilities which are represented by Million Instructions Per Second
(MIPS). In our setting, the number of FNs and CNs are four and two,
respectively. Two FNs have 4 cores and Two FNs have 6 cores, while the
two CNs have 8 and 16 cores, respectively. Some details about the PCs
settings are shown in Table 3. In this setup, four IoT devices are con
nected to four FNs, and each type of task graph is released by a specific
IoT device and offloaded to the nearest FN. Besides, it is assuming the
bandwidth of LAN and WAN are 4000 KB/s and 1000 KB/s, respec
tively. We also assume that the communication cost of LAN and WAN are
0.002 and 0.005 per data unit, respectively.

5.1.3. Baseline algorithms
In order to investigate the efficiency of the proposed HGARF, the

results obtained by HGARF are compared with the following four al
gorithms under the same condition:

• Cooperative Multi-agent Offline Learning (CMOL) algorithm [15]:
This is a pareto front-based multi-objective algorithm, and we added
weighted sum to the different objectives. It also uses a learning-based
method to reason about the environment. Its maximum number of
iterations is 400.

• Multi-Objective Genetic Algorithm (MOGA) [26]: This is also an al
gorithm based on GA that uses a weighted sum method to calculate
the fitness function. It uses a gap search algorithm to optimize
resource utilization, and a tournament-based selection approach and
a mutation operator for PSP. The maximum number of iterations of
MOGA is 100.

• Energy-Efficient Makespan Cost-Aware Scheduling Algorithm
(EMCS) [20]: This is a GA-based algorithm and uses the weighted

sum method to solve the problem. It uses a parent selection strategy
in the two-point crossover operator and a one-point mutation oper
ator to avoid local optimum solutions. The maximum number of it
erations of EMCS is 100.

• Only-GA (OGA): This is derived from HGARF but with RF removed.
In order to improve its performance, we added two operators Block
Search (BS) and Bad Selection Operator (BSO) [49] as neighborhood
search and premature convergence prevention, respectively. In
addition, we set the maximum number of iterations of the developed
algorithm to 100.

5.1.4. Parameter configuration
Configuration of GA: Since there is no direct criterion for setting the

parameters of meta-heuristic algorithms in scheduling problems and
most approaches have used trial-and-error [50], we have employed a
procedure to tune the parameters of our developed GA. For this purpose,
we used the parameter values gained in the baseline algorithms to avoid
spending time obtaining the values and have a fair comparison with
those algorithms. The parameters were examined with respect to the
baseline algorithms’ values in the interval [− 60 %, 60 %] with a step
size of 20 %, and the values that did not lead to a waste of time while
improving the objective function were selected. As an example, Fig. 6
presents three separate typical turning results on the parameters of nGen
and nPop on a large-size graphs. By comparing the performance, it is
clear that setting nGen = 50 is sufficient for curve convergence; the
fitness becomes stable and the ratio of fitness to time consumption de
creases after that. The parameters of HGARF are set according to
Table 4.

We set the three weight parameters w1, w2, and w3 to 0.25, 0.25, and
0.5 respectively. This ensures that the user-oriented objectives (make
span and cost) share the same total weight (0.5) as the provider-oriented
objective (energy consumption). In our experiments, all algorithms were
implemented using Java with JDK 11 and the running environment of
Intel(R) Core (TM) i7 CPU, 8 GB memory, and Windows OS.

Classification Accuracy of RF: To evaluate the classification ac
curacy of RF in HGARF, we compared the RF presented in HGARF,
which we call RF-P, with RF-ID3, RF-C4.5, and RF-CART, which use ID3,
C4.5, and CART as the tree construction techniques, respectively. For
this purpose, the rule exploration module was executed only once and
the data in the training set was used to construct the relevant decision
trees. Here, the evaluation is based on different tree scales (i.e., number
of decision trees in RF). To compare the accuracy of RF-P, RF-ID3, RF-
C4.5, and RF-CART in terms of decision tree scales, we used all four
types of graphs with large-size category. The experimental results are
shown in Fig. 7.

As can be seen in Fig. 7, all four compared algorithms have low ac
curacy when the number of decision trees is 10. By increasing the
number of decision trees from 10 to 20, the accuracy of the algorithms
rapidly increases. Among the four task graphs, it is clear that RF-P offers
the best accuracy in all the task graphs, while RF-ID3 has the worst
accuracy. In addition, the lowest average accuracy for all algorithms is
in LIGO Inspiral and the highest in Epigenomics. In terms of the differ
ence in accuracy between the best and the second-best algorithms, the
largest difference is 6.2 % (between RF-P and RF-CART in SIPHT), while
the smallest difference is 1.6 % (between RF-P and RF-C4.5 in Cyber
Shake). Overall, RF-P has shown better performance in terms of classi
fication accuracy and thus could play an effective role in generating the
rules.

Hereafter, we set the number of decision trees to be k = 100 in
HGARF. According to Fig. 7, in CyberShake, SIPHT, and Epigenomics,
the accuracy is about 0.9 when k = 100. Although the accuracy in LIGO
Inspiral is less than 0.85 when k = 100, we use the same setting in order
not to increase the run time in all task graphs.

5.1.5. Metrics
We considered the following four metrics to evaluate the

Fig. 5. The main structure of the used task graphs.

Table 3
Characteristics of the processing centers in our setup.

Number of
Cores

Qidl

(W)
Qacv

(W)
Processing
Power
(MIPS)

Processing Cost
(per time unit)

Fog
Nodes

4 23 42 2500 0.02
4 6 40 3000 0.03
6 11 109 3500 0.04
6 10 86 4000 0.05

Cloud
Nodes

8 12 117 5500 0.08
16 17 193 6000 0.09

H. Gholami and H. Sun Journal of Parallel and Distributed Computing 202 (2025) 105069

13

performance of HGARF.

• Objective Functions: The results of the five algorithms are evaluated
separately based on the three objective functions: makespan, energy,
and cost, as well as their weighted sum.

• Maximum Number of Iterations: To evaluate the impact of the
maximum number of iterations on the performance of the algo
rithms, we multiply the maximum number of iterations of algorithms
by increasing factors to check whether the quality of the obtained
solutions also improves.

• Efficiency Ratios: This metric examines the efficiency of the algo
rithms by calculating the ratios of their performance and the lower
bounds in terms of each of the three objective functions. These effi
ciency ratios provide measures on how far away each algorithm’s
performance is from that of the optimal solution. We use Schedule
Length Ratio (SLR) [17], Energy Ratio (ER), and Cost Ratio (CR) for
this purpose.

• Resource Utilization Rate: This metric measures the effectiveness
and time spent by the PCs during the assigned tasks and refers to the
maximum utilization of the capacity of the available PCs.

5.2. Performance evaluation

In this section, we compare HGARF with the four baseline algorithms

Fig. 6. Results of tuning the nGen parameter for large-size graphs.

Table 4
The parameters of HGARF algorithm.

Parameter Value

nPop 300 for small-size
600 for large-size

nCros nPop
nMut nPop
nGen 30 for small-size

50 for large-size
nRep {2,4,8} for small-size

{8,16,32} for large-size
nGuarantee {5,6}

Fig. 7. Classification accuracy of different RF techniques for different decision tree scales.

H. Gholami and H. Sun Journal of Parallel and Distributed Computing 202 (2025) 105069

14

(CMOL, MOGA, EMCS, and OGA) and show their performance in terms
of the objective functions, different iteration sizes, the efficiency ratio,
resource utilization rate. For this purpose, several experiments are
conducted to show the behaviors of these algorithms. In the following,
each of these performance metrics is discussed separately.

5.2.1. Comparison of objective functions
For this metric, HGARF and CMOL, as learning-based algorithms,

were each executed five times on the applications and the average re
sults obtained from them were used. In contrast, MOGA, EMCS, and
OGA, as non-learning-based algorithms, were each executed 10 times
and the best results found were used. We did this to have a fair com
parison considering that learning-based algorithms typically perform
better than non-learning-based algorithms. In addition, we set the
population size parameter of the three non-learning-based algorithms to
be 400 and 600 for small-size and large-size applications, respectively.

Fig. 8 shows the makespan of the five algorithms on the two cate
gories of graphs (small-size and large-size). The results show that the
two learning-based algorithms perform better than the three non-
learning-based algorithms in all task graphs for both small and large-
size categories. In the class of learning-based algorithms, HGARF is su
perior in all instances. But, in the class of non-learning-based algorithms,
the best is divided between the three. In particular, in small-size task
graphs, OGA performs better than MOGA and EMCS in two instances,
while each of EMCS and MOGA are better than others in one instance. In
large-size task graphs, OGA is better than the two algorithms in two
instances and similarly, MOGA performs better than other in two other
instances. In the large-size task graphs, HGARF shows a significant
improvement compared to the other four algorithms in CyberShake and
Epigenomics. It is 16 % and 14 % better in CyberShake and Epigenomics,
respectively, compared to CMOL, which is the second-best algorithm.
The corresponding improvements in small-size task graphs are 12 % and
16 % in LIGO Inspiral and Epigenomics, respectively, compared to
CMOL.

The results related to energy consumption are depicted in Fig. 9. In
terms of energy, the learning-based algorithms are again superior to the
non-learning-based algorithms. In addition, HGARF has also performed
better in all instances. To compare in terms of the size of the task graphs,
in the large-size category, a considerable distance between HGARF and
CMOL (the second-best algorithm) is observed with HGARF providing 8
% and 9 % improvements in CyberShake and SIPHT, respectively.

The cost comparison of the five algorithms is shown in Fig. 10. The
results once again show that HGARF outperforms the other algorithms in
terms of this objective function and that CMOL, as another learning-
based algorithm, has the second-best performance. In the small-size
category, HGARF is better than CMOL with an improvement of 14 %,
9 %, and 15 %, respectively, in CyberShake, SIPHT, and Epigenomics. In
the large-size category, HGARF exhibits a remarkable advantage over
CMOL with an improvement of 21 % and 17 % in LIGO Inspiral and

Epigenomics, respectively.
Finally, Fig. 11 compares the overall objective function of the five

algorithms by the weighted sum of the three individual objectives using
the weights as stated in Section 5.1.4. As expected, HGARF has the best
performance for the weighted objectives due to its superiority for each
individual objective. In particular, for small-size task graphs, HGARF
outperforms CMOL, MOGA, EMCS, and OGA by 5.04 %, 13.24 %, 13.03
%, and 12.08 %, respectively, and for large-size task graphs, the
respective improvements are 7.35 %, 18.91 %, 19.86 %, and 18.89 %.
Overall, as the size of the task graphs increases, the superiority of
HGARF over the other four algorithms also increases in terms of
providing better-quality solutions.

Since HGARF automatically determines the maximum number of
iterations during the execution, we recorded the maximum number of
executions in this experiment, which are reported as follows: In the
small-size task graph category, the maximum number of iterations is
between 5 and 9, while in the large-size task graph category, the
maximum number of iterations is between 7 and 16.

To conclude, the intelligent interaction of GA and RF with each other
and with the problem space has led to HGARF’s superior performance
compared to the other four algorithms in all instances. Such intelligence
stems from the following considerations. First, in HGARF, in addition to
TPP, special attention has been paid to PSP by the introduction of the
bottleneck concept and the presentation of the method in PMO to alle
viate this issue. Second, the structure of a chromosome is designed in
such a way that it can store valuable information from the environment
in order to use them for knowledge extraction. Third, the mechanism
presented in RF has helped HGARF to generate rules with high accuracy
and to use the generated rules effectively. With these intelligent con
siderations, it is expected that HGARF would have a significant advan
tage over stochastic non-learning-based algorithms. Even compared to
the state-of-the-art learning-based algorithm, its superiority can be
anticipated from the methods presented in PMO and in the generation/
usage of rules. As such, HGARF is able to significantly outperform the
other algorithms as shown in Figs. 8, 9, 10, and 11.

5.2.2. Comparison of maximum number of iterations
As mentioned in Section 4.4, HGARF automatically adjusts the

maximum number of iterations. We expect that increasing the number of
iterations will lead to the better extraction of quality rules, which can
have a positive impact on the quality of the provided solutions. For this
purpose, we use the maximum number of iterations recorded for the
algorithm in Section 5.2.1 and omit the automation of the termination
condition step in this experiment. As the recorded maximum number of
iterations for small-size and large-size task graphs are in the intervals
[5,9] and [7,16], respectively, we consider the average of the interval
[5,9], which is 7, for small-size task graphs and the average of the in
terval [7,16], which is around 11, for large-size task graphs. As stated
earlier, the maximum number of iterations of CMOL, MOGA, EMCS, and

Fig. 8. Makespan comparison of the five algorithms for different task graphs.

H. Gholami and H. Sun Journal of Parallel and Distributed Computing 202 (2025) 105069

15

OGA are 400, 100, 100, and 100, respectively. To this end, we increase
the maximum number of iterations of the five algorithms by a factor of
two and three, respectively, and compare the obtained results with those
stated in Section 5.2.1. The percentage of improvements compared to
the results of Fig.s 8, 9, and 10 are presented in Tables 5, 6, and 7,
respectively, with the best results of each category marked in bold.

As seen in Table 5, there is a significant difference between the
makespan results of learning-based algorithms and non-learning-based
algorithms. Learning-based algorithms continue their convergence
process by changing the increase factor from two to three. In contrast,
the non-learning-based algorithms do not exhibit a specific pattern in
convergence and improvement of results. It is observed that, in some
examples, an increase factor of three even leads to a decrease of per
formance compared to an increase factor of two. Moreover, all

improvements are less than 10 % from the previous results for both
large-size and small-size categories. On the other hand, learning-based
algorithms by changing the factor from two to three presented a
considerable progress on convergence, although the speed of conver
gence decreased for large task graphs compared to small graphs.
Comparing the two algorithms in the learning-based class, the conver
gence in HGARF is clearly better. Specifically, with an increase factor of
two, the average improvements by HGARF for small-size and large-size
task graphs are 27.07 % and 20.79 %, respectively, while they are 18.80
% and 11.34 % for CMOL. With an increase factor of three, this supe
riority trend continues for HGARF: the average improvements by
HGARF for small-size and large-size task graphs are 39.37 % and 28.72
%, respectively, while they are 25.66 % and 14.18 % for CMOL.

As with the makespan, the performance of non-learning-based

Fig. 9. Energy consumption comparison of the five algorithms for different task graphs.

Fig. 10. Average cost comparison of the five algorithms for different task graphs.

Fig. 11. Objective function comparison of the five algorithms for different task graphs.

H. Gholami and H. Sun Journal of Parallel and Distributed Computing 202 (2025) 105069

16

algorithms compared to learning-based algorithms in terms of the en
ergy consumption is significantly poor, as shown in Table 6. In fact, the
non-learning-based algorithms even show no improvement in seven
instances (indicated by the “-“ sign in the table). Moreover, the
maximum improvement achieved by the three algorithms in this class is
merely 8 %. In contrast, the learning-based algorithms demonstrate
much better performance. Notably, the highest average improvement
achieved by HGARF is 39.07 %, occurred in small-size graphs and the
lowest average improvement is 29.24 % in large-size graphs, both with
an increase factor of three. As for CMOL, the highest average improve
ment occurred in the small-size graphs is 22.89 % with an increase factor
of three, while the lowest average improvement is in the large-size
category is 13.04 % with an increase factor of two. These results again
highlight the superiority of HGARF over CMOL.

The superiority of HGARF over the other four algorithms continues in
Table 7 for the cost. As can be seen, HGARF has led to more than 50 %
improvement in one instance, while CMOL does not get close to HGARF in
terms of the cost improvement. MOGA, EMCS, and OGA again show very
poor performance with maximum improvement less than 8 % for all

instances. Moreover, these three algorithms do not show a clear pattern in
the improvement, as it is expected that with an increase in the number of
iterations, their improvements will also be better, which is not the case.

In summary, we can conclude that, for the two learning-based al
gorithms HGARF and CMOL, the more time they are given for explora
tion, the more favorable results they will get. In addition, the size of the
problem space negatively affects their convergence speed. For the three
non-learning-based algorithms MOGA, EMCS, and OGA, due to their
stochastic nature, they cannot necessarily increase the speed of
convergence by increasing the number of iterations. Finally, regarding
the superiority of HGARF over CMOL, we can see that HGARF leads to
about 40 % better performance than CMOL on average, mainly due to
HGARF’s capability for: (1) paying special attention to PSP by using the
PMO algorithm; (2) providing a high-accuracy method for classification
and rule generation; and (3) refining the rules with less effect on the
solution in the rule usage module.

5.2.3. Comparison of efficiency ratios
SLR is a metric that has been utilized to assess the makespan in

Table 5
The percentage of improvement of makespan of the five algorithms with the increase of the maximum number of iterations.

Increase factor Algorithms Small-size Task Graphs Large-size Task Graphs

Cyber. LIGO. SIPHT Epi. Cyber. LIGO. SIPHT Epi.

× 2 HGARF 20.81 % 29.13 % 25.78 % 32.55 % 27.67 % 18.29 % 20.78 % 16.41 %
CMOL 17.11 % 20.69 % 15.36 % 22.05 % 13.04 % 11.50 % 8.28 % 12.54 %
MOGA 7.40 % 6.24 % 3.19 % 6.01 % 2.04 % 3.11 % 1.83 % 1.14 %
EMCS 6.44 % 5.03 % 1.98 % 4.67 % 1.86 % 0.28 % 0.62 % 1.54 %
OGA 6.37 % 4.66 % 4.73 % 5.28 % 1.73 % 0.60 % 1.78 % 4.51 %

× 3 HGARF 33.04 % 47.28 % 36.08 % 41.10 % 29.71 % 32.25 % 30.84 % 22.09 %
CMOL 19.64 % 28.65 % 23.93 % 30.42 % 18.05 % 15.70 % 9.62 % 13.34 %
MOGA 3.02 % 5.52 % 2.19 % 7.52 % 2.67 % 2.38 % 1.72 % 4.10 %
EMCS 4.44 % 3.27 % 2.93 % 4.81 % 1.35 % 0.37 % 0.52 % 1.19 %
OGA 5.39 % 6.25 % 4.34 % 6.48 % 2.65 % 1.10 % 2.31 % 3.49 %

Note: Cyber. = CyberShake; LIGO. = LIGO Inspiral; Epi. = Epigenomics.

Table 6
The percentage of improvement of energy consumption of the five algorithms with the increase of the maximum number of iterations.

Increase factor Algorithms Small-size Task Graphs Large-size Task Graphs

Cyber. LIGO. SIPHT Epi. Cyber. LIGO. SIPHT Epi.

× 2 HGARF 26.06 % 30.75 % 29.12 % 31.50 % 33.80 % 29.72 % 30.21 % 26.17 %
CMOL 21.23 % 18.74 % 14.59 % 18.36 % 13.01 % 15.26 % 9.48 % 14.39 %
MOGA 0.45 % 3.20 % 1.63 % 3.81 % 1.52 % 2.34 % - 0.69 %
EMCS 2.62 % 5.07 % 3.06 % 3.53 % 0.87 % 0.28 % - 0.05 %
OGA 2.70 % 8.26 % 3.19 % 4.25 % 2.07 % 3.72 % - 0.11 %

× 3 HGARF 34.59 % 43.13 % 35.64 % 42.91 % 28.34 % 31.55 % 31.62 % 25.44 %
CMOL 18.93 % 21.84 % 24.77 % 26.02 % 16.36 % 15.09 % 14.58 % 17.33 %
MOGA 2.88 % 5.68 % 4.09 % 5.38 % 3.28 % 0.42 % - 3.06 %
EMCS 4.16 % 4.09 % 3.61 % 4.11 % 1.03 % 0.58 % - -
OGA 5.46 % 4.31 % 5.28 % 5.67 % 1.96 % - 1.67 % 2.08 %

Note: Cyber. = CyberShake; LIGO. = LIGO Inspiral; Epi. = Epigenomics.

Table 7
The percentage of improvement of cost of the five algorithms with the increase of the maximum number of iterations.

Increase factor Algorithms Small-size Task Graphs Large-size Task Graphs

Cyber. LIGO. SIPHT Epi. Cyber. LIGO. SIPHT Epi.

× 2 HGARF 19.05 % 27.60 % 26.84 % 32.17 % 28.07 % 20.06 % 19.32 % 18.66 %
CMOL 15.99 % 19.74 % 16.02 % 24.29 % 13.98 % 12.73 % 10.71 % 11.29 %
MOGA 7.58 % 5.32 % 5.18 % 6.74 % 1.53 % 4.55 % 2.09 % 1.02 %
EMCS 4.16 % 2.79 % 3.52 % 2.07 % 1.82 % 2.01 % 1.69 % 1.05 %
OGA 5.32 % 5.68 % 6.59 % 7.04 % 1.29 % 1.58 % 4.80 % 2.03 %

× 3 HGARF 32.06 % 50.20 % 38.73 % 40.37 % 31.46 % 33.93 % 32.17 % 22.56 %
CMOL 17.52 % 30.95 % 24.70 % 33.28 % 19.28 % 17.79 % 10.54 % 12.06 %
MOGA 4.58 % 5.03 % 6.17 % 6.37 % 1.01 % 2.27 % 6.68 % 1.92 %
EMCS 5.19 % 3.24 % 4.99 % 3.34 % 1.51 % 1.06 % 1.85 % 0.99 %
OGA 4.82 % 7.56 % 7.29 % 5.81 % 2.43 % 1.79 % 3.66 % 3.82 %

Note: Cyber. = CyberShake; LIGO. = LIGO Inspiral; Epi. = Epigenomics.

H. Gholami and H. Sun Journal of Parallel and Distributed Computing 202 (2025) 105069

17

various algorithms. It normalizes the makespan of an algorithm by a
lower bound (LB) to report the efficiency of the algorithm. Since four
task graphs with different structures and attributes were utilized in our
study, the makespan LB of each task graph is calculated using the critical
path of the task graph and then used to normalize an algorithm’s
makespan. The critical path is the longest path between vn,s and vn,e that
is processed on a PC with the highest processing capability. The SLR
metric is calculated by Eq. (22).

SLR =
makespan

LB(makespan)
(22)

The denominator of the fraction in Eq. (22) calculates the LB on
makespan, and since the actual makespan must be greater than the LB,
the SLR will not be less than one. Therefore, an algorithm is better if its
SLR is closer to one. Table 8 presents the comparison of the SLR metric
derived from their average executions amongst the HGARF, CMOL,
MOGA, EMCS, and OGA algorithms according to Fig. 8, where the best
results are marked in bold.

From Table 8, we can see that HGARF substantially outperforms the
other algorithms on the basis of the SLR metric. In particular, within the
class of learning-based algorithms, HGARF performs better than CMOL,
and the class of non-learning-based algorithms clearly has weaker per
formance. HGARF has an SLR of less than 1.4 for small-size task graphs,
which shows that its makespan for such graphs is very close to the
optimal. For large-size task graphs, HGARF’s SLR is less than 4 for all the
graphs, and the difference of it from the other three algorithms is much
greater than that of small-size task graphs.

To evaluate the efficiency of the algorithms in terms of energy con
sumption and cost, the algorithms were executed on a PC with the lowest
energy consumption and cost, respectively, which allows us to calculate
the minimum energy consumption and the minimum cost for each task
graph, and we are using them as the energy and cost lower bounds. In
this way, we propose two metrics called ER and Cost Ratio CR, similarly
to the SLR, and they are defined in Eqs. (23) and (24).

ER =
energy

LB(energy)
(23)

CR =
cost

LB(cost)
(24)

Again, the closer these ratios are to one, the better the algorithm is in
terms of the energy/cost efficiency. Table 9 and Table 10 present the ERs
and CRs of the four algorithms for different task graphs. The results
again confirm the superiority of HGARF compared to the other algo
rithms for these two metrics. In particular, HGARF’s ratios are less than
1.5 for small-size task graphs and less than 5 for large-size task graphs.
Such superiority is again due to HGARF’s use of experiences to generate
knowledge such that over time the algorithm learns which sequences
and assignments bring it closer to the goal. Overall, the SLR, ER, and CR,
metrics confirm the effectiveness of the proposed HGARF algorithm.

5.2.4. Resource utilization rate
The Resource Utilization Rate (RUR) metric measures the percentage

of VMs in PCs used by the applications in the fog-cloud environment. It
indicates how much of the PCs’ capacity is being utilized over time. It is

calculated by Eq. (25).

RUR =
VM busy time

VM total available time
× 100% (25)

For this metric, each algorithm was executed five times on both
small-size and large-size applications, and the average results obtained
from them are shown in Fig. 12. The results indicate that HGARF has the
best RUR compared to other algorithms, which is more than 93 % for
small-size task graphs. For both sizes, HGARF’s rate is not less than 85
%, while the highest rate recorded by other algorithms is around 85 %.
This superiority can be attributed to the good performance of HGARF in
PSP, in particular the development of the PMO mutator, which is
effective in properly utilizing the resources by identifying the bottleneck
PCs and considering the two conditions. Another reason is the use of
rules that can lead to intelligent allocation of resources.

5.3. Evaluations based on statistical analysis

This section compares the performance of our algorithm and that of
the baseline algorithms based on two statistical significance tests,
namely, the Friedman test and the Wilcoxon signed-rank test.

5.3.1. Friedman test
Friedman test is a non-parametric test used to rank and compare the

developed algorithm with the baseline algorithms. This test examines
whether the mean ranks among the algorithms are the same at the signif
icance level of 0.05. A comparison of the performance of HGARF with the
performance of CMOL, MOGA, EMCS, and OGA based on the values of the
objective functions is presented in Table 11. Considering that the P-value is
less than 0.05, the null hypothesis (i.e., there is no difference between the
performance of the algorithms) is rejected and it can be concluded that the
algorithms do not have the same performance. HGARF is ranked first with
an average value of 1.00, thus having the best performance. Among the
baseline algorithms, CMOL performs better than others.

5.3.2. Wilcoxon signed-rank test
The Wilcoxon signed-rank test is a nonparametric statistical test used

to determine whether two related samples have the same population
mean ranks. We use it to verify the statistical differences in the perfor
mance of HGARF with CMOL, MOGA, EMCS, and OGA at the signifi
cance level of 0.05. The results of this test for pairs of algorithms based
on the objective function values are shown in Table 12. Since the sig
nificance value is smaller than 0.05, it indicates a significant difference
between HGARF and the other algorithms and that HGARF performs
better than those algorithms. Also, the table shows the pairwise com
parison among other algorithms as well. We can see that there is no
statistically significant difference between MOGA and EMCS, MOGA and
OGA, as well as EMCS and OGA, since the P-values of these three
comparisons are greater than 0.05.

6. Conclusion and future directions

This paper investigated the problem of multiple task graph sched
uling in heterogeneous distributed computing systems in which multiple
IoT devices, multiple fog nodes, and multiple cloud nodes are available.

Table 8
SLR comparison of the five algorithms for different task graphs.

Algorithms Small-size Task Graphs Large-size Task Graphs

Cyber. LIGO. SIPHT Epi. Cyber. LIGO. SIPHT Epi.

HGARF 1.23 1.16 1.29 1.37 3.25 3.45 3.41 3.84
CMOL 1.25 1.31 1.32 1.62 3.83 3.79 3.57 4.45
MOGA 1.32 1.66 1.60 2.06 4.86 3.96 4.21 5.53
EMCS 1.28 1.52 1.58 2.28 5.00 3.95 4.34 6.27
OGA 1.30 1.49 1.51 2.24 5.06 3.95 3.89 5.96

Note: Cyber. = CyberShake; LIGO. = LIGO Inspiral; Epi. = Epigenomics.

H. Gholami and H. Sun Journal of Parallel and Distributed Computing 202 (2025) 105069

18

The goal is to simultaneously minimize the three objectives of make
span, energy consumption, and cost through a weighted sum. To solve
the problem, a three-module intelligence algorithm was developed,
which explores the problem space and derives IF-THEN rules by using a
Genetic Algorithm (GA) and a Random Forest (RF) classifier, respec
tively. The designed algorithm, which we call Hybrid GA-RF (HGARF),
can interact with the environment to achieve quality rules, and auto
matically terminate its activity when it reaches a suitable convergence.
In the GA part of the developed HGARF, a method was presented in the
crossover operator to create diversity in a chromosome for problems
with multiple task graphs. In addition, by defining a concept called
bottleneck, a mutator was introduced to reduce the workload based on
multiple fog/cloud nodes. In the RF part, in addition to introducing
features to construct the decision trees, a format for extracting and
recording rules was introduced. To show the superiority of the proposed
HGARF, its performance was compared with that of four other state-of-
the-art algorithms on four task graphs with small and large sizes. The
results show that the developed algorithm was able to provide better
performance than all other four algorithms in all testing instances. In
addition, the accuracy of the developed RF was compared with that of
three other techniques, and favorable results were also observed.

Considering the complexity of the studied problem, a method in the
refinement step of the third module of HGARF was introduced to remove
the rules that play less role in convergence from the rule set. Although
this method is effective by taking advantage of the introduced mutator,
designing new mutation methods that can maintain valuable rules in
each task graph by segmenting the levels of each task graph can be a
path for the future development of HGARF. In addition, since the rules in
the rule set cannot completely cover the problem space due to the lim
itation in the maximum number of iterations, embedding a fuzzy IF-
THEN rule in the processing center prediction step to make decisions
in uncertainty conditions can increase the efficiency of our algorithm.
Real-time tasks are one of the workload types that the fog-cloud envi
ronment hosts for processing. Although more rules are added to
HGARF’s training set to increase the quality of its decision-making, in
the presence of real-time tasks at the early stages, it may not be able to
have the necessary quality for task placement. Therefore, including a
semi-greedy heuristic in HGARF is another direction that we will
consider in the future. Lastly, applying HGARF to optimize the execution
of other IoT applications such as bag-of-tasks and using heterogeneous
ensemble learning classifiers in the second module can be other paths for
future research.

Table 9
ER comparison of the five algorithms for different task graphs.

Algorithms Small-size Task Graphs Large-size Task Graphs

Cyber. LIGO. SIPHT Epi. Cyber. LIGO. SIPHT Epi.

HGARF 1.37 1.29 1.42 1.34 2.98 2.84 3.36 3.47
CMOL 1.43 1.48 1.55 1.49 3.62 3.65 4.03 4.78
MOGA 1.56 1.51 1.62 1.88 4.92 4.89 5.62 6.04
EMCS 1.55 1.50 1.59 1.71 4.68 4.51 5.64 5.27
OGA 1.55 1.63 1.60 1.72 4.71 4.52 4.99 5.36

Note: Cyber. = CyberShake; LIGO. = LIGO Inspiral; Epi. = Epigenomics.

Table 10
CR comparison of the five algorithms for different task graphs.

Algorithms Small-size Task Graphs Large-size Task Graphs

Cyber. LIGO. SIPHT Epi. Cyber. LIGO. SIPHT Epi.

HGARF 1.14 1.33 1.37 1.13 4.31 2.99 4.97 3.57
CMOL 1.32 1.41 1.50 1.34 4.43 3.79 5.26 4.31
MOGA 1.41 1.60 1.69 1.71 4.52 5.26 5.74 5.71
EMCS 1.37 1.63 1.70 1.74 4.84 5.03 5.59 5.91
OGA 1.36 1.50 1.58 1.81 4.99 4.42 5.56 5.82

Note: Cyber. = CyberShake; LIGO. = LIGO Inspiral; Epi. = Epigenomics.

Fig. 12. Resource utilization rate comparison of the five algorithms for
different task graphs.

Table 11
Results of Friedman test based on objective function values.

Algorithm Mean rank Statistic P-value

HGARF 1.00

26.500 0.000025
CMOL 2.00
MOGA 4.00
EMCS 4.38
OGA 3.63

Table 12
Results of Wilcoxon signed test based on objective function values.

Algorithm pair Difference of Medians Wilcoxon statistic P-value

HGARF-CMOL − 0.05902 2.521 0.012
HGARF-MOGA − 0.15346 2.521 0.012
HGARF- EMCS − 0.14951 2.521 0.012
HGARF-OGA − 0.14332 2.521 0.012
CMOL-MOGA − 0.09444 2.521 0.012
CMOL-EMCS − 0.09049 2.521 0.012
CMOL-OGA -0.0843 2.521 0.012
MOGA-EMCS 0.003956 0.420 0.674
MOGA-OGA 0.010143 0.420 0.674
EMCS- OGA 0.006187 1.680 0.093

H. Gholami and H. Sun Journal of Parallel and Distributed Computing 202 (2025) 105069

19

CRediT authorship contribution statement

Hadi Gholami: Writing – original draft, Software, Methodology,
Investigation, Conceptualization. Hongyang Sun: Writing – review &
editing, Validation, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] W.A. Kassab, K.A. Darabkh, A–Z survey of Internet of Things: Architectures,
protocols, applications, recent advances, future directions and recommendations,
J. Netw. Comput. Appl. 163 (2020) 102663, https://doi.org/10.1016/j.
jnca.2020.102663.

[2] X. Ma, et al., Real-time multiple-workflow scheduling in cloud environments, IEEE
Trans. Netw. Serv. Manage. 18 (4) (2021) 4002–4018, https://doi.org/10.1109/
TNSM.2021.3125395.

[3] X. Ma, et al., Real-time virtual machine scheduling in industry IoT network: A
reinforcement learning method, IEEe Trans. Industr. Inform. 19 (2) (2022)
2129–2139, https://doi.org/10.1109/TII.2022.3211622.

[4] H. Gao, et al., Com-DDPG: Task offloading based on multiagent reinforcement
learning for information-communication-enhanced mobile edge computing in the
internet of vehicles, IEEe Trans. Veh. Technol. (2023), https://doi.org/10.1109/
TVT.2023.3309321.

[5] P. Li, et al., EPtask: Deep reinforcement learning based energy-efficient and
priority-aware task scheduling for dynamic vehicular edge computing, IEEE Trans.
Intell. Veh. (2023), https://doi.org/10.1109/TIV.2023.3321679.

[6] D. Tychalas, H. Karatza, A scheduling algorithm for a fog computing system with
bag-of-tasks jobs: simulation and performance evaluation, Simul. Model. Pract.
Theory. 98 (2020) 101982, https://doi.org/10.1016/j.simpat.2019.101982.

[7] M. Lin, et al., Scheduling co-design for reliability and energy in cyber-physical
systems, IEEE Trans. Emerg. Top. Comput. 1 (2) (2013) 353–365, https://doi.org/
10.1109/TETC.2013.2274042.

[8] L. Benini, A. Bogliolo, G. De Micheli, A survey of design techniques for system-level
dynamic power management, IEEe Trans. Very. Large Scale Integr. VLSI. Syst. 8 (3)
(2000) 299–316, https://doi.org/10.1109/92.845896.

[9] H. Gholami, H. Sun, Toward automated algorithm configuration for distributed
hybrid flow shop scheduling with multiprocessor tasks, Knowl. Based. Syst. (2023)
110309, https://doi.org/10.1016/j.knosys.2023.110309.

[10] M. Li, D. Pi, S. Qin, Knowledge-based multi-objective estimation of distribution
algorithm for solving reliability constrained cloud workflow scheduling, Cluster.
Comput. (2024) 1–19, https://doi.org/10.1007/s10586-023-04022-w.

[11] H. Li, et al., Weighted double deep Q-network based reinforcement learning for bi-
objective multi-workflow scheduling in the cloud, Cluster. Comput. (2022) 1–18,
https://doi.org/10.1007/s10586-021-03454-6.

[12] T. Dong, et al., Workflow scheduling based on deep reinforcement learning in the
cloud environment, J. Ambient. Intell. Humaniz. Comput. (2021) 1–13, https://
doi.org/10.1007/s12652-020-02884-1.

[13] J. Wang, et al., Hybrid physics-based and data-driven models for smart
manufacturing: Modelling, simulation, and explainability, J. Manuf. Syst. 63
(2022) 381–391, https://doi.org/10.1016/j.jmsy.2022.04.004.

[14] L. Perotin, H. Sun, P. Raghavan, Multi-resource list scheduling of moldable parallel
jobs under precedence constraints, in: Proceedings of the 50th International
Conference on Parallel Processing, 2021, https://doi.org/10.1145/
3472456.3472487.

[15] H. Gholami, M.T. Rezvan, A cooperative multi-agent offline learning algorithm to
scheduling IoT workflows in the cloud computing environment, Concurr.
Computat.: Pract. Exp. 34 (22) (2022) e7148, https://doi.org/10.1002/cpe.7148.

[16] Y. Kumar, S. Kaul, Y.-C. Hu, Machine learning for energy-resource allocation,
workflow scheduling and live migration in cloud computing: State-of-the-art
survey, Sustain. Comput.: Inf. Syst. 36 (2022) 100780, https://doi.org/10.1016/j.
suscom.2022.100780.

[17] H. Topcuoglu, S. Hariri, M.-Y. Wu, Performance-effective and low-complexity task
scheduling for heterogeneous computing, IEEE Trans. Parall. Distrib. Syst. 13 (3)
(2002) 260–274, https://doi.org/10.1109/71.993206.

[18] H. Gholami, R. Zakerian, A list-based heuristic algorithm for static task scheduling
in heterogeneous distributed computing systems, in: 2020 6th international
conference on web research (ICWR), IEEE, 2020, https://doi.org/10.1109/
ICWR49608.2020.9122306.

[19] N. Khaledian, et al., IKH-EFT: An improved method of workflow scheduling using
the krill herd algorithm in the fog-cloud environment, Sustain. Comput.: Inf. Syst.
37 (2023) 100834, https://doi.org/10.1016/j.suscom.2022.100834.

[20] R. Sing, et al., EMCS: an energy-efficient makespan cost-aware scheduling
algorithm using evolutionary learning approach for cloud-fog-based IoT
applications, Sustainability 14 (22) (2022) 15096, https://doi.org/10.3390/
su142215096.

[21] S. Karami, S. Azizi, F. Ahmadizar, A bi-objective workflow scheduling in
virtualized fog-cloud computing using NSGA-II with semi-greedy initialization,
Appl. Soft. Comput. 151 (2024) 111142, https://doi.org/10.1016/j.
asoc.2023.111142.

[22] Y. Xia, et al., Dynamic variable analysis guided adaptive evolutionary multi-
objective scheduling for large-scale workflows in cloud computing, Swarm. Evol.
Comput. 90 (2024) 101654, https://doi.org/10.1016/j.swevo.2024.101654.

[23] N. Abbas, et al., Joint computing, communication and cost-aware task offloading in
D2D-enabled Het-MEC, Comput. Netw. 209 (2022) 108900, https://doi.org/
10.1016/j.comnet.2022.108900.

[24] M. Goudarzi, et al., An application placement technique for concurrent IoT
applications in edge and fog computing environments, IEEe Trans. Mob. Comput.
20 (4) (2020) 1298–1311, https://doi.org/10.1109/TMC.2020.2967041.

[25] M.I. Khaleel, A dynamic weight–assignment load balancing approach for workflow
scheduling in edge-cloud computing using ameliorated moth flame and rock hyrax
optimization algorithms, Fut. Generat. Computer Syst. 155 (2024) 465–485,
https://doi.org/10.1016/j.future.2024.02.025.

[26] A. Rehman, et al., Multi-objective approach of energy efficient workflow
scheduling in cloud environments, Concurr. Comput.: Pract. Exper. 31 (8) (2019)
e4949, https://doi.org/10.1002/cpe.4949.

[27] H. Li, et al., Chaotic-nondominated-sorting owl search algorithm for energy-aware
multi-workflow scheduling in hybrid clouds, IEEe Trans. Sustain. Comput. 7 (3)
(2022) 595–608, https://doi.org/10.1109/TSUSC.2022.3144357.

[28] D. Subramoney, C.N. Nyirenda, Multi-Swarm PSO Algorithm for Static Workflow
Scheduling in Cloud-Fog Environments, IEEe Access 10 (2022) 117199–117214,
https://doi.org/10.1109/ACCESS.2022.3220239.

[29] Z. Sun, et al., Efficient, economical and energy-saving multi-workflow scheduling
in hybrid cloud, Expert. Syst. Appl. 228 (2023) 120401, https://doi.org/10.1016/j.
eswa.2023.120401.

[30] H. Izadkhah, Learning based genetic algorithm for task graph scheduling, Appl.
Comput. Intell. Soft Comput. 2019 (2019), https://doi.org/10.1155/2019/
6543957.

[31] D. Rahbari, Analyzing meta-heuristic algorithms for task scheduling in a fog-based
IoT application, Algorithms 15 (11) (2022) 397, https://doi.org/10.3390/
a15110397.

[32] V. Singh, I. Gupta, P.K. Jana, A novel cost-efficient approach for deadline-
constrained workflow scheduling by dynamic provisioning of resources, Fut.
Gener. Comput. Syst. 79 (2018) 95–110, https://doi.org/10.1016/j.
future.2017.09.054.

[33] M. Abbasi, et al., Efficient resource management and workload allocation in
fog–cloud computing paradigm in IoT using learning classifier systems, Comput.
Commun. 153 (2020) 217–228, https://doi.org/10.1016/j.comcom.2020.02.017.

[34] T.-P. Pham, J.J. Durillo, T. Fahringer, Predicting workflow task execution time in
the cloud using a two-stage machine learning approach, IEEE Trans. Cloud
Comput. 8 (1) (2017) 256–268, https://doi.org/10.1109/TCC.2017.2732344.

[35] B.M.H. Zade, N. Mansouri, M.M. Javidi, A two-stage scheduler based on new
Caledonian crow learning algorithm and reinforcement learning strategy for cloud
environment, J. Netw. Comput. Appl. 202 (2022) 103385, https://doi.org/
10.1016/j.jnca.2022.103385.

[36] Y.-K. Kwok, I. Ahmad, On multiprocessor task scheduling using efficient state space
search approaches, J. Parallel. Distrib. Comput. 65 (12) (2005) 1515–1532,
https://doi.org/10.1016/j.jpdc.2005.05.028.

[37] P.V. Reddy, K.G. Reddy, An energy efficient RL based workflow scheduling in cloud
computing, Expert. Syst. Appl. 234 (2023) 121038, https://doi.org/10.1016/j.
eswa.2023.121038.

[38] H. Sun, W.-J. Hsu, Y. Cao, Competitive online adaptive scheduling for sets of
parallel jobs with fairness and efficiency, J. Parallel. Distrib. Comput. 74 (3) (2014)
2180–2192, https://doi.org/10.1016/j.jpdc.2013.12.003.

[39] H. Sun, et al., Scheduling parallel tasks under multiple resources: List scheduling
vs. pack scheduling, in: 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), IEEE, 2018, https://doi.org/10.1109/
IPDPS.2018.00029.

[40] D.E. Golberg, Genetic Algorithms In Search, Optimization, And Machine Learning,
1989, Addison Wesley, 1989, p. 36.

[41] J. Gholami, et al., Facility maintenance scheduling for organisations with a multi-
location structure: optimisation model and hybrid metaheuristic approach, Int. J.
Indust. Syst. Eng. 44 (1) (2023) 96–117, https://doi.org/10.1504/
IJISE.2023.130962.

[42] E. Shadkam, S. Safari, S.S. Abdollahzadeh, Finally, which meta-heuristic algorithm
is the best one? Int. J. Decis. Sci., Risk Manage. 10 (1-2) (2021) 32–50, https://doi.
org/10.1504/IJDSRM.2021.117555.

[43] K. Asghari, et al., Multi-swarm and chaotic whale-particle swarm optimization
algorithm with a selection method based on roulette wheel, Expert. Syst. 38 (8)
(2021) e12779, https://doi.org/10.1111/exsy.12779.

[44] L. Breiman, Random forests, Mach. Learn. 45 (2001) 5–32, https://doi.org/
10.1023/A:1010933404324.

[45] S. Del Río, et al., On the use of mapreduce for imbalanced big data using random
forest, Inf. Sci. 285 (2014) 112–137, https://doi.org/10.1016/j.ins.2014.03.043.

[46] I. Guyon, A. Elisseeff, An introduction to variable and feature selection, J. Mach.
Learn. Res. 3 (Mar) (2003) 1157–1182.

[47] T.T. Nguyen, et al., Heterogeneous classifier ensemble with fuzzy rule-based meta
learner, Inf. Sci. 422 (2018) 144–160, https://doi.org/10.1016/j.ins.2017.09.009.

H. Gholami and H. Sun Journal of Parallel and Distributed Computing 202 (2025) 105069

20

https://doi.org/10.1016/j.jnca.2020.102663
https://doi.org/10.1016/j.jnca.2020.102663
https://doi.org/10.1109/TNSM.2021.3125395
https://doi.org/10.1109/TNSM.2021.3125395
https://doi.org/10.1109/TII.2022.3211622
https://doi.org/10.1109/TVT.2023.3309321
https://doi.org/10.1109/TVT.2023.3309321
https://doi.org/10.1109/TIV.2023.3321679
https://doi.org/10.1016/j.simpat.2019.101982
https://doi.org/10.1109/TETC.2013.2274042
https://doi.org/10.1109/TETC.2013.2274042
https://doi.org/10.1109/92.845896
https://doi.org/10.1016/j.knosys.2023.110309
https://doi.org/10.1007/s10586-023-04022-w
https://doi.org/10.1007/s10586-021-03454-6
https://doi.org/10.1007/s12652-020-02884-1
https://doi.org/10.1007/s12652-020-02884-1
https://doi.org/10.1016/j.jmsy.2022.04.004
https://doi.org/10.1145/3472456.3472487
https://doi.org/10.1145/3472456.3472487
https://doi.org/10.1002/cpe.7148
https://doi.org/10.1016/j.suscom.2022.100780
https://doi.org/10.1016/j.suscom.2022.100780
https://doi.org/10.1109/71.993206
https://doi.org/10.1109/ICWR49608.2020.9122306
https://doi.org/10.1109/ICWR49608.2020.9122306
https://doi.org/10.1016/j.suscom.2022.100834
https://doi.org/10.3390/su142215096
https://doi.org/10.3390/su142215096
https://doi.org/10.1016/j.asoc.2023.111142
https://doi.org/10.1016/j.asoc.2023.111142
https://doi.org/10.1016/j.swevo.2024.101654
https://doi.org/10.1016/j.comnet.2022.108900
https://doi.org/10.1016/j.comnet.2022.108900
https://doi.org/10.1109/TMC.2020.2967041
https://doi.org/10.1016/j.future.2024.02.025
https://doi.org/10.1002/cpe.4949
https://doi.org/10.1109/TSUSC.2022.3144357
https://doi.org/10.1109/ACCESS.2022.3220239
https://doi.org/10.1016/j.eswa.2023.120401
https://doi.org/10.1016/j.eswa.2023.120401
https://doi.org/10.1155/2019/6543957
https://doi.org/10.1155/2019/6543957
https://doi.org/10.3390/a15110397
https://doi.org/10.3390/a15110397
https://doi.org/10.1016/j.future.2017.09.054
https://doi.org/10.1016/j.future.2017.09.054
https://doi.org/10.1016/j.comcom.2020.02.017
https://doi.org/10.1109/TCC.2017.2732344
https://doi.org/10.1016/j.jnca.2022.103385
https://doi.org/10.1016/j.jnca.2022.103385
https://doi.org/10.1016/j.jpdc.2005.05.028
https://doi.org/10.1016/j.eswa.2023.121038
https://doi.org/10.1016/j.eswa.2023.121038
https://doi.org/10.1016/j.jpdc.2013.12.003
https://doi.org/10.1109/IPDPS.2018.00029
https://doi.org/10.1109/IPDPS.2018.00029
http://refhub.elsevier.com/S0743-7315(25)00036-X/sbref0040
http://refhub.elsevier.com/S0743-7315(25)00036-X/sbref0040
https://doi.org/10.1504/IJISE.2023.130962
https://doi.org/10.1504/IJISE.2023.130962
https://doi.org/10.1504/IJDSRM.2021.117555
https://doi.org/10.1504/IJDSRM.2021.117555
https://doi.org/10.1111/exsy.12779
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.ins.2014.03.043
http://refhub.elsevier.com/S0743-7315(25)00036-X/sbref0046
http://refhub.elsevier.com/S0743-7315(25)00036-X/sbref0046
https://doi.org/10.1016/j.ins.2017.09.009

[48] Workflows, P. https://confluence.pegasus.isi.edu/display/pegasus/Workflow
Generator. 2023.

[49] H. Gholami, M.T. Rezvan, A memetic algorithm for multistage hybrid flow shop
scheduling problem with multiprocessor tasks to minimize makespan, Int. J.
Indust. Eng. Manage. Sci. 7 (1) (2020) 127–145, https://doi.org/10.22034/
IJIEMS.2020.118105.

[50] S. Zhang, T. Wong, Integrated process planning and scheduling: an enhanced ant
colony optimization heuristic with parameter tuning, J. Intell. Manuf. 29 (2018)
585–601, https://doi.org/10.1007/s10845-014-1023-3.

Hadi Gholami obtained his BSc and MSc degrees in Computer
Engineering from Islamic Azad University, Iran. His main
research interests are in algorithms, scheduling, parallel and
distributed computing, and machine learning.

Hongyang Sun is an Assistant Professor in the Department of
Electrical Engineering and Computer Science at the University
of Kansas, USA. Previously, he held a research faculty position
at Vanderbilt University, USA, and was a postdoctoral
researcher at ENS de Lyon, INRIA (Rhône-Alpes), and IRIT
(Toulouse), France. He obtained his Ph.D. in Computer Science
from Nanyang Technological University, Singapore. His
research interests are in the broad area of high-performance
computing (HPC), cloud/edge computing, computational
data science, scheduling algorithms, and fault tolerance.

H. Gholami and H. Sun Journal of Parallel and Distributed Computing 202 (2025) 105069

21

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://doi.org/10.22034/IJIEMS.2020.118105
https://doi.org/10.22034/IJIEMS.2020.118105
https://doi.org/10.1007/s10845-014-1023-3

	A knowledge-driven approach to multi-objective IoT task graph scheduling in fog-cloud computing
	1 Introduction
	2 Related works
	2.1 Meta-heuristic-based algorithms
	2.2 Knowledge-based algorithms
	2.3 Algorithms to enhance PSP
	2.4 Motivation of this paper

	3 System model and problem statement
	3.1 System architecture
	3.2 Task graph application model
	3.3 Problem statement
	3.3.1 Makespan model
	3.3.2 Cost model
	3.3.3 Energy consumption model
	3.3.4 Objective functions

	4 Proposed method
	4.1 Rule exploration
	4.1.1 Solution representation
	4.1.2 Genetic algorithm
	4.1.2.1 Initial population
	4.1.2.2 Fitness function
	4.1.2.3 Selection
	4.1.2.4 Crossover
	4.1.2.5 Mutation
	4.1.2.6 Stopping criteria

	4.2 Rule generation
	4.2.1 Training step
	4.2.2 Evaluation step

	4.3 Rule usage
	4.3.1 Processing center prediction step
	4.3.2 Refinement step

	4.4 Termination condition
	4.5 Time complexity

	5 Experimental results
	5.1 Experimental setup
	5.1.1 Data set
	5.1.2 Environment setting
	5.1.3 Baseline algorithms
	5.1.4 Parameter configuration
	5.1.5 Metrics

	5.2 Performance evaluation
	5.2.1 Comparison of objective functions
	5.2.2 Comparison of maximum number of iterations
	5.2.3 Comparison of efficiency ratios
	5.2.4 Resource utilization rate

	5.3 Evaluations based on statistical analysis
	5.3.1 Friedman test
	5.3.2 Wilcoxon signed-rank test

	6 Conclusion and future directions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

