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A B S T R A C T

Despite the significant growth of Internet of Things (IoT), there are prominent limitations of this emerging 
technology, such as limited processing power and storage. Along with the expansion of IoT networks, the fog- 
cloud computing paradigm has been developed to optimize the provision of services to IoT users by off
loading computations to the more powerful processing resources. In this paper, with the aim of optimizing 
multiple objectives of makespan, energy consumption, and cost, we develop a novel automatic three-module 
algorithm to schedule multiple task graphs offloaded from IoT devices to the fog-cloud environment. Our al
gorithm combines the Genetic Algorithm (GA) and the Random Forest (RF) classifier, which we call Hybrid GA- 
RF (HGARF). Each of the three modules has a responsibility and they are repeated sequentially to extract 
knowledge from the solution space in the form of IF-THEN rules. The first module is responsible for generating 
solutions for the training set using a GA. Here, we introduce a chromosome encoding method and a crossover 
operator to create diversity for multiple task graphs. By expressing a concept called bottleneck and two condi
tions, we also develop a mutation operator to identify and reduce the workload of certain processing centers. The 
second module aims at generating rules from the solutions of the training set, and to that end employs an RF 
classifier. Here, in addition to proposing features to construct decision trees, we develop a format for extracting 
and recording IF-THEN rules. The third module checks the quality of the generated rules and refines them by 
predicting the processing resources as well as removing less important rules from the rule set. Finally, the 
developed HGARF algorithm automatically determines its termination condition based on the quality of the 
provided solutions. Experimental results demonstrate that our method effectively improves the objective func
tions in large-size task graphs by up to 13.24 % compared to some state-of-the-art methods.

1. Introduction

The Internet of Things (IoT) ecosystem is becoming ubiquitous with 
the increasing developments of web-based smart device sensors and 
communication hardware to collect, process and send data. By bringing 
the ability to access data and information in any place at any time, IoT is 
helping to manage people’s lives and work in an unprecedented way. 
Moreover, by serving requests automatically, it has also improved the 
quality of business and services and reduced the need for human inter
vention. Therefore, IoT is increasingly being used with massive amounts 
of diverse data generated by millions of users [1]. One type of data 
generated by IoT users is graph data, which has a wide range of appli
cations in scientific fields (i.e., bioinformatics, physics, and earth
quakes) and smart cities. Task graph applications, which consist of a set 
of tasks with edges that show the dependency (i.e., data flow) between 

them, are typically described as Directed Acyclic Graphs (DAGs) [2]. 
The increased rate of data generation by IoT users, especially in task 
graph applications with concurrent structure, poses a challenge for data 
management and processing. Considering the limitations of IoT devices 
in their processing power, storage, and energy, offloading requests to 
cloud computing environment is often carried out to meet the Quality of 
Service (QoS) requirement.

Cloud computing with a centralized processing paradigm has high 
processing and storage capacity, which utilizes large Data Centers (DCs) 
to provide IoT users with ubiquitous access for resource sharing and 
supply [3]. Although virtualization mechanism in the cloud results in 
the support of IoT development, the concentration of resources in cloud 
environments causes the division of resources among IoT users and the 
cloud, which entails network delay [4]. Delay degrades the QoS and is 
detrimental to location-aware and delay-sensitive tasks (e.g., medical 
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activities) [5]. While delay-tolerant tasks can be processed in the cloud, 
high bandwidth and unreliable and inconsistent network access are 
other challenges of this technology. Therefore, recent years have wit
nessed fog computing as a way to enhance the QoS and the processing 
capacity of IoT requests. With Micro Data Centers (MDCs) that possess 
moderate processing capability, the fog has a decentralized structure, 
and its resources are abundantly available geographically to serve local 
requests in their regions. Owing to its hardware that occupies smaller 
space, the fog is closer to IoT devices and accelerates data aggregation, 
processing, and storage. As such, the fog contributes to reducing the 
time required for requests to reach resources, thereby increasing 
response time [6]. It is evident that a combination of cloud and fog 
technology, or the so-called fog-cloud computing, can respond to a 
massive flow of requests generated by IoT devices and end-users. 
However, deciding on the distribution of requests among processing 
stations in the cloud or fog and scheduling resources effectively remain 
difficult tasks.

From the perspective of fog-cloud providers, minimizing the energy 
consumption of MDCs/DCs (from processors, cooling systems, power 
supply systems, etc.) is also important, because failure to manage this 
leads to increased financial costs and reduced profits. While hardware- 
based techniques such as Dynamic Power Management (DPM) [7] and 
Dynamic Voltage and Frequency Scaling (DVFS) [8] have been pre
sented for energy efficiency, studies on the development of 
software-based methods such as scheduling algorithms have also been 
shown as effective solutions. From the perspective of IoT users, mini
mizing the economic cost is one of their preferences too. Although IoT 
users benefit from the processing, storage and communication capabil
ities of the fog-cloud, the cost-effectiveness of this offloading should be 
carefully considered. Thus, leveraging fog-cloud processing capabilities 
to reduce processing time needs to be balanced with the offloading costs; 
logically, using services offered by more advanced equipment leads to an 
increase in cost but a decrease in execution time, and vice versa. There is 
a need for a good trade-off between the cost for the use of fog-cloud 
resources and the application execution time.

Thus, an efficient scheduler should propose a suitable solution 
considering the objectives of both fog-cloud providers and IoT users. In 
addition, the scheduler’s performance becomes more prominent when it 
receives multiple task graphs from multiple IoT devices per its sched
uling time slot. Although different prioritization policies can be adopted, 
these policies alone cannot be a solution when facing multiple large- 
scale task graphs. Hence, batch placement of task graphs is another 
issue that affects the performance of the scheduler to improve the 
objective functions. To achieve the goal of developing a good scheduling 
solution, we argue that it is necessary to consider the following three 
aspects.

The first aspect is considering the required arrangements for 
learning-based methods. The use of intelligent planning in scheduling 
problems has become widespread due to the ability to deduce rules via 
the exploration and exploitation process [9]. In particular, the current 
trend toward task graph offloading for IoT devices has led to increasing 
employment of learning-based algorithms in the fog-cloud environments 
[10–12]. While machine learning algorithms with their continuous re
finements can lead to increased accuracy and efficiency in 
decision-making, it should be noted that they as data-driven models are 
designed to address low-complexity and high-uncertainty problems 
[13]. Although the high-uncertainty aspect includes the current state of 
this problem, it should be kept in mind that the problem is NP-hard and 
inherently of high-complexity [14]. Therefore, it is necessary to use a 
method that, in addition to decentralizing the presentation of the solu
tion in the problem space, extracts rules so that better solutions can be 
predicted by delving into the rules. In other words, since fog-cloud 
providers have MDCs/DCs with different characteristics and at a dis
tance from each other, adopting a single rule for all MDCs/DCs may not 
be suitable; rules are needed to take into account different conditions.

The second aspect is on the design of an efficient method for 

allocating resources. Developing a method for task graph scheduling 
often involves two phases: Task Prioritizing Phase (TPP) and Processor 
Selection Phase (PSP) [15]. In TPP, tasks are prioritized based on their 
significance, and in PSP, tasks are assigned to MDCs/DCs based on rules. 
For TPP, many algorithms have been presented in the literature, among 
which intelligent algorithms have been particularly helpful for better 
understanding the problem space and providing efficient solutions [16]. 
Unlike TPP, fewer algorithms have been developed for PSP. Well-known 
algorithms developed for this phase include Earliest Finish Time (EFT) 
[17], which uses a greedy strategy to allocate processors, and Looking 
Ahead Sequencing Algorithm (LASA) [18], which has a stochastic 
structure to allocate processors based on a limited-lookahead rule. In the 
literature [19–22], most algorithms have used the described near-sight 
structures that significantly limit their capabilities. Therefore, the 
need to develop far-sighted algorithms is imminent. Such algorithms 
should be able to propose processors for allocation by considering the 
position of a task among the tasks of a level in a graph, which in the 
future will lead to the improvement of the objective functions. However, 
providing an intelligent method that monitors the status of the tasks in 
both phases and at the same time offers an effective solution is difficult. 
It should be kept in mind that monitoring requires features that must be 
carefully selected so that they have a complete representation of the 
problem space and tasks. These features should strike a proper balance 
between objectives that may conflict with each other (e.g., time and 
cost). Similarly, there is a trade-off between cost and energy consump
tion [23]. Therefore, it is important to determine the features that can 
help optimize the objectives of the problem.

The third aspect is the purposeful usage of the solutions generated by 
meta-heuristic algorithms. In the literature, many meta-heuristics have 
been developed for this group of NP-hard problems [20,24,25]. In each 
iteration of these meta-heuristics, useful information is produced. 
Although there are different selection operations in combination with 
different approaches, the operators use only part of the information and 
other useful information is wasted. This calls for methods that can 
provide high-quality results by better extracting knowledge from his
torical information.

Motivated by the need to provide an intelligent solution from the 
three aspects above in order to optimize energy consumption, time, and 
economic cost as the objectives of the two agents in IoT and fog-cloud 
computing (i.e., users and service providers), this paper studies the 
problem of scheduling and offloading multiple task graphs between IoT 
devices and fog-cloud. The main contributions of the paper are as 
follows: 

• We design a novel automatic three-module algorithm for knowledge 
acquisition and resource allocation in PSP by using Genetic Algo
rithm (GA) and Random Forest (RF) classifier as the supervised 
machine learning techniques.

• We present a new GA algorithm by proposing a crossover operator to 
diversify the promising solutions in TPP for multiple IoT task graphs. 
Moreover, by defining a concept called bottleneck, a new mutator is 
developed in PSP to reduce the workload of MDCs/DCs by consid
ering two conditions.

• We present and characterize the features for an IF-THEN rule format 
to place multiple IoT task graph applications in MDCs/DCs by an RF 
ensemble learning algorithm.

• We develop a method to refine the rules that play less role in 
improving the solution. In addition, a method to automatically adjust 
the maximum number of iterations based on the quality of the pro
vided solutions without human intervention is proposed.

• We conduct intensive experiments to illustrate the accuracy of the 
proposed classifier and verify the efficiency of the proposed solution. 
The results demonstrate that the proposed algorithm outperforms 
other state-of-the-art algorithms.

The remainder of the paper is organized as follows: the next section 
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reviews the related works. Section 3 describes the system model and 
problem formulations. The presented three-module method is explained 
in Section 4. Section 5 evaluates the performance of the presented 
method and compares it with the state-of-the-art algorithms. Section 6
summarizes the whole paper and suggests topics for future works.

2. Related works

This section briefly reviews some existing task scheduling algorithms 
applied in fog and cloud systems. The algorithms studied here are 
divided into three categories: meta-heuristic-based algorithms for multi- 
objective optimization, knowledge-based algorithms, and algorithms 
developed to improve the objective function in PSP. The end of this 
section provides a brief summary to the reviewed papers.

2.1. Meta-heuristic-based algorithms

In the literature, evolutionary optimization algorithms have been 
employed to find near-optimal solutions in fog-cloud computing envi
ronments to multi-objective task graph scheduling. Among nature- 
inspired algorithms, GA-based algorithms have been often used. The 
study in [26] proposed a Multi-Objective Genetic Algorithm (MOGA) to 
solve task graph scheduling in cloud environment. The optimization 
objective was to minimize makespan and energy consumption under the 
deadline constraint. They introduced a gap search algorithm as a 
neighborhood search to maximize the utilization of the resources. In 
[24], the authors investigated the task graph scheduling problem in a 
heterogeneous computing environment and developed a GA to optimize 
the energy consumption and execution time of the IoT devices. To 
maximize the number of tasks in parallel execution, they introduced a 
dynamic and lightweight pre-scheduling technique. The authors of [20] 
considered a three-layer system in which the cloud layer includes 
high-performance systems. Then, they developed a GA-based algorithm 
called Energy-efficient Makespan Cost-aware Scheduling (EMCS) that 
could efficiently balance the workload between the fog layer and the 
cloud layer to achieve good performance in terms of energy consump
tion, execution time, and cost. The study in [27] targeted the minimi
zation of cost, makespan, and energy consumption under the given 
deadline and budget constraints by developing a hybrid Non-dominated 
Sorting Genetic Algorithm II (NSGA-II)-Owl Search Algorithm (OSA) 
algorithm. It introduced a hierarchical evolving method to ensure suit
able exploration and exploitation and a chaotic operator as a local 
search method. Karimi et al. [21] developed an NSGA-II to reduce en
ergy consumption and makespan. They introduced an intelligent 
semi-greedy algorithm to generate an efficient initial population and 
used the weighted sum method for PSP. Like the previous work, Xia et al. 
[22] also developed a heuristic for the initial population, showing that 
the initial solution effectively improves the two objective functions of 
makespan and energy consumption in their designed Adaptive Evolu
tionary Scheduling Algorithm (AESA). The approach in [28] uses a 
Particle Swarm Optimization (PSO) algorithm to propose a strategy for 
preventing premature convergence. The study, by using multiple 
swarms of different species of particles, could optimize four objectives of 
energy, makespan, cost, and load balancing for fog and cloud tiers. 
Khaledian et al. [19] developed an Improved Krill Herd (IKH) 
meta-heuristic algorithm, which optimized energy consumption, 
makespan, and cost. The meta-heuristic algorithm uses the dynamic 
frequency scaling search method in the initial population section to 
achieve fast convergence. To optimize the three objective functions of 
total tardiness, energy consumption, and cost, the authors of [29] 
employed a Multi-objective Salp Swarm Algorithm (MSSA) to explore 
the Pareto solutions and a local search method based on Iterative Greedy 
Algorithm (IGA) to refine the found solutions. In summary, in the pre
sented papers, in addition to the techniques considered in the problem 
space, the changes applied in the specific operators of the algorithms or 
new neighborhood searches were introduced as contributions. However, 

in each iteration of these meta-heuristic algorithms, different solutions 
are produced, but it is not using past valuable experiences obtained in 
previous iterations, which is considered as a gap in the mentioned 
algorithms.

2.2. Knowledge-based algorithms

In order to benefit from past information, a learning schema by using 
the algorithm of learning automata was presented in [30] for task graph 
scheduling. The schema learns the optimal action through past experi
ences by a GA-based exploration method and repeats interactions with 
the environment. The work in [15] developed a three-step learning-
based approach to scheduling IoT task graph applications. After explo
ration and recording the experiences in the first step, the second step 
uses a method to learn from the experiences and suggests solutions by 
interacting with the search space. The learning-based approach im
proves the solution in both TPP and PSP. To schedule IoT devices re
quests, the authors of [31] proposed a data mining-based algorithm. The 
algorithm employs several meta-heuristics and after the training phase 
and testing phase, it decides on which meta-heuristic to use to optimize 
the objectives in the scheduler. Using the combination of a variant of the 
subset sum problem and a k-means clustering technique, a two-phase 
task graph scheduling algorithm for dynamic resource provision in 
cloud environment is proposed in [32]. The study considered a 
centralized data recovery model for data transferring when a processing 
unit fails during a task execution. The evaluation results by considering 
the deadline constraint showed the effectiveness of the proposed algo
rithm over two other algorithms. In [33], Abbasi et al. improved 
Learning Classifier Systems (LCS) by introducing an intelligent Extended 
Classifier System (XCS) to find an optimal state for workload balancing 
in fog computing. They used a GA to search in the state set and a rein
forcement algorithm for selecting the best state. In addition, they pre
sented a classifier to avoid the random selection of actions by storing the 
sequence of the input conditions of the system. A two-stage approach to 
predict the task execution time was developed in [34]. The first stage 
uses an ensemble learning algorithm to learn information about the 
tasks and the environment, while the second stage predicts the final 
execution time. The study in [35] developed a two-stage scheduling 
approach called Parallel Reinforcement Learning Caledonian Crow 
(PRLCC) by considering the New Caledonian Crow Learning Algorithm 
(NCCLA)’s social and asocial learning behavior to create a global opti
mization algorithm. The capabilities of Q-learning algorithm in knowl
edge extraction and parallel computations in searching different 
directions of the problem space are also used. To reduce the task graph 
execution cost and execution time, Li et al. [10] presented a 
Knowledge-based Multi-Objective Estimation of Distribution Algorithm 
(KMOEDA) where four attributes of initial solutions, global search 
strategy, reliability-aware search strategy, and elite enhancement 
strategy showed its superior performance over other algorithms. The 
study in [11] suggested a Weighted Double Deep Q-Network-based 
Reinforcement Learning algorithm (WDDQN-RL) to minimize the 
makespan and cost. In order to improve the accuracy of the target value 
estimation in the WDDQN part, the authors introduced a dynamic 
coefficient-based adaptive balancing method. In addition, a dynamic 
sensing mechanism was presented for increasing the diversity of solu
tions. Dong et al. [12] introduced an actor-critic architecture to solve 
task graph scheduling achieving the makespan minimization. The ar
chitecture employed a Pointer network which consists of two Recurrent 
Neural Network (RNN) in TPP to extract the relevant information. The 
simulation experiment indicates the efficiency of the desired structure. 
However, most algorithms in this field have at least one of the following 
three limitations: (1) PSP was not considered, or even if it was consid
ered, simple greedy-based heuristic algorithms like EFT were used; (2) 
no attention has been paid to refining the knowledge that prevents the 
algorithms from reaching optimal/near-optimal solutions; (3) the 
gained knowledge is only used in a limited time period, and is 
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completely replaced by new knowledge in later periods.

2.3. Algorithms to enhance PSP

Some research papers suggest that approaches other than the greedy- 
based method of EFT [17] in PSP can show better performance. The 
authors in [18] presented a concept called Emphasized Processor (EP) in 
a heterogeneous distributed computing system to minimize the make
span of a task graph application. They state that although EFT is 
considered to be an effective method, there is no foresight in it. It was 
stated that, as the number of tasks of a level increases, EFT directs and 
focuses tasks on specific processors. In this way, they added the property 
EP to some tasks and added a processor ID to EP in TPP. This means that 
in PSP, that task does not follow EFT and is processed on a processor 
whose ID exists in EP. Although they showed that considering the EP 
property for some tasks leads to an improvement in makespan, for which 
task should EP be considered is an input parameter of the algorithm, 
thus a human expert is still needed. The work in [15] used the weighted 
sum method to select a suitable VM in cloud to assign a task to a VM in 
order to optimize the two objectives of energy consumption and 
makespan in PSP. After calculating the weighted sum for the available 
VMs, they are sorted in ascending order in a queue based on the result of 
the calculation. Then, it assigns a task to one of the three first VMs in the 
queue using a probability-based rule. They also used EP in their pro
posed method, but a learning-based method is used to determine which 
VM should a task be assigned to in PSP. An approach based on the A* 
search technique was presented in [36]. The proposed A*-based method 
demonstrated its efficiency in a competitive experiment. The authors of 
[37] suggested the Jordan Normal Form (JNF) for trainable parameter 
matrix following the Frobenius norm to Deep Kronecker Neural Network 
(DKNN) so that a hybrid JNF-DKNN algorithm could effectively monitor 
the available resources. They showed that monitoring can provide 
valuable insight that can dramatically improve performance. However, 
these efforts made to get rid of myopia in PSP have not led to the desired 
success in providing realistic far-sighted solutions.

2.4. Motivation of this paper

The literature review shows that many studies have been conducted 
in each aspect of the knowledge extraction, meta-heuristic-based 

methods development, and PSP, along with their limitations. In this 
paper, we consider all these aspects to present a holistic method. Our 
study provides a way to use the information produced in each iteration 
of a meta-heuristic as knowledge and improves decision-making in PSP 
for processor allocation by applying the knowledge. Furthermore, the 
developed algorithm can decide when to terminate by examining the 
generated solutions. Table 1 identifies the key elements of some most 
related works and compares them with our study.

3. System model and problem statement

In this section, we first explain the proposed architecture in the task 
scheduling process and then describe the task graph application model. 
We finally present a formal problem statement for the task scheduling 
problem. A list of key notations used in this paper along with their de
scriptions is given in Table 2.

3.1. System architecture

We consider an architecture with multiple IoT devices, multiple Fog 
Nodes (FNs), and multiple Cloud Nodes (CNs). The architecture is a 
distributed computing platform that executes large-scale offloaded IoT 
applications with collaboration between FNs and CNs. An overview of 
our system model is shown in Fig. 1.

Table 1 
Comparative analysis of related works.

Reference Application Properties Architectural Properties Solution Properties

Dependency 
Mode

Batch 
Placement

Fog 
Number

Cloud 
Number

Objective 
Function 
Number

Multi-objective 
Optimization Method

Knowledge 
Acquisition

Foresight in 
PSP

Automated 
Termination

[10] Dependent No Not Seen Single Bi-Objective Pareto Front Yes No No
[11] Dependent Yes Not Seen Single Bi-Objective Pareto Front Yes No No
[12] Dependent No Not Seen Single Single objective Weighted Sum Yes No No
[15] Dependent No Not Seen Single Bi-Objective Pareto Front Yes Yes No
[19] Dependent No Multiple Single Multi-objective Weighted Sum No No No
[20] Dependent No Multiple Single Multi-objective Weighted Sum No No No
[21] Dependent No Multiple Multiple Bi-Objective Pareto Front No No No
[22] Dependent No Not Seen Single Bi-Objective Pareto Front No No No
[24] Dependent Yes Multiple Multiple Bi-Objective Weighted Sum No No No
[26] Dependent No Not Seen Single Bi-Objective Weighted Sum No No No
[27] Dependent Yes Not Seen Multiple Multi-objective Pareto Front No No No
[28] Dependent No Multiple Single Multi-objective Weighted Sum No No No
[29] Dependent Yes Not Seen Multiple Multi-objective Pareto Front No No No
[30] Dependent No Not Seen Single Single objective - Yes No No
[31] Independent No Multiple Single Multi-objective Weighted Sum Yes No No
[32] Dependent No Not Seen Single Single objective - Yes No No
[33] Independent No Multiple Single Single objective - Yes No No
[34] Dependent No Not Seen Single Single objective - Yes No No
[35] Independent No Not Seen Single Single objective - Yes No No
[37] Dependent No Not Seen Multiple Multi-objective Weighted Sum Yes Yes No
Ours Dependent Yes Multiple Multiple Multi-objective Weighted Sum Yes Yes Yes

Table 2 
List of key notations used in the paper.

Notation Description

N Set of PCs
Ny,d A PC in N, where y denotes the PC type (y = 0 if the PC is a FN, y = 1 if 

the PC is a CN), d is the index of the PC in the specified PC type
TGn A task graph with index n
Vn Set of concurrent tasks of TGn

vn,i The ith task in TGn

tcpvn,i
Computation time of task vn,i on a PC

qcp
vn,i

Energy consumption required to compute task vn,i on a PC
ccp

vn,i
Computation cost of the task vn,i on a PC

pred
(
vn,i

)
Set of immediate predecessors of task vn,i

AFT
(
vn,i

)
Actual finish time of task vn,i on a VM among all PCs

EFTVM
vn,i

Earliest finish time of task vn,i on a VM
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The architecture has three layers in a hierarchical network. The 
bottom layer is the IoT layer that includes heterogeneous IoT devices 
such as wearable devices, smart home sensors, smartphones, tablets, 
thin-client, healthcare devices, etc. The middle layer represents the fog 
environment. It comprises of a set of FNs that consist of devices such as 
gateways, switches, and MDCs to provide services such as computing, 
storage, and networking. Each MDC includes homogeneous processor 
units (server processors or personal computers) in which there are 
several cores to process assigned requests. The cores can be controlled 
independently. Each FN includes a fog broker to handle the MDC utili
zation of the same FN. Also, fog brokers are close to the IoT devices to 
receive their requests and dispatch them among FNs and CNs in the 
network. Of course, if a fog broker corresponding to a FN sees that a 
request cannot be serviced in its own MDCs, it assigns that request to a 
suitable FN or CN. FNs in this layer are connected to the cloud layer to 
benefit from the advantages that CNs offer to improve service to IoT 
users. The upper layer represents the cloud computing layer, in which 
there is a pool of resources. In each CN, there are DCs and a cloud broker. 
Like fog brokers, cloud brokers are responsible for assigning requests to 
DCs or fog brokers. In fact, we can consider a broker (cloud broker or fog 
broker) as a scheduler and the duty of resource management is the re
sponsibility of the broker. DCs include server processors as processor 
units. Both MDCs and DCs support DVFS. Since MDCs and DCs support 
virtualization technique, VMs are responsible to provide various services 
to the requests. In this study, we assumed that the number of VMs is 
equal to the number of cores of a processing unit and each VM can be 
assigned to one of the available cores in one time unit. So, brokers assign 
the requests to VMs in MDCs/DCs.

In this system, we consider each DC or MDC as a Processing Center 
(PC) and denote the set of PCs as N =

{
Ny,d}, where y ∈ {0, 1} denotes 

the type of each PC, and d denotes the index of the PC in the specified PC 
type. Specifically, y = 0 if the PC is a FN and y = 1 if the PC is a CN. 
Thus, the set of PCs can also be represented as N =

{
N0,1,N0,2, …, N0,nf ,

N1,1,N1,2, …, N1,nc}, where nf denotes the number of FNs, and nc de
notes the number of CNs. We assume that nodes of the fog layer are 
connected through a Local Area Network (LAN) and the connection of 
CNs with themselves and with FNs is through a Wide Area Network 
(WAN). In this case, the bandwidth of each link depends on which of the 
two PCs in N it is connecting. It is worth noting that link failures are not 
assumed in this study.

3.2. Task graph application model

Task graph applications are modeled in the form of DAGs. The nodes 
of a DAG are concurrent and have inter-dependencies. Since more than 
one task graph may be released by IoT devices at the IoT layer, we assign 
an index to each task graph. The application sent by the nth IoT device 
for processing is represented by a DAG TGn = (Vn, En), ∀n ∈ {1, 2, …,

ND}, where Vn = ∪
|Vn |
i=1 vn,i denotes the set of concurrent tasks, En =

{
en,i,j

⃒
⃒vn,i, vn,j ∈ Vn, i ∕= j

}
represents the set of directed edges between 

tasks, and ND denotes the number of IoT devices. Here, en,i,j represents a 
precedence constraint between two tasks vn,i and vn,j, where vn,i is the 
immediate predecessor of vn,j, and vn,j is the immediate successor of vn,i. 
A task vn,i may have more than one predecessor; in this case, pred

(
vn,i

)
=

{
vn,í ∈ Vn

⃒
⃒en,í ,i ∈ En

}
indicates the set of immediate predecessors of task 

vn,i. Similarly, succ
(
vn,i

)
=

{
vn,í ∈ Vn

⃒
⃒en,i,í ∈ En

}
indicates the set of im

mediate successors of task vn,i. We call a task vn,i the start task if 
pred

(
vn,i

)
= ∅ and denote it as vn,s and vn,í  the end task if succ

(
vn,í

)
= ∅ 

and denote it as vn,e. Each task vn,i has an amount of work that must be 
processed on the computing units which we denote as vw

n,i. Besides, the 
non-negative weight of en,i,í  that represents the data transferred from 
task vn,i to task vn,í  is denoted by ew

n,i,í . In TGn, a task vn,i cannot be 
processed until the executions of all tasks in pred

(
vn,i

)
have been 

completed and all associated data is transferred from pred
(
vn,i

)
to vn,i. 

We assume that preemptions are not allowed during the execution of a 
task and that the processing of a task continues from the time it starts 
until it is completed.

In a DAG TGn, there may be more than one vn,s or vn,e. In this case, we 
add two dummy tasks vn,sd and vn,ed to the graph as start task and end 
task, respectively, and consider vw

n,sd = 0, vw
n,ed = 0, ew

n,sd,s = 0, ew
n,ed,e = 0. 

We then redefine vn,s = vn,sd and vn,e = vn,ed, so that the graph will have 
only one start task and one end task.

3.3. Problem statement

The problem of task graph scheduling in this study is to determine a 
mapping from the set of tasks Vn ∈ TGn to the set of PCs N in order to 
achieve certain optimization objectives. Different mappings will result 
in different sequences and orders of execution of the tasks, thus 
impacting the optimization objectives. In this paper, we study an opti
mization problem with the aim of simultaneously minimizing the 
makespan, cost, and energy consumption of MDCs/DCs. The following 
formulates each of these three objectives.

3.3.1. Makespan model
The goal of makespan optimization is to find a sequence of nodes in 

Vn for processing on N such that the execution time between the start 
time of vn,s and the completion time of vn,e is minimized. For this pur
pose, the total time between the Earliest Start Time (EST) of task vn,s and 
the Actual Finish Time (AFT) of task vn,e should be calculated.

In TGn, the EST of a start task is equal to zero (ESTvn,s = 0). The EST of 
a task vn,i on a VM (ESTvm

vn,i
) is when the execution of pred

(
vn,i

)
is 

completed and all dependent data are transferred to the task, which is 
defined by Eq. (1). 

ESTvm
vn,i

= maxvn,j∈pred(vn,i)

{
AFT

(
vn,j

)
+ tcm

en,j,i

}
(1) 

where AFT
(
vn,j

)
is a function that returns the actual finish time of task 

vn,j among the VMs in all PCs and tcmen,j,i 
is the communication time be

tween the pair of dependent tasks vn,j and vn,i, and it is calculated by Eq. 
(2). 

tcm
en,i,j

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if vn,j and vn,i are processed on the same MDC or DC

ew
n,j,i

bwLAN
if vn,j and vn,i are both processed on MDCs

ew
n,j,i

bwWAN
otherwise

(2) 

where bwLAN and bwWAN denote the bandwidths of LAN and WAN, 
respectively.

Moreover, the Actual Start Time (AST) of a task vn,i on a VM (ASTvm
vn,i

) 

Fig. 1. Our system architecture.
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is calculated by Eq. (3). 

ASTvm
vn,i

= max
{

availvm, ESTvm
vn,i

}
(3) 

where availvm is the time that vm has finished processing the previous 
assigned task on it and is ready to start the execution of task vn,i. The 
Earliest Finish Time (EFT) of task vn,i on a VM (EFTvm

vn,i
) is defined by Eq. 

(4). 

EFTvm
vn,i

= ASTvm
vn,i

+ tcp
vn,i

(4) 

where tcp
vn,i is the computation time of task vn,i and is calculated based on 

Eq. (5). 

tcp
vn,i

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vw
n,i

cpuN0,d
if vn,i is processed on an MDC

vw
n,i

cpuN1,d
if vn,i is processed on a DC

(5) 

In Eq. (5), cpuN0,d and cpuN1,d denote the computation power of the 
MDCs and DCs, respectively. In this paper, we assume that DCs and 
MDCs have different computation power, and that the computation 
power of MDCs is less than that of the DCs.

Therefore, the overall execution time of TGn is defined as Eq. (6): 

Tn = AFT
(
vn,e

)
(6) 

3.3.2. Cost model
Like the execution time model, the cost of processing a DAG TGn also 

includes two parts: the cost of computing the tasks by the PCs and the 
cost of using the links to transfer the data between the PCs. The overall 
cost of processing TGn is calculated by Eq. (7).  

Cn = Ccp
TGn

+ Ccm
TGn

(7) 

where Ccp
TGn 

is the cost of computing all the tasks of the task graph TGn, 
and Ccm

TGn 
is the communication cost to transfer data from one PC to 

another using the links between the PCs.
The computation cost depends on the processing cost of each Ny,d ∈

N and vw
n,i. Therefore, Ccp

TGn 
is calculated by Eq. (8).  

Ccp
TGn

=
∑

vn,i∈Vn
ccp

vn,i
(8) 

Here, ccp
vn,i 

is the computation cost of the task vn,i and is calculated as 
Eq. (9). 

ccp
vn,i

=

{
vw

n,i × cN0,d if vn,i is processed on an MDC
vw

n,i × cN1,d if vn,i is processed on a DC
(9) 

where cN0,d and cN1,d are the cost for computing each unit of work of vn,i 
on MDCs and DCs, respectively. In this paper, we assume that the costs of 
PCs in FNs and CNs are different.

The communication cost Ccm
TGn 

of the task graph is calculated by Eq. 
(10).  

Ccm
TGn

=
∑

en,i,j∈En
ccm

en,i,j
(10) 

Here, ccm
en,i,j 

is the communication cost of en,i,j, and is calculated from 
Eq. (11) based on the corresponding link used to transfer the data. 

ccm
en,i,j

=

{
ew

n,i,j × cLAN if vn,i and vn,j are both processed on MDCs
ew

n,i,j × cWAN otherwise (11) 

where cLAN and cWAN correspond to the communication cost of LAN and 
WAN, respectively.

3.3.3. Energy consumption model
The energy consumption of processing a DAG TGn can be defined as 

the sum of the energy consumption when components involved in pro
cessing the DAG are active thus performing work (Qacv) and the energy 
consumed when the PCs are idle (Qidl), as depicted in Eq. (12). 

Qn = Qacv + Qidl (12) 

The amount of energy consumption Qacv is defined as the sum of the 
energy consumed for computing the tasks (Qcp

TGn
) and the energy 

consumed for transmitting the data for each pair of dependent tasks 
(Qcm

TGn
), as depicted in Eq. (13). 

Qacv = Qcp
TGn

+ Qcm
TGn

(13) 

The amount of energy consumption for computing the tasks is 
defined as Eq. (14). 

Qcp
TGn

=
∑

vn,i∈Vn
qcp

vn,i
(14) 

Here, qcp
vn,i 

is the energy consumed to compute task vn,i and is calcu
lated as Eq. (15).  

qcp
vn,i

= tcp
vn,i

× Pacv (15) 

where Pacv denotes the processing power of the PC when the PC is active.
The energy consumption due to data transmission between the tasks 

is defined as Eq. (16). 

Qcm
TGn

=
∑

en,i,j∈En
qcm

en,i,j
(16) 

Here, qcm
en,i,j 

is the energy consumed for data transmission between two 
dependent tasks vn,i and vn,j, which is calculated as Eq. (17).  

qcm
en,i,j

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ew
n,i,j

bwLAN
×PLAN if vn,i and vn,j are both processed on MDCs

ew
n,i,j

bwWAN
×PWAN otherwise

(17) 

where PLAN and PWAN are the transmission power of LAN and WAN, 
respectively.

The energy consumed by the PCs during idle time is calculated as Eq. 
(18). 

Qidl =
∑

Ny,d∈N
idleNy,d × Pidl (18) 

where idleNy,d is the amount of idling time of the PC Ny,d, and Pidl is the 
power of a PC during idle time. In this paper, we do not consider the idle 
power for transmission because it is typically insignificant.

3.3.4. Objective functions
The objective is to find a mapping from the tasks of each IoT task 

graph to the set of PCs N such that the three objectives of makespan (T), 
cost (C), and energy consumption (Q) are simultaneously minimized by 
a weighted sum. The objective function for each task graph TGn is 
described by Eq. (19) below. 

minF(TGn), ∀n ∈ {1,2,…,ND} (19) 

where 

F(TGn) = w1 × Tn + w2 × Cn + w3 × Qn (20) 

Here, Tn, Cn, and Qn denote the makespan, cost, and energy con
sumption of the nth task graph. Besides, w1, w2, and w3 are the user- 
defined weighting parameters for the three objectives Tn, Cn, and Qn, 
respectively.
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4. Proposed method

In this section, we present a knowledge-driven method for sched
uling multiple task graphs in the fog-cloud environment. We propose a 
Hybrid Genetic Algorithm-Random Forest (HGARF) algorithm, which is 
based on Genetic Algorithm (GA) and Random Forest (RF) to extract 
knowledge in the form of IF-THEN rules. To be specific, HGARF acquires 
accurate and functional decision rules from the solutions created by a 
meta-heuristic. The presented algorithm, which is considered as an 
expert system, extracts knowledge without having prior knowledge 
about the solution space and interacts with the environment by 
extracting rules and validating them in order to provide near-optimal 
solutions in this complex multi-objective problem. Therefore, GA is 
responsible for generating the solutions for the training set and RF is 
responsible for generating the rules from the solutions in the training set. 
The process of the proposed scheduler based on HGARF is illustrated in 
Fig. 2. After the task graphs are released by IoT devices, they are off
loaded to HGARF for scheduling. The scheduler is embedded in the fog- 
cloud environment. HGARF then starts generating and deriving the 
rules. Thereafter, the extracted rules are used to find the most suitable 
solutions and present them to the related IoT devices.

The structure of HGARF comprises three modules: rule exploration, 
rule generation, and rule usage, where the second module is naturally 
executed after the results of the first module are obtained, and the third 
module is executed after the execution of the second module. This three- 
part sequence is repeatedly executed until the termination condition is 
met. In the following, we illustrate the implementation details for the 
three modules of HGARF.

4.1. Rule exploration

This section focuses on describing the GA-based rule exploration. 
Exploring the rules is an important process for obtaining effective so
lutions. During this process, the goal is to explore the environment well 
and to interpret rules for the environment in the training set. Since 
duplicate or similar solutions in the population may be produced by 
traditional GAs, in this paper, we pay special attention the diversity- 
preserving mechanism, which aims at generating a more diverse and 
unique set of solutions within a generation and across generations. Thus, 
the solutions provided by the proposed GA operators are unique, which 

helps to find the optimal/near-optimal rule faster. Such a diversity- 
preserving mechanism is applied to the two operators of crossover and 
mutation.

In the following, after introducing how to represent the solution, the 
proposed GA will be explained.

4.1.1. Solution representation
One of the important decisions made in the early stages of devel

oping an algorithm is the representation of the solution. This leads to 
ease in understanding the schedule and its flexibility, especially in 
complex and large-scale problems. In the problem under study, the 
mapping of Vn ∈ TGn to N, the proper sequencing of tasks in TPP, and the 
recording of status of N in PSP are important topics that must be 
considered in the representation. In addition, the variables of the 
problem are numerical and discrete, and repeating tasks in each solution 
is not allowed. Hence, this problem is susceptible to the use of 
permutation-based encoding [38]. Besides, the need for producing 
cost-effective and high-quality schedules and for considering the nature 
of the problem in which there are two phases of TPP and PSP, 
strengthens the use of list-based scheduling [39] to decode the solutions. 
Thus, since the GA meta-heuristic is used, a two-dimensional chromo
some is constructed for representation.

We use an example to provide a clear description of the solution 
representation. Suppose two DAGs TG1 and TG2 are generated by two 
IoT devices (i.e. ND = 2) as depicted in Fig. 3. In this case, a sample 
chromosome/individual in our representation is depicted in Fig. 4. As 
can be seen, the solution has two rows, and the number of columns is 
equal to the total number of tasks. In this representation, we call each 
column a gene, which represents a task and related information. The 
first row is called the task identifier (tID) and the second row the task 
information (tInfo). Each cell of the tInfo row contains a tuple in which 
there is some information related to the corresponding task.

Let vn,j be one of the predecessors of vn,i, so the information placed in 
each tuple is listed as follows: 

• tInfoA: the ID of the PC that processes the task vn,i,
• tInfoB: the computation time of the task vn,i on the existing PC in 

tInfoA (tcpvn,i ),
• tInfoC: the computation cost of the task vn,i on the existing PC in 

tInfoA (ccp
vn,j ),

• tInfoD: the energy consumption to compute the task vn,i on the 
existing PC in tInfoA (qcp

vn,i ),
• tInfoE: the ID of the task vn,j, where vn,j ∈ pred

(
vn,i

)
and its AFT is 

larger than AFT of all members of pred
(
vn,i

)
,

• tInfoF: AFT
(
vn,j

)
,

• tInfoG: the ID of the PC that processes the task vn,j.

Note that in the TPP of rule exploration, the tInfo tuples are empty, 

Fig. 2. Block diagram of the Hybrid GA-RF (HGARF) algorithm. Fig. 3. An example of two DAG applications.
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and after assigning tasks to PCs in the PSP, this information will be filled 
in.

In order to traverse the DAGs to perform topological sort, the 
Breadth-First Search (BFS) algorithm is used. The traversal starts from 
vn,s and the tasks of each level of a DAG are placed in a group. Then, the 
groups are appended to the individual according to the level and the 
index of the graphs one by one. Since permutation leads to the emer
gence of a new solution, in the stated representation, permutation is 
performed in each group. For further explanation, consider the solution 
presented in Fig. 4 corresponding to the graphs of Fig. 3. The two tasks of 
[[

v1,1], [v2,1
]]

are placed in the same group and their group position in 
terms of level is one. Also, set 

[
v1,1

]
is in the first position of group one 

and set 
[
v2,1

]
is in the second position of group one. Similarly, group 

[[
v1,3, v1,2], [v2,2, v2,3

]]
is placed in the second position in terms of level, 

the set 
[
v1,3, v1,2

]
which contains tasks from the same DAG is in the first 

position of the group, and the set 
[
v2,2, v2,3

]
is in the second position of 

the group. Besides, task v1,3 is in position one of the set and task v1,2 is in 
the position two of the set.

4.1.2. Genetic algorithm
GA is one of the most widely used meta-heuristic algorithms that has 

been applied to various optimization problems, particularly task graph 
scheduling problems. GA is a stochastic search method that tries to 
produce better solutions by creating a collection of potential solutions 
(population) as initial solutions and evolving it in different generations 
through genetic operators (e.g., selection, crossover, and mutation) [40,
41]. In the population, solutions are usually referred to as individuals or 
chromosomes. Each individual is evaluated by its fitness, which is 
determined by the associated value of the objective function. The pro
posed GA consists of the following steps: 

1. generating an initial population with nPop individuals.
2. applying the individuals to the environment and evaluating their 

fitness.
3. applying the crossover and mutation operators to generate new 

individuals.
4. applying the new individuals to the environment and evaluating 

their fitness.
5. appending the individuals to the training set.
6. applying the selection operator.
7. repeating steps 3 to 6 until the stopping criteria is met.

In this paper, we use GA for the exploration of the environment. This 
is because according to the results obtained from the combined 
compromise solution method in [42], GA is superior to the other 
well-known meta-heuristics such as Ant Colony Optimization algorithm 
(ACO) and PSO in terms of information collection. Details of our 
implementation of the proposed GA for the problem under study are 
given as follows.

4.1.2.1. Initial population. The first step of the optimization process 
with GA is the generation of the initial population. The initial population 
is consisting of nPop individuals. Each individual in this population 
represents a candidate and possible solution to the problem, which is 
also called the initial solution. The initial solutions are randomly and 
uniquely scattered in the solution space. Therefore, a powerful and 

unbiased search will be guaranteed in the developed GA. Note that nPop 
is a constant value and is one of the control parameters of GA. Also, the 
output of this step is the individuals whose row tID has tasks based on the 
representation stated in Section 4.1.1.

4.1.2.2. Fitness function. After determining the sequence of tasks, it is 
time to determine the fitness of an individual. This means, in PSP, the 
individual is assigned to N to determine its fitness value. During this 
process, the goodness of a solution according to the objective function 
can be calculated. Algorithm 1 demonstrates how the fitness of an in
dividual is calculated.

An individual is assigned as an input value to Algorithm 1. Since the 
tasks of graphs are added to the individual in separate groups based on 
their levels, the groups of each level of graphs are selected in each 
iteration of the for-loop in line #1. Then, the selected groups are added 
to a container C in line #2. The container sorts the tasks in different 
selected groups based on the positions of the tasks. In this way tasks with 
position one of their groups are placed first, then tasks with position two, 
and so on. Consider Fig. 4 for example. In the first iteration of the for- 
loop in line #1, two tasks v1,1 and v2,1 are selected, thus [v1,1,v2,1] will 
be the content of container C after the execution of line #2. Accordingly, 
in the second iteration of the for-loop, the content of C after execution of 
line #2 will be: [

[
v1,3, v1,2], [v2,2, v2,3

]
]. The while-loop in line #3 is 

responsible for traversing the container C and assigning the tasks in the 
container to a suitable PC. Thus, in line #4, a task is selected from the 
beginning of C which has not been visited. In line #5, the value of tInfo.
tInfoA is checked to see if it is empty or not. If it was empty, line #6 
would be executed, otherwise line #11. The non-emptiness of tInfo.
tInfoA occurs when the field tInfoA is set in some other parts of HGARF 
(for example, in the mutation operator). This means that this task will be 
processed without going through the process of finding the PC in line #6 
and only by meeting the precedence constraints on the mentioned PC. 
The for-loop in line #6 ensures that all PCs are examined for task 
assignment, and the most appropriate center is allocated to the task 
according to the objective function. Note that in the examining process, 
it is assumed that the selected task is the final task in the current task 
graph (we name it the hypothetical final task). Thus, in line #8, Eq. (20)
is utilized to evaluate the hypothetical final task in such a way that the 
assignment leads to the simultaneous minimization of all three objec
tives. The for-loop in line #13 also calculates the sum of the fitness of all 
the offloaded task graphs and returns it as the output of this algorithm 
through variable retVal.

Fig. 4. A chromosome representing a sample solution.

Algorithm 1 
Fitness function algorithm.
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4.1.2.3. Selection. Selection is a biased decision-making process 
whereby a new population is created based on the fitness values of the 
current population. This process is repeated in each generation of GA to 
keep the good individuals. In this paper, we used a roulette wheel 
method [43] in which two individuals are selected randomly and their 
fitness values are compared. Then, the individual with the better fitness 
value is transferred to the new population.

4.1.2.4. Crossover. The crossover operator is one of the main operators 
of GA, which is very effective in improving the performance of GA. This 
operator is used to search for new solutions (individuals) in the solution 
space. In this way, by combining two individuals (called parents) or 
making changes in an individual from the previous generation, new 
individuals (called offsprings) or a new individual are produced in the 
current generation. The process of producing new individuals is 
repeated in all generations of GA with the aim of producing better 
individuals.

In this study, according to the representation of the solution and the 
structure of the task graph, a new crossover technique named Horizontal 
Crossover Operator (HCO) is introduced. In order to create diversity in 
the solution, this operator puts the path of working on tasks of the same 
level on its agenda. HCO receives an individual as input and returns a 
new individual as output after applying fundamental changes to it.

The procedure of HCO is shown in Algorithm 2. This algorithm is 
repeated nCros times in each generation. To explain Algorithm 2, let us 
assume that the illustrated individual in Fig. 4 is the selected individual 
to apply HCO on. Therefore, we name the input individual as newIndv. 
Since the length of the longest level of the task graphs in Fig. 3 is four, 
newIndv has four levels. Suppose level 3 in newIndv is randomly selected 
in line #3. This level has two sets [v1,4,v1,5] and [v2,5,v2,4,v2,6] where the 
position of the former is one and the latter is two. If position two is 
selected in line #4, then selGrp =

[
v2,5,v2,4,v2,6

]
. To change the position 

of selGrp in selLev in line #5, we assume that the position of selGrp is 
changed to one and the position of the other set is changed to two in 
selLev. By executing line #6, the position of tasks in selGrp will change 
randomly. For example, selGrp =

[
v2,4, v2,6, v2,5

]
could be one potential 

output of this line. In this way, the contents of selLev could be equal to: 
[[

v2,4,v2,6,v2,5], [v1,4,v1,5
]]

. As illustrated in the example, the positions of 
the contents of level 3 in newIndv are changed and newIndv is passed to 
the fitness function algorithm as input in line #7 to calculate its fitness 
value. The variable nRep is an input value of this operator. The crossover 
operator is defined as HCO(nRep), where nRep expresses the number of 
repetitions of lines #3 to #6. In this way, HCO is active in TPP and deals 
with diversity in solutions.

4.1.2.5. Mutation. The mutation operator is another operator of GA that 
plays a substantial role in the evolution of the solutions. Adding random- 
based new information to the solutions can lead the algorithm to escape 
from local optima. In the proposed GA, a new mutation operator is 

introduced, which is different from the traditional operators. This 
operator, called Processor-based Mutation Operator (PMO), makes 
changes to PSP in tInfo of tasks so that it can provide promising solutions 
in each generation by refining the previous solutions. In addition, a 
concept called bottleneck is introduced in PMO. The operator tries to 
improve the objective function in the new individual by following the 
bottleneck and considering it as a criterion for workload distribution in 
the set of PCs N.

Definition. Let assume that 
{
N0,A,N0,B,N0,C} ∈ N and wlA, wlB, and 

wlC are the amount of assigned workloads to N0,A, N0,B, and N0,C 

respectively. If wlA > wlB > wlC, we say that N0,A is a bottleneck PC 
because the amount of workload assigned to it is greater than the others, 
and this can lead to the objective function being suboptimal.

In the problem under study, due to the fact that the applications are 
concurrent and consist of dependent tasks, and also because the greedy 
EFT algorithm is used in PSP, we adapt the idea from solutions such as 
EP [18] and PCs’ ranking [15] to reduce the accumulation on a PC/PCs. 
In this study, a method to identify the bottleneck PC and a solution to 
transfer the load from one PC to another are proposed. Since in the rule 
exploration module of HGARF, creating diversity in solutions is on the 
agenda, the randomness of some decisions is injected into PMO in order 
to maintain the nature of mutation and to satisfy the goals of the rule 
exploration.

Algorithm 3 illustrates proposed PMO. It is invoked as PMO(nRep), 
where nRep is as input parameter. The algorithm receives an individual 
at random and returns a new individual as a solution. It is repeated nMut 
times in each generation and appends its output to the training set. The 
PCs’ Participation Percentage (PPP) in line #2 is a method to identify 
the bottleneck. Among the three objectives considered in this study, time 
is influential because the increase in processing time in a PC leads to a 
rise in energy consumption and cost and vice versa. Therefore, in the 
first step of PPP, the sum of the times that each PC spent on processing 
the assigned tasks in newIndv is calculated. Since PCs have different 
processing capabilities (i.e., number of cores and processing power), 
normalizing them in terms of processing capabilities is the second step in 
PPP. Thus, the amount of time each PC is engaged in processing is 
updated according to the processing capability. In line #3, PCs are 
maintained in container C based on normalized time values and are 
sorted in ascending order based on the time values. Therefore, the PC 
that has been involved in more processing than other PCs is placed in the 
last position of C with its time value higher than the others. Line #5 
selects the task or tasks from the last PC in C and places it in selT. The 
selected task must meet two conditions. First, the task should be one of 
the tasks that are among the upper half of the levels of the DAG. Second, 
the out-degree of the task should be more than those of other tasks. For 
example, the task v1,2 of TG1 in Fig. 3 can be a candidate task that has 
met both conditions. These two conditions are considered so that the 
operator can be effective in transferring task/tasks from PCs that are 
assigned a lot of workloads to other PCs for faster convergence. In line 
#6 and #7, the field tInfoA is set in the task with a PC whose workload is 
low (here, PCs located in the initial positions of C are chosen randomly). 
Then, in line #8, the fitness value of newIndv is calculated. Note that the 
lines #5 to #7 in the for-loop of line #4 is repeated nRep times.

4.1.2.6. Stopping criteria. One of the most common stopping criteria in 
GA is the maximum number of generations. This study follows this 
practice and uses nGen as an input parameter for the maximum number 
of iterations. We point out that when the stopping criterion is met, the 
best solution observed in this module is stored in a container called 
eliteSet, which can be accessed jointly in two modules: rule exploration 
and rule usage. The role of this container in the module of rule usage will 
be discussed in Section 4.3.

Algorithm 2 
Horizontal crossover operator.
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4.2. Rule generation

RF is a well-known ensemble-learning method that uses bootstrap 
sampling and random feature subspace to generate and integrate mul
tiple decision trees at training step [44]. RF with its flexible and 
easy-to-use structure can be applied to both classification and regression 
problems. Among the advantages of this algorithm, RF is robust against 
overfitting, has efficient performance on large data, and has quality 
methods for estimating missing data. In addition, there are effective 
mechanisms such as random oversampling and Synthetic Minority 
Oversampling TEchnique (SMOTE) algorithm to deal with unbalanced 
data sets [45]. All these advantages have led this algorithm to present 
good performance in different fields. Therefore, RF is used in the rule 
generation module so that the IF-THEN rules can be detached by 
tracking the path from the root node to the leaf node of these trees.

In RF, a collection of k classifiers H = {h1, h2, …, hk} is constructed 
based on attribute selection measures such as gain ratio and gini index. 
Each classifier hi is a decision tree constructed independently by a 
technique such as ID3, C4.5, or Classification and Regression Tree 
(CART) through bootstrap sampling and feature randomization. The 
classifiers of the collection H work in parallel on the given training set D. 
In D = {(O1,G1),…, (On,Gn)}, there are n samples where a sample si =

(Oi,Gi) includes two parts: an order list Oi and a label Gi ∈ G. The order 
list is represented as Oi =

(
(X1;Obj1),(X2;Obj2),…,

(
Xw;Objw

))
, where w 

indicates the number of tasks in an individual, Xi ⊆ X indicates the set of 
features related to a task vn,i, and Obji expressing the calculated objective 
function value related to the task vn,i when considered as a hypothetical 
final task. Note that, to calculate Obji, we use the three fields tInfoB, 
tInfoC, and tInfoD of the task vn,i, as stated in the Fitness Function 
(Section 4.1.2.2). The feature vector X =

(
X1,X2,…,Xz) includes z fea

tures that are divided into two categories. The first category is related to 
the environment space and the second category is related to the solution 
space. The one feature of the environment space includes PC used time, 
energy, and cost (uPc), where if there are three PCs in N, then there will 
be three values in it as attributes. To calculate the three parameters of 
time, energy, and cost on a PC, we sum each of the three mentioned 
parameters for all tasks in a solution on the PC and categorize it based on 
what will be said about G. In the solution space category, there are four 
features: the position of a group in a level (pGiL), the position of a task in 
a set (pTiS), and the two fields of tInfoE and tInfoG that are extracted 
from tInfo which we rename as infE and infG here. Therefore, z is equal to 
five. We use the feature selection process presented in [46] to introduce 
the five mentioned features. Moreover, we consider a multi-class clas
sification by the decision tree algorithm to classify the objective function 
values. To that end, given the smallest and largest objective function 
values of n samples in D, we determine three splitting points in the 

objective function values and consider G =
[
Gc

1,Gc
2,Gc

3,Gc
4
]
, where Gc

i is a 
class label with Gc

1 being a category with the lowest value of the 
objective function.

The rule generation module consists of two steps. The first step is the 
training step in which the RF is constructed using the labeled samples of 
the training set. The rules will be generated in this step. In the second 
step, which is the evaluation step, the rules are applied to the test set. 
These two steps will be explained in the following in detail.

4.2.1. Training step
In this step, the k classifiers train in parallel on k different training 

subsets to generate the rules. The subsets are generated from the training 
set D using random sampling with replacement. To diversify the models 
created by decision trees, the decision tree classifiers use both C4.5 and 
CART algorithms, which are available in H with an equal number. The 
output of this step is the rules that are transferred to the next step. We 
call the rule generation procedure in this step rule generator, which is 
presented in Algorithm 4.

Algorithm 4 takes D and k as inputs and returns a rule set R = {(R1ʹ ,

G1ʹ),…, (Rnʹ ,Gnʹ)} as output, where the Rí
ʹs represent the conditions and 

the Gí
ʹs represent the conclusions. In the while-loop, the algorithm 

generates w × k decision trees, extracts some rules and appends the rules 

Algorithm 3 
Processor-based mutation operator.

Algorithm 4 
Rule generator.
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to the rule set R. In line #4, the bootstrapSampling() method is invoked to 
prepare a class of samples Ds

i by bootstrap sampling. Note that for k it
erations of while-loop, there will be Ds =

{
Ds

1,Ds
2,…,Ds

k
}

classes of 
samples where Ds

i is the class produced in ith iteration of the while-loop. 
During the sampling period in the ith iteration, the samples that were 
not selected to be placed in Ds

i are placed in DOOB
i , where DOOB

i ∈ DOOB is 
the Out-Of-Bag (OOB) dataset. In this way, DOOB is built in parallel to Ds 

where Ds ∩ DOOB = ∅ and Ds ∪ DOOB = D. It is worth mentioning that 
DOOB is used to obtain the classification accuracy after the training step. 
In this way, D is divided into two groups: the training set Ds and the 
testing set DOOB. The repeat-until-loop is responsible for constructing the 
decision tree based on the current technique used. If the technique is 
C4.5, then gain ratio is used in each tree node’s splitting process as the 
information-theoretic criterion, while if the technique is CART, then gini 
index is used. After constructing the tree, it is time to traverse the tree to 
extract the rules. In line #9, Depth-First Search (DFS) algorithm is used 
for traversing the tree to extract rules. In order to express the IF-THEN 
rules, we consider the format of IF〈condition〉THEN〈conclusion〉 as 
stated in [47], and develop the customized format for the problem under 
study. For instance, if vn,i and vn,j are two consecutive tasks in the same 
individual, the rule structure related to Xi and Xi+1 can be expressed as 
follows: 

IF
〈
…,

(
(pGiL = 2)&

(
uPc = N0,1)&(pTiS = 3)&

(
infG = N1,2)

&
(
infE = vn,í

)
; u
)
,
( (

uPc = N1,3)&(pGiL = 3)&(pTiS = 1)
&
(
infE = vn,j́

)
&
(
infG = N1,1); v

)
,…

〉
THEN

〈
Gc

2
〉

where the expressions on the right side of the “= ” sign are attributes of 
the corresponding features (e.g., 2, N0,1, 3), u and v represent Obji and 
Obji+1, respectively, 〈condition〉 represents Rí  and 〈conclusion〉 stands for 
Gí .

After extracting the rules, they are appended to the rule set R in line 
#10.

4.2.2. Evaluation step
Accuracy is one of the most appropriate metrics to measure the 

performance of RF. For this purpose, we use DOOB and test each member 
of DOOB by its corresponding trained tree. (e.g., DOOB

k by the kth tree). 
This test is done to see if the tree can correctly predict the class label Gi 

of a test sample in DOOB
k ∈ DOOB or not. For this purpose, Eq. (21) is used 

to obtain the accuracy. 

acc =
1

⃒
⃒DOOB

⃒
⃒

∑|D
OOB|

i=1
p
(
DOOB

i
)

(21) 

where |DOOB| indicates the number of members in DOOB, p
(
DOOB

i
)

gives 
the classified result of the ith sample in DOOB by the rule sets, where the 
result is 1 if the estimate is correct and 0 otherwise.

After all test samples from a DOOB
k ∈ DOOB have been examined, the 

prediction accuracy is calculated for all members of the sample test. In 
this study, if the accuracy is more than 50 %, the rules extracted from 
tree k remain in the rule set. Otherwise, the relevant rules will be 
deleted.

4.3. Rule usage

The knowledge obtained in the rule generation module should be 
used in the search space to check whether the knowledge can make a 
correct prediction to improve the objective function or not. For this 
purpose, the rule usage module performs two steps. The first step is to 
test the quality of the rules and this step is called processing center 
prediction. In this step a suitable PC is suggested to a task of an indi
vidual using the rules in rule set, so the resource will be allocated to the 
task. These suggestions are applied to all tasks. Afterwards, the tasks of 

the individual are assigned to N based on Algorithm 1 and without 
considering the rules. Then, the fitness function values obtained from 
the assignments using rules and without using rules are compared. After 
the first step, a second step is applied as a refinement step for the so
lutions proposed in the first step. The following discusses the details of 
the two steps.

4.3.1. Processing center prediction step
The procedure of the processing center prediction step is shown in 

Algorithm 5. This algorithm gets a population with nPop individuals, the 
rule set R, and the container of eliteSet as input values. Determining the 
sequence in the individuals of the population is random and unique. The 
container eliteSet is not empty before the execution of Algorithm 5, 
because this container, in the first iteration of HGARF, has kept the most 
suitable solution in the rule exploration module. If the rule usage 
module can find a better solution than that solution, it will replace the 
previous solution found in rule exploration module. Thus, at the end of 
the rule exploration and rule usage modules, there is only one solution in 
eliteSet, which is the best solution found until then in terms of the value 
of the objective function. In each iteration of HGARF, the individuals 
whose objective function values are in the class Gc

1 ∈ G are appended to 
this container. The for-loop in line #2 is repeated for all individuals of 
the input population. The responsibility of the for-loop in line #4 is to 
traverse the individual from position one to the end, where a not-visited 
task is selected in each iteration. Then, in line #5, the selected task is 
matched with the rules in R and the ID of PC Ny,d ∈ N that leads to the 
minimum objective function value up to that moment is selected. The ID 
is inserted to the field tInfoA in line #6. After the described process in 
this for-loop is done for all tasks, the individual in line #7 is assigned to 
N so that Ny,d ∈ N is allocated to the task based on the content of tInfoA. 
The individual selected by the for-loop in line #2 is assigned to N 
regardless of the rules in R in line #8. The values of the objective 
function obtained in line #7 and line #8 are compared and if the values 
belong to the same class of Gc

1 or Gc
2, a positive score is considered, 

otherwise a negative score is considered. These scores are used to 
automatically adjust the termination condition of HGARF. Thus, line 
#15 checks if the sum of positive scores is more than the sum of negative 
scores, in which case Algorithm 5 returns True as the output. This means 

Algorithm 5 
Processing center prediction.
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that the repetition of HGARF should be reduced. In line #13, if the 
objective function value of the predicted solution using R belongs to the 
class Gc

1, that individual is appended to the container eliteSet. To explain 
the if-then-condition in line #16, let us assume that HGARF is in the first 
iteration of its execution. In this case, when starting the rule usage 
module, the container eliteSet will contain one individual. Let us also 
assume that solutions belonging to class Gc

2 or Gc
3 are produced every 

time the outer for-loop is repeated. In such a situation, eliteSet will 
remain with one individual and the positive score will increase to the 
point where it may lead to the return value retVal in this algorithm being 
True. Therefore, the execution of HGARF will end even if its solution 
may not be a competitive one. Further, even if there are a small number 
of solutions in eliteSet, these solutions may not provide the minimum 
fitness value. Therefore, line #16 is used to guarantee that the number of 
solutions available in eliteSet is not less than a threshold in hope of 
finding more competitive solutions.

4.3.2. Refinement step
The responsibility of this step is to refine the solutions in the 

container eliteSet from the output of Algorithm 5. In each iteration of 
Algorithm 5, many solutions may be appended to container eliteSet. 
However, not all of them will lead to the improvement of the objective 
function. Therefore, it is necessary to refine them and keep only one 
solution that provides the most optimal fitness value in the container. 
For this purpose, we apply the PMO mutator to each individual and 
compare the effects of the mutator on the individual before and after the 
PMO application. If the fitness value is improved after the execution of 
PMO, we will keep that solution. The process of applying PMO is done 
for all members of the container eliteSet. In the end, only one solution 
whose fitness value is better than the others is kept. It is worth 
mentioning that if the termination condition is satisfied (see Section 
4.4), the solution in the container eliteSet is considered as the output of 
HGARF.

4.4. Termination condition

One important topic often discussed in search problems is when to 
end the search process to reach a solution. Maybe a suitable solution is 
found at the beginning of the search process and the algorithm cannot 
improve the solution until the end. Moreover, getting stuck in a local 
optimum is another issue often observed in these problems. This study 
considers the use of knowledge to overcome this issue by using past 
experiences and interactions with the stochastic environment. There
fore, this part tries to automatically adjust the termination condition of 
HGARF. To this end, it uses the output received from the first step 
(processing center prediction) of the third module (rule usage) and a 
simple calculation to decide whether the process of executing the three 
modules of HGARF should be repeated or not.

For this purpose, in the first round of execution of HGARF, unique 
and diverse solutions are generated, and the knowledge obtained in the 
processing center prediction step is used. If the condition stated in line 
#15 of Algorithm 5 is satisfied, this step receives a reward signal from 
the output of the first step in retVal (= True). Reward means that the 
algorithm believes that the provided solutions have a suitable quality 
according to the objective function and can end its search process. On 
the contrary, if the stated condition is not satisfied, this step receives the 
punishment signal through retVal (= False), which means continuing 
the search process. Therefore, there is an integer variable called endV in 
this step, whose value indicates the number of repetitions of HGARF. 
This variable is equal to zero at the beginning of the HGARF execution. 
Whenever a reward signal is received, one unit is subtracted from it, and 
if a punishment signal is received, three units are added to it. If the value 
inside endV is zero or less, the repetition of HGARF ends.

4.5. Time complexity

The time complexity of the proposed HGARF is analyzed as follows. 
The rule exploration module starts with the construction of a chromo
some in which the BFS algorithm takes O

(
ND×L2) time to visit all tasks 

of all DAGs, where ND is the number of incoming task graphs to the 
system and L is the maximum number of tasks for all task graphs. Al
gorithm 1 is executed for each chromosome. Therefore, the time 
complexity of Algorithm 1 is O(L × N), where N is the number of PCs in 
the systems. The time complexity of population initialization in the 
worst time is O(np × L × N), where np is the size of nPop. Since chro
mosome construction and population initialization are only executed 
once, their time complexities become insignificant, and we focus on the 
time complexities of crossover, mutation, and selection operators for 
this module. Regarding the crossover operator, it is easy to see that the 
time complexity is C = O(nc × ((nrc × m)+ (L × N))), where nc is the 
number of repetitions of Algorithm 2, nrc is the number of iterations of 
the for-loop is line #2, and m is the time to shuffle the gene’s positions in 
line #6. The time complexity of mutation operator is M = O(nm × (N +

NlogN + nrm + (L × N))), where nm is the number of repetitions of 
Algorithm 3 and nrm is the number of iterations of the for-loop in Al
gorithm 3. In addition, we consider the time complexity of the number of 
generations and selection operator as g and np, respectively. Therefore, 
the overall time complexity of the first module is F = O(g × (C + M +

np)).
HGARF calls the rule generation module after the rule exploration 

module. The time complexity of RF depends on the number of decision 
trees in RF, the number of samples, and the number of features, which at 
most can be executed k, n, and z times, respectively. Hence, the time 
complexity of the second module in the worst case is S = O(k × z ×

nlogn). In the third module, the time complexity of the processing center 
prediction step (Algorithm 5) is P = O(np × ((L × zlogz)+ (L × N))). 
Moreover, the time complexity of the refinement step depends on the 
size eliteSet before applying this step which we name es and its 
complexity is R = O(es × (N +NlogN + nrm + (L ×N))). Therefore, the 
time complexity of the third module is T = O(P + R). Finally, the 
number of repetitions of HGARF depends on retVal, which we call x. 
Hence, the overall time complexity of HGARF is O(x × (F + S + T)).

Finally, we note that although in this work we considered three 
objectives (i.e., makespan, cost, and energy), it does not increase the 
asymptotic complexity of HGARF, as the three objectives are combined 
and evaluated as a single weighted sum. Thus, from the complexity’s 
perspective, it is not much different from evaluating just a single 
objective.

5. Experimental results

This section presents the results of our experimentation to evaluate 
the performance of the proposed HGARF algorithm to solve the multiple 
task graph scheduling problem. Section 5.1 introduces the experimental 
settings, including the data set, characteristics of the problem space, the 
baseline algorithms, and the parameter configuration. Then, a set of 
performance metrics to measure the quality of the proposed method is 
provided in Section 5.2. Finally, Section 5.3 evaluates the algorithms 
using two statistical significance tests.

5.1. Experimental setup

5.1.1. Data set
The IoT task graph applications used in our experiments include four 

types of real-world graphs from the Pegasus workflow Generator [48]: 
CyberShake, Epigenomics, LIGO Inspiral, and SIPHT. These task graphs 
have various structures with flexible operations in services and low 
coupling specifications. Their graph structures are illustrated in Fig. 5. 
To create diversity in the size of the task graphs to analyze scalability, 
they are divided into small-size and large-size categories based on the 
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number of tasks. In the small-size category, the number of tasks is 100, 
while the number of tasks in the large-size is around 1000. With each 
execution of the workflow generator, different task graphs with various 
configurations in terms of task execution time and dependencies be
tween them in each type/size are generated. In order to create diversity 
in the configuration of the task graphs, we ran the workflow generator 
five times for each type of graph (CyberShake, Epigenomics, LIGO 
Inspiral, and SIPHT). Therefore, the total number of task graphs for our 
simulation is 4× 2× 5 = 40. Out of these graphs, 20 are small-size and 
20 are large-size. To simulate the multiple task graphs submitted by IoT 
users, we randomly selected a configuration from each type of task 
graph and randomly put them together to build an application. Thus, 
each application includes four different types of task graphs.

5.1.2. Environment setting
The PCs in the considered environment have different processing 

capabilities which are represented by Million Instructions Per Second 
(MIPS). In our setting, the number of FNs and CNs are four and two, 
respectively. Two FNs have 4 cores and Two FNs have 6 cores, while the 
two CNs have 8 and 16 cores, respectively. Some details about the PCs 
settings are shown in Table 3. In this setup, four IoT devices are con
nected to four FNs, and each type of task graph is released by a specific 
IoT device and offloaded to the nearest FN. Besides, it is assuming the 
bandwidth of LAN and WAN are 4000 KB/s and 1000 KB/s, respec
tively. We also assume that the communication cost of LAN and WAN are 
0.002 and 0.005 per data unit, respectively.

5.1.3. Baseline algorithms
In order to investigate the efficiency of the proposed HGARF, the 

results obtained by HGARF are compared with the following four al
gorithms under the same condition: 

• Cooperative Multi-agent Offline Learning (CMOL) algorithm [15]: 
This is a pareto front-based multi-objective algorithm, and we added 
weighted sum to the different objectives. It also uses a learning-based 
method to reason about the environment. Its maximum number of 
iterations is 400.

• Multi-Objective Genetic Algorithm (MOGA) [26]: This is also an al
gorithm based on GA that uses a weighted sum method to calculate 
the fitness function. It uses a gap search algorithm to optimize 
resource utilization, and a tournament-based selection approach and 
a mutation operator for PSP. The maximum number of iterations of 
MOGA is 100.

• Energy-Efficient Makespan Cost-Aware Scheduling Algorithm 
(EMCS) [20]: This is a GA-based algorithm and uses the weighted 

sum method to solve the problem. It uses a parent selection strategy 
in the two-point crossover operator and a one-point mutation oper
ator to avoid local optimum solutions. The maximum number of it
erations of EMCS is 100.

• Only-GA (OGA): This is derived from HGARF but with RF removed. 
In order to improve its performance, we added two operators Block 
Search (BS) and Bad Selection Operator (BSO) [49] as neighborhood 
search and premature convergence prevention, respectively. In 
addition, we set the maximum number of iterations of the developed 
algorithm to 100.

5.1.4. Parameter configuration
Configuration of GA: Since there is no direct criterion for setting the 

parameters of meta-heuristic algorithms in scheduling problems and 
most approaches have used trial-and-error [50], we have employed a 
procedure to tune the parameters of our developed GA. For this purpose, 
we used the parameter values gained in the baseline algorithms to avoid 
spending time obtaining the values and have a fair comparison with 
those algorithms. The parameters were examined with respect to the 
baseline algorithms’ values in the interval [− 60 %, 60 %] with a step 
size of 20 %, and the values that did not lead to a waste of time while 
improving the objective function were selected. As an example, Fig. 6
presents three separate typical turning results on the parameters of nGen 
and nPop on a large-size graphs. By comparing the performance, it is 
clear that setting nGen = 50 is sufficient for curve convergence; the 
fitness becomes stable and the ratio of fitness to time consumption de
creases after that. The parameters of HGARF are set according to 
Table 4.

We set the three weight parameters w1, w2, and w3 to 0.25, 0.25, and 
0.5 respectively. This ensures that the user-oriented objectives (make
span and cost) share the same total weight (0.5) as the provider-oriented 
objective (energy consumption). In our experiments, all algorithms were 
implemented using Java with JDK 11 and the running environment of 
Intel(R) Core (TM) i7 CPU, 8 GB memory, and Windows OS.

Classification Accuracy of RF: To evaluate the classification ac
curacy of RF in HGARF, we compared the RF presented in HGARF, 
which we call RF-P, with RF-ID3, RF-C4.5, and RF-CART, which use ID3, 
C4.5, and CART as the tree construction techniques, respectively. For 
this purpose, the rule exploration module was executed only once and 
the data in the training set was used to construct the relevant decision 
trees. Here, the evaluation is based on different tree scales (i.e., number 
of decision trees in RF). To compare the accuracy of RF-P, RF-ID3, RF- 
C4.5, and RF-CART in terms of decision tree scales, we used all four 
types of graphs with large-size category. The experimental results are 
shown in Fig. 7.

As can be seen in Fig. 7, all four compared algorithms have low ac
curacy when the number of decision trees is 10. By increasing the 
number of decision trees from 10 to 20, the accuracy of the algorithms 
rapidly increases. Among the four task graphs, it is clear that RF-P offers 
the best accuracy in all the task graphs, while RF-ID3 has the worst 
accuracy. In addition, the lowest average accuracy for all algorithms is 
in LIGO Inspiral and the highest in Epigenomics. In terms of the differ
ence in accuracy between the best and the second-best algorithms, the 
largest difference is 6.2 % (between RF-P and RF-CART in SIPHT), while 
the smallest difference is 1.6 % (between RF-P and RF-C4.5 in Cyber
Shake). Overall, RF-P has shown better performance in terms of classi
fication accuracy and thus could play an effective role in generating the 
rules.

Hereafter, we set the number of decision trees to be k = 100 in 
HGARF. According to Fig. 7, in CyberShake, SIPHT, and Epigenomics, 
the accuracy is about 0.9 when k = 100. Although the accuracy in LIGO 
Inspiral is less than 0.85 when k = 100, we use the same setting in order 
not to increase the run time in all task graphs.

5.1.5. Metrics
We considered the following four metrics to evaluate the 

Fig. 5. The main structure of the used task graphs.

Table 3 
Characteristics of the processing centers in our setup.

Number of 
Cores

Qidl 

(W)
Qacv 

(W)
Processing 
Power 
(MIPS)

Processing Cost 
(per time unit)

Fog  
Nodes

4 23 42 2500 0.02
4 6 40 3000 0.03
6 11 109 3500 0.04
6 10 86 4000 0.05

Cloud 
Nodes

8 12 117 5500 0.08
16 17 193 6000 0.09
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performance of HGARF.  

• Objective Functions: The results of the five algorithms are evaluated 
separately based on the three objective functions: makespan, energy, 
and cost, as well as their weighted sum.

• Maximum Number of Iterations: To evaluate the impact of the 
maximum number of iterations on the performance of the algo
rithms, we multiply the maximum number of iterations of algorithms 
by increasing factors to check whether the quality of the obtained 
solutions also improves.

• Efficiency Ratios: This metric examines the efficiency of the algo
rithms by calculating the ratios of their performance and the lower 
bounds in terms of each of the three objective functions. These effi
ciency ratios provide measures on how far away each algorithm’s 
performance is from that of the optimal solution. We use Schedule 
Length Ratio (SLR) [17], Energy Ratio (ER), and Cost Ratio (CR) for 
this purpose.

• Resource Utilization Rate: This metric measures the effectiveness 
and time spent by the PCs during the assigned tasks and refers to the 
maximum utilization of the capacity of the available PCs.

5.2. Performance evaluation

In this section, we compare HGARF with the four baseline algorithms 

Fig. 6. Results of tuning the nGen parameter for large-size graphs.

Table 4 
The parameters of HGARF algorithm.

Parameter Value

nPop 300 for small-size 
600 for large-size

nCros nPop
nMut nPop
nGen 30 for small-size 

50 for large-size
nRep {2,4,8} for small-size 

{8,16,32} for large-size
nGuarantee {5,6}

Fig. 7. Classification accuracy of different RF techniques for different decision tree scales.
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(CMOL, MOGA, EMCS, and OGA) and show their performance in terms 
of the objective functions, different iteration sizes, the efficiency ratio, 
resource utilization rate. For this purpose, several experiments are 
conducted to show the behaviors of these algorithms. In the following, 
each of these performance metrics is discussed separately.

5.2.1. Comparison of objective functions
For this metric, HGARF and CMOL, as learning-based algorithms, 

were each executed five times on the applications and the average re
sults obtained from them were used. In contrast, MOGA, EMCS, and 
OGA, as non-learning-based algorithms, were each executed 10 times 
and the best results found were used. We did this to have a fair com
parison considering that learning-based algorithms typically perform 
better than non-learning-based algorithms. In addition, we set the 
population size parameter of the three non-learning-based algorithms to 
be 400 and 600 for small-size and large-size applications, respectively.

Fig. 8 shows the makespan of the five algorithms on the two cate
gories of graphs (small-size and large-size). The results show that the 
two learning-based algorithms perform better than the three non- 
learning-based algorithms in all task graphs for both small and large- 
size categories. In the class of learning-based algorithms, HGARF is su
perior in all instances. But, in the class of non-learning-based algorithms, 
the best is divided between the three. In particular, in small-size task 
graphs, OGA performs better than MOGA and EMCS in two instances, 
while each of EMCS and MOGA are better than others in one instance. In 
large-size task graphs, OGA is better than the two algorithms in two 
instances and similarly, MOGA performs better than other in two other 
instances. In the large-size task graphs, HGARF shows a significant 
improvement compared to the other four algorithms in CyberShake and 
Epigenomics. It is 16 % and 14 % better in CyberShake and Epigenomics, 
respectively, compared to CMOL, which is the second-best algorithm. 
The corresponding improvements in small-size task graphs are 12 % and 
16 % in LIGO Inspiral and Epigenomics, respectively, compared to 
CMOL.

The results related to energy consumption are depicted in Fig. 9. In 
terms of energy, the learning-based algorithms are again superior to the 
non-learning-based algorithms. In addition, HGARF has also performed 
better in all instances. To compare in terms of the size of the task graphs, 
in the large-size category, a considerable distance between HGARF and 
CMOL (the second-best algorithm) is observed with HGARF providing 8 
% and 9 % improvements in CyberShake and SIPHT, respectively.

The cost comparison of the five algorithms is shown in Fig. 10. The 
results once again show that HGARF outperforms the other algorithms in 
terms of this objective function and that CMOL, as another learning- 
based algorithm, has the second-best performance. In the small-size 
category, HGARF is better than CMOL with an improvement of 14 %, 
9 %, and 15 %, respectively, in CyberShake, SIPHT, and Epigenomics. In 
the large-size category, HGARF exhibits a remarkable advantage over 
CMOL with an improvement of 21 % and 17 % in LIGO Inspiral and 

Epigenomics, respectively.
Finally, Fig. 11 compares the overall objective function of the five 

algorithms by the weighted sum of the three individual objectives using 
the weights as stated in Section 5.1.4. As expected, HGARF has the best 
performance for the weighted objectives due to its superiority for each 
individual objective. In particular, for small-size task graphs, HGARF 
outperforms CMOL, MOGA, EMCS, and OGA by 5.04 %, 13.24 %, 13.03 
%, and 12.08 %, respectively, and for large-size task graphs, the 
respective improvements are 7.35 %, 18.91 %, 19.86 %, and 18.89 %. 
Overall, as the size of the task graphs increases, the superiority of 
HGARF over the other four algorithms also increases in terms of 
providing better-quality solutions.

Since HGARF automatically determines the maximum number of 
iterations during the execution, we recorded the maximum number of 
executions in this experiment, which are reported as follows: In the 
small-size task graph category, the maximum number of iterations is 
between 5 and 9, while in the large-size task graph category, the 
maximum number of iterations is between 7 and 16.

To conclude, the intelligent interaction of GA and RF with each other 
and with the problem space has led to HGARF’s superior performance 
compared to the other four algorithms in all instances. Such intelligence 
stems from the following considerations. First, in HGARF, in addition to 
TPP, special attention has been paid to PSP by the introduction of the 
bottleneck concept and the presentation of the method in PMO to alle
viate this issue. Second, the structure of a chromosome is designed in 
such a way that it can store valuable information from the environment 
in order to use them for knowledge extraction. Third, the mechanism 
presented in RF has helped HGARF to generate rules with high accuracy 
and to use the generated rules effectively. With these intelligent con
siderations, it is expected that HGARF would have a significant advan
tage over stochastic non-learning-based algorithms. Even compared to 
the state-of-the-art learning-based algorithm, its superiority can be 
anticipated from the methods presented in PMO and in the generation/ 
usage of rules. As such, HGARF is able to significantly outperform the 
other algorithms as shown in Figs. 8, 9, 10, and 11.

5.2.2. Comparison of maximum number of iterations
As mentioned in Section 4.4, HGARF automatically adjusts the 

maximum number of iterations. We expect that increasing the number of 
iterations will lead to the better extraction of quality rules, which can 
have a positive impact on the quality of the provided solutions. For this 
purpose, we use the maximum number of iterations recorded for the 
algorithm in Section 5.2.1 and omit the automation of the termination 
condition step in this experiment. As the recorded maximum number of 
iterations for small-size and large-size task graphs are in the intervals 
[5,9] and [7,16], respectively, we consider the average of the interval 
[5,9], which is 7, for small-size task graphs and the average of the in
terval [7,16], which is around 11, for large-size task graphs. As stated 
earlier, the maximum number of iterations of CMOL, MOGA, EMCS, and 

Fig. 8. Makespan comparison of the five algorithms for different task graphs.
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OGA are 400, 100, 100, and 100, respectively. To this end, we increase 
the maximum number of iterations of the five algorithms by a factor of 
two and three, respectively, and compare the obtained results with those 
stated in Section 5.2.1. The percentage of improvements compared to 
the results of Fig.s 8, 9, and 10 are presented in Tables 5, 6, and 7, 
respectively, with the best results of each category marked in bold.

As seen in Table 5, there is a significant difference between the 
makespan results of learning-based algorithms and non-learning-based 
algorithms. Learning-based algorithms continue their convergence 
process by changing the increase factor from two to three. In contrast, 
the non-learning-based algorithms do not exhibit a specific pattern in 
convergence and improvement of results. It is observed that, in some 
examples, an increase factor of three even leads to a decrease of per
formance compared to an increase factor of two. Moreover, all 

improvements are less than 10 % from the previous results for both 
large-size and small-size categories. On the other hand, learning-based 
algorithms by changing the factor from two to three presented a 
considerable progress on convergence, although the speed of conver
gence decreased for large task graphs compared to small graphs. 
Comparing the two algorithms in the learning-based class, the conver
gence in HGARF is clearly better. Specifically, with an increase factor of 
two, the average improvements by HGARF for small-size and large-size 
task graphs are 27.07 % and 20.79 %, respectively, while they are 18.80 
% and 11.34 % for CMOL. With an increase factor of three, this supe
riority trend continues for HGARF: the average improvements by 
HGARF for small-size and large-size task graphs are 39.37 % and 28.72 
%, respectively, while they are 25.66 % and 14.18 % for CMOL.

As with the makespan, the performance of non-learning-based 

Fig. 9. Energy consumption comparison of the five algorithms for different task graphs.

Fig. 10. Average cost comparison of the five algorithms for different task graphs.

Fig. 11. Objective function comparison of the five algorithms for different task graphs.
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algorithms compared to learning-based algorithms in terms of the en
ergy consumption is significantly poor, as shown in Table 6. In fact, the 
non-learning-based algorithms even show no improvement in seven 
instances (indicated by the “-“ sign in the table). Moreover, the 
maximum improvement achieved by the three algorithms in this class is 
merely 8 %. In contrast, the learning-based algorithms demonstrate 
much better performance. Notably, the highest average improvement 
achieved by HGARF is 39.07 %, occurred in small-size graphs and the 
lowest average improvement is 29.24 % in large-size graphs, both with 
an increase factor of three. As for CMOL, the highest average improve
ment occurred in the small-size graphs is 22.89 % with an increase factor 
of three, while the lowest average improvement is in the large-size 
category is 13.04 % with an increase factor of two. These results again 
highlight the superiority of HGARF over CMOL.

The superiority of HGARF over the other four algorithms continues in 
Table 7 for the cost. As can be seen, HGARF has led to more than 50 % 
improvement in one instance, while CMOL does not get close to HGARF in 
terms of the cost improvement. MOGA, EMCS, and OGA again show very 
poor performance with maximum improvement less than 8 % for all 

instances. Moreover, these three algorithms do not show a clear pattern in 
the improvement, as it is expected that with an increase in the number of 
iterations, their improvements will also be better, which is not the case.

In summary, we can conclude that, for the two learning-based al
gorithms HGARF and CMOL, the more time they are given for explora
tion, the more favorable results they will get. In addition, the size of the 
problem space negatively affects their convergence speed. For the three 
non-learning-based algorithms MOGA, EMCS, and OGA, due to their 
stochastic nature, they cannot necessarily increase the speed of 
convergence by increasing the number of iterations. Finally, regarding 
the superiority of HGARF over CMOL, we can see that HGARF leads to 
about 40 % better performance than CMOL on average, mainly due to 
HGARF’s capability for: (1) paying special attention to PSP by using the 
PMO algorithm; (2) providing a high-accuracy method for classification 
and rule generation; and (3) refining the rules with less effect on the 
solution in the rule usage module.

5.2.3. Comparison of efficiency ratios
SLR is a metric that has been utilized to assess the makespan in 

Table 5 
The percentage of improvement of makespan of the five algorithms with the increase of the maximum number of iterations.

Increase factor Algorithms Small-size Task Graphs Large-size Task Graphs

Cyber. LIGO. SIPHT Epi. Cyber. LIGO. SIPHT Epi.

× 2 HGARF 20.81 % 29.13 % 25.78 % 32.55 % 27.67 % 18.29 % 20.78 % 16.41 %
CMOL 17.11 % 20.69 % 15.36 % 22.05 % 13.04 % 11.50 % 8.28 % 12.54 %
MOGA 7.40 % 6.24 % 3.19 % 6.01 % 2.04 % 3.11 % 1.83 % 1.14 %
EMCS 6.44 % 5.03 % 1.98 % 4.67 % 1.86 % 0.28 % 0.62 % 1.54 %
OGA 6.37 % 4.66 % 4.73 % 5.28 % 1.73 % 0.60 % 1.78 % 4.51 %

× 3 HGARF 33.04 % 47.28 % 36.08 % 41.10 % 29.71 % 32.25 % 30.84 % 22.09 %
CMOL 19.64 % 28.65 % 23.93 % 30.42 % 18.05 % 15.70 % 9.62 % 13.34 %
MOGA 3.02 % 5.52 % 2.19 % 7.52 % 2.67 % 2.38 % 1.72 % 4.10 %
EMCS 4.44 % 3.27 % 2.93 % 4.81 % 1.35 % 0.37 % 0.52 % 1.19 %
OGA 5.39 % 6.25 % 4.34 % 6.48 % 2.65 % 1.10 % 2.31 % 3.49 %

Note: Cyber. = CyberShake; LIGO. = LIGO Inspiral; Epi. = Epigenomics.

Table 6 
The percentage of improvement of energy consumption of the five algorithms with the increase of the maximum number of iterations.

Increase factor Algorithms Small-size Task Graphs Large-size Task Graphs

Cyber. LIGO. SIPHT Epi. Cyber. LIGO. SIPHT Epi.

× 2 HGARF 26.06 % 30.75 % 29.12 % 31.50 % 33.80 % 29.72 % 30.21 % 26.17 %
CMOL 21.23 % 18.74 % 14.59 % 18.36 % 13.01 % 15.26 % 9.48 % 14.39 %
MOGA 0.45 % 3.20 % 1.63 % 3.81 % 1.52 % 2.34 % - 0.69 %
EMCS 2.62 % 5.07 % 3.06 % 3.53 % 0.87 % 0.28 % - 0.05 %
OGA 2.70 % 8.26 % 3.19 % 4.25 % 2.07 % 3.72 % - 0.11 %

× 3 HGARF 34.59 % 43.13 % 35.64 % 42.91 % 28.34 % 31.55 % 31.62 % 25.44 %
CMOL 18.93 % 21.84 % 24.77 % 26.02 % 16.36 % 15.09 % 14.58 % 17.33 %
MOGA 2.88 % 5.68 % 4.09 % 5.38 % 3.28 % 0.42 % - 3.06 %
EMCS 4.16 % 4.09 % 3.61 % 4.11 % 1.03 % 0.58 % - -
OGA 5.46 % 4.31 % 5.28 % 5.67 % 1.96 % - 1.67 % 2.08 %

Note: Cyber. = CyberShake; LIGO. = LIGO Inspiral; Epi. = Epigenomics.

Table 7 
The percentage of improvement of cost of the five algorithms with the increase of the maximum number of iterations.

Increase factor Algorithms Small-size Task Graphs Large-size Task Graphs

Cyber. LIGO. SIPHT Epi. Cyber. LIGO. SIPHT Epi.

× 2 HGARF 19.05 % 27.60 % 26.84 % 32.17 % 28.07 % 20.06 % 19.32 % 18.66 %
CMOL 15.99 % 19.74 % 16.02 % 24.29 % 13.98 % 12.73 % 10.71 % 11.29 %
MOGA 7.58 % 5.32 % 5.18 % 6.74 % 1.53 % 4.55 % 2.09 % 1.02 %
EMCS 4.16 % 2.79 % 3.52 % 2.07 % 1.82 % 2.01 % 1.69 % 1.05 %
OGA 5.32 % 5.68 % 6.59 % 7.04 % 1.29 % 1.58 % 4.80 % 2.03 %

× 3 HGARF 32.06 % 50.20 % 38.73 % 40.37 % 31.46 % 33.93 % 32.17 % 22.56 %
CMOL 17.52 % 30.95 % 24.70 % 33.28 % 19.28 % 17.79 % 10.54 % 12.06 %
MOGA 4.58 % 5.03 % 6.17 % 6.37 % 1.01 % 2.27 % 6.68 % 1.92 %
EMCS 5.19 % 3.24 % 4.99 % 3.34 % 1.51 % 1.06 % 1.85 % 0.99 %
OGA 4.82 % 7.56 % 7.29 % 5.81 % 2.43 % 1.79 % 3.66 % 3.82 %

Note: Cyber. = CyberShake; LIGO. = LIGO Inspiral; Epi. = Epigenomics.
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various algorithms. It normalizes the makespan of an algorithm by a 
lower bound (LB) to report the efficiency of the algorithm. Since four 
task graphs with different structures and attributes were utilized in our 
study, the makespan LB of each task graph is calculated using the critical 
path of the task graph and then used to normalize an algorithm’s 
makespan. The critical path is the longest path between vn,s and vn,e that 
is processed on a PC with the highest processing capability. The SLR 
metric is calculated by Eq. (22). 

SLR =
makespan

LB(makespan)
(22) 

The denominator of the fraction in Eq. (22) calculates the LB on 
makespan, and since the actual makespan must be greater than the LB, 
the SLR will not be less than one. Therefore, an algorithm is better if its 
SLR is closer to one. Table 8 presents the comparison of the SLR metric 
derived from their average executions amongst the HGARF, CMOL, 
MOGA, EMCS, and OGA algorithms according to Fig. 8, where the best 
results are marked in bold.

From Table 8, we can see that HGARF substantially outperforms the 
other algorithms on the basis of the SLR metric. In particular, within the 
class of learning-based algorithms, HGARF performs better than CMOL, 
and the class of non-learning-based algorithms clearly has weaker per
formance. HGARF has an SLR of less than 1.4 for small-size task graphs, 
which shows that its makespan for such graphs is very close to the 
optimal. For large-size task graphs, HGARF’s SLR is less than 4 for all the 
graphs, and the difference of it from the other three algorithms is much 
greater than that of small-size task graphs.

To evaluate the efficiency of the algorithms in terms of energy con
sumption and cost, the algorithms were executed on a PC with the lowest 
energy consumption and cost, respectively, which allows us to calculate 
the minimum energy consumption and the minimum cost for each task 
graph, and we are using them as the energy and cost lower bounds. In 
this way, we propose two metrics called ER and Cost Ratio CR, similarly 
to the SLR, and they are defined in Eqs. (23) and (24). 

ER =
energy

LB(energy)
(23) 

CR =
cost

LB(cost)
(24) 

Again, the closer these ratios are to one, the better the algorithm is in 
terms of the energy/cost efficiency. Table 9 and Table 10 present the ERs 
and CRs of the four algorithms for different task graphs. The results 
again confirm the superiority of HGARF compared to the other algo
rithms for these two metrics. In particular, HGARF’s ratios are less than 
1.5 for small-size task graphs and less than 5 for large-size task graphs. 
Such superiority is again due to HGARF’s use of experiences to generate 
knowledge such that over time the algorithm learns which sequences 
and assignments bring it closer to the goal. Overall, the SLR, ER, and CR, 
metrics confirm the effectiveness of the proposed HGARF algorithm.

5.2.4. Resource utilization rate
The Resource Utilization Rate (RUR) metric measures the percentage 

of VMs in PCs used by the applications in the fog-cloud environment. It 
indicates how much of the PCs’ capacity is being utilized over time. It is 

calculated by Eq. (25). 

RUR =
VM busy time

VM total available time
× 100% (25) 

For this metric, each algorithm was executed five times on both 
small-size and large-size applications, and the average results obtained 
from them are shown in Fig. 12. The results indicate that HGARF has the 
best RUR compared to other algorithms, which is more than 93 % for 
small-size task graphs. For both sizes, HGARF’s rate is not less than 85 
%, while the highest rate recorded by other algorithms is around 85 %. 
This superiority can be attributed to the good performance of HGARF in 
PSP, in particular the development of the PMO mutator, which is 
effective in properly utilizing the resources by identifying the bottleneck 
PCs and considering the two conditions. Another reason is the use of 
rules that can lead to intelligent allocation of resources.

5.3. Evaluations based on statistical analysis

This section compares the performance of our algorithm and that of 
the baseline algorithms based on two statistical significance tests, 
namely, the Friedman test and the Wilcoxon signed-rank test.

5.3.1. Friedman test
Friedman test is a non-parametric test used to rank and compare the 

developed algorithm with the baseline algorithms. This test examines 
whether the mean ranks among the algorithms are the same at the signif
icance level of 0.05. A comparison of the performance of HGARF with the 
performance of CMOL, MOGA, EMCS, and OGA based on the values of the 
objective functions is presented in Table 11. Considering that the P-value is 
less than 0.05, the null hypothesis (i.e., there is no difference between the 
performance of the algorithms) is rejected and it can be concluded that the 
algorithms do not have the same performance. HGARF is ranked first with 
an average value of 1.00, thus having the best performance. Among the 
baseline algorithms, CMOL performs better than others.

5.3.2. Wilcoxon signed-rank test
The Wilcoxon signed-rank test is a nonparametric statistical test used 

to determine whether two related samples have the same population 
mean ranks. We use it to verify the statistical differences in the perfor
mance of HGARF with CMOL, MOGA, EMCS, and OGA at the signifi
cance level of 0.05. The results of this test for pairs of algorithms based 
on the objective function values are shown in Table 12. Since the sig
nificance value is smaller than 0.05, it indicates a significant difference 
between HGARF and the other algorithms and that HGARF performs 
better than those algorithms. Also, the table shows the pairwise com
parison among other algorithms as well. We can see that there is no 
statistically significant difference between MOGA and EMCS, MOGA and 
OGA, as well as EMCS and OGA, since the P-values of these three 
comparisons are greater than 0.05.

6. Conclusion and future directions

This paper investigated the problem of multiple task graph sched
uling in heterogeneous distributed computing systems in which multiple 
IoT devices, multiple fog nodes, and multiple cloud nodes are available. 

Table 8 
SLR comparison of the five algorithms for different task graphs.

Algorithms Small-size Task Graphs Large-size Task Graphs

Cyber. LIGO. SIPHT Epi. Cyber. LIGO. SIPHT Epi.

HGARF 1.23 1.16 1.29 1.37 3.25 3.45 3.41 3.84
CMOL 1.25 1.31 1.32 1.62 3.83 3.79 3.57 4.45
MOGA 1.32 1.66 1.60 2.06 4.86 3.96 4.21 5.53
EMCS 1.28 1.52 1.58 2.28 5.00 3.95 4.34 6.27
OGA 1.30 1.49 1.51 2.24 5.06 3.95 3.89 5.96

Note: Cyber. = CyberShake; LIGO. = LIGO Inspiral; Epi. = Epigenomics.
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The goal is to simultaneously minimize the three objectives of make
span, energy consumption, and cost through a weighted sum. To solve 
the problem, a three-module intelligence algorithm was developed, 
which explores the problem space and derives IF-THEN rules by using a 
Genetic Algorithm (GA) and a Random Forest (RF) classifier, respec
tively. The designed algorithm, which we call Hybrid GA-RF (HGARF), 
can interact with the environment to achieve quality rules, and auto
matically terminate its activity when it reaches a suitable convergence. 
In the GA part of the developed HGARF, a method was presented in the 
crossover operator to create diversity in a chromosome for problems 
with multiple task graphs. In addition, by defining a concept called 
bottleneck, a mutator was introduced to reduce the workload based on 
multiple fog/cloud nodes. In the RF part, in addition to introducing 
features to construct the decision trees, a format for extracting and 
recording rules was introduced. To show the superiority of the proposed 
HGARF, its performance was compared with that of four other state-of- 
the-art algorithms on four task graphs with small and large sizes. The 
results show that the developed algorithm was able to provide better 
performance than all other four algorithms in all testing instances. In 
addition, the accuracy of the developed RF was compared with that of 
three other techniques, and favorable results were also observed.

Considering the complexity of the studied problem, a method in the 
refinement step of the third module of HGARF was introduced to remove 
the rules that play less role in convergence from the rule set. Although 
this method is effective by taking advantage of the introduced mutator, 
designing new mutation methods that can maintain valuable rules in 
each task graph by segmenting the levels of each task graph can be a 
path for the future development of HGARF. In addition, since the rules in 
the rule set cannot completely cover the problem space due to the lim
itation in the maximum number of iterations, embedding a fuzzy IF- 
THEN rule in the processing center prediction step to make decisions 
in uncertainty conditions can increase the efficiency of our algorithm. 
Real-time tasks are one of the workload types that the fog-cloud envi
ronment hosts for processing. Although more rules are added to 
HGARF’s training set to increase the quality of its decision-making, in 
the presence of real-time tasks at the early stages, it may not be able to 
have the necessary quality for task placement. Therefore, including a 
semi-greedy heuristic in HGARF is another direction that we will 
consider in the future. Lastly, applying HGARF to optimize the execution 
of other IoT applications such as bag-of-tasks and using heterogeneous 
ensemble learning classifiers in the second module can be other paths for 
future research.

Table 9 
ER comparison of the five algorithms for different task graphs.

Algorithms Small-size Task Graphs Large-size Task Graphs

Cyber. LIGO. SIPHT Epi. Cyber. LIGO. SIPHT Epi.

HGARF 1.37 1.29 1.42 1.34 2.98 2.84 3.36 3.47
CMOL 1.43 1.48 1.55 1.49 3.62 3.65 4.03 4.78
MOGA 1.56 1.51 1.62 1.88 4.92 4.89 5.62 6.04
EMCS 1.55 1.50 1.59 1.71 4.68 4.51 5.64 5.27
OGA 1.55 1.63 1.60 1.72 4.71 4.52 4.99 5.36

Note: Cyber. = CyberShake; LIGO. = LIGO Inspiral; Epi. = Epigenomics.

Table 10 
CR comparison of the five algorithms for different task graphs.

Algorithms Small-size Task Graphs Large-size Task Graphs

Cyber. LIGO. SIPHT Epi. Cyber. LIGO. SIPHT Epi.

HGARF 1.14 1.33 1.37 1.13 4.31 2.99 4.97 3.57
CMOL 1.32 1.41 1.50 1.34 4.43 3.79 5.26 4.31
MOGA 1.41 1.60 1.69 1.71 4.52 5.26 5.74 5.71
EMCS 1.37 1.63 1.70 1.74 4.84 5.03 5.59 5.91
OGA 1.36 1.50 1.58 1.81 4.99 4.42 5.56 5.82

Note: Cyber. = CyberShake; LIGO. = LIGO Inspiral; Epi. = Epigenomics.

Fig. 12. Resource utilization rate comparison of the five algorithms for 
different task graphs.

Table 11 
Results of Friedman test based on objective function values.

Algorithm Mean rank Statistic P-value

HGARF 1.00

26.500 0.000025
CMOL 2.00
MOGA 4.00
EMCS 4.38
OGA 3.63

Table 12 
Results of Wilcoxon signed test based on objective function values.

Algorithm pair Difference of Medians Wilcoxon statistic P-value

HGARF-CMOL − 0.05902 2.521 0.012
HGARF-MOGA − 0.15346 2.521 0.012
HGARF- EMCS − 0.14951 2.521 0.012
HGARF-OGA − 0.14332 2.521 0.012
CMOL-MOGA − 0.09444 2.521 0.012
CMOL-EMCS − 0.09049 2.521 0.012
CMOL-OGA -0.0843 2.521 0.012
MOGA-EMCS 0.003956 0.420 0.674
MOGA-OGA 0.010143 0.420 0.674
EMCS- OGA 0.006187 1.680 0.093
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