
A New Algorithm for Online Scheduling of Rigid Task Graphs
with Near-Optimal Competitive Ratio

Lucas Perotin
Vanderbilt University

Nashville, TN, United States
lucas.perotin@vanderbilt.edu

Hongyang Sun
University of Kansas

Lawrence, KS, United States
hongyang.sun@ku.edu

Padma Raghavan
Vanderbilt University

Nashville, TN, United States
padma.raghavan@vanderbilt.edu

Abstract

This paper addresses the challenges of online scheduling within
high-performance computing (HPC) systems, focusing on rigid
parallel tasks with precedence constraints organized as a directed
acyclic graph (DAG). We introduce an online algorithm, called
CatBatch, which efficiently schedules tasks to minimize the over-
all completion time, or the makespan. We show that CatBatch
achieves a competitive ratio of log(𝑛) + 3, with 𝑛 being the number
of tasks. Although CatBatch only discovers tasks on the fly when
they are ready, it almost matches the best offline algorithm, which
has an approximation ratio of log(𝑛 + 1) + 2. We further show that
CatBatch achieves a competitive ratio of log

(
𝑀
𝑚

)
+ 6, where 𝑀

and𝑚 are the lengths of the longest and shortest tasks, respectively.
Consequently, CatBatch achieves a constant competitive ratio
when the number of tasks or the task lengths are bounded. Finally,
our analysis indicates the algorithm’s near-optimal performance
in worst-case scenarios for both metrics, showing that no online
algorithm can have a competitive ratio lower than Θ(log(𝑛)) or
Θ

(
log

(
𝑀
𝑚

))
in this context.

CCS Concepts

• Theory of computation→ Online algorithms; Scheduling
algorithms.

Keywords

Task graph, rigid task, online scheduling, competitive ratio.
ACM Reference Format:

Lucas Perotin, Hongyang Sun, and Padma Raghavan. 2025. ANewAlgorithm
for Online Scheduling of Rigid Task Graphs with Near-Optimal Competitive
Ratio. In 37th ACM Symposium on Parallelism in Algorithms and Architectures

(SPAA ’25), July 28-August 1, 2025, Portland, OR, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3694906.3743329

1 Introduction

Efficient resource allocation and task management are fundamen-
tal challenges in modern computational systems, particularly in
high-performance computing (HPC) systems. Designing scheduling
algorithms for these systems becomes increasingly critical as they
grow in scale and complexity. This paper delves into a schedul-
ing problem known as the online scheduling of rigid tasks with
precedence constraints.

This work is licensed under a Creative Commons Attribution 4.0 International License.
SPAA ’25, Portland, OR, USA

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1258-6/2025/07
https://doi.org/10.1145/3694906.3743329

In rigid task scheduling, we consider a set of 𝑛 tasks to be exe-
cuted on a platform consisting of 𝑃 identical processors. Each rigid
task T𝑖 has an execution time 𝑡𝑖 and requires exactly 𝑝𝑖 ∈ [1, 𝑃] pro-
cessors. The tasks are organized in a directed acyclic graph (DAG),
where edges represent precedence constraints. If a task T𝑖 needs
the execution result of another task T𝑗 before it can be launched,
it is represented by a precedence constraint from T𝑗 to T𝑖 in the
graph. The objective is to assign start times to tasks to minimize
the overall completion time, or the makespan, while respecting the
platform’s capacity (i.e., the total number of processors 𝑃) as well
as the precedence constraints among the tasks.

In the offline version of the scheduling problem, the graph and
each task’s parameters (i.e., 𝑡 and 𝑝) are known before the execution
starts. The problem has been widely studied, particularly for the
special case where all tasks are sequential (hence, require a single
processor). Since the problem is NP-complete if 𝑃 ≥ 2 [16], the
goal is to design good approximation algorithms. On the contrary,
in the online version of the problem, tasks are released on the fly,
and their existence is unknown to the scheduler until they are ready
to be executed (i.e., all of their predecessors are completed). In this
case, to evaluate the quality of a heuristic, a standard way is to
derive its competitive ratio, which represents the performance of
a scheduling algorithm against an optimal offline scheduler that
knows in advance all the tasks and their dependencies in the graph.
More precisely, the competitive ratio is established against all pos-
sible strategies devised by an adversary trying to force the online
algorithm to take bad decisions. In this work, we will consider the
competitive ratio with respect to two parameters: the number of
tasks 𝑛 and the ratio between the largest and smallest lengths 𝑀

𝑚
.

Online task scheduling has been widely studied in different con-
texts (see Section 2 for a sample of results). However, to the best of
our knowledge, the online scheduling of rigid task graphs has not
yet been tackled. In this context, we aim to design a heuristic that
achieves a decent competitive ratio. At first, designing such heuris-
tics seems hopeless, as illustrated in Figure 1. Here, we consider a
simple DAG with 𝑃 repetitions of three tasks: A, B, and C. For each
repetition, B must be processed after A, and the next A and C are
released after the completion of B. Moreover, A and B have length
𝜖 , and C has length 1. Finally, A and C each use a single processor,
while B requires all 𝑃 processors. In the online setting, the scheduler
is only aware of the tasks that are ready to be executed. Therefore,
in the beginning, only the first A and C are known, and the first B
is discovered after A completes its execution. This simple example
shows that if we process tasks as soon as possible (ASAP), we will
always have to wait until each long task C is completed before
launching B and unlocking the next repetition for a total makespan
of 𝑃 + 𝑃𝜖 , utilizing only around 1 processor on average. An optimal

210

https://doi.org/10.1145/3694906.3743329
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3694906.3743329
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3694906.3743329&domain=pdf&date_stamp=2025-07-16

SPAA ’25, July 28-August 1, 2025, Portland, OR, USA Lucas Perotin, Hongyang Sun, and Padma Raghavan

A

B

A

B

A

B

A

B

C

C

C

C

t

p

1

2

3

4

0 1 + 1𝜖 2 + 2𝜖 3 + 3𝜖 4 + 4𝜖

A

C
B

A

C
B

A

C
B

A

C
B

t

p

1

2

3

4

0 8𝜖 1 + 8𝜖

A

B

A

B

A

B

A

B

C

C

C

C

Figure 1: An introductory example with 𝑃 = 4 processors. Left: DAG; Top right: schedule for any ASAP heuristic; Bottom right:

an optimal schedule.

schedule will process the A’s and B’s first, resulting in a makespan
of 1 + 2𝑃𝜖 , which is almost a factor of 𝑃 = 𝑛

3 lower, and it uses
all the processors most of the time. The only way to avoid such
scenarios would be to wait on purpose, not launch tasks ASAP, and
delay the execution of C. Since we study competitive ratios in the
worst case against an adversary, it is counter-intuitive to wait, as
an adversary would only release new tasks after completing their
predecessor tasks, thus delaying the execution of any task does
not seems to be a good idea. Intuitively, the only way to achieve a
decent result would be to relax the online scheduling setting, for
example, by allowing task termination.

However, in this paper, we design a novel algorithm, called
CatBatch, and show that it can achieve near-optimal competitive
ratio under this stringent online setting. The following summarizes
our main results for the online scheduling of rigid task graphs:
• CatBatch is (log(𝑛)+3)-competitive, where𝑛 is the number
of tasks.1
• CatBatch is

(
log

(
𝑀
𝑚

)
+ 6

)
-competitive, where𝑀 is the length

of the longest task, and𝑚 is the length of the shortest task.
• For any constant 𝐶 > 0, no algorithm can be

(
log(𝑛)

5 +𝐶
)
-

competitive. This lower bound shows that CatBatch achieves
the near-optimal asymptotic competitive ratio of Θ(log(𝑛)).

• For any constant 𝐶 > 0, no algorithm can be
(
log(𝑀𝑚)

5 +𝐶
)
-

competitive for all𝑚,𝑀 . This lower bound also shows that
CatBatch achieves the near-optimal asymptotic competi-
tive ratio of Θ(log(𝑀

𝑚
)).

• No algorithm can be
(
𝑃
2 − 𝜇

)
-competitive for any 𝜇 > 0. The

instance used in this lower bound has a huge number of
tasks, with 𝑛 > 2𝑃 , hence the result is compatible with the
competitive ratio of CatBatch.

Further, the performance of CatBatch almost matches the best
known result [1] for the offline setting, which has an approximation

1For simplicity, we use log(𝑥) to denote log2 (𝑥) for the entirety of the paper.

ratio of log(𝑛 + 1) + 2, and 3 if all tasks have equal length (we obtain
6 in this case based on the second result above). Note that the result
in [1] was derived for the strip packing problem, where a set of
rectangles must be placed without overlap inside a strip of limited
width (typically normalized to 1), and the objective is to minimize
the height of the strip needed to cover all rectangles. Strip packing
represents a very similar problem to rigid task scheduling, with
the width and height of a rectangle corresponding to the processor
requirement and execution time of a task, respectively. However,
there are a couple of subtle differences between the two problems:
(1) strip packing requires an allocation of continuous space for
each rectangle, while rigid task scheduling can allow free choice
of processors for each task; (2) the width of each rectangle in strip
packing can be a fractional number in (0, 1], while the processor
requirement of a task must be an integer in [1, 𝑃]. Despite those
differences, our algorithm can be slightly modified for the online
strip packing problemwith precedence constraints, and the analysis
and competitive ratio hold for both problems. Our lower bounds
also apply to the strip packing context, as the instances use only
tasks with 1 or 𝑃 processors, and therefore, can be adapted to strip
packing by using rectangles of widths 1

𝑃
or 1.

Finally, we point out that our results are not incremental. As
seen in the introductory example, to achieve such results, we have
to strategically delay some tasks, which can only be done based on
their relative positions in the DAG with respect to other tasks avail-
able. To that end, our algorithm is designed based on new attributes
of the tasks within a DAG, such as criticality and category, as well
as a new technique to analyze the performance of the algorithm,
introduced as the L-matrix. Outside of this work, these new tools
may lead to improved results in other scheduling contexts, such as
the online scheduling of moldable task graphs, where the scheduler
can choose the number of processors for each task. Indeed, a recent
work derived the best competitive ratios for some specific speedup
models among any ASAP schedule with local processor allocation
decisions [28]. Therefore, those results could only be improved by

211

A New Algorithm for Online Scheduling of Rigid Task Graphs with Near-Optimal Competitive Ratio SPAA ’25, July 28-August 1, 2025, Portland, OR, USA

considering the position of each task within the DAG, which is
especially challenging under the online setting. Our work could
help build new solutions for this specific problem, or other related
problems that involve graphs being discovered online.

The rest of this paper is organized as follows. Section 2 surveys
the related work. Section 3 formally states the problem and the
notations. Section 4 first defines the new attributes that lead to
the conception of CatBatch before introducing the algorithm. Sec-
tion 5 derives the competitive ratio of CatBatch. Section 6 shows
CatBatch’s asymptotic optimality with lower bounds. Finally, Sec-
tion 7 concludes the paper and discusses future directions.

2 Related Work

In this section, we review some related work on scheduling DAGs of
rigid tasks on identical parallel processors tominimize themakespan.
Despite being a fundamental scheduling problem with significant
importance in HPC, this problem has received limited attention in
the scheduling literature. One possible reason is the combination of
task rigidness and precedence constraint, which renders the prob-
lem difficult for achieving good theoretical bounds. Considering the
online setting further complicates the problem. However, relaxing
either constraint (i.e., rigidness or precedence) makes the problem
more tractable with more optimistic bounds. Thus, we also review
some related results for the two relaxed problems.

2.1 Scheduling DAGs of Rigid Tasks

In the seminal work [18], Graham studied the list scheduling algo-
rithm, one of the most well-known and widely adopted algorithms
in parallel scheduling. The original list scheduling algorithm is
designed for sequential tasks (i.e., requiring only one processor),
and it works as follows: all the tasks are initially organized in a list
with arbitrary priority order, and whenever a processor becomes
idle, it takes the first task in the list whose predecessors have been
completed and executes the task. Graham showed that list schedul-
ing achieves (2 − 1

𝑃
)-approximation for DAGs of sequential tasks,

where 𝑃 is the total number of processors. Li [25] extended list
scheduling for DAGs of rigid parallel tasks, and in this case, a task
is executed only when there are sufficient processors to process it.
List scheduling has a trivial approximation ratio of 𝑃 (in fact, any
scheduling algorithm that does not idle all processors when there
are ready tasks is a 𝑃-approximation). Li showed that 𝑃 is also a
lower bound on list scheduling’s worst-case approximation ratio
for many priority orderings. However, if all tasks require at most 𝑞𝑃
processors for 𝑞 ∈ (0, 1], list scheduling has an approximation ratio
of (2−𝑞)𝑃
(1−𝑞)𝑃+1 , which when 𝑞 becomes sufficiently small converges to

Graham’s original result [18]. Since list scheduling can be naturally
applied to the online setting, in which case only ready tasks are
inserted into the list, the approximation ratios above can also be
interpreted as competitive ratios for the respective online problems.

Augustine et al. [1] considered the related problem of strip
packing with precedence constraints. They designed a divide-and-
conquer algorithm that achieves an approximation ratio of 2 +
log(𝑛 + 1), where 𝑛 is the total number of rectangles. They also
considered a special case where all rectangles have uniform height
and gave a 3-approximation algorithm for this case. Scheduling
DAGs of rigid tasks has also been studied by Demirci et al. [11]

in the context of power-aware scheduling, where each task is se-
quential but at the same time also requires a certain amount of
power and there is a total power budget in the system. Here, two
types of resources are considered — processor resource and power
resource. From the processor resource’s perspective, a DAG of se-
quential tasks needs to be scheduled, but from the power resource’s
perspective, it is a DAG of rigid parallel tasks. In [11], a two-step al-
gorithm is presented: the first step applies Graham’s list scheduling
algorithm while considering the processor resource only to obtain
an initial schedule; the second step adopts the divide-and-conquer
algorithm of Augustine et al. [1] to modify the initial schedule in
order to satisfy the power resource constraint. It is shown that this
algorithm achieves an approximation ratio of 2 + 2 log(𝑛 + 1). In a
follow-up paper, Demirci et al. [12] improved this ratio to 2+ log(𝑛)
while additionally allowing tasks to choose among a discrete set of
configurations with power-performance tradeoffs.

While all the algorithms above are offline (except for list sched-
uling considered in [25], which gave an algorithm-specific lower
bound matching the trivial upper bound of 𝑃), we present an on-
line algorithm in this paper with a competitive ratio of Θ(log𝑛),
asymptotically matching the approximation ratios in [1, 11, 12] for
the offline problem. We also prove general lower bounds on the
best competitive ratio achievable by any online algorithm. To the
best of our knowledge, our results represent the first set of bounds
for scheduling DAGs of rigid tasks in the online setting.

2.2 Scheduling DAGs of Moldable Tasks

A moldable task is a parallel task whose processor allocation can
be varied prior to execution (but cannot be changed once the task
starts running). Moldable tasks represent a more flexible task model
compared to rigid tasks, and scheduling DAGs of moldable tasks can
yield better performance bounds (often constant ratios). The exact
ratio depends on the speedup model, which specifies the execution
time of a task as a function of its processor allocation, and whether
the problem is online or offline.

In the offline setting, Belkhale et al. [4] considered the mono-

tonic speedup model, where the execution time of a task is a non-
increasing function and the area (processor allocation times execu-
tion time) is a non-decreasing function of the number of allocated
processors. They presented a 2.618-approximation algorithm as-
suming the availability of an optimal processor allocation. Lepère et
al. [24] proposed a 5.236-approximation algorithm without this as-
sumption. They also showed that optimal processor allocation can
be obtained in pseudo-polynomial time for some special graphs (e.g.,
series-parallel graphs, trees), thus achieving 2.618-approximation
for these graphs. Jansen and Zhang [22] later improved the approx-
imation ratio to around 4.73. When further assuming that the area
of a task is a concave function of the processor allocation, Jansen
and Zhang [21] proposed a 3.29-approximation algorithm. Finally,
Chen and Chu [7] improved both results, providing an algorithm
that achieves an approximation ratio of 3.42 in general, and 2.96
when further assuming concave speedup functions.

The online setting is harder, and achieving constant performance
ratios often requires assuming more specific speedup models. Feld-
mann et al. [13] considered the roofline model, where the execution
time of a task decreases linearly with increased processor allocation

212

SPAA ’25, July 28-August 1, 2025, Portland, OR, USA Lucas Perotin, Hongyang Sun, and Padma Raghavan

until a maximum degree of parallelism, after which the execution
time stays constant. They designed a 2.618-competitive online algo-
rithm for this model. In fact, their algorithm works even in the non-
clairvoyant setting, where the execution time of a task is also un-
known to the scheduler until the task completes execution. Benoit
et al. [5] considered several other variants of the linear speedup
models with additional costs. They proved constant competitive
ratios (between 3 and 6) for these models. Perotin and Sun [28]
later provided improved results for all of these models and showed
matching lower bounds. They also proved that any deterministic
online algorithm that allocates processors based only on the local
properties of the tasks cannot achieve 𝑜 (log𝐷)-competitiveness,
where 𝐷 is the number of tasks in the longest path of the DAG.

2.3 Scheduling Independent Rigid Tasks

Relaxing the precedence constraint also makes the problem easier
to tackle. In this case, scheduling a set of independent rigid tasks
can yield constant performance ratios as well, in both offline and
online settings.

In the offline setting, Coffman et al. [8] showed that the Next-Fit
Decreasing Height (NFDH) algorithm is a 3-approximation, and the
First-Fit Decreasing-Height (FFDH) algorithm is a 2.7-approximation.
Both algorithms group tasks in subsets (called shelves) and schedule
shelves of tasks one after another. The survey by Lodi et al. [26]
provided more results and lower bounds on shelf-based schedul-
ing algorithms and the best possible approximation ratios. Baker
et al. [3] considered list-based scheduling, and they showed that
the Bottom-up Left-justified (BL) heuristic that orders tasks in de-
creasing processor requirement is a 3-approximation. Turek et
al. [29] showed that ordering tasks in decreasing execution time
is also a 3-approximation. All the algorithms above also guar-
antee contiguous processor allocation for each task, thus the re-
sults also apply to strip packing. Without the contiguous proces-
sor constraint, several works [14, 15, 29] showed that greedy list-
scheduling achieves a 2-approximation. Finally, Jansen [20] pre-
sented a (3/2 + 𝜖)-approximation algorithm for any fixed 𝜖 > 0,
which is the best possible result given the lower bound of 3/2 on
the approximation ratio [23].

Different online settings of the problem have also been stud-
ied. In one online setting, tasks have different release times, and
information about a task is unknown until it is released. Naroska
and Schwiegelshohn [27] proved that the greedy list-scheduling
algorithm has a competitive ratio of 2 in this case. The same result
was also shown independently by Johannes [23]. Chen and Vestjens
[6] showed a 1.3473 lower bound on the competitive ratio of any
deterministic online algorithm for this setting, even for sequential
tasks. In another online setting, tasks are all available at time 0 but
are presented one by one to the scheduler, which must irrevocably
schedule each task before the next one is revealed. Johannes [23]
showed that greedy list-scheduling has a competitive ratio of 𝑃 in
the worst case, and presented a 12-competitive algorithm. Baker
and Schwarz [2] extended the two shelf-based algorithms presented
in [8] and showed that Next-Fit is 7.46-competitive and First-Fit

is 6.99-competitive. The surveys by Csirik and Woeginger [9, 10]
described more results and lower bounds that use shelf-based algo-
rithms under this setting. To date, the best known competitive ratio

is 6.6623, obtained by Hurink and Paulus [19] and independently
by Ye et al. [30].

3 Problem Statement

In this section, we precisely define our scheduling problem, as well
as the objective function that evaluates the quality of the algorithm
presented in Section 4. Table 1 provides a list of notations and
vocabulary used throughout the paper.

Table 1: List of notations and vocabulary

Notation Name Definition

I Instance Section 3.1
T Task Section 3.1
𝑃 Total number of processors Section 3.1
𝑛 Number of tasks in DAG Section 3.1
𝑡 Execution time of a task Section 3.1
𝑝 Processor allocation of a task Section 3.1
P(T) Set of predecessors of task T Section 3.1
Lb(I) Lower bound of instance I Section 3.2
C(I) Critical path length of I Section 3.2
A(I) Area of I Section 3.2
𝑇Alg (I) Makespan of Alg for I Section 3.2
𝑇Opt (I) Optimal makespan for I Section 3.2
𝑠∞ Criticality (start time) Definition 1
𝑓 ∞ Criticality (end time) Definition 1
𝜒 Power level Definition 2
𝜆 Longitude Definition 3
𝜁 Category Definition 3
𝐿𝜁 Length of a category 𝜁 Definition 4
L Length matrix (or L-matrix) Definition 5

3.1 Online Scheduling Model for Rigid DAGs

In our scheduling model, we consider an instance I that is defined
with the following components:
• A fixed DAG of 𝑛 tasks need to be scheduled on a platform
consisting of 𝑃 identical processors. The tasks are denoted
as T𝑖 for 𝑖 ∈ [1, 𝑛]. A directed edge exists from task T𝑖 to
task T𝑗 if and only if T𝑗 cannot start executing until task T𝑖
is completed. In this case, we say T𝑖 is a predecessor of T𝑗
and T𝑗 is a successor of T𝑖 . For each task T𝑖 , we use P(T𝑖) to
denote the set of predecessors of T𝑖 .
• Each task T𝑖 has an execution time 𝑡𝑖 and requires 𝑝𝑖 ∈ [1, 𝑃]
processors. Alternatively, in the rest of this paper, for all task-
related notations, we may drop the index 𝑖 if the context is
clear (e.g., a task T ’s execution time is 𝑡 and requires 𝑝
processors).

We consider the online scheduling setting: before a task is ready
for processing, the scheduler is unaware of its existence. In other
words, a task T𝑖 is discovered only when all of its predecessors are
completed. When that happens, its execution time 𝑡𝑖 and processor
allocation 𝑝𝑖 become known. We further assume that the DAG
structure is also discovered on the fly by the scheduler, which
means that the set of predecessors of a task becomes known upon
its release but not the set of successors. The goal is to design an

213

A New Algorithm for Online Scheduling of Rigid Task Graphs with Near-Optimal Competitive Ratio SPAA ’25, July 28-August 1, 2025, Portland, OR, USA

online scheduling algorithm that assigns to each task T𝑖 a start time
𝑠𝑖 ≥ 0 such that at most 𝑃 processors may be used at all times.
More precisely, for any time 𝑥 ∈ R, if we denote as J (𝑥) ⊆ I the
subset of tasks running at time 𝑥 , i.e., for which 𝑠𝑖 < 𝑥 < 𝑠𝑖 + 𝑡𝑖 ,
then we must have

∑
T𝑖 ∈J(𝑥) 𝑝𝑖 ≤ 𝑃 . The objective function to be

minimized is the overall completion time of the DAG, also known
as the makespan, defined as 𝑇 (I) =maxT𝑖 ∈I (𝑠𝑖 + 𝑡𝑖).

3.2 Makespan Lower Bound and Worst-Case

Ratios

Given an instance I, a well-known makespan lower bound [18] is:

Lb(I) =max
(
A(I)
𝑃

, C(I)
)

(1)

where
• A(I) = ∑

T𝑖 ∈I 𝑡𝑖𝑝𝑖 is the area of the instance, and therefore,
A(I)
𝑃

corresponds to the total execution time if we could
always utilize all 𝑃 processors.
• C(I) is the critical-path length of the instance, which
corresponds to the total execution time if we had an infinite
number of processors and processed everything as soon as
possible (ASAP).

Given an algorithmAlg and an instanceI, we denote as𝑇Alg (I)
the makespan of the schedule under Alg and as𝑇Opt (I) the optimal
makespan of any schedule. In this work, we aim at minimizing
𝑇Alg (I)
𝑇Opt (I) for any possible instance I. However, as we will show in
Section 6, no algorithm may be always within a constant factor
from the optimal for any instance, i.e., ∀Alg, supI

(
𝑇Alg (I)
𝑇Opt (I)

)
=∞.

Therefore, we will study the worst-case ratio with respect to some
of the instance parameters, including the number of tasks 𝑛 or the
length ratio between the longest and shortest tasks 𝑀

𝑚
. Because

computing 𝑇Opt (I) is a generally NP-complete problem [17], we
will instead aim to minimize 𝑇Alg (I)

Lb(I) when analyzing an algorithm,
which gives a guarantee on the competitive ratio since Lb(I) ≤
𝑇Opt (I) ∀I. This is a common technique widely adopted by the
scheduling literature. For proving the lower bounds in Section 6,
however, we will use 𝑇Alg (I)

𝑇Opt (I) .

4 Definitions and Algorithm

Before presenting the algorithm, we will start with a few defini-
tions. They introduce new attributes of a task within its instance I.
All the definitions and attributes are illustrated with an example
throughout the section.

4.1 Definitions

4.1.1 Criticality and Category.

Definition 1. Given a task T of length 𝑡 , we define its earliest
start time as 𝑠∞, which indicates the time the task would be launched

in an ASAP schedule with unlimited number of processors. It also

represents the longest path length from the start of the graph to this

task. Similarly, we define the earliest finish time of the task as

𝑓 ∞ = 𝑠∞ + 𝑡 , indicating the time in which the task could be completed

in an ASAP schedule. We further refer to (𝑠∞, 𝑓 ∞) as the criticality,
indicating the interval in which the task will be executed in an ASAP

schedule. As C(I) corresponds to the longest path in the graph, or

the minimum completion time with unlimited number of processors

of an ASAP schedule, we have C(I) =max𝑗 𝑓 ∞𝑗 .

Lemma 1. Given a task T and its set of predecessors P(T), we
have:

𝑠∞ =

{
maxT𝑗 ∈P(T) 𝑓 ∞𝑗 , if P(T) ≠ ∅
0, otherwise

(2)

Proof. This is a direct induction: if the scheduler is ASAP and
there are infinite processors, tasks will be launched as soon as their
last predecessor completes. Alternatively, a direct induction shows
that this represents the longest path length from the start of the
graph to T . □

The primary purpose of the criticality values is to indicate where
a task sits in the DAG. A small 𝑠∞ shows that the task is close to the
root of the graph, and our algorithm CatBatch will prioritize tasks
with smaller criticalities. Another key observation is that if the
criticality intervals of two tasks ((𝑠∞𝑖 , 𝑓 ∞𝑖) and (𝑠∞𝑗 , 𝑓 ∞𝑗)) overlap,
then there can be no path from one task to the other. Otherwise, in
an ASAP schedule, one task would start only after the other finishes.
This property is important because highly efficient algorithms al-
ready exist for scheduling sets of independent tasks. CatBatch
assigns each task a category and groups all tasks with the same
category into a batch that contains independent tasks. We build
these batches while ensuring that only a few batches contain long
tasks, thereby reducing the number of dominating batches as much
as possible. The rest of the section introduces the key concepts to
create such batches.

Definition 2. Given a task T and its criticality (𝑠∞, 𝑓 ∞), we
define its power level 𝜒 as:

𝜒 =max{𝜒 ′ ∈ Z : ∃𝜆 ∈ N, 𝑠∞ < 𝜆2𝜒 ′ < 𝑓 ∞} (3)

Lemma 2. Given a task T of criticality (𝑠∞, 𝑓 ∞), its power level 𝜒
is well defined, and there exists a unique odd longitude 𝜆 that satisfies:

(𝜆 − 1)2𝜒 ≤ 𝑠∞ < 𝜆2𝜒 < 𝑓 ∞ ≤ (𝜆 + 1)2𝜒

Proof. Clearly, if 2𝜒 ≥ 𝑓 ∞, then no 𝜆 ≥ 1 may satisfy 𝜆2𝜒 < 𝑓 ∞.
Furthermore, if we take an 𝑋 ∈ Z such that 2𝑋 < 𝑓 ∞ − 𝑠∞, then
with 𝜆 =

⌊
𝑠∞

2𝑋

⌋
, 𝜆2𝑋 ≤ 𝑠∞ < (𝜆 + 1)2𝑋 ≤ 𝑠∞ + 2𝑋 < 𝑓 ∞, which

shows that 𝑋 ∈ {𝜒 ∈ Z : ∃𝜆 ∈ N∗, 𝑠∞ < 𝜆2𝜒 < 𝑓 ∞}. Therefore, this
set is non-empty and has a finite number of values larger than 𝑋
(as they have to be integers between 𝑋 and log(𝑓 ∞)), so it admits a
unique maximum and the power level 𝜒 is well-defined.

We then consider a 𝜆 that satisfies 𝑠∞ < 𝜆2𝜒 < 𝑓 ∞. If 𝜆 was
even, then

(
𝜒 + 1, 𝜆2

)
would be an acceptable pair. In Figure 2, this

corresponds to the point directly above. This contradicts the def-
inition of 𝜒 ; thus, 𝜆 must be odd. If we had 𝑠∞ < (𝜆 − 1)2𝜒 , then
because (𝜆 − 1) is even, the pair (𝜒 + 1, 𝜆−12) would be acceptable,
contradicting the definition of 𝜒 . In Figure 2, this corresponds to
the closest point in the top-left direction. Therefore, we must have
(𝜆−1)2𝜒 ≤ 𝑠∞, and similarly, 𝑓 ∞ ≤ (𝜆+1)2𝜒 , hence the uniqueness
of 𝜆 and the result. □

214

SPAA ’25, July 28-August 1, 2025, Portland, OR, USA Lucas Perotin, Hongyang Sun, and Padma Raghavan

Definition 3. Given a task T , its criticality (𝑠∞, 𝑓 ∞), and its

power level 𝜒 , we define its longitude 𝜆 as the unique integer such
that 𝑠∞ < 𝜆2𝜒 < 𝑓 ∞. The category of the task is defined as 𝜁 = 𝜆2𝜒 .

Figure 2 illustrates some values of 𝜆, 𝜒 and 𝜁 . Blue points rep-
resent category values with odd 𝜆’s, whereas red points represent
category values with even 𝜆’s. The category of a task corresponds
to the highest point within (𝑠∞, 𝑓 ∞). We can see that such a point
always corresponds to an odd 𝜆 (since red points always have a
blue point directly above) and is unique since if two consecutive 𝜆’s
are acceptable, one will be red and therefore have another point di-
rectly above. Finally, observe that the number of distinct categories
increases exponentially as 𝜒 decreases. Consequently, long tasks
tend to cluster in just a few high-power-level categories: when 𝑡 is
large, the interval (𝑠∞, 𝑓 ∞) is correspondingly long and necessarily
intersects at least one point on the upper levels. Since tasks of iden-
tical categories are independent and can be scheduled efficiently,
dividing categories in such a way minimizes the competitive ratio.

Corollary 1. All tasks in the same category share the same power

level and longitude. Thus, in the following, we will refer to the power

level 𝜒 and longitude 𝜆 as two attributes of a category 𝜁 .

Figure 3 further illustrates these definitions with an example. In
the top left is a graph of tasks to be scheduled. For each task, its
length 𝑡 , processor allocation 𝑝 and various attributes (i.e., criticality
[𝑠∞, 𝑓 ∞], longitude 𝜆, power level 𝜒 and category 𝜁) are given in the
table on the right. The bottom left represents the tasks’ criticalities,
which can be viewed as an ASAP schedule with an unbounded
number of processors. Categories are represented as vertical lines,
and the color of each line (or category) represents its power level:
by increasing order, yellow for 𝜒 = −1, green for 𝜒 = 0, blue for
𝜒 = 1 and red for 𝜒 = 2. Correspondingly, the color of each task
also indicates its power level, and the category of the task is given
by the vertical line of the highest power level that separates the
task into two parts.

4.1.2 Category Length and L-matrix. We will define one last at-
tribute for a category 𝜁 , namely, its length 𝐿𝜁 (C), which corre-
sponds to an upper bound on the length of any task belonging to
that category given any instance with critical path length C. We
point out that 𝐿𝜁 (C) depends only on 𝜁 and C, not on a specific
instance. To ease notation, we will denote it simply as 𝐿𝜁 in the rest
of the paper. Furthermore, this attribute will only be used in the
analysis to derive bounds on our algorithm’s makespan, while the
algorithm does not explicitly use it.

Figure 4 illustrates the categories and their corresponding lengths,
using the example presented in Figure 3. Based on Lemma 2, any
task belonging to category 𝜁 = 𝜆2𝜒 has 𝑠∞ ∈ [(𝜆 − 1)2𝜒 , 𝜆2𝜒) and
𝑓 ∞ ∈ (𝜆2𝜒 , (𝜆+1)2𝜒], therefore its length may not exceed 2𝜒+1. For
example, in category 𝜁 = 5 with power level 𝜒 = 0 and 𝜆 = 5, any
task (e.g., H and K) must have 𝑠∞ ∈ [4, 5) and 𝑓 ∞ ∈ (5, 6]. Indeed,
if 𝑓 ∞ > 6, the task would be in a higher category (i.e., with higher
𝜒), and if 𝑓 ∞ ≤ 5, the task would be in a lower category. Similarly,
if 𝑠∞ < 4, the task would be in a higher category (in this case, at
the very top with tasks A, E, I), and if 𝑠∞ ≥ 5, the task would be in
a lower category. Therefore, for all categories that do not reach C
(i.e., the rightmost line in Figure 4), 2𝜒+1 is a clear and tight upper
bound. Further, this bound can be refined for categories that reach

C. For example, in the category to which task 𝐽 belongs, 0.8 is a
clear upper bound since 6 ≤ 𝑠∞ < 𝑓 ∞ ≤ C = 6.8. This represents a
better bound than 1, obtained by considering its category alone (i.e.,
with power level 𝜒 = −1, thus 2𝜒+1 = 1). The following definition
and lemma state this formally:

Definition 4. Given any instance with critical-path length C and

a category 𝜁 with power level 𝜒 and longitude 𝜆, we define the length
of the category as:

𝐿𝜁 =

{
min(2𝜒+1, C − (𝜆 − 1)2𝜒) if C > 𝜆2𝜒

0 otherwise

(4)

Lemma 3. For any task T in an instance with critical path length

C, suppose its execution time is 𝑡 , and it belongs to category 𝜁 . Then,

we have 𝑡 ≤ 𝐿𝜁 .

Proof. If a task has category 𝜁 = 𝜆2𝜒 , it must verify 𝜆2𝜒 <

𝑠∞ ≤ C and we are on the first case. Based on Lemma 2, we have
𝑠∞ ≥ (𝜆 − 1)2𝜒 and 𝑓 ∞ ≤ (𝜆 + 1)2𝜒 . We can derive 𝑡 = 𝑓 ∞ − 𝑠∞ ≤
(𝜆 + 1)2𝜒 − (𝜆 − 1)2𝜒 = 2𝜒+1. Therefore, if 2𝜒+1 ≤ C − (𝜆 − 1)2𝜒 ,
we have the result. If not, we use ∀T𝑗 , 𝑓 ∞𝑗 ≤ C (otherwise, an ASAP
schedule with an unbounded number of processors would have a
makespan strictly larger than the critical path length). Thus, we
obtain 𝑡 = 𝑓 ∞−𝑠∞ ≤ C−(𝜆−1)2𝜒 ≤ 2𝜒+1, concluding the proof. □

The category length is an excellent tool for analysis since our
algorithm will split an instance into batches of tasks of identical
categories, as shown in Figure 4, and process them by increasing
category value 𝜁 . Furthermore, for tasks belonging to the same
category, there are no precedence constraints between them since
an ASAP schedule with an unbounded number of processors would
be able to process them concurrently during the interval corre-
sponding to their category. This is the motivation for structuring
categories in such a manner because it is known that efficient
strategies exist for processing independent tasks [20]. The potential
time loss depends only on the length of the longest task, which
is bounded by 𝐿𝜁 . Each time the power level increases by 1, the
number of categories is roughly reduced by 2 (as shown in Figure
2), and the length of categories is roughly doubled (as shown in
Figure 4). Therefore, most categories will only include small tasks
and will be processed efficiently.

To further aid analysis, we introduce one last construction, the
length matrix (or L-matrix) L(C), for any instance with critical
path length C. We point out again that L(C) depends only on C
but not on a specific instance. Thus, we will denote it simply asL to
ease notation in the rest of the paper. This (infinite) matrix contains
the different possible values of 𝐿𝜁 , and each element ℓ𝑖, 𝑗 ∈ L also
corresponds to a category. Figure 5 (left) shows the L-matrix for
the example of Figures 3 and 4. Each row of the matrix corresponds
to a power level 𝜒 , and each column corresponds to a longitude
value 𝜆. The top-left element of the matrix (ℓ1,1) corresponds to the
category that spreads across [0, C], where the length of each task
is at most C. In our example, this corresponds to category 𝜁 = 4,
which includes tasks A, E, and I (see Figure 4). More generally, the
correspondence between elements of the L-matrix and the category
values can be viewed in Figure 5. Because C = 6.8 in this example,
the 0’s in the L-matrix correspond to impossible categories with
𝜁 ≥ C, marked in gray. The L-matrix is formally defined below.

215

A New Algorithm for Online Scheduling of Rigid Task Graphs with Near-Optimal Competitive Ratio SPAA ’25, July 28-August 1, 2025, Portland, OR, USA

power level

time

𝜒 = −1

𝜒 = 0

𝜒 = 1

𝜒 = 2

𝜆 = 1
𝜁 = 1

𝜆 = 3
𝜁 = 3

𝜆 = 5
𝜁 = 5

𝜆 = 7
𝜁 = 7

𝜆 = 1
𝜁 = 2

𝜆 = 3
𝜁 = 6

𝜆 = 1
𝜁 = 4

𝜆 = 1
𝜁 = 0.5

𝜆 = 3
𝜁 = 1.5

𝜆 = 5
𝜁 = 2.5

𝜆 = 7
𝜁 = 3.5

𝜆 = 9
𝜁 = 4.5

𝜆 = 11
𝜁 = 5.5

𝜆 = 13
𝜁 = 6.5

𝜆 = 15
𝜁 = 7.5

(𝜆 = 2) (𝜆 = 4) (𝜆 = 6)

(𝜆 = 2)

Figure 2: Graphical representation of some possible values of category 𝜁 , power level 𝜒 and longitude 𝜆.

A

B

C

D

E

F

G

H

I

J

K

t

p

0 3 6

A

B

C

D

E

F

G

H

I

J

K

𝜁 = 1 𝜁 = 2

𝜁 = 3.5

𝜁 = 4 𝜁 = 5

𝜁 = 6.5

C(I) = 6.8

Task t p 𝑠∞ 𝑓 ∞ 𝜆 𝜒 𝜁

A 6 1 0 6 1 2 4
B 2 2 0 2 1 0 1
C 2.5 1 0 2.5 1 1 2
D 3 3 0 3 1 1 2
E 2.8 1 2 4.8 1 2 4
F 0.6 1 3 3.6 7 -1 3.5
G 0.8 3 3 3.8 7 -1 3.5
H 1.2 2 4.8 6 5 0 5
I 0.6 2 3.6 4.2 1 2 4
J 0.8 3 6 6.8 13 -1 6.5
K 1.4 3 4.2 5.6 5 0 5

Figure 3: Top-left: An example task graph consisting of 11 tasks; Right: The various attributes of each task in the task graph;

Bottom-left: Graphical representation of the tasks’ criticalities and categories, which can also be viewed as an ASAP schedule

of the tasks with an unbounded number of processors.

time
0 1 2 4 5 63 7

Power Level

𝜒 = −1

𝜒 = 0

𝜒 = 1

𝜒 = 2

C = 6.8
A, E, I

𝜁 = 4

𝑠∞ ∈ [0, 4) 𝑓 ∞ ∈ (4, 6.8] 𝐿𝜁 = 6.8

C, D

𝜁 = 2

𝑠∞ ∈ [0, 2) 𝑓 ∞ ∈ (2, 4] 𝐿𝜁 = 4

B

𝜁 = 1

𝐿𝜁 = 2
H, K

𝜁 = 5

𝐿𝜁 = 2

F, G

𝜁 = 3.5

𝐿𝜁 = 1

J

𝜁 = 6.5

𝐿𝜁 = 0.8

Figure 4: Graphical representation of the categories and their lengths for the example of Figure 3.

216

SPAA ’25, July 28-August 1, 2025, Portland, OR, USA Lucas Perotin, Hongyang Sun, and Padma Raghavan

6.8 0 0 0 0 0 0 0 · · ·

4 2.8 0 0 0 0 0 0 · · ·

2 2 2 0 0 0 0 0 · · ·

1 1 1 1 1 1 0.8 0 · · ·

.

.

.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.

©­­­­­­­­­­­­«

ª®®®®®®®®®®®®¬

4 12 20 28 36 44 52 60 · · ·

2 6 10 14 18 22 26 30 · · ·

1 3 5 7 9 11 13 15 · · ·

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

𝜒

-1

0

1

2

𝜆

1 3 5 7 9 11 13 15

Figure 5: For any instance with C = 6.8, left: L-matrix L(C); right: corresponding category values. The colors of the numbers

correspond to the ones in the example of Figures 3 and 4. The numbers in black correspond to possible length and category

values with C = 6.8 but are not present in the example. In contrast, the numbers in gray correspond to impossible length and

category values with C = 6.8.

Definition 5. For any instance with critical-path length C, we
define L = (ℓ𝑖, 𝑗)N×N as its length matrix (or L-matrix) such that:

∀𝑖, 𝑗, ℓ𝑖, 𝑗 = 𝐿𝜁 (𝑋+1−𝑖,2𝑗−1) where 𝜁 (𝜒, 𝜆) = 𝜆2𝜒

Using the above definition, we can compute the values of ℓ𝑖, 𝑗 ’s by
considering three different cases: 𝐿𝜁 = 2𝜒+1, 𝐿𝜁 = C− (𝜆−1)2𝜒 (See
Definition 4), and 𝜁 ≥ C (i.e., no tasks belong to it and therefore
𝐿𝜁 = ℓ𝑖, 𝑗 = 0). This is shown in the following lemma.

Lemma 4. For any instance with critical-path lengthC ∈ (2𝑋 , 2𝑋+1]
for some 𝑋 ∈ Z, the elements of its L-matrix L = (ℓ𝑖, 𝑗)N×N can be

expressed as:

ℓ𝑖, 𝑗 =


2𝑋+2−𝑖 if 𝑗2𝑋+2−𝑖 ≤ C
C − (𝑗 − 1)2𝑋+2−𝑖 if (2 𝑗 − 1)2𝑋+1−𝑖 < C < 𝑗2𝑋+2−𝑖

0 otherwise

(5)

Proof. We can verify the correctness of the three cases as fol-
lows:
• If 𝑗2𝑋+2−𝑖 ≤ C, then 𝜁 (𝑋 +1−𝑖, 2 𝑗 −1) = (2 𝑗 −1)2𝑋+1−𝑖 < C.
Using Definition 4,

𝐿𝜁 (𝑋+1−𝑖,2𝑗−1) =min
(
2𝑋+2− 𝑗 , C − (2 𝑗 − 2)2𝑋+1− 𝑗

)
.

By the assumption C ≥ (2 𝑗)2𝑋+1−𝑖 , the minimum is the first
term: ℓ𝑖, 𝑗 = 2𝑋+2− 𝑗 .
• If (2 𝑗 − 1)2𝑋+1−𝑖 < C < 𝑗2𝑋+2−𝑖 , then 𝜁 (𝑋 + 1 − 𝑖, 2 𝑗 − 1) =
(2 𝑗 − 1)2𝑋+1−𝑖 < C. Using Definition 4, 𝐿𝜁 (𝑋+1−𝑖,2𝑗−1) =

min
(
2𝑋+2− 𝑗 , C − (2 𝑗 − 2)2𝑋+1− 𝑗

)
. By the assumption C <

(2 𝑗)2𝑋+1−𝑖 , the minimum is the second term: ℓ𝑖, 𝑗 = C − (𝑗 −
1)2𝑋+2− 𝑗 .
• Otherwise, C ≤ (2 𝑗 − 1)2𝑋+1−𝑖 , then 𝜁 (𝑋 + 1 − 𝑖, 2 𝑗 − 1) =
(2 𝑗 − 1)2𝑋+1−𝑖 ≥ C, and by Definition 4, 𝐿𝜁 (𝑋+1−𝑖,2𝑗−1) = 0
and ℓ𝑖, 𝑗 = 0. □

4.2 Algorithm

The algorithm presented here computes each task’s category and
processes non-empty categories by increasing category value 𝜁 ,
using a greedy scheduling routine to process independent tasks

efficiently. The principles of the algorithm are summarized below,
and its detailed analysis is given in the next section.
• When processing tasks in a category, the algorithm will
only discover tasks in strictly larger categories. Therefore,
all tasks in a category are independent and are discovered
before starting processing that category.
• It is relatively efficient to greedily process tasks in a category
(i.e., a batch of independent tasks). The time we might lose
depends on the length of the longest task in the batch, which
is upper-bounded by the length of the category.

Based on these principles, the algorithm uses categories to split
the graph into batches of independent tasks and process them one
after another. This limits the number of categories with long tasks,
as they correspond to the upper rows of the L-matrix that only
contains a few non-zero elements. Our algorithm makes use of the
following two subroutines:
• ComputeCat(T), presented in Algorithm 1, computes the
category 𝜁 of a ready task T . It first computes the task’s
earliest start time 𝑠∞ and earliest finish time 𝑓 ∞, and then
uses Definition 3 to compute the task’s unique category 𝜁 .
• ScheduleIndep(B), presented inAlgorithm 2, greedily sched-
ules a batch B of independent tasks in any arbitrary order.
The order of the tasks will not affect the performance bound,
as shown in the analysis (Section 5). Specifically, at the be-
ginning of the batch and whenever a task completes2, the
algorithm considers each remaining task in B and executes
it if there are sufficient processors. It is worth noting that
the subroutine ends only when all the tasks in B are com-
pleted and not simply scheduled (Line 17). In other words, a
batch is completely executed before the next batch is even
scheduled. The algorithm also collects any newly discovered
tasks during this batch and stores them in a list R, which
will be returned and processed in subsequent batches.

Finally, our algorithm CatBatch is presented in Algorithm 3. It
uses a collection of lists to store tasks, and each list B𝜁 contains
tasks that belong to a particular category 𝜁 . The algorithm pro-
cesses tasks in batches of increasing category values, by finding
2In the pseudo-code provided, a virtual task T with 𝑝 = 0 and 𝑡 = 0 can be considered
to complete at the beginning of the batch.

217

A New Algorithm for Online Scheduling of Rigid Task Graphs with Near-Optimal Competitive Ratio SPAA ’25, July 28-August 1, 2025, Portland, OR, USA

Algorithm 1 ComputeCat(T)
1: if P(T) = ∅ then ⊲ P(T) : predecessors of task T
2: 𝑠∞ ← 0
3: else
4: 𝑠∞ ← maxT𝑗 ∈P(T) 𝑓

∞
𝑗 ⊲ start time in the ASAP schedule

5: end if

6: 𝑓 ∞ ← 𝑠∞ + 𝑡 ⊲ finish time in the ASAP schedule
7: find 𝜒 and 𝜆 from 𝑠∞ and 𝑓 ∞ based on Definition 2
8: 𝜁 ← 𝜆2𝜒
9: return 𝜁

Algorithm 2 ScheduleIndep(B)
1: organize tasks in B in any arbitrary order
2: 𝑃𝑎𝑣𝑎𝑖𝑙 ← 𝑃 ⊲ number of available processors
3: R ← ∅ ⊲ R will store newly discovered tasks
4: while B is not empty and whenever a task T𝑖 completes do
5: 𝑃𝑎𝑣𝑎𝑖𝑙 ← 𝑃𝑎𝑣𝑎𝑖𝑙 + 𝑝𝑖
6: for each discovered task T𝑗 do
7: add T𝑗 to R
8: end for

9: for each task T𝑘 ∈ B do

10: if 𝑃𝑎𝑣𝑎𝑖𝑙 ≥ 𝑝𝑘 then

11: execute T𝑖 now
12: 𝑃𝑎𝑣𝑎𝑖𝑙 ← 𝑃𝑎𝑣𝑎𝑖𝑙 − 𝑝𝑘
13: remove T𝑘 from B
14: end if

15: end for

16: end while

17: wait until all tasks in B complete
18: return R

Algorithm 3 CatBatch
1: R ← ∅ ⊲ R will store the set of ready tasks
2: for each ready task T𝑖 do
3: add T𝑖 to R
4: end for

5: repeat
6: for each task T𝑖 ∈ R do

7: 𝜁 ← ComputeCat(T𝑖)
8: Add T𝑖 to B𝜁 ⊲ B𝜁 : list of tasks of category 𝜁
9: end for

10: Find B𝜁min , containing the tasks of smallest category
11: R ← ScheduleIndep(B𝜁min)
12: delete B𝜁min
13: until all tasks are completed

the batch with tasks of minimal categories, B𝜁min , and schedule it
using subroutine ScheduleIndep(B𝜁min). While processing a batch,
any newly discovered task T that becomes ready will be collected,
and its category computed using subroutine ComputeCat(T). The
task will then be added to the corresponding list B𝜁 of identical cat-
egory3. Our analysis in Section 5 shows that all tasks in a category
are ready when their category starts to be processed.

Figure 6 illustrates how the algorithm works using the example
of Figure 3 on 𝑃 = 4 processors. At first, only tasks A, B, C, and

3If no tasks of identical category had been discovered so far, a new batch will be
created.

D are ready and added to the corresponding lists of A with their
respective category values. The smallest category, 𝜁 = 1, contains
only task B. Thus, the subroutine ScheduleIndep will be called
with B1 = {B}. When this batch is completed, task R = {E} is
discovered, and it is placed in the list of task A that shares the same
category. Now, the algorithm processes the smallest category, 𝜁 = 2,
that contains B2 = {C, D}, discovering two new tasks R = {F, G}.
The algorithm keeps going, processing the third batchB3.5 = {F, G}
with category 𝜁 = 3.5, then the fourth batch B4 = {A, E, I} with
category 𝜁 = 4, then the fifth batch B5 = {H, K} with category
𝜁 = 5, and finally, the last batch B6.5 = {J} with category 𝜁 = 6.5,
after which all tasks are completed.

5 Analysis

The analysis’s general steps follow the algorithm’s principles stated
previously. First, we show that tasks in a category are independent
and that all are discovered before starting to process the category.

Lemma 5. If there is a dependency between task T𝑖 and task T𝑗 ,
then 𝜁𝑖 < 𝜁 𝑗 .

Proof. If T𝑗 must be processed after completing task T𝑖 , then we
must have 𝑓 ∞𝑖 ≤ 𝑠∞𝑗 . Using Lemma 2, we derive 𝜁𝑖 < 𝑓 ∞𝑖 ≤ 𝑠∞𝑗 < 𝜁 𝑗 ,
hence the result. □

Corollary 2. When CatBatch calls ScheduleIndep(B𝜁), all
the tasks of this category have already been discovered (and are inde-

pendent).

Proof. By induction, whenCatBatch calls ScheduleIndep(B𝜁),
all tasks of strictly smaller categories are completed because of Al-
gorithm 2. Indeed, the algorithm does not return until the batch is
entirely finished. As we always call the subroutine with the tasks
of the smallest category, and because tasks may only release tasks
with category strictly larger according to Lemma 5, the induction is
immediate. Therefore, when CatBatch calls ScheduleIndep(B𝜁),
any task T of category 𝜁 must be ready since all of its parents have
category strictly smaller as stated in Lemma 5 and thus must be
completed. □

Lemma 6. For any batch B𝜁 of tasks of category 𝜁 , the execution
time of the batch scheduled by ScheduleIndep(B𝜁) satisfies:

𝑇 (B𝜁) ≤ 2
A(B𝜁)
𝑃

+ 𝐿𝜁

where A(B𝜁) =
∑
T𝑖 ∈B𝜁 𝑡𝑖𝑝𝑖 is the area of all tasks in batch B𝜁 .

Proof. From Corollary 2, when batch B𝜁 is scheduled, all tasks
of category 𝜁 are ready. In the schedule for B𝜁 , let 𝑡 ′ be the first
moment when less than 𝑃

2 processors are used. All tasks not yet
started by 𝑡 ′ must require at least 𝑃2 processors. Otherwise, one of
them would have been launched at 𝑡 ′ (by the for-loop in lines 9-15)
since there would be enough processors to process it. Therefore, all
tasks requiring less than 𝑃

2 processors have already started at 𝑡 ′.
Let 𝑡 ′′ be the moment when all tasks requiring less than 𝑃

2 pro-
cessors are completed. The inequality 𝑡 ′′ − 𝑡 ′ ≤ 𝐿𝜁 holds since
all of these tasks have already started at 𝑡 ′, and 𝐿𝜁 serves as an
upper bound on the length of any task in category 𝜁 (note that we
may have 𝑡 ′ > 𝑡 ′′). Since all remaining tasks require more than 𝑃

2

218

SPAA ’25, July 28-August 1, 2025, Portland, OR, USA Lucas Perotin, Hongyang Sun, and Padma Raghavan

t

p

0 2 11.85 5.8 14.4 15.2
0

1

2

3

4
A

B
C

D

E

F

G

H

I

JK

𝜁 = 1 𝜁 = 2 𝜁 = 3.5 𝜁 = 4 𝜁 = 5 𝜁 = 6.5

𝜁 = 1

𝜁 = 2

𝜁 = 3.5

𝜁 = 4

𝜁 = 5

𝜁 = 6.5

B

C, D

A

C, D

A, E

F, G

A, E A, E, I

H, K

J

tasks ready at the beginning of each batch

Figure 6: Illustration of the CatBatch algorithm for the example of Figure 3 on 𝑃 = 4 processors.

processors after 𝑡 ′′, at least 𝑃2 processors are used from 𝑡 ′′ to the
end of the schedule.

Therefore, at least 𝑃2 processors are used except potentially in
[𝑡 ′, 𝑡 ′′], which represents a duration of at most 𝐿𝜁 . Let𝑇≥𝑃/2 be the
set of times where more than 𝑃

2 processors are used, and 𝑇<𝑃/2 the
rest of the schedule. Since the total area processed in 𝑇≥𝑃/2 is at
least 𝑃2 |𝑇≥𝑃/2 |, and at most the total areaA(B𝜁) of the tasks in B𝜁 ,
we get |𝑇≥𝑃/2 | ≤ 2A(B𝜁)

𝑃
. Furthermore,𝑇<𝑃/2 is included in [𝑡 ′, 𝑡 ′′],

thus |𝑇<𝑃/2 | ≤ 𝑡 ′′ − 𝑡 ′ ≤ 𝐿𝜁 . From 𝑇 (B𝜁) = |𝑇<𝑃/2 | + |𝑇≥𝑃/2 |, we
achieve the result. □

Remark 1. The criticality and category of tasks can be extended

naturally for the online strip packing problem with precedence con-

straint. Additionally, CatBatch can be adapted to guarantee contin-

uous space allocation for strip packing by replacing the subroutine

ScheduleIndep(B) with an algorithm that solves a strip packing

instance without precedence constraints, such as the NFDH algorithm

presented in [8]. Using NFDH, it is known that the resulting height is

at most twice the total area plus the maximum height of the rectangles,

hence the analysis can be applied analogously.

Lemma 7. For any instance I, the makespan of the schedule pro-

duced by CatBatch satisfies:

𝑇CatBatch (I) ≤ 2A(I)
𝑃
+

∑︁
𝜁

𝐿𝜁 (6)

where

∑
𝜁 𝐿𝜁 represents the sum of lengths from all non-empty cate-

gories (i.e., containing at least one task).

Proof. Because we process each category one after another
without idle time between categories, the makespan of the schedule
given by CatBatch is exactly the sum of the execution times of
all calls to ScheduleIndep, one for each category. Using Lemma 6,
we obtain𝑇CatBatch (I) =

∑
𝜁 𝑇 (B𝜁) ≤

∑
𝜁 2
A(B𝜁)
𝑃
+∑

𝜁 𝐿𝜁 . We get
the result since each task is processed in exactly one category, thus∑
𝜁 A(𝐿𝜁) =A(I). □

We may finally show the competitiveness of the CatBatch al-
gorithm. The following two theorems give the competitive ratios,
and we will show in the next section that they are asymptotically
optimal.

Theorem 1. CatBatch is (log(𝑛) + 3)-competitive. In other words,

for any instance I with 𝑛 tasks, we have
𝑇
CatBatch

(I)
Lb(I) ≤ log(𝑛) + 3.

Proof. Using Lemma 7, we simply have to show
∑
𝜁 𝐿𝜁 ≤ (log(𝑛)+

1)C(I). We point out that, by construction, for each non-empty
category 𝜁 , its length 𝐿𝜁 must be present in the L-matrix L. Clearly,∑
𝜁 𝐿𝜁 is maximized if there is one task per category (to maximize

the number of terms in the sum), and the categories correspond to
the 𝑛 largest values in L (to maximize the sum).

Suppose the critical-path length of the instance I satisfies 2𝑋 <

C(I) ≤ 2𝑋+1 for some 𝑋 ∈ Z. The proof consists of the following
three steps, which can be verified visually in Figure 7 (left) for any
instance with C = 6.8.

(1) The𝑛 largest values inL can be picked from the positive values

one row after another, from left to right.

Indeed, each row’s values decrease from left to right: using
Lemma 4, all values are equal except potentially the last
positive one ℓ𝑖, 𝑗 , if it corresponds to the second case with
C(I) < 𝑗2𝑋+2−𝑖 . This condition shows ℓ𝑖, 𝑗 = C(I) − (𝑗 −
1)2𝑋+2−𝑖 < 2𝑋+2−𝑖 . Therefore, we just need to show that
the last positive value of the row ℓ𝑖, 𝑗 is larger than the first
value of the next row ℓ𝑖+1,1. If ℓ𝑖, 𝑗 corresponds to the first case
in Equation (5), we clearly have ℓ𝑖, 𝑗 = 2𝑋+2−𝑖 > 2𝑋+1−𝑖 =
ℓ𝑖+1,1. If ℓ𝑖, 𝑗 corresponds to the second case in Equation (5),
ℓ𝑖, 𝑗 = C(I) − (2 𝑗 − 2)2𝑋+1−𝑖 > 2𝑋+1−𝑖 = ℓ𝑖+1,1 since (2 𝑗 −
1)2𝑋+1−𝑖 < C(I) in this case.

(2) Each row in L has a sum at most C(I), the first row, 𝑖 = 1,
has a single positive value, and each row 𝑖 ≥ 2 has at least 2𝑖−2
positive values.

The first row consists of just one positive value ℓ1,1 = C(I),
and all the other values are 0, since C(I) ≤ 2𝑋+1. For each
row 𝑖 ≥ 2, we can rewrite C(I) = 𝑘2𝑋+2−𝑖 + 𝑟 for some

219

A New Algorithm for Online Scheduling of Rigid Task Graphs with Near-Optimal Competitive Ratio SPAA ’25, July 28-August 1, 2025, Portland, OR, USA

6.8 0 0 0 0 0 0 0 · · ·
4 2.8 0 0 0 0 0 0 · · ·
2 2 2 0 0 0 0 0 · · ·
1 1 1 1 1 1 0.8 0 · · ·
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

©­­­­­­­­­­«

ª®®®®®®®®®®¬

2.3 0 0 0 0 0 0 0 · · ·
2.3 2.3 0 0 0 0 0 0 · · ·
2 2 2 0 0 0 0 0 · · ·
1 1 1 1 1 1 0 0 · · ·
0 0 0 0 0 0 0 0 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

©­­­­­­­­­­«

ª®®®®®®®®®®¬

R

U

I

Figure 7: For any instance with C = 6.8, left: L-matrix L(C) without constraints on the task execution times; right: L-matrix

L∗ (C) with bounds𝑚 = 0.9 and𝑀 = 2.3 on the task execution times.

positive integer 𝑘 , where 𝑟 < 2𝑋+2−𝑖 . Since C(I) > 2𝑋 , we
must have 𝑘 ≥ 2𝑖−2. Therefore, ℓ𝑖,1 = · · · = ℓ𝑖,𝑘 = 2𝑋+2−𝑖 ,
and ℓ𝑖,𝑘+1 is either C(I) − 𝑘2𝑋+2−𝑖 = 𝑟 (second case in
Equation (5)) or 0, and all other ℓ𝑖, 𝑗 ’s are 0. This shows∑∞
𝑗=1 ℓ𝑖, 𝑗 ≤ 𝑘2𝑋+2−𝑖 + 𝑟 = C(I).

(3) The sum of any set of𝑛 values inL is at most (log(𝑛)+1)C(I).
Let 𝑛 = 2𝑘 + 𝑟 , where 𝑘 and 𝑟 are both integers with 0 ≤ 𝑟 <
2𝑘 . From Claim 1 above, we know that the sum is maximized
by picking values from the rows one after another. By Claim
2, fully completing 𝑘 + 1 rows would require choosing at
least 1 + ∑𝑘+1

𝑖=2 2𝑖−2 = 2𝑘 values, and we may additionally
choose 𝑟 values from row 𝑘 + 2. Thus, we obtain ∑

𝜁 𝐿𝜁 ≤
(𝑘+1)C(I)+𝑟2𝑋−𝑘 < (𝑘+1+ 𝑟

2𝑘)C(I). To conclude, we just
need to show 𝑘 + 𝑟

2𝑘 ≤ log(2𝑘 + 𝑟) = log(𝑛) for 𝑟 ∈ [0, 2𝑘).
We have exact equalities for 𝑟 = 0 and 𝑟 = 2𝑘 . In between,
because 𝑓 (𝑟) = 𝑘 + 𝑟

2𝑘 is affine and 𝑔(𝑟) = log(2𝑘 + 𝑟) is
concave, we must have 𝑓 (𝑟) ≤ 𝑔(𝑟).

From Claim 3 above and using Lemma 7 and Equation (1), we
obtain the result:

𝑇CatBatch (I) ≤ 2A(I)
𝑃
+ (log(𝑛) + 1)C(I)

≤ (log(𝑛) + 3)Lb(I) □

We now show the result when the lengths of the tasks are
bounded in a range [𝑚,𝑀], i.e. ∀𝑖,𝑚 ≤ 𝑡𝑖 ≤ 𝑀 . When𝑚 and𝑀 are
constants, we show that CatBatch has a constant competitive ratio.
Indeed, all categories such that 𝐿𝜁 < 𝑚 are now empty because no
tasks may fit in these categories. Figure 7 (right) shows the L-matrix
for any instance with C = 6.8 and𝑚 = 0.9. Compared to Figure 7
(left) that does not place any bounds on the task execution times, all
positive values less than 0.9 in the L-matrix now become 0 (shown
in red), and all rows turned to 0 are labeled as I (for Impossible).
Furthermore, the values in the top rows will also be reduced since
the task lengths are upper-bounded by𝑀 . Figure 7 (right) shows the
reduced values (in blue) with𝑀 = 2.3, and the rows whose positive
values are reduced are labeled as R (for Reduced). The remaining
rows whose positive values satisfy𝑚 ≤ 𝐿𝜁 ≤ 𝑀 are labeled as U
(for Unchanged). These rows capture the most significant weight
of the resulting matrix, which we denote as L∗ (C) or simply L∗,
and the number of such rows will be shown to be around log(𝑀

𝑚
).

More formally, given 𝐿𝜁 ,𝑚 and𝑀 , we define 𝐿∗
𝜁
as follows:

𝐿∗
𝜁
=

{
min(𝑀, 𝐿𝜁) if 𝐿𝜁 ≥𝑚
0 otherwise

Here, 𝐿∗
𝜁
is an upper bound on the length of the longest task of

category 𝜁 , and based on Lemma 7, we have:

𝑇CatBatch (I) ≤ 2A(I)
𝑃
+

∑︁
𝜁

𝐿∗
𝜁

(7)

Theorem 2. CatBatch is

(
log

(
𝑀
𝑚

)
+ 6

)
-competitive. In other words,

for any instance I such that ∀𝑖,𝑚 ≤ 𝑡𝑖 ≤ 𝑀 , we have
𝑇
CatBatch

(I)
Lb(I) ≤

log
(
𝑀
𝑚

)
+ 6.

Proof. LetI be an instancewith𝑚 =min𝑖 (𝑡𝑖) and𝑀 =max𝑖 (𝑡𝑖).
We define 𝑘 ∈ Z such that 2𝑘 < 𝑚 ≤ 2𝑘+1 and ℎ ∈ Z such that
2ℎ < 𝑀 ≤ 2ℎ+1. Suppose the critical-path length of the instance
satisfies 2𝑋 < C(I) ≤ 2𝑋+1 for some 𝑋 ∈ Z. We have 𝑘 ≤ ℎ ≤ 𝑋 .
For any integer 𝜒 , we further define 𝑍𝜒 to be the set of categories
whose power levels are exactly 𝜒 , and these categories correspond
to one particular row in L∗. The proof consists of the following
four steps.

(1) There are no tasks in categories whose power levels are strictly

less than 𝑘 .

According to Definition 4 and Lemma 3, any task in a cate-
gory 𝜁 whose power level 𝜒 is strictly less than 𝑘 must have
an execution time 𝑡 that is at most 𝐿𝜁 ≤ 2𝑘 < 𝑚. Hence, its
existence would contradict the 𝑡𝑖 ≥𝑚,∀𝑖 assumption. In Fig-
ure 7 (right), with𝑚 = 0.9, this corresponds to having no task
in the fifth row and below in L∗, labeled as I (Impossible).

(2) For any set 𝑍𝜒 of categories with power level 𝜒 ∈ [𝑘, ℎ − 1],
the sum of their lengths is at most C(I). There are ℎ − 𝑘 such

sets of categories, and we have ℎ − 𝑘 ≤ log
(
𝑀
𝑚

)
+ 1.

There are ℎ − 𝑘 rows in L∗ that correspond to power levels
in the range [𝑘, ℎ − 1]. From𝑚 ≤ 2𝑘+1 and 2ℎ < 𝑀 , we get
𝑀
𝑚

> 2ℎ
2𝑘+1 and ℎ − 𝑘 − 1 ≤ log

(
𝑀
𝑚

)
. We have already shown

in the proof of Theorem 1 that the sum of values in each row,
which corresponds to the sum of lengths from all categories
of the respective power level, is at most C(I). Therefore,
using 𝐿∗

𝜁
≤ 𝐿𝜁 , we get

∑
𝜁 ∈𝑍𝜒

𝐿∗
𝜁
≤ ∑

𝜁 ∈𝑍𝜒
𝐿𝜁 ≤ C(I). In

Figure 7 (right), with 𝑚 = 0.9 and 𝑀 = 2.3, we have 𝑘 =

−1 and ℎ = 1, corresponding to rows 3 and 4 labeled as U
(Unchanged), whose values are mostly unchanged except for
the last value of row 4.

(3) For all categories with power level at least ℎ, the sum of their

lengths is at most 3C(I).
The first row of L∗ has only one positive value, correspond-
ing to the category with power level 𝑋 , and the second row
has at most 2 positive values. Generally, row 𝑖 has at most

220

SPAA ’25, July 28-August 1, 2025, Portland, OR, USA Lucas Perotin, Hongyang Sun, and Padma Raghavan

2𝑖−1 positive values. Otherwise, we would have ℓ𝑖,2𝑖−1+1 > 0,
which according to Equation (5) means (2 𝑗 − 1)2𝑋+1−𝑖 <

C(I) with 𝑗 = 2𝑖−1 + 1. This implies 2𝑋+1 + 2𝑋+1−𝑖 < C(I),
which contradicts C(I) ≤ 2𝑋+1. The categories with a power
level at least ℎ + 1 correspond to the 𝑋 − ℎ first rows of L∗.
The number of such categories is at most

∑𝑋−ℎ
𝑖=1 2𝑖−1 ≤ 2𝑋−ℎ ,

and the longest task in these categories has length at most
𝑀 . From 2𝑋 < C(I) and 𝑀 ≤ 2ℎ+1, we derive 𝑀2𝑋−ℎ <

2C(I), which means
∑𝑋
𝜒=ℎ+1

∑
𝜁 ∈𝑍𝜒

𝐿∗
𝜁
< 2C(I). Finally,

adding in the categories with power level ℎ, which satisfies∑
𝜁 ∈𝑍ℎ 𝐿

∗
𝜁
≤ ∑

𝜁 ∈𝑍ℎ 𝐿𝜁 ≤ C(I), we get the sum of lengths
from all categories with a power level at least ℎ to be at most
3C(I), i.e.,∑𝑋

𝜒=ℎ

∑
𝜁 ∈𝑍𝜒

𝐿∗
𝜁
< 3C(I). In Figure 7 (right), this

corresponds to the first two rows, labeled as R (Reduced).
(4) The sum of lengths from all non-empty categories satisfies∑

𝜁 𝐿
∗
𝜁
≤

(
log

(
𝑀
𝑚

)
+ 4

)
C(I).

This can be shown by simply summing the contributions
from the three types of categories: those from the I (Impossi-
ble) rows contribute 0 to the sum (Claim 1); those from the
U (Unchanged) rows contribute

(
log

(
𝑀
𝑚

)
+ 1

)
C(I) to the

sum (Claim 2); those from the R (Reduced) rows contribute
3C(I) to the sum (Claim 3).

From Claim 4 above and Equations (7) and (1), we get the result:

𝑇CatBatch (I) ≤ 2A(I)
𝑃
+

(
log

(
𝑀

𝑚
+ 4

))
C(I)

≤
(
log

(
𝑀

𝑚

)
+ 6

)
Lb(I) □

6 Lower Bounds on Best Competitive Ratios

In the previous section, we showed that without further assumption
on the tasks’ lengths, CatBatch is (log(𝑛) + 3)-competitive for
all 𝑛, and

(
log

(
𝑀
𝑚

)
+ 6

)
-competitive for all 𝑚, 𝑀 . In this section,

we show the result is near-optimal for both metrics, stating that
for any constant 𝐶 > 0, no online algorithm can be

(
log(𝑛)

5 +𝐶
)
-

competitive or
(
log(𝑀𝑚)

5 +𝐶
)
-competitive. We will also show that

no online algorithm may be (𝑃2 − 𝜇)-competitive for any 𝜇 > 0 and
𝑃 > 0. It makes this parameter irrelevant for evaluating the quality
of a heuristic, since any heuristic that never leaves the platform
idle is 𝑃-competitive.

Throughout this section, we will use 𝜖 > 0 and an integer 𝐾 ≥ 2;
both are arbitrary constants, and their values will be set with respect
to 𝜇, 𝑛 and 𝑃 to show the final results in Theorem 3 and Theorem 4.

Definition 6. For 𝑖 ∈ [0, 𝑃 − 1], let 𝐿𝑖
𝑃
(𝐾) denote a linear chain

consisting of 2𝐾𝑃−𝑖−1 tasks, alternating a task of length 𝐾𝑖 that re-
quires a single processor and a task of length 𝜖 that requires all 𝑃

processors.

Definition 7. Let 𝑋𝑃 (𝐾) denote a graph of tasks that contains 𝑃

distinct linear chains 𝐿𝑖
𝑃
(𝐾) for each 𝑖 ∈ [0, 𝑃 − 1].

Figure 8 illustrates 𝑋3 (3). Blue tasks require a single processor
and red tasks require all 𝑃 processors. The number inside each blue
task represents the length of the task.

Lemma 8. The optimal execution time of 𝑋𝑃 (𝐾) satisfies:
𝑇Opt (𝑋𝑃 (𝐾)) > 𝑃𝐾𝑃−1 − (𝑃 − 1)𝐾𝑃−2 (8)

Proof. Because the tasks of length 𝜖 require all processors, it is
impossible to process multiple blue tasks in a chain 𝐿𝑖

𝑃
(𝐾) during

the processing of a single blue task in chain 𝐿 𝑗
𝑃
(𝐾), for 𝑗 > 𝑖 . For

example, in Figure 8, when processing the task of length 9, one can
process at most one task of length 3, and one task of length 1.

We can construct an optimal schedule as follows. At all times,
either red or blue tasks must be processed; otherwise, the platform
would be idle to waste time, which contradicts the schedule’s opti-
mality. Because red tasks require all processors, it is impossible to
process red and blue tasks simultaneously. Therefore, the schedule
alternates the processing of red and blue tasks. For this reason, we
define a segment as an interval of time [𝑎, 𝑏], in which only blue
tasks are processed, and such that a red task was processed right
before time 𝑎 (or 𝑎 = 0), and a red task will be processed right
after time 𝑏 (the last task executed is always red). There must be
at least 𝐾𝑃−1 distinct segments because it is the number of blue
tasks in 𝐿0

𝑃
(𝐾), and a red task separates each of them. We denote as

𝑡1, 𝑡2, . . . , 𝑡𝐾𝑃−1 the lengths of the 𝐾𝑃−1 longest segments, arranged
in decreasing order. We then have 𝑇Opt (𝑋𝑃 (𝐾)) >

∑𝐾𝑃−1
𝑖=1 𝑡𝑖 .

We have 𝑡1 ≥ 𝐾𝑃−1 since the longest blue task must be processed
without interruption. We also have ∀𝑖 ≤ 𝐾, 𝑡𝑖 ≥ 𝐾𝑃−2 since at least
𝐾 segments must be longer than the time required to process a task
in 𝐿𝑃−2

𝑃
(𝐾), which contains 𝐾 tasks of length 𝐾𝑃−2 separated by

red tasks (by Definition 6). Similarly, ∀𝑗 ≤ 𝑃 − 1,∀𝑖 ≤ 𝐾𝑃− 𝑗−1, we
have 𝑡𝑖 ≥ 𝐾 𝑗 . Therefore,

𝑇Opt (𝑋𝑃 (𝐾)) >
𝐾𝑃−1∑︁
𝑖=1

𝑡𝑖 = 𝑡1 +
𝑃−2∑︁
𝑗=0

𝐾𝑃− 𝑗−1∑︁
𝑖=𝐾𝑃− 𝑗−2+1

𝑡𝑖

≥ 𝑡1 +
𝑃−2∑︁
𝑗=0

𝐾𝑃− 𝑗−1∑︁
𝑖=𝐾𝑃− 𝑗−2+1

𝐾 𝑗 = 𝐾𝑃−1 +
𝑃−2∑︁
𝑗=0
(𝐾𝑃− 𝑗−1 − 𝐾𝑃− 𝑗−2)𝐾 𝑗

= 𝐾𝑃−1 +
𝑃−2∑︁
𝑗=0
(𝐾𝑃−1 − 𝐾𝑃−2) = 𝑃𝐾𝑃−1 − (𝑃 − 1)𝐾𝑃−2 □

Remark 2. 𝑋𝑃 (2), with 𝑃 arbitrarily large, is similar to the strip-

packing instance given in [1], which shows that the optimal execution

time can be Θ(log(𝑛)) times larger than the lower-bound Lb.

The lower bound for this graph 𝑋𝑃 (𝐾) is around 𝐾𝑃−1, since it
corresponds to the exact lower bound without the tasks of length 𝜖 .
The optimal execution time is roughly 𝑃𝐾𝑃−1, which shows 𝑋𝑃 (𝐾)
may not be processed efficiently. However, a graph consisting of
identical linear chains 𝐿𝑖

𝑃
(𝐾) can be processed using all 𝑃 processors

at all times.
Definition 8. For 𝑖 ∈ [0, 𝑃 −1], let𝑌 𝑖

𝑃
(𝐾) denote a graph of tasks

that contains 𝑃 identical linear chains 𝐿𝑖
𝑃
(𝐾).

Figure 9 illustrates 𝑌 1
4 (2). We now build an adversary instance

using 𝑋𝑃 (𝐾) and 𝑌 𝑖𝑃 (𝐾), forcing any online algorithm to process
graphs in the shape of 𝑋𝑃 (𝐾) sequentially, resulting in very poor
processor utilization.We also show that an optimal offline scheduler
could instead process sub-graphs in the shape of 𝑌 𝑖

𝑃
(𝐾), with near-

optimal processor allocation.

221

A New Algorithm for Online Scheduling of Rigid Task Graphs with Near-Optimal Competitive Ratio SPAA ’25, July 28-August 1, 2025, Portland, OR, USA

𝐿03 (3) 1 𝜖 1 𝜖 1 𝜖 1 𝜖 1 𝜖 1 𝜖 1 𝜖 1 𝜖 1 𝜖

𝐿13 (3) 3 𝜖 3 𝜖 3 𝜖

𝐿23 (3) 9 𝜖

Figure 8: Illustration of 𝑋3 (3).

𝐿14 (2) 2 𝜖 2 𝜖 2 𝜖 2 𝜖

𝐿14 (2) 2 𝜖 2 𝜖 2 𝜖 2 𝜖

𝐿14 (2) 2 𝜖 2 𝜖 2 𝜖 2 𝜖

𝐿14 (2) 2 𝜖 2 𝜖 2 𝜖 2 𝜖

Figure 9: Illustration of 𝑌 1
4 (2).

Lemma 9. For all 𝑖, 𝐾, 𝑃 , the optimal execution time of graph𝑌 𝑖
𝑃
(𝐾)

is:

𝑇Opt (𝑌 𝑖𝑃 (𝐾)) = 𝐾
𝑃−1 + 𝑃𝐾𝑃−𝑖−1𝜖 (9)

Proof. We consider an algorithm that processes the first blue
task of all linear chains in parallel (requesting all 𝑃 processors),
then processes the first red task of all linear chains sequentially
(requesting, again, all 𝑃 processors), and repeats these two steps
alternatively until the completion of all tasks. By Definition 6, the
first step takes time 𝐾𝑖 , while the second takes time 𝑃𝜖 . As there
are 𝐾𝑃−𝑖−1 tasks of each color in each line, this algorithm has
an execution time of 𝐾𝑃−𝑖−1 (𝐾𝑖 + 𝑃𝜖) = 𝐾𝑃−1 + 𝑃𝐾𝑃−𝑖−1𝜖 . This
schedule is optimal since all processors are always used. □

In the following, we consider an arbitrary online algorithm Alg
and show lower bounds on its competitive ratio.

Definition 9. For any 𝐾 and 𝑃 , and online algorithm Alg, we

build a graph 𝑍Alg

𝑃
(𝐾) as follows:

• The structure contains 𝑃 layers, each consisting of identical

𝑋𝑃 (𝐾) graphs.
• A new graph 𝑋𝑃 (𝐾) is only revealed after the last one is fully

completed by Alg (i.e., the dependencies between graphs only

come out of the last task processed within an 𝑋𝑃 (𝐾)).

Figure 10 (left) illustrates 𝑍Alg
5 (2), assuming the last task com-

pleted by the algorithm in the first layer is in 𝐿25 (2), the second is
in 𝐿45 (2), the third is in 𝐿15 (2), and the fourth is in 𝐿25 (2).

Lemma 10. For any online algorithm Alg, the execution time of

𝑍Alg

𝑃
(𝐾) satisfies:

𝑇Alg (𝑍Alg

𝑃 (𝐾)) ≥ 𝑃
2𝐾𝑃−1 − 𝑃 (𝑃 − 1)𝐾𝑃−2 (10)

Proof. The result directly comes from Lemma 8 andDefinition 9,
as 𝑇Alg is the time required to process 𝑃 identical copies of 𝑋𝑃 (𝐾),
each taking time larger than𝑇Opt (𝑋𝑃 (𝐾)), and a copy may not start
before the completion of the precedent one. □

Lemma 11. An optimal offline scheduler can process𝑍Alg

𝑃
(𝐾) faster

than:

𝑇Opt (𝑍Alg

𝑃 (𝐾)) < 2𝑃 (𝐾𝑃−1 + 𝑃𝐾𝑃𝜖) (11)

Proof. An optimal offline scheduler could process 𝑍Alg
𝑃
(𝐾) in

two steps: first, process all chains 𝐿𝑖
𝑃
(𝐾) that have successors after

the last task of each chain. After the first step, all the remaining
𝐿𝑖
𝑃
(𝐾)’s are independent. It is then possible to regroup them by

identical 𝑖 to form subgraphs included in 𝑌 𝑖
𝑃
(𝐾) and process them

optimally one after another. This is illustrated by Figure 10 (right)
for 𝑍Alg

5 (2).
Any chain 𝐿𝑖

𝑃
(𝐾) is one of the chains in 𝑌 𝑖

𝑃
(𝐾) and can be pro-

cessed in time at most𝑇Opt (𝑌 𝑖𝑃 (𝐾)). Processing any of the resulting
sub-graphs of 𝑌 𝑖

𝑃
(𝐾) can also be done in time at most 𝑇Opt (𝑌 𝑖𝑃 (𝐾)).

There are 𝑃 −1 such chains to process to unlock all the other chains,
which can be arranged in at most 𝑃 sub-graphs of 𝑌 𝑖

𝑃
(𝐾). Using

Equation (9), we get:
𝑇Opt (𝑍Alg

𝑃 (𝐾)) ≤ (𝑃 − 1 + 𝑃)𝑇Opt (𝑌 𝑖𝑃 (𝐾)) < 2𝑃 (𝐾𝑃−1 + 𝑃𝐾𝑃𝜖) □

Our construction holds for any 𝐾 , 𝜖 , and any algorithm Alg.
Therefore, using𝑇Alg (𝑍Alg

𝑃
(𝐾)) ≥ 𝑃2𝐾𝑃−1−𝑃 (𝑃−1)𝐾𝑃−2 (Lemma 10)

and𝑇Opt (𝑍Alg
𝑃
(𝐾)) ≤ 2𝑃 (𝐾𝑃−1+𝑃𝐾𝑃𝜖) (Lemma 11), we can choose

values for 𝐾 and 𝜖 to achieve our main results regarding the lower
bounds on the best possible competitive ratios. The results are
shown in the next two theorems.

Theorem 3. For any constant 𝐶 > 0, no online algorithm may be(
log(𝑛)

5 +𝐶
)
-competitive or

(
log(𝑀𝑚)

5 +𝐶
)
-competitive.

Proof. By Definitions 7 and 9, the total number of tasks in
𝑍Alg
𝑃
(𝐾) is:

𝑛 = 𝑃

(
𝑃−1∑︁
𝑖=0

2𝐾𝑃−𝑖−1
)
= 2𝑃 𝐾

𝑃 − 1
𝐾 − 1

With 𝐾 = 2, we get 𝑛 = 2𝑃 (2𝑃 − 1), thus 2𝑃 ≤ 𝑛 < 2𝑃2𝑃 . To ease
the derivations in this proof, we write 𝑅 = 𝑀

𝑚
. The largest task has

222

SPAA ’25, July 28-August 1, 2025, Portland, OR, USA Lucas Perotin, Hongyang Sun, and Padma Raghavan

𝐿05 (2) 𝐿05 (2) 𝐿05 (2) 𝐿05 (2) 𝐿05 (2)

𝐿15 (2) 𝐿15 (2) 𝐿15 (2) 𝐿15 (2) 𝐿15 (2)

𝐿25 (2) 𝐿25 (2) 𝐿25 (2) 𝐿25 (2) 𝐿25 (2)

𝐿35 (2) 𝐿35 (2) 𝐿35 (2) 𝐿35 (2) 𝐿35 (2)

𝐿45 (2) 𝐿45 (2) 𝐿45 (2) 𝐿45 (2) 𝐿45 (2)

𝑋5 (2) 𝑋5 (2) 𝑋5 (2) 𝑋5 (2) 𝑋5 (2)

𝐿05 (2) 𝐿05 (2) 𝐿05 (2) 𝐿05 (2)

𝐿15 (2) 𝐿15 (2) 𝐿15 (2) 𝐿15 (2)

𝐿25 (2) 𝐿25 (2) 𝐿25 (2)

𝐿35 (2) 𝐿35 (2) 𝐿35 (2) 𝐿35 (2) 𝐿35 (2)

𝐿45 (2) 𝐿45 (2) 𝐿45 (2) 𝐿45 (2)

𝐿25 (2) 𝐿45 (2) 𝐿15 (2) 𝐿25 (2)

𝑌 0
5 (2)

𝑌 1
5 (2)

𝑌 2
5 (2)

𝑌 3
5 (2)

𝑌 4
5 (2)

Figure 10: Illustration of 𝑍Alg

5 (2). Left: an online algorithm Alg has to process layers one by one; Right: an optimal offline

scheduler can first process the red chains, followed by all the 𝑌 𝑖5 (2)’s.

length 2𝑃−1, and we choose 𝜖 = 1
16𝑃 , hence 𝑅 = 𝑀

𝑚
= 8𝑃2𝑃 > 𝑛. We

have log(𝑅) > 𝑃 and
log(𝑅) − log(log(𝑅)) − 3 = 𝑃 + log(𝑃) + 3 − log(log(𝑅)) − 3 < 𝑃 .

Then, using Lemmas 10 and 11, we can derive:
𝑇Alg (𝑍Alg

𝑃
(𝐾))

𝑇Opt (𝑍Alg
𝑃
(𝐾))

>
𝑃2𝐾𝑃−1 − 𝑃 (𝑃 − 1)𝐾𝑃−2

2𝑃 (𝐾𝑃−1 + 𝑃𝐾𝑃𝜖)
=
𝑃𝐾 − (𝑃 − 1)
2(𝐾 + 𝑃𝐾2𝜖)

By setting 𝐾 = 2, we get:
𝑇Alg (𝑍Alg

𝑃
(2))

𝑇Opt (𝑍Alg
𝑃
(2))

=
𝑃 + 1

2(2 + 4𝑃𝜖) >
log(𝑅) − log(log(𝑅)) − 2

4.5

=
log(𝑅)

5 + log(𝑅) − 10 log(log(𝑅)) − 20
45

Clearly, the last term grows to infinity as 𝑅 grows to infinity.
Since the result holds for any 𝑃 and 𝑅 = 𝑀

𝑚
> 2𝑃 , we can choose a 𝑃

large enough such that 𝑇Alg (𝑍
Alg
𝑃
(𝐾))

𝑇Opt (𝑍Alg
𝑃
(𝐾)) >

log(𝑀𝑚)
5 +𝐶 >

log(𝑛)
5 +𝐶 . □

Theorem 4. No online algorithm may be (𝑃2 − 𝜇)-competitive for

any 𝜇 > 0 and 𝑃 > 0.

Proof. We fix 𝑃 > 0 and set 𝜇 > 0 arbitrarily small. Again we
use the previous results with any arbitrary algorithm Alg to build
the instance 𝑍Alg

𝑃
(𝐾) for which its execution time is larger than

𝑃
2 − 𝜇 compared to an optimal scheduler. To achieve this, we chose
𝐾 > 𝑃−1

𝜇
and 0 < 𝜖 <

𝜇

𝑃2𝐾 . We can then derive from Lemmas 10
and 11:

𝑇Alg (𝑍Alg
𝑃
(𝐾))

𝑇Opt (𝑍Alg
𝑃
(𝐾))

>
𝑃2𝐾𝑃−1 − 𝑃 (𝑃 − 1)𝐾𝑃−2

2𝑃 (𝐾𝑃−1 + 𝑃𝐾𝑃𝜖)
=

𝑃 − 𝑃−1
𝐾

2(1 + 𝑃𝐾𝜖)

>
𝑃 − 𝜇

2
(
1 + 𝜇

𝑃

) =
𝑃

(
1 + 𝜇

𝑃

)
− 𝜇 − 𝜇

2
(
1 + 𝜇

𝑃

) >
𝑃

2 − 𝜇 □

7 Conclusion and Future Work

In this paper, we have explored the challenging problem of online
scheduling of rigid tasks with precedence constraints in order to
minimize the makespan. We introduced the CatBatch algorithm,
which achieves a competitive ratio of log(𝑛) +3 for unbounded task
lengths and is always within a factor log(𝑀

𝑚
) + 6 from the optimal,

where 𝑀 is the length of the longest task and𝑚 is the length of
the shortest task. Notably, these results mirror those achieved by
the best offline algorithms, demonstrating that CatBatch is close
in the worst case without requiring complete knowledge of the
instance. Our analysis further reveals the near-optimal nature of the
CatBatch algorithmwithin the framework of competitive analysis,
establishing that no online algorithm can achieve a competitive
ratio lower than Θ(log(𝑛)) or Θ

(
log

(
𝑀
𝑚

))
in this setting.

We believe the results in this paper can be viewed as a cor-
nerstone for several avenues of future work. First, assuming the
execution time of each task is exactly known could be a strong as-
sumption, and we are currently designing more general heuristics
based on the concept of task categories to handle the uncertainty.
Second, even though CatBatch is near-optimal in the worst case,
it is likely inefficient in practice. Indeed, not starting a new cate-
gory until the previous one is fully completed is probably a slow
approach for real-case scenarios. For practicability, we are working
on different heuristics, again based on task categories, that could
have both theoretical guarantees and practical efficiency, whether
the exact length of a task is known or estimated. These two direc-
tions, combined with the practical evaluations of such heuristics in
real HPC systems, are worth further investigation.

More generally, the strategies employed in the development of
the CatBatch algorithm, as well as the analytical framework intro-
duced, are entirely novel. Therefore, it would be worth exploring
these ideas in similar settings, such as the online scheduling of
moldable task graphs, as it could help design efficient heuristics for
the worst-case scenario compared to those using local decisions
presented in [28]. Additionally, the tools might even be useful for
offline problems. For instance, the current best algorithm for the of-
fline scheduling of moldable task graphs uses a two-step approach,
with the first step allocating processors for all the tasks and the
second step involving greedy scheduling without considering the
position of each task within the graph [7]. Considering the critical-
ity of the tasks, the algorithm and its theoretical analysis should
potentially be refined.

223

A New Algorithm for Online Scheduling of Rigid Task Graphs with Near-Optimal Competitive Ratio SPAA ’25, July 28-August 1, 2025, Portland, OR, USA

References

[1] John Augustine, Sudarshan Banerjee, and Sandy Irani. 2009. Strip packing with
precedence constraints and strip packing with release times. Theoretical Computer

Science 410, 38 (2009), 3792–3803.
[2] B. Baker and J. Schwarz. 1983. Shelf Algorithms for Two-Dimensional Packing

Problems. SIAM J. Comput. 12, 3 (1983), 508–525.
[3] Brenda S. Baker, E. G. Coffman, and Ronald L. Rivest. 1980. Orthogonal Packings

in Two Dimensions. SIAM J. Comput. 9, 4 (1980), 846–855.
[4] Krishna P. Belkhale, Prithviraj Banerjee, and W. Springfield Av. 1991. A Schedul-

ing Algorithm for Parallelizable Dependent Tasks. In IPPS. 500–506.
[5] Anne Benoit, Lucas Perotin, Yves Robert, and Hongyang Sun. 2022. Online

Scheduling of Moldable Task Graphs under Common Speedup Models. In ICPP.
51:1–51:11.

[6] Bo Chen and Arjen P.A. Vestjens. 1997. Scheduling on identical machines: How
good is LPT in an on-line setting. Operations Research Letters 21, 4 (1997), 165–169.

[7] Chi-Yeh Chen and Chih-Ping Chu. 2013. A 3.42-Approximation Algorithm for
Scheduling Malleable Tasks under Precedence Constraints. IEEE Transactions on

Parallel and Distributed Systems 24, 8 (2013), 1479–1488. doi:10.1109/TPDS.2012.
258

[8] E. G. Coffman, M. R. Garey, D. S. Johnson, and R. E. Tarjan. 1980. Performance
Bounds for Level-Oriented Two-Dimensional Packing Algorithms. SIAM J. Com-

put. 9, 4 (1980), 808–826.
[9] János Csirik and Gerhard J. Woeginger. 1997. Shelf algorithms for on-line strip

packing. Inform. Process. Lett. 63, 4 (1997), 171–175.
[10] János Csirik and Gerhard J. Woeginger. 1998. On-line packing and covering

problems. In Online Algorithms: The State of the Art, Amos Fiat and Gerhard J.
Woeginger (Eds.). Springer, Chapter 7, 147–177.

[11] Gökalp Demirci, Henry Hoffmann, and David H. K. Kim. 2018. Approximation
Algorithms for Scheduling with Resource and Precedence Constraints. In STACS.
25:1–25:14.

[12] Gökalp Demirci, Ivana Marincic, and Henry Hoffmann. 2018. A divide and
conquer algorithm for DAG scheduling under power constraints. In SC. Article
36, 12 pages.

[13] Anja Feldmann, Ming-Yang Kao, Jiří Sgall, and Shang-Hua Teng. 1998. Optimal
On-Line Scheduling of Parallel Jobs with Dependencies. Journal of Combinatorial

Optimization 1, 4 (1998), 393–411.
[14] Anja Feldmann, Jiří Sgall, and Shang-Hua Teng. 1994. Dynamic scheduling on

parallel machines. Theoretical Computer Science 130, 1 (1994), 49–72.

[15] M. R. Garey and R. L. Graham. 1975. Bounds for multiprocessor scheduling with
resource constraints. SIAM J. Comput. 4, 2 (1975), 187–200.

[16] M. R. Garey and D. S. Johnson. 1979. Computers and Intractability, a Guide to the

Theory of NP-Completeness. W.H. Freeman and Company.
[17] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,
USA.

[18] R. L. Graham. 1969. Bounds on Multiprocessing Timing Anomalies. SIAM J. Appl.

Math. 17, 2 (1969), 416–429.
[19] Johann L. Hurink and Jacob Jan Paulus. 2008. Online Algorithm for Parallel Job

Scheduling and Strip Packing. In Approximation and Online Algorithms, Christos
Kaklamanis and Martin Skutella (Eds.). Springer, 67–74.

[20] Klaus Jansen. 2012. A (3/2+𝜖) Approximation Algorithm for Scheduling Moldable
and Non-moldable Parallel Tasks. In SPAA (Pittsburgh, Pennsylvania, USA). 224–
235.

[21] Klaus Jansen and Hu Zhang. 2005. Scheduling Malleable Tasks with Precedence
Constraints. In SPAA. 86–95.

[22] Klaus Jansen and Hu Zhang. 2006. An Approximation Algorithm for Scheduling
Malleable Tasks Under General Precedence Constraints. ACM Trans. Algorithms

2, 3 (2006), 416–434.
[23] Berit Johannes. 2006. Scheduling Parallel Jobs to Minimize the Makespan. J. of

Scheduling 9, 5 (2006), 433–452.
[24] Renaud Lepère, Denis Trystram, and Gerhard J. Woeginger. 2001. Approximation

Algorithms for Scheduling Malleable Tasks Under Precedence Constraints. In
ESA. 146–157.

[25] Keqin Li. 1999. Analysis of the List Scheduling Algorithm for Precedence Con-
strained Parallel Tasks. Journal of Combinatorial Optimization 3, 1 (1999), 73–88.

[26] Andrea Lodi, Silvano Martello, and Michele Monaci. 2002. Two-dimensional
packing problems: A survey. European Journal of Operational Research 141, 2
(2002), 241–252.

[27] Edwin Naroska and Uwe Schwiegelshohn. 2002. On an On-line Scheduling
Problem for Parallel Jobs. Inf. Process. Lett. 81, 6 (2002), 297–304.

[28] Lucas Perotin and Hongyang Sun. 2024. Improved Online Scheduling of Moldable
Task Graphs under Common Speedup Models. ACM Trans. Parallel Comput. 11,
1, Article 2 (2024), 31 pages.

[29] John Turek, Joel L. Wolf, and Philip S. Yu. 1992. Approximate Algorithms Sched-
uling Parallelizable Tasks. In SPAA (San Diego, California, USA).

[30] Deshi Ye, Xin Han, and Guochuan Zhang. 2009. A note on online strip packing.
Journal of Combinatorial Optimization 17, 4 (2009), 417–423.

224

https://doi.org/10.1109/TPDS.2012.258
https://doi.org/10.1109/TPDS.2012.258

	Abstract
	1 Introduction
	2 Related Work
	2.1 Scheduling DAGs of Rigid Tasks
	2.2 Scheduling DAGs of Moldable Tasks
	2.3 Scheduling Independent Rigid Tasks

	3 Problem Statement
	3.1 Online Scheduling Model for Rigid DAGs
	3.2 Makespan Lower Bound and Worst-Case Ratios

	4 Definitions and Algorithm
	4.1 Definitions
	4.2 Algorithm

	5 Analysis
	6 Lower Bounds on Best Competitive Ratios
	7 Conclusion and Future Work
	References

