
14

Checkpointing Workflows à la Young/Daly Is Not

Good Enough

ANNE BENOIT, LUCA PEROTIN, and YVES ROBERT, Laboratoire LIP, ENS Lyon, France

HONGYANG SUN, University of Kansas, USA

This article revisits checkpointing strategies when workflows composed of multiple tasks execute on a par-
allel platform. The objective is to minimize the expectation of the total execution time. For a single task, the
Young/Daly formula provides the optimal checkpointing period. However, when many tasks execute simul-
taneously, the risk that one of them is severely delayed increases with the number of tasks. To mitigate this
risk, a possibility is to checkpoint each task more often than with the Young/Daly strategy. But is it worth
slowing each task down with extra checkpoints? Does the extra checkpointing make a difference globally?
This article answers these questions. On the theoretical side, we prove several negative results for keeping
the Young/Daly period when many tasks execute concurrently, and we design novel checkpointing strategies
that guarantee an efficient execution with high probability. On the practical side, we report comprehensive
experiments that demonstrate the need to go beyond the Young/Daly period and to checkpoint more often
for a wide range of application/platform settings.

CCS Concepts: • Software and its engineering→ Checkpoint/restart; • Computer systems organization

→ Reliability; • Hardware→ System-level fault tolerance;

Additional Key Words and Phrases: Checkpoint, workflow, concurrent tasks, Young/Daly formula

ACM Reference format:

Anne Benoit, Luca Perotin, Yves Robert, and Hongyang Sun. 2022. Checkpointing Workflows à la Young/Daly
Is Not Good Enough. ACM Trans. Parallel Comput. 9, 4, Article 14 (December 2022), 25 pages.
https://doi.org/10.1145/3548607

1 INTRODUCTION

Checkpointing is the standard technique to protect applications running on High Performance

Computing (HPC) platforms. Every day, the platform will experience a few fail-stop errors (or
failures; we use both terms interchangeably). After each failure, the application executing on the
faulty processor (and likely on many other processors for a large parallel application) is interrupted
and must be restarted. Without checkpointing, all the work executed for the application is lost.
With checkpointing, the execution can resume from the last checkpoint, after some downtime
(enroll a spare to replace the faulty processor) and a recovery (read the checkpoint).

Yves Robert also with University of Tennessee, Knoxville, TN, USA.

Authors’ addresses: Y. Robert (corresponding author), A. Benoit, and L. Perotin, Laboratoire LIP, ENS Lyon, 69364

Lyon Cedex 07, France; emails: {yves.robert, anne.benoit, lucas.perotin}@ens-lyon.fr; H. Sun, Department of Electri-

cal Engineering and Computer Science at the University of Kansas, 1520 W 15th St Lawrence, KS 66045, USA; email:

hongyang.sun@ku.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

2329-4949/2022/12-ART14 $15.00

https://doi.org/10.1145/3548607

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

https://orcid.org/0000-0003-2910-3540
https://orcid.org/0000-0002-9739-7440
https://orcid.org/0000-0003-2361-055X
https://orcid.org/0000-0002-4379-4467
https://doi.org/10.1145/3548607
mailto:permissions@acm.org
https://doi.org/10.1145/3548607
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3548607&domain=pdf&date_stamp=2022-12-16

14:2 Y. Robert et al.

Consider an application, composed of a unique task, executing on a platform whose nodes are
subject to fail-stop errors. Say the application executes for Tbase = 10 hours, can checkpoint in
C = 6 minutes, and experiences failures whose inter-arrival times follow an Exponential distri-
bution with mean μ = 4 hours. This means that a failure strikes the application every 4 hours in
expectation (see Section 2.1 for details). Assume a short downtime D = 1 minute and a recovery
time R = C . How frequently should the task be checkpointed so that its expected execution time
E(T1-task) is minimized? There is a well-known tradeoff: Taking too many checkpoints leads to a
high overhead, especially when there are few failures, while taking too few checkpoints leads to
a large re-execution time after each failure. Here is an illustration of this tradeoff:

• If we take no checkpoint at all, then the expected execution time is E(T1-task) ≈ 46 hours (see
Equation (1) in Section 2.5 to derive this value);
• If we take a checkpoint at the end of the execution, e.g., to save final results on stable storage,1

then E(T1-task) increases by about 76 minutes, which is surprising given the short checkpoint
time; but keep in mind that if a failure strikes during the checkpoint, which happens with a
low probability of 2.5%, then the 10 hours of execution are wasted;
• If we checkpoint every hour (an application-agnostic approach that has been implemented

for several HPC platforms [25]), then we have 10 equal-length segments, each of duration of
1 hour and followed by a checkpoint. We obtain E(T1-task) ≈ 13 hours. Checkpointing every
hour brings a huge benefit!
• Finally, if we checkpoint every 20 minutes, then we obtain E(T1-task) ≈ 14 hours. Checkpoint-

ing too frequently becomes an overkill.

The optimal checkpointing period is given by the Young/Daly formula asWYD =
√

2μC [12, 38],
where μ is the application Mean Time Between Failures (MTBF) andC the checkpoint duration.
In the example above with μ = 4 hours and C = 6 minutes, we obtain WYD ≈ 54 minutes. This
value would be the optimal checkpointing period for a task of infinite length. For a task of length

Tbase = 10 hours, the optimal solution (see Section 2.5) is to use either max(1, �Tbase

WYD
�) = 11 or

�Tbase

WYD
� = 12 equal-length segments, whichever leads to the smaller E(T1-task). We find that the best

value is E(T1-task) ≈ 13 hours with 12 segments of length 50 minutes. The best value is smaller
by only 1 minute than the value with 11 segments, and by only 3 minutes than the value with
10 segments, which shows the robustness of the approach.

We now move to a more complicated example and assume that 300 independent applications
have been launched concurrently on the platform. These 300 applications are identical to the appli-
cation above: Each has a unique task of lengthTbase = 10 hours, checkpoint durationC = 6 minutes,
recovery time R = C , and the downtime is D = 1 minute. For the example to be more realistic in
terms of failure rate, we assume that each application executes with p = 30 processors. Hence,
the platform has at least m = 9,000 processors. Each processor is subject to failures following an
Exponential distribution Exp (1

μind
), where μind is the individual processor’s MTBF. Since each task

executes on p = 30 processors, its MTBF is μ =
μind

p
. In other words, the MTBF of a task is inversely

proportional to the number of processors enrolled, which is intuitive in terms of failure frequency
(see Reference [25] for a formal proof). We now assume that each task has 0.5% chances to fail dur-

ing execution; this setting corresponds to an individual MTBF μind such that 1 − e−
pTbase

μind = 0.005,
i.e., μind = 59,850 hours (or 6.8 years). This is in accordance with MTBFs typically observed on

1We make this assumption throughout the article for simplicity. Section B of the Web Supplementary Material extends the

analysis to the case where no checkpoint is taken at the end of the execution of a task. Changes are minimal, and results

are quite similar.

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

Checkpointing Workflows à la Young/Daly Is Not Good Enough 14:3

large-scale platforms, which range from a few years to a few dozens of years [8]. For each task,

the Young/Daly period isWYD =
√

2
μind

p
C ≈ 20 hours, and the expected execution time of a single

task E(T1-task) is minimized either when no checkpoint is taken or if a single checkpoint is taken at
the end of the execution (see Section 2.6). Recall that, as stated above, we assume that we always
take a checkpoint at the end of the execution of a task. Then, we derive that E(T1-task) ≈ 10.4 with
a single checkpoint taken at the end of each task (see Section 2.6 for details of this computation).

Is it safe to checkpoint each task individually à la Young/Daly? The problem comes from the fact
that the expectation E(Tall-tasks) of the maximum execution time over all tasks, i.e., the expectation
of the total time required to complete all tasks, is far larger than the maximum of the expectations
(which in the example have all the same value E(T1-task)). When a single checkpoint is taken at the
end of each task, we compute that E(Tall-tasks) > 14, while adding four intermediate checkpoints to
each task reduces it down to E(Tall-tasks) < 12.75 (see Section 2.6 for details of the computation of
both numbers). Intuitively, this is because adding these intermediate checkpoints greatly reduces
the chance of re-executing any single task from scratch when it is struck by a failure, and the
probability of having at least one failed task increases with the number of tasks. Of course, there
is a penalty from the user’s point of view: Adding four checkpoints to each task augments their
length by 24 minutes, while the majority of them will not be struck by a failure. In other words,
users may feel that their response time has been unduly increased and state that it is not worth to
add these extra checkpoints.

Going one step further, consider now a single application whose dependence graph is a simple
fork-join graph, made of 302 tasks: an entry task, 300 parallel tasks identical to the tasks above
(each task runs on p = 30 processors for Tbase = 10 hours, and is checkpointed in C = 6 minutes),
and an exit task. Such applications are typical of HPC applications that explore a wide range of
parameters or launch subproblems in parallel. Now, the extra checkpoints make full sense, because
the exit task cannot start before the last parallel task has completed. The expectation of the total
execution time is E(Ttotal) = E(Tentry) + E(Tall-tasks) + E(Texit), where E(Tentry) and E(Texit) are the
expected durations of the entry and exit tasks, and E(Ttotal) is minimized when E(Tall-tasks) is min-
imized. By diminishing E(Tall-tasks), we save 1.25 hour, or 75 minutes (and in fact much more than
that, because the lower and upper bounds for E(Tall-tasks) are loosely computed).

This last example shows that the optimal execution of large workflows on failure-prone
platforms requires to checkpoint each workflow task more frequently than prescribed by the
Young/Daly formula. The main focus of this article is to explore various checkpointing strategies,
and our main contributions are as follows:

• We provide approximation bounds for the performance of MinExp, a strategy à la
Young/Daly that minimizes the expected execution time of each task and for a novel strategy
CheckMore that performs more checkpoints than MinExp.
• Both bounds apply to workflows of arbitrary shape and whose tasks can be either rigid or

moldable. In addition, we exhibit an example where the bounds are tight and where Check-
More can be an order of magnitude better than MinExp.
• The novel CheckMore strategy comes in two flavors, one that tunes the number of check-

points as a function of the degree of parallelism in the failure-free schedule and a simpler
one that does not require any knowledge of the failure-free schedule, beyond a priority list
to decide in which order to start executing the tasks.
• We report comprehensive simulations results based on WorkflowHub testbeds [19], which

demonstrate the significant gain brought by CheckMore over MinExp for almost all
testbeds.

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

14:4 Y. Robert et al.

Table 1. Key Notations

m Total number of processors
p Number of processors per task
n Number of tasks

μind =
1
λ

Individual processor’s MTBF
C Checkpoint time
R Recovery time
D Downtime

Tbase Task duration without failures
Nopt Number of segments with Lambert strategy
NME Number of segments with MinExp strategy
WME Segment length with MinExp strategy

The article is organized as follows. We first describe the model in Section 2. We assess the per-
formance of MinExp in Section 3; performance bounds are proven both for independent tasks and
for general workflows. Section 4 presents the novel strategy CheckMore that checkpoints work-
flow tasks more often than MinExp and analyzes its theoretical performance. The experimental
evaluation in Section 5 presents extensive simulation results comparing both strategies. Finally,
we discuss related work in Section 6 and conclude in Section 7.

2 MODEL AND BACKGROUND

In this section, we first detail the platform and application models and describe how to practically
deploy a workflow with checkpointed jobs. Then, we discuss the objective function before provid-
ing background on the optimal checkpointing period for preemptible tasks and getting back to the
example of the introduction. Key notations are summarized in Table 1.

2.1 Platform

We consider a large parallel platform withm identical processors, or nodes. These nodes are subject
to fail-stop errors or failures. A failure interrupts the execution of the node and provokes the loss
of its whole memory. There are many causes of failures, including power outages or network
errors, and they cause the node to stall or crash [14, 34]. Consider a parallel application running
on several nodes: When one of these nodes is struck by a failure, the state of the application is lost,
and execution must restart from scratch, unless a fault-tolerance mechanism has been deployed.

The classical technique to deal with failures makes use of a checkpoint-restart mechanism: The
state of the application is periodically checkpointed, i.e., all participating nodes take a checkpoint
simultaneously. This is the standard coordinated checkpointing protocol, which is routinely used
on large-scale platforms [10], where each node writes its share of the application data to stable
storage (checkpoint of duration C). When a failure occurs, the platform is unavailable during a
downtime D, which is the time to enroll a spare processor that will replace the faulty processor [12,
25]. Then, all application nodes (including the spare) recover from the last valid checkpoint in
a coordinated manner, reading the checkpoint file from stable storage (recovery of duration R).
Finally, the execution is resumed from that point onward, rather than starting again from scratch.
Note that failures can strike during checkpoint and recovery but not during downtime (otherwise,
we can include the downtime in the recovery time).

Throughout the article, we add a final checkpoint at the end of each application task to write
final outputs to stable storage. Symmetrically, we add an initial recovery when re-executing the
first checkpointed segment of a task (to read inputs from stable storage) if it has been struck by

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

Checkpointing Workflows à la Young/Daly Is Not Good Enough 14:5

a failure before completing the checkpoint. See Section B of the Web Supplementary Material

(WSM) for an extension relaxing either or both assumptions.
We assume that each node experiences failures whose inter-arrival times follow an Exponential

distribution Exp (λ) of parameter λ > 0, whose Probability Density Function is f (x) = λe−λx for
x ≥ 0. The individual MTBF of each node is μind =

1
λ

. Even if each node has an MTBF of several
years, large-scale parallel platforms are composed of so many nodes that they will experience
several failures per day [8, 18]. Hence, a parallel application using a significant fraction of the
platform will typically experience a failure every few hours.

2.2 Application

We focus on HPC applications expressed as workflow graphs, such as those available in Work-
flowHub [19] (formerly Pegasus [36]). The shape of the task graph is arbitrary, and the tasks can
be parallel. We further assume that all tasks are preemptible, i.e., that we can take a checkpoint at
any instant.

For the theoretical analysis, we use workflows whose tasks can be rigid or moldable parallel
tasks. A moldable task can be executed on an arbitrary number of processors, and its execution
time depends on the number of processors allotted to it. This corresponds to a variable static re-
source allocation, as opposed to a fixed static allocation (rigid tasks) and a variable dynamic alloca-
tion (malleable tasks) [16]. Scheduling rigid or moldable workflows is a difficult NP-hard problem
(see the related work in Section 6). We take as input a failure-free schedule for the workflow and
transform it by adding checkpoints as follows. The failure-free schedule provides an ordered list
of tasks, sorted by non-decreasing starting times. Our failure-aware algorithms are list schedules
that greedily process the tasks (augmented with checkpoints) in this order: If task T is number i
in the original failure-free schedule, then T is scheduled after the i − 1 first tasks in the failure-
aware schedule, and no other task can start beforeT does. Hence, the processors allocated toT in
the failure-aware schedule may differ from those allocated in the failure-free schedule. Enforcing
the same ordering of execution of the tasks may be sub-optimal, but it is the key to guarantee
approximation ratios for the total execution time.

For the experiments, we restrict to workflows with uni-processor tasks, in accordance with the
characteristics of the workflow benchmarks from WorkflowHub.

2.3 Implementation in a Cluster Environment

This section briefly describes two approaches to deploy a workflow with checkpointed jobs in a
cluster environment.

The first approach is to use the job scheduler LSF [28] and to submit a set of jobs with their
dependencies: There are as many jobs as tasks in the workflow, and these jobs are declared check-

pointable. The system will relaunch a job after it is hit by a failure, from the last checkpoint on
and until success (see the “job failover” section in Reference [28]). If the failed job was using j
processors, then it releases j − 1 surviving processors right after the failure; if there is at least
one other processor available, then the job can be rescheduled right away (jobs usually get high
priority when they are rescheduled after a failure). Otherwise, the failed job will have to wait and
this waiting time, a.k.a. the re-submission time, is dependent on the platform scheduling policy
and on the availability of nodes.

A second approach is to submit a single job with p +q processors, where p processors represent
the allotment for the whole workflow andq processors are spare. The job uses a master process that
spans the workflow tasks and controls how their execution progresses; the tasks are checkpointed
using a standard software such as VeloC [9]. The spare nodes are mutualized across the tasks either
by using a fault-tolerant MPI library like ULFM [6, 15] or by having the master process launch each

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

14:6 Y. Robert et al.

task as independent MPI applications spanning on subgroups of the reservation and re-launching
them from their last checkpoint on the surviving nodes and the spare nodes if some task is subject
to failure.

In the first approach, the downtime would be non-constant, because it corresponds to the re-
submission time, while in the second approach with spares, the downtime can be approximated
as a constant. Regardless, all the results of this article are taken in expectation, and they extend to
using an average value of the downtime whenever a fixed value is not appropriate.

Finally, we stress that this work is agnostic of system management policies and does not modify
any parameter specified by the user for the job allocations; we simply increase the checkpoint
frequency when needed, which results in shorter execution time and better processor utilization
for the workflow.

2.4 Objective Function

Given a workflow composed of a set of tasks, where each task executes on a given number of
processors, the objective function is to minimize the expected makespan of the workflow, i.e., the
expected total execution time to complete all tasks. We aim at determining the best checkpointing
strategy for the tasks that compose the workflow. This is the only parameter that we modify in the
execution: We keep the number of processors specified by the user, and we even keep the order of
the tasks as given by the user schedule. The replacement of failed nodes, or the resubmission of
failed tasks, is decided by the system and does not depend upon the checkpointing policy, either
à la Young/Daly or one of our new strategies.

As a result, minimizing the expected makespan of the workflow also maximizes processor uti-
lization of the platform, because the processors reserved by the user will be released earlier and
with no additional cost for the rest of the platform.

In the analysis of the checkpointing strategies, we focus on bounding the ratio, which is defined
as the expected makespan of the workflow (i.e., the expected total execution time) divided by
the makespan in the failure-free execution (no checkpoints nor failures), given a user-specified
schedule. Hence, the ratio shows the overhead induced by failures and the checkpointing strategy:
The closer to one the better.

2.5 Checkpointing Period

Consider an application A composed of a single parallel task executing on p processors. Assume
that the task is preemptible, which means that it can be checkpointed at any instant. The key
for an efficient checkpointing policy is to decide when to checkpoint. If the application A runs
for a duration Tbase (base time without checkpoints nor failures), then the optimal checkpointing
strategy, i.e., the strategy minimizing the expected execution time of the application, can be derived
as shown below.

Lemma 1. The expected time E(W ,C,R) to execute a segment ofW seconds of work followed by a

checkpoint of C seconds and with recovery cost R seconds is

E(W ,C,R) =

(
1

pλ
+ D

)
epλR

(
epλ (W +C) − 1

)
. (1)

Proof. This is the result of Reference [7, Theorem 1]. Note that Lemma 1 also applies when the
segment is not followed by a checkpoint (take C=0). �

The slowdown function is defined as f (W ,C,R) = E(W ,C,R)
W

. We have the following properties:

Lemma 2. The slowdown function W 	→ f (W ,C,R) has a unique minimum Wopt that does not

depend on R, is decreasing in the interval [0,Wopt] and s increasing in the interval [Wopt,∞).

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

Checkpointing Workflows à la Young/Daly Is Not Good Enough 14:7

Proof. Again, this is the result of Reference [7, Theorem 1]. The exact value ofWopt is obtained
using the LambertW function (see Section A of the WSM for background), but a first-order ap-

proximation is the Young/Daly formulaWYD =
√

2C
pλ

. �

Lemma 2 shows that infinite tasks should be partitioned into segments of sizeWYD followed by
a checkpoint. What about finite tasks? Back to our application A of duration Tbase, we partition it
into Nc segments of length Wi , 1 ≤ i ≤ Nc, each followed by a checkpoint C . By linearity of the
expectation, the expected time to execute the application A is

E(A)=
Nc∑
i=1

E(Wi ,C,R) =

(
1

pλ
+ D

)
epλR

Nc∑
i=1

(
epλ (Wi+C)− 1

)
,

where
∑Nc

i=1Wi = Tbase. By convexity of the Exponential function, or by using Lagrange multipliers,
we see that E(A) is minimized when the Wi ’s take a constant value, i.e., all segments have same

length. Thus, we obtainWi =
Tbase

Nc
for all i , and we aim at finding Nc that minimizes

E(A) = NcE

(
Tbase

Nc
,C,R

)
= f

(
Tbase

Nc
,C,R

)
×Tbase ,

where f is the slowdown function. Define Kopt =
Tbase

Wopt
, where Wopt achieves the minimum of the

slowdown function. Kopt would be the optimal value if we could have a non-integer number of
segments. Lemma 2 shows that the optimal value NME of Nc is either Nopt = max(1, �Kopt�) or
NME = �Kopt�, whichever leads to the smallest value of E(A). In the experiments, to avoid the
numerical evaluation of the Lambert function for Wopt, we use the simplified expression NME =

�Tbase

WYD
�:

Definition 1. The MinExp checkpointing strategy partitions a parallel task of length Tbase, with

p processors and checkpoint timeC , into NME = �Tbase

WYD
� equal-length segments, each followed by a

checkpoint, whereWYD =
√

2C
pλ
=

√
2μindC

p . Each segment is of lengthWME =
Tbase

NME
.

The experimental results in Section 5 show that using NME, whose value is based upon the
Young/Daly formula, leads to almost the same results as when using Nopt, whose value is based on
the Lambert function. See Section A of the WSM for background on how to compute Nopt.

2.6 Back to the Example

In the Introduction, we used the example of 300 identical tasks, each with Tbase = 10 hours, p =
30, and C = 6 minutes. We also had D = 1 minute and R = C . We assume that each task has
0.5% chances to fail during execution, which corresponds to an individual MTBF μind such that

1 − e−
pTbase

μind = 0.005. This equality leads to μind = 59, 850 hours. We derive WYD =
√

2μindC/p ≈
20 hours, hence NME = 1. With a single segment, we then compute the optimal expected execution
time E(T1-task) for each task as

E(T1-task) =

(
μind

p
+ D

)
e

pR

μind

(
e

p

μind
(Tbase+C) − 1

)
≈ 10.4.

With 300 tasks executing concurrently, we compute that the expectation of the total time required
to complete all tasks is at least E(Tall-tasks) > 14, hence the ratio is 14

10 = 1.4. Indeed, there is no

failure at all with probability (e
− p (Tbase+C)

μind)300 < 0.23, and in this case the execution time is Tbase +

C = 10.1. The other case, happening with a probability larger than 0.77, is when at least one
failure occurs in the process, and we will bound its expected execution time if exactly one failure

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

14:8 Y. Robert et al.

occurs, which is clearly lower than the actual expected execution time. To that end, we compute
the expected time lost before the failure occurs when attempting to successfully execute for T =

Tbase +C hours: E(Tlost (T)) =
∫ ∞

0
xP(X = x |X < T)dx = 1

P(X <T)

∫ T

0
xpλe−pλxdx , with P(X < T) =

1 − e−pλT . Integrating by parts, we derive that

E(Tlost (T)) =
1

pλ
− T

epλT − 1
. (2)

In the example, we have T = Tbase + C = 10.1, p = 30, and λ = 1
μind
=
− ln(0.995)

pTbase
. Thus, if a

failure strikes one of the tasks, then the expected time lost is higher than 5.045 hours. After that,
we also have to wait D > 0.016 hour of downtime and recover for a duration of R = 0.1 hour.
Overall, the expected execution time satisfies E(Tall-tasks) ≥ 10.1 + 0.77 × (E(Tlost (T)) + R + D) >
10.1 + 0.77 × 5.161 > 14. Note that this lower bound is far from tight.

When adding four intermediate checkpoints to each task, we obtain E(Tall-tasks) < 12.75. Indeed,
the tasks are now slightly longer (10.5 hours without failure), and they fail with probability 1 −
e−

30×10.5
59850 < 0.006. Let Mf denote the maximum number of failures of any tasks. Clearly, we have

P{Mf ≥ k } ≤ 300× 0.006k . The worst-case scenario for each failure is when it happens just before
the end of a checkpoint, and in that case we loose at most 2 + 0.1 + 0.1 + 0.017 < 2.22 for each
failure (the length of a segment, the checkpoint time, the recovery time and the downtime). Thus,
E(Tall-tasks) < 10.5 + 2.22

∑
k≥1 P{Mf ≥ k } < 10.5 + 2.22 + 2.22 × 300 × ∑

k≥2 0.006k < 12.75,
hence a ratio lower than 1.275 to compare with 1.4 with the MinExp strategy. Note that this upper
bound is far from tight. This example shows that the optimal checkpointing strategy should not
only be based upon the task profiles but also upon the number of other tasks that are executing
concurrently.

3 YOUNG/DALY FOR WORKFLOWS: THE MINEXP STRATEGY

In this section, we prove performance bounds for the MinExp checkpointing strategy, which adds
NME checkpoints to each task, thereby minimizing the expected execution time for each task. We
start in Section 3.1 with independent tasks, first identical and then arbitrary, that can be executed
concurrently (think of a shelf of tasks). Next, we move to general workflows in Section 3.2.

3.1 MinExp for Independent Tasks

We start with a word of caution: Throughout this section, the proofs of the theorems and the
analysis of the examples are long and technically involved. We state the results and provide proof
sketches in the text below; all details are available in the WSM.

3.1.1 Identical Independent Tasks. First, we consider identical independent tasks that can be
executed concurrently. Recall thatm is the total number of processors. We identify a task T with
its type (i.e., set of parameters) T = (Tbase,p,C,R): lengthTbase, number of processorsp, checkpoint
time C , and recovery time R.

Theorem 1. Consider n identical tasks of same type T = (Tbase, p,C , R) to be executed concurrently

on n × p ≤ m processors with individual failure rate λ = 1
μind

. The downtime is D. For the MinExp

strategy, NME is the number of checkpoints, andWME is the length of each segment, as given by Defini-

tion 1. Let Psuc (R̃) = e−pλ (WME+C+R̃) be the probability of success of a segment with re-execution cost R̃

(R̃ = 0 if no re-execution, or R̃ = R otherwise), andQ∗ = 1
1−Psuc (R) . Let the ratio be rME

id
(n,T) = E(Ttot)

Tbase
,

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

Checkpointing Workflows à la Young/Daly Is Not Good Enough 14:9

where E(Ttot) is the expectation of the total time Ttot of the MinExp strategy. We have the following:

rME
id

(n,T) ≤
(

logQ∗ (n)

NME
+ logQ∗ (logQ∗ (n)) + 1 + ln(Q∗)

12NME
+ 1

ln(Q∗)NME

)
×

(
1 + C+R+D

WME

)
+ C

WME
+ 1 + o(1).

(3)

Note that if n is small, then the ratio holds by replacing all negative or undefined terms by 0.

Proof. First, a segment consists of the re-execution cost R̃, the work WME, and the check-
point cost C . Since failures may occur during recovery or checkpoint, the total processing time

isWME + R̃ +C . Thus, given the exponential failure probability, we have Psuc (R̃) = e−pλ (WME+C+R̃) .
The MinExp strategy is a rME

id
(n,T)-approximation of the base time Tbase = NMEWME, hence also

of the optimal expected execution time. Let Mf be the maximum number of failures over all tasks.
We process NME segments of length WME + C , and each failure in a segment incurs an additional
time upper bounded by D+R+WME+C . The expectation E(Ttot) of the total timeTtot of the MinExp
strategy is at most

E(Ttot) ≤ Tbase + NMEC + E(Mf) (WME +C + R + D),

and hence

rME
id (n,T) =

E(Ttot)

Tbase
≤ 1 +

C

WME
+
E(Mf)

NME

(
1 +

C + R + D

WME

)
. (4)

We continue with the computation of E(Mf). We first study the random variable (RV) Nf of
the number of failures before completing a given task. We have identical segments (s1, s2, . . .) to
process, each of them having a probability of success psi

∈ {Psuc (R), Psuc (0)}, and we stop upon
reaching the NME successes. Hence, s1 is the first trial of the first segment; if s1 succeeds, which
happens with probability Psuc (0), then s2 corresponds to the first trial of the second segment and
succeeds with probability Psuc (0); otherwise, s2 corresponds to the second trial of the first segment
and succeeds with probability Psuc (R). We are interested in the number of failures Nf before having
NME successes. Clearly, if N ′

f
represents the RV for the same problem except that all segments have

the same probability of success Psuc (R), then all segments are less likely or equally likely to succeed,
and

∀x ,P{N ′f ≤ x } ≤ P{Nf ≤ x }. (5)

Now, let M ′
f

be the RV equal to the maximum of n independent and identically distributed RVs

following N ′
f
. Equation (5) leads to E(M ′

f
) ≥ E(Mf). Each N ′

f
is a negative binomial RV with

parameters (NME, Psuc (R)). We refine the analysis from Reference [21] by bounding the sum of
some Fourier coefficients (see Section C of the WSM for details) to show that

E(M ′f) ≤ logQ∗ (n) + (NME − 1) logQ∗ (logQ∗ (n)) + NME +

(
ln(Q∗)

12
+

1

ln(Q∗)

)
+ o(1). (6)

Recall that Q∗ = 1
1−Psuc (R) . Here, we assume for convenience that logQ∗ (logQ∗ (n)) ≥ 0, but oth-

erwise we can replace it by 0, and the ratio holds. Plugging the bound of Equation (6) back into
Equation (4) leads to Equation (3). �

We provide an informal simplification of the bound in Equation (3). Under reasonable settings,
we have C,D,R � μind, and the probability of success Psuc of each segment is pretty high, hence

Q∗ > e . For this reason, we have (i) ∀x , logQ∗ (x) < ln(x), (ii) C+R+D
WME

≈ 0, (iii) ln(Q∗)
12NME

≤ 1, and

(iv) 1
ln(Q∗)NME

≈ 0. Altogether, the bound simplifies to

rME
id (n,T) ≤ ln(n)

NME
+ ln(ln(n)) + 3 + o(1). (7)

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

14:10 Y. Robert et al.

Here is a more precise statement (proof in Section D of the WSM):

Proposition 1. We have rME
id

(n,T) ≤ 4
5 (ln(n)

NME
+ ln(ln(n))) + 3 + 3

NME
+ o(1) under the following

assumptions:

• A checkpoint of length C succeeds with probability at least 0.99;

• D ≤ R ≤ C ;

• A segment of lengthWME fails with probability at least 10−10;

• Tbase > 2(C + R + D) (otherwise the tasks are so small that no checkpoints are needed).

3.1.2 Tightness of the Bound rME
id

(n,T) of Theorem 1. Consider a set T of n identical uni-

processor tasks with Tbase = 2K − 1, C = 1, D = R = 0, and λ =
ln(1+ 1

2K
)

2K
so that e−λ (Tbase+C) = 2K

2K+1 .
Here, K ≥ 2 is fixed, and n is the variable. We assume that all tasks execute in parallel, i.e.,m ≥ n.
Under these settings, we show in Section H.1 of the WSM that rME

id
(n,T) = Θ(ln(n)), thereby

showing the tightness of the bound given in Theorem 1.

3.1.3 Arbitrary Independent Tasks. We now proceed with different independent tasks that can
be executed concurrently:

Theorem 2. Consider a set T of n tasks. The ith task has profile Ti = (T i
base
,pi ,Ci,Ri). These

tasks execute concurrently, hence
∑n

i=1 pi ≤ m. The individual fault rate on each processor is λ. The

downtime is D. For the MinExp strategy, N i
ME

is the number of checkpoints, andW i
ME

is the length of

each segment, for task i . Let P i
suc (Ri) = e−pi λ (W i

ME
+Ci+Ri) be the probability of success of a segment

of task i with re-execution cost Ri , and Q∗i =
1

1−P i
suc (Ri)

. Then, the MinExp strategy is a rME (n,T)-

approximation of the failure-free execution time, hence also of the optimal expected execution time,

where

rME (n,T) ≤ 2 max
1≤i≤n

(
rME

id (n,Ti)
)
. (8)

The key element of the (very long) proof of Theorem 2 is an important new result (to the best of
our knowledge) on expectations of RVs. Please refer to Section E of the WSM. Similarly to identical
tasks, under reasonable assumptions, we derive a simplified bound:

rME (n,T) ≤ 2
ln(n)

min1≤i≤n (N i
ME

)
+ 2 ln(ln(n)) + 6 + o(1).

3.2 MinExp for Workflows

We proceed to the study of MinExp for a workflow of tasks, with task dependencies. We build upon
the results for identical tasks (see Equation (3)) that can be reused for each task of the workflow.

Theorem 3. Let S be a failure-free schedule of a workflowW of n tasks. The ith task has profile

Ti = (T i
base
,pi ,Ci,Ri). The individual fault rate on each processor is λ. The downtime is D. Let Δ be

the maximum number of tasks processed concurrently by the failure-free schedule S at any instant.

Then, the MinExp strategy is a rME (Δ,W)-approximation of the failure-free execution time, where

rME (Δ,W) ≤ 2 max
1≤i≤n

rME
id (Δ,Ti). (9)

In other words, the degree of parallelism Δ of the schedule becomes the key parameter to bound
the performance of the MinExp strategy rather than the total number n of tasks in the workflow.
Similarly to independent tasks, under reasonable assumptions, we derive a simplified bound:

rME (Δ,W) ≤ 2
ln(Δ)

min1≤i≤n (N i
ME

)
+ 2 ln(ln(Δ)) + 6 + o(1).

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

Checkpointing Workflows à la Young/Daly Is Not Good Enough 14:11

Fig. 1. Example for the proof of Theorem 3: Schedule S.

Proof. As stated in Section 2.2, we enforce the same ordering of starting times in the initial
schedule S and in the failure-aware schedule S’ returned by MinExp: If task i starts after task j in
S, then the same will hold in S’. However, we greedily start a task as soon as enough processors
are available, which may result in using different processors for a given task in S and S’. Consider
an arbitrary failure scenario, and let Ti be the execution time of task i in S’. Let T (S′) be the total
execution time of S’. We want to prove that

E(T (S′)) ≤ 2 max
1≤i≤n

rME
id (Δ,Ti)T (S), (10)

where T (S) is the (deterministic) total execution time of S.
To analyze S’, we partition S into a series of execution slices, where a slice is determined by

two consecutive events. An event is either the starting time or the ending time of a task. Formally,
let si be the starting time of task i in S, and ei be its ending time. We let {tj }0≤j≤K = ∪n

i=1{si , ei }
denote the set of events, labeled such that ∀j ∈ [0,K − 1], tj < tj+1. Note that we may have
K + 1 < 2n if two events coincide. We partition S into K slices S j , 1 ≤ j ≤ K , which are processed
sequentially. Slice S j spans the interval [tj−1, tj]. In other words, the length of S j is tj − tj−1. Let
Bj ⊂ W denote the subset of tasks that are (partially or totally) processed during slice S j ; note that
Δ = maxj ∈[1,K] |Bj |. Finally, for a task i in Bj , let ai, j be the fraction of the task that is processed
during S j (and let ai, j = 0 if i � Bj).

As an example, we consider a workflowW consisting ofn = 4 independent tasks, withT 1
base
= 6,

T 2
base
= 4, T 3

base
= 8, and T 4

base
= 9. We have m = 4, p1 = p2 = 2, and p3 = p4 = 1. The optimal

failure-free schedule S is shown in Figure 1 and has length 10. Note that task i is represented by its
profileTi . There are five timesteps where an event occurs, thusK = 4 and {tj }0≤j≤K = {0, 6, 8, 9, 10}.
Therefore, S is decomposed into four slices, S1 running in [0, 6], S2 in [6, 8], S3 in [8, 9], and S4 in
[9, 10]. The (ai, j)i ∈[1,n], j ∈[1,K] are represented in brackets. Finally, B1 = {1, 3, 4}, B2 = {2, 3, 4}, B3 =

{2, 4}, B4 = {4}, and Δ = 3. We use the decomposition into slices to define a virtual schedule Svirt,
which consists of scaling the slices S j to account for failures in S’. For each slice S j , the scaling is

the largest ratio Ti

T i
base

over all tasks i ∈ Bj . Hence, Svirt is composed of K slices Svirt
j whose length

is T (Svirt
j) = (maxi ∈Bj

Ti

T i
base

)T (S j). Within each slice Svirt
j , for each task i ∈ Bj , we execute the same

fraction ai, j of task i as in the original schedule S, for a duration ai, jTi , so that some tasks in Bj

may not execute during the whole length of Svirt
j , contrarily to during the initial schedule S.

We can then bound the total execution time of Svirt by using the result on independent tasks on
each slice, each with a maximum degree of parallelism of Δ. Finally, to obtain Equation (10), there
remains to show that E(T (S′)) ≤ E(T (Svirt)). In fact, we show that under any failure scenario,
T (S′) ≤ T (Svirt), and the result follows. We relabel the tasks by non-decreasing starting time in
S and prove by induction that no task starts nor ends later in S ′ than in Svirt. The key element
is that the ordering of starting times from S is preserved in both Svirt and S′, see Section F of the
WSM for details.

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

14:12 Y. Robert et al.

Fig. 2. Schedules Svirt (top) and S′ (bot.) for the example.

Going back to the example, assume thatT1 = 15,T2 = 4, andT3 = T4 = 12 in S ′. Then, we obtain

the task with the largest ratio Ti

T i
base

for each slice: task 1 for S1, task 3 for S2, task 4 for S3, and task 2

for S4. The schedule Svirt is shown at the top of Figure 2 and has lengthT (Svirt) = 20+1/3 (and the
tasks with largest ratio in each slice are hatched). Finally, the schedule S′ is shown at the bottom
of Figure 2, and T (S′) = 16. �

We point out that Theorem 3 applies to workflows with arbitrary dependencies, and with rigid
or moldable tasks. The bound given for rME (Δ,W) is relative to the execution time of the failure-
free schedule. If this failure-free schedule is itself a ρ-approximation of the optimal solution, then
we have derived a rME (Δ,W) × ρ approximation of the optimal solution.

4 THE CHECKMORE STRATEGIES

The previous section has shown that, in the presence of failures, the ratio of the actual execution
time of a workflow over its failure-free execution time, critically depends upon the maximum
degree of parallelism Δ achieved by the initial schedule.

In this section, we introduce CheckMore strategies, which checkpoint workflow tasks more
often than MinExp, with the objective to decrease the ratio above. The number of checkpoints
for each task becomes a function of the degree of parallelism in the execution. We define
SafeCheck(δ), the number of checkpoints for a task, given a parameter δ (typically the degree of
parallelism):

Definition 2. SafeCheck(δ) partitions a parallel task of lengthTbase, withp processors and check-

point time C , into NSC (δ) = � (ln(δ)+1)Tbase

WYD
� equal-length segments, each followed by a checkpoint,

whereWYD =
√

2C
pλ
=

√
2μindC

p
. Each segment is of lengthWSC (δ) = Tbase

NSC (δ) .

Note that MinExp corresponds to applying SafeCheck (1) to all tasks, since NSC (1) = NME. The
key building block of the analysis of MinExp is Theorem 1 for identical independent tasks. The
good news is that Theorem 1 holds for any checkpointing strategy, not just for the Young/Daly
approach, and can easily be extended if each task is checkpointed following SafeCheck(δ):

Theorem 4. Consider n identical tasks of same type T = (Tbase, p,C , R) to be executed concurrently

onn×p ≤ m processors with individual failure rate λ = 1
μind

. The downtime isD. For the SafeCheck(δ)

strategy, NSC (δ) is the number of checkpoints, andWSC (δ) is the length of each segment, as given by

Definition 1. Let Psuc (R̃) = e−pλ (WSC+C+R̃) be the probability of success of a segment with re-execution

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

Checkpointing Workflows à la Young/Daly Is Not Good Enough 14:13

cost R̃ (R̃ = 0 if no re-execution or R̃ = R otherwise), and Q∗ = 1
1−Psuc (R) . Let rSC

id
(δ ,n,T) = E(Ttot)

Tbase
,

where E(Ttot) is the expectation of the total time Ttot of the SafeCheck(δ) strategy. Then

rSC
id

(δ ,n,T) ≤
(

logQ∗ (n)

NSC (δ) + logQ∗ (logQ∗ (n)) + 1 + ln(Q∗)
12NSC (δ) +

1
ln(Q∗)NSC (δ)

)
×

(
1 + C+R+D

WSC (δ)

)
+ C

WSC (δ) + 1 + o(1).
(11)

Note that if n is small, then the ratio holds by replacing all negative or undefined terms by 0.

To prove this theorem, we reuse the proof of Theorem 1: We just need to replace NME by NSC (δ)
andWME byWSC (δ).

The idea behind SafeCheck(δ) is the following: When processingδ jobs in parallel, the expected
maximum number of failures given by Equation (6) eventually grows proportionally to its first
term, logQ∗ (δ), which is Θ(ln(δ)). To accommodate this growth, we reduce the segment length by a
factor ln(δ), so that the total failure-induced overhead does not increase much. This is exactly what

SafeCheck(δ) does, when δ tasks are processed in parallel. Similarly, the first term
logQ∗ (n)

NME (n) of the

ratio in Equation (3) was dominant for MinExp, while it becomes almost constant in Equation (11).
To that extent, CheckMore generalizes this idea to general workflows using SafeCheck(δ) as a
subroutine. We provide two variants of CheckMore as follows:

Definition 3. Consider a failure-free schedule S for a workflowW of n tasks:

• The CheckMore algorithm applies SafeCheck(Δi) to each task i , where Δi is the largest
number of tasks that are executed concurrently during the processing of task i .
• The BasicCheckMore algorithm applies SafeCheck(min(n,m)) to all tasks, wherem is the

number of processors.

The main reason for introducing BasicCheckMore is that we do not need to know the max-
imum degree Δ of parallelism in S to execute BasicCheckMore (because we always have Δ ≤
min(n,m)). In fact, we do not even need to know the failure-free schedule for BasicCheckMore
(contrarily to CheckMore), we just need an ordered list of tasks and to greedily start them in this
order.

Theorem 5. Let S be a failure-free schedule of a workflowW of n tasks. The ith task has profile

Ti = (T i
base
,pi ,Ci,Ri). Let Δi be the maximum number of tasks processed concurrently to task i by S

at any instant, and let Δ = max1≤i≤n Δi . Then CheckMore is a rCM ((Δi)i≤n ,W)-approximation of

the failure-free execution time in expectation,

rCM ((Δi)i≤n ,W) ≤ 2 max
1≤i≤n

rSC
id (Δi ,Δi ,Ti). (12)

And BasicCheckMore is a rBCM (min(n,m),W)-approximation of the failure-free execution time in

expectation,

rBCM (min(n,m),W) ≤ 2 max
1≤i≤n

rSC
id (min(n,m),Δ,Ti). (13)

See Section G of the WSM for the proof. Note that for all i , Δi ≤ Δ, and Δi ≤ min(n,m), so it
is extremely likely that the bound obtained for rCM is smaller than the one obtained for rBCM . To
illustrate the difference between the bounds of CheckMore and MinExp, we show in Section I of
the WSM that for a shelf of n identical uni-processor tasks running in parallel, rCM

id
is an order of

magnitude lower than rME
id

under reasonable assumptions and when n is large enough.
We conclude this section by returning to the example of Section 3.1.2 and showing that

CheckMore (equivalent to BasicCheckMore in this case) can be arbitrarily better than MinExp.
The proof is given in Section H.2 of the WSM.

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

14:14 Y. Robert et al.

Proposition 2. Consider a set T of n(K) identical uni-processor tasks with type T = (2K −
1, 1, 10), D = 0, and λ(K) =

ln(1+ 1
2K

)

2K
. We assume that all tasks execute in parallel, i.e., m ≥ n(K).

When letting n(K) = �e
√

2/λ (K)−1� (hence ln(n(K)) = Θ(K)), and K tending to infinity, we have

rME (n(K),T) = Θ(K
ln(K)) and rBCM (n(K),T) = Θ(1).

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the different checkpointing strategies through
simulations. We describe the simulation setup in Section 5.1, present the main performance com-
parison results in Section 5.2, and assess the impact of different parameters on the performance
in Section 5.3. We further provide some performance statistics in Section 5.4 and conclude with a
brief summary in Section 5.5. Our in-house simulator is written in C++ and is publicly available
for reproducibility purpose [1].

5.1 Simulation Setup

We evaluate and compare the performance of the three checkpointing strategies MinExp,
CheckMore, and BasicCheckMore. All strategies are coupled with a failure-free schedule com-
puted by a list scheduling algorithm (see below). The workflows used for evaluation are generated
from WorkflowHub [19] (formerly Pegasus [36]), which offers realistic synthetic workflow traces
with a variety of characteristics. They have been shown to accurately resemble the ones from
real-world workflow executions [3, 19]. Specifically, we generate the following nine types of work-
flows offered by WorkflowHub that model applications in various scientific domains: Blast, Bwa,
Epigenomics, Genome, SoyKB, and Sras are bioinformatics workflows; Cycles is an agroecosys-
tem workflow; Montage is an astronomy workflow; and Seismology is a seismology workflow;
see Section J.1 of the WSM for more details.

Each trace defines the general structure of the workflow, whose number of tasks and total exe-
cution time can be specified by the user.2 All tasks generated in WorkflowHub are uni-processor
tasks. In the experiments, we evaluate the checkpointing strategies under the following parameter
settings:

• Number of processors:m = 214 = 16,384;
• Checkpoint/recovery/downtime: C = R = 1 min, D = 0;
• MTBF of individual processor: μind = 10 years;
• Number of tasks of each workflow: n ≈ 50,000.

Furthermore, the total failure-free execution times of all workflows are generated such that they
complete in 3–5 days. This is typical of the large scientific workflows that often take days to com-
plete as observed in some production log traces [2, 33] (Section J.2 of the WSM also presents similar
experimental results, which utilize small workflow traces that take less than a day to complete).
Section 5.2 will present the comparison results of different checkpointing strategies under the
above parameter settings. In Section 5.3, we will further evaluate the impact of different parame-
ters (i.e.,m, C , μind, and n) on the performance.

The evaluation methodology is as follows: For each set of parameters and each type of workflow
trace, we generate 30 different workflow instances and compute their failure-free schedules. We
use the list scheduling algorithm that orders the tasks using the Longest Processing Time (LPT)

first policy: If several tasks are ready and there is at least one processor available, then the longest

2Note that the workflow generator may offer a different number of tasks so as to guarantee the structure of the workflow.

The difference, however, is usually small.

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

Checkpointing Workflows à la Young/Daly Is Not Good Enough 14:15

ready task is assigned to the available processor to execute. Since all tasks are uni-processor tasks,
LPT is known to be a 2-approximation algorithm [22]; also LPT is known to be a good heuristic for
ordering the tasks [30]. This order of execution will be enforced by all the checkpointing strategies.
For each workflow instance, we further generate 50 different failure scenarios. Here, a failure sce-
nario consists of injecting random failures to the tasks by following the Exponential distribution
as described in Section 2.1. The same failure scenario will then be applied to each checkpointing
strategy to evaluate its execution time for the workflow. We finally compute the ratio of a check-
pointing strategy under a particular failure scenario as T

Tbase
, whereTbase is the failure-free execution

time of the workflow andT is the execution time under the failure scenario. The statistics of these
30 × 50 = 1,500 experiments are then compared using boxplots (that show the mean, median, and
various percentiles of the ratio) for each checkpointing strategy. The boxes bound the first to the
third quantiles (i.e., 25th and 75th percentiles), the whiskers show the 10th percentile to the 90th
percentile, the black lines show the median, and the stars show the mean.

5.2 Performance Comparison Results

Figure 3 shows the boxplots of the three checkpointing strategies in terms of their ratios for the
nine different workflows.

First, we observe that CheckMore and BasicCheckMore have very similar performance, which
in most cases are indistinguishable. This shows that BasicCheckMore offers a simple yet effective
solution without the need to inspect the failure-free schedule, thus making it an attractive check-
pointing strategy in practice. Also, both versions of CheckMore perform significantly better and
with less variation than MinExp, except for the few workflows where the ratios of all strategies are
very close to 1 (e.g., Bwa, SoyKB, Sras). Overall, the 90th percentile ratio of CheckMore never ex-
ceeds 1.08, whereas that of MinExp is much higher for most workflows and reaches almost 1.5 for
Montage. Similarly, the average ratio of CheckMore never exceeds 1.03, while that of MinExp
is again significantly higher and reaches more than 1.2 for Seismology and Montage.

We now examine a few workflows more closely to better understand the performance. For Sras,
MinExp is slightly better than CheckMore, but the ratios of all strategies are near optimal (i.e.,
<1.003). In this workflow, very few tasks are extremely long while many others are very short, and
there are very few dependencies among them. Thus, failures hardly ever hit the long tasks due to
their few number, while failures that hit short tasks have little impact on the overall execution
time. This is why the ratio is so small for all strategies. It also explains why MinExp outperforms
CheckMore: Although the maximum degree of parallelism is important, only a few tasks matter,
and they should be checkpointed à la Young/Daly to minimize their own expected execution time
and thereby that of the entire workflow. SoyKB and Bwa also have very low ratios. In the case
of SoyKB, there is just not enough parallelism during the majority of the execution time, so all
strategies are making reasonable checkpointing decisions, with CheckMore performing slightly
better for taking into account this small parallelism. Bwa, however, has two source tasks that must
be executed first and two sink tasks that must be executed last. Among them, one source task and
one sink task are extremely long, so failures in other tasks have little impact (as in the case of
Sras). Yet the small tasks are not totally negligible here, because the dominant sink task must be
processed after all of them, so it is still worth to optimize these tasks with CheckMore, which
explains why it is slightly better than MinExp.

For all the other workflows, CheckMore performs better than MinExp by a significant margin.
This is due to CheckMore’s more effective checkpointing strategies given the specific structure
of these workflows. For instance, Montage has some key tasks that are dominant, so a failure
that strikes most of the other tasks does not impact the overall execution time. This is similar to

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

14:16 Y. Robert et al.

Fig. 3. Performance (ratio) comparison of the three checkpointing strategies for the nine different workflows.

the case of Sras and explains why, for all strategies, the first quantile of the ratio is very low (i.e.,
around 1). However, when a failure does strike one of the key tasks, the execution time will be
heavily impacted. The difference with Sras is that Montage contains more key tasks that can run
in parallel, so it is much more likely that one of them will fail, which is why checkpointing them
with CheckMore is better. Next, Blast and Seismology have some source and sink tasks (as Bwa),
which, however, are not so dominant in length, making the difference between CheckMore and
MinExp higher even from the first quantile. Other workflows also have similar structures, which
eventually contribute to the better performance of CheckMore over MinExp.

5.3 Impact of Different Parameters

We now study the impact of different parameters on the performance of the checkpointing strate-
gies. In each set of experiments below, we vary a single parameter while keeping the others fixed
at their base values. The results for all nine workflows are available in Section J.3 of the WSM; due
to lack of space, we focus here on Blast, Seismology, Genome, and Sras only, whose results are
shown in Figures 4–7. Note that the scale of the y axis is kept the same for ease of comparison. For
some figures with really small values, zoomed-in plots are also provided on the original figure for
better viewing.

Impact of Number of Processors (m). We first assess the impact of the number of processors,
which is varied between 4,096 and 50,000, and the results are shown in Figure 4. In general, in-
creasing the number of processors increases the ratio. This corroborates our theoretical analysis,
because for most types of workflows, having more processors means having a larger Δ and thus a
larger potential ratio, untilm surpasses the width of the dependence graph. However, CheckMore
and BasicCheckMore appear less impacted than MinExp.

For Blast, Seismology, and Genome, the ratio is very close to 1 when m is small for all check-
pointing strategies. In fact, for these workflows, most tasks are quite independent. Thus, when n is
large compared tom, even if a failure strikes a task, it will have little impact on the starting times
of the other tasks. This is because we only maintain the order of execution but do not stick to the
same mapping as in the failure-free schedule. For this reason, it is better to minimize each task’s
own execution time by using MinExp (i.e., CheckMore checkpoints a bit too much). However,
when m becomes large, the performance of MinExp degrades significantly, with an average ratio
even reaching 1.7 for Blast atm = 50,000, whereas it stays below 1.1 for CheckMore.

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

Checkpointing Workflows à la Young/Daly Is Not Good Enough 14:17

Fig. 4. Impact of number of processors (m) on the performance of the checkpointing strategies for four

different workflows (Blast, Seismology, Genome, and Sras).

Finally, for Sras, as the number of dominating tasks that could be run in parallel is way less
than 4,096, the ratio of MinExp does not vary much with m, while that of CheckMore increases
with m as it tends to checkpoint more with an increasing number of processors. Also, in more
than 90% of the cases, the failures have strictly no impact on the overall execution time, since they
do not hit the dominating tasks. This is why the average ratio is above the 90th percentile for all
checkpointing strategies.

Impact of Checkpoint Time (C). We now evaluate the impact of the checkpoint time by varying
it between 15 and 240 seconds, and the results are shown in Figure 5. The ratio generally increases
with C; this is consistent with Equation (3). When R = C and D = 0, the approximation ratio
satisfies r ≤ (X

Nc
+ Y) (2C

W
+ 1) + C

W
+ Z , where X ,Y , and Z barely depend on C , Nc decreases

with C , and C
W
≈

√
C
2μ

increases with C . Intuitively, the checkpoint time impacts the ratio in two

ways. First, as C increases, we pay more for each checkpoint, which could lead to an increased

ratio. Second, as we useWYD =
√

2C
pλ

to determine the checkpointing period and hence the number

of checkpoints, a task will become less safe whenC increases, because it will be checkpointed less,
and this could also increase the ratio.

Looking at Genome under MinExp, we can see a clear increase in the ratio when C increases
from 15 to 21. This is because the typical number of checkpoints for the critical tasks (that affect
the overall execution time the most) drops from 3 to 2, thus the time wasted due to a failure
increases from 33% to 50%. As C increases from 60 to 85, the typical number of checkpoints of
these tasks further drops from 2 to 1, making the waste per failure increase to 100%, and so the
ratio also greatly increases. For values ofC between 21 and 42, even if the number of checkpoints

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

14:18 Y. Robert et al.

Fig. 5. Impact of checkpoint time (C) on the performance of the checkpointing strategies for four different

workflows (Blast, Seismology, Genome, and Sras).

does not change, the ratio increases smoothly due to the increase in checkpoint time. The ratio of
CheckMore, however, only increases slightly with the checkpoint time, which is, however, not
visible in the figure due to the small values. Seismology also clearly illustrates these phenomena.
For Sras, since most failures do not affect the overall execution time, the ratio of all strategies is
only impacted by the checkpoint time. For Blast under MinExp, because most tasks are short and
we have a single checkpoint to start with, the increase in checkpoint time is negligible compared
to the waste induced by failures.

Impact of Individual MTBF (μind). We evaluate the impact of individual processor’s MTBF by
varying it between 30 months and 40 years, and the results are shown in Figure 6. Intuitively,
when μind increases (or, equivalently, the failure rate λ decreases), we would have fewer failures
and expect the ratio to decrease. This is generally true for CheckMore but not always for MinExp.
To understand why, we refer again to the simplified approximation ratio r ≤ (X

Nc
+ Y) (2C

W + 1) +
C
W +Z , where X ,Y , and Z are barely affected by μind. Here, when the number of failures decreases,

WYD =
√

2C
pλ

increases, so the number of checkpoints decreases and the time wasted for each failure

increases. This could potentially lead to an increase in the ratio. To illustrate this compound effect,
we again look at Genome under MinExp. When μind goes from 2.5 to 3.5 years, the typical number
of checkpoints for the critical tasks (that affect the overall execution time the most) drops from 3
to 2, which increases the waste per failure by around 50%. This together with the fact that MinExp
does not take into account the parallelism results in an increase in the ratio. When μind goes from
3.5 to 7 years, the ratio decreases simply because we have fewer failures. As μind continues to
increase to 14 years, the number of checkpoints for the critical tasks further drops from 2 to 1.

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

Checkpointing Workflows à la Young/Daly Is Not Good Enough 14:19

Fig. 6. Impact of individual MTBF (μind) on the performance of the checkpointing strategies for four different

workflows (Blast, Seismology, Genome, and Sras).

This increases the waste per failure to 100%, which again leads to an increase in the ratio. From
this point on, the ratio will just decrease with μind, again due to fewer failures. The same can be
observed for Seismology. In Blast and Sras, the ratio simply decreases with μind. For Blast, even
when μind is small, we only checkpoint once, so the ratio decreases due to fewer failures. For Sras,
failures usually do not impact the overall execution time, so the decrease in ratio is mainly due to
the decrease in the number of checkpoints.

Finally, it is worth noting that the ratio variance increases as μind increases. This is because when
there are only a few failures and the length of the segments is large, the failure location (inside the
segments) will matter significantly, especially for MinExp.

Impact of Number of Tasks (n). Finally, we study the impact of the number of tasks in the
workflow, which is varied between 8,800 and 70,000, and the results are shown in Figure 7. Again,
the ratio is impacted by the number of tasks in two different ways. First, when n increases, the
width of the graph increases and so does Δ, and this would increase the ratio according to our
analysis. Second, when n increases and m is fixed, the average number of tasks executed by each
processor increases. This means that if a failure occurs early in the execution, then it is less likely
to have a significant impact on the ratio, since multiple other tasks will be processed afterwards
to balance the load, especially if the tasks are relatively independent.

These two phenomena are clearly observed in Blast under MinExp. This workflow mainly
consists of a large batch of independent tasks. When n increases to 17,680, which is approximately
the number of processors (m = 16,384), the ratio increases because Δ increases. After that, the ratio
starts to decrease because n > m. In this case, when a failure strikes an early task, the subsequent
tasks could be assigned to other processors to reduce the impact of the failure. Ultimately, ifn �m,

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

14:20 Y. Robert et al.

Fig. 7. Impact of number of tasks (n) on the performance of the checkpointing strategies for four different

workflows (Blast, Seismology, Genome, and Sras).

then MinExp would become more efficient. Indeed, since the tasks are almost independent and
uni-processor tasks, list scheduling is able to dynamically balance the loads of different processors.
Thus, minimizing the expected execution time of each individual task using MinExp would be a
good strategy for the overall execution time of the workflow.

For Seismology and Genome, we observe the same up-and-down effect as a result of these two
phenomena, but nor for Sras, which is not impacted by the number of tasks. For this workflow,
only a few key dominating tasks matter and their width remains well below the number of pro-
cessors. Since these tasks form a small proportion of the total number of tasks, varying n does not
significantly alter their chance of being hit by a failure, so the ratio remains close to 1.

5.4 Statistics

We provide some statistics related to the experiments of Section 5.3, still focusing on the four work-
flows Blast, Seismology, Genome, and Sras. First, we check the quality of the strategy MinExp
for each task, hence with NME segments: We make a comparison with the strategy Lambert that
uses the exact optimal number of segments Nopt (with the notations of Section 2.5). In Table 2,
we report the mean and standard deviation of the ratio of the expected execution time achieved
by Lambert over that achieved by MinExp. Hence, a value greater than 1 means that MinExp is
better. Because we consider statistics on ratios, we use the geometric mean and standard deviation
instead of classical values. For each workflow type, an instance in Table 2 corresponds to a given
set of parameters (of 30 possible sets), which is tested for 30 different task graphs. Hence there
are 900 instances per workflow type. For each instance, the expected execution times are averaged
over 50 failure scenarios.

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

Checkpointing Workflows à la Young/Daly Is Not Good Enough 14:21

Table 2. Geometric Mean and Standard Deviation of the Ratio of the Expected Execution Time Achieved

by Lambert over That Achieved by MinExp

Blast Genome Seismology Sras

Geometric Mean 1.00017 1.02691 1.02895 1.000041
Geometric SD 1.01564 1.02486 1.05626 1.00077

Instances where MinExp is better 462(51.3%) 778(86.4%) 677(75.2%) 405(45%)
Instances where Lambert is better 436(48.4%) 122(13.6%) 220(24.4%) 444(49.3%)
Instances where both are identical 2(0.2%) 0(0%) 3(0.3%) 51(5.7%)

tasks with identical number of checkpoints (often 1) 95.5% 93.1% 94.2% 91.5%
tasks where Lambert has one less checkpoint 4.5% 6.9% 5.8% 8.5%

tasks where Lambert has neither of above 0.0% 0.0% 0.0% 0.0%

Table 3. Average Performance Ratio of Each Checkpoint Strategy

Blast Genome Seismology Sras

MinExp 1.19228 1.08755 1.19537 1.000737

Lambert 1.19256 1.11702 1.23072 1.000778
BasicCheckMore 1.02758 1.00688 1.00714 1.00329

CheckMore 1.02723 1.00698 1.00717 1.00330

In the last three rows of Table 2, we compare the number of checkpoints for each task in each
graph, with a total of around 25,000,000 task comparisons per workflow type. The 0.0% is exactly
0 of around 25 million: We never found a task for which Lambert would not have either the same
number of checkpoints as MinExp or one less checkpoint than MinExp. Altogether, we conclude
that MinExp and Lambert perform almost the same. The slight superiority of MinExp in terms
of performance is due to its conservative approach: MinExp rounds up the number of checkpoints
of each task to the higher number (taking the ceiling instead of the floor), which turns out to be a
good decision when several tasks execute in parallel.

Next, in Table 3, for each of the four workflow types, we report the average value, over all 900
instances, of the performance ratio of each checkpointing strategy. As in Section 5.2, the perfor-
mance ratio is T

Tbase
, where Tbase is the failure-free execution time of the workflow and T is the

execution time under the failure scenario. The major difference from the results of Section 5.3 is
that we now add the Lambert strategy to the comparison. Clearly, MinExp and Lambert are quite
similar, while CheckMore and BasicCheckMore bring huge benefits, except for Sras.

5.5 Summary

Our experimental evaluation demonstrates that MinExp and Lambert are not resilient enough for
checkpointing workflows, although they provide an optimal strategy for each individual task. How-
ever, CheckMore proves to be a very useful strategy, except for Sras whose ratios are extremely
low. When varying the key parameters, the simulation results nicely corroborate our theoretical
analysis. Furthermore, the easy-to-implement BasicCheckMore strategy always leads to ratios
that are close to those of CheckMore, regardless of the parameters.

6 RELATED WORK

6.1 Scheduling Workflows

Scheduling a computational workflow consisting of a set of tasks in a dependency graph to min-
imize the overall execution time (or makespan) is a well-known NP-complete problem [20]. Only
a few special cases are known to be solvable in polynomial time, such as when all tasks are of the

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

14:22 Y. Robert et al.

same length and the dependency graph is a tree [27] or when there are only two processors [11].
For the general case, some branch-and-bound algorithms [26, 35] have been proposed to compute
the optimal solution, but the problem remains tractable only for small instances. In the seminal
work, Graham [22] showed that the list scheduling strategy, which organizes all tasks in a list and
schedules the first ready task at the earliest time possible, achieves an execution time that is no
worse than 2 − 1

m
times the optimum, where m denotes the total number of processors, i.e., the

algorithm is a (2− 1
m

)-approximation. This performance guarantee holds regardless of the order of
the tasks in the list. Some heuristics further explore the impact of different task orderings on the
overall execution time, with typical examples including task execution times, bottom-levels, and
critical paths (see Reference [30] for a comprehensive survey of the various heuristic strategies).

While the results above are for workflows with uni-processor tasks (or tasks that share the same
degree of parallelism), scheduling workflows with parallel tasks has also been considered. Li [32]
proved that, for precedence constrained tasks with fixed parallelism of different degrees (i.e., rigid
tasks), the worst-case approximation ratio for list scheduling under a variety of task ordering rules
ism. However, if all tasks require no more than qm processors, where 0 < q < 1, then the approxi-

mation ratio becomes
(2−q)m

(1−q)m+1 . Demirci et al. [13] proved anO (logn)-approximation algorithm for

this problem using divide-and-conquer, where n is the number of tasks in the workflow. Further-
more, for parallel tasks that can be executed using a variable number of processors at launch time
(i.e., moldable tasks), list scheduling is shown to be an O (1)-approximation when coupled with a
good processor allocation strategy under reasonable assumptions on the tasks’ speedup profiles
[17, 29, 31].

In this article, we augment the workflow scheduling problem with the checkpointing problem
for its constituent tasks. We analyze the approximation ratios of some checkpointing strategies
while relying on the ratios of existing scheduling algorithms to provide an overall performance
guarantee for the combined problem.

6.2 Checkpointing Workflows

Checkpoint-restart is one of the most widely used strategy to deal with fail-stop errors. Several
variants of this policy have been studied; see Reference [25] for an overview. The natural strategy
is to checkpoint periodically, and one must decide how often to checkpoint, i.e., derive the optimal
checkpointing period. An optimal strategy is defined as a strategy that minimizes the expectation
of the execution time of the application. For an preemptible application, given the checkpointing
costC and platform MTBF μ, the classical formula due to Young [38] and Daly [12] states that the
optimal checkpointing period isWYD =

√
2μC .

Going beyond preemptible applications, some works have studied task-based applications, using
a model where checkpointing is only possible right after the completion of a task. The problem is
then to determine which tasks should be checkpointed. This problem has been solved for linear
workflows (where the task graph is a simple linear chain) by Toueg and Babaoglu [37], using
a dynamic programming algorithm. This algorithm was later extended in Reference [5] to cope
with both fail-stop and silent errors simultaneously. Another special case is that of a workflow
whose dependence graph is arbitrary but whose tasks are parallel tasks that each executes on the
whole platform. In other words, the tasks have to be serialized. The problem of ordering the tasks
and placing checkpoints is proven NP-complete for simple join graphs in Reference [4], which also
introduces several heuristics. Finally, for general workflows, deciding which tasks to checkpoint
has been shown #P-complete [23], but several heuristics are proposed in Reference [24].

In this article, we depart from the above model [5, 23, 24, 37] and assume that each workflow
task is a preemptible task that can be checkpointed at any instant. This assumption is quite natural
for many applications, such as those involving dense linear algebra kernels or tensor operations.

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

Checkpointing Workflows à la Young/Daly Is Not Good Enough 14:23

It is even mandatory for coarse-grained workflows: Unless the failure rate can be decreased below
the current standard, the successful completion of any large task, say, executing a few hours with
1K nodes, is very unlikely.

7 CONCLUSION

In this article, we have investigated checkpointing strategies for parallel workflows, whose tasks
are either sequential or parallel and in the latter case either rigid or moldable. Because HPC tasks
may have a large granularity, we assume that they can be checkpointed at any instant. Starting
from a failure-free schedule, the natural MinExp strategy consists in checkpointing each task so
as to minimize its expected execution time; hence MinExp builds upon the classical results of
Young/Daly and uses the optimal checkpointing period for each task. We derive a performance
bound for MinExp and exhibit an example where this bound is tight.

Intuitively, MinExp may perform badly in some cases, because there is an important risk that the
delay of one single task will slow down the whole workflow. To mitigate this risk, we introduce
CheckMore strategies that may checkpoint some tasks more often than other tasks and more
often than in the MinExp strategy. This comes in two flavors. CheckMore decides, for each task,
how many checkpoints to take, building upon its degree of parallelism in the corresponding failure-
free schedule. BasicCheckMore is just using, as degree of parallelism for each task, the maximum
possible value min(n,m) (hence it is equivalent to CheckMore for independent tasks all running
in parallel). The theoretical bounds for BasicCheckMore are not as good as those of CheckMore,
but its performance in practice is very close, and thus BasicCheckMore proves to be very efficient
despite its simplicity.

An extensive set of simulations is conducted at large scale, using realistic synthetic workflows
from WorkflowHub with between 8k and 70k tasks, and running on a platform with up to 50k
processors. The results are impressive, with ratios very close to 1 on all workflows for both
CheckMore strategies, while MinExp has much higher ratios, for instance 1.7 on average for
Blast and 1.46 for Seismology. Hence, the simulations confirm that it is indeed necessary in prac-
tice to checkpoint workflow tasks more often than the classical Young/Daly strategy.

As future work, we plan to extend the simulation campaign to parallel tasks (rigid or moldable),
as soon as workflow benchmarks with parallel tasks are available to the community. We will also
investigate the impact of the failure-free list schedule on the final performance in a failure-prone
execution, both theoretically and experimentally. Indeed, list schedules that control the degree
of parallelism in the execution may provide a good tradeoff between efficiency (in a failure-free
framework) and robustness (when many failures strike during execution).

ACKNOWLEDGMENTS

We thank Julien Moatti for his help in Section C of the WSM. We also thank the reviewers for their
comments and suggestions, which greatly helped improve the final version of the article.

REFERENCES

[1] Anne Benoit, Lucas Perotin, Yves Robert, and Hongyang Sun. 2021. Checkpointing Workflows à la Young/Daly Is Not

Good Enough: Code for In-house Simulator. (June 2021). https://graal.ens-lyon.fr/~yrobert/simulator.zip.

[2] Argonne Leadership Computing Facility (ALCF). Mira Log Traces. Retrieved from https://reports.alcf.anl.gov/data/

mira.html.

[3] Malcolm Atkinson, Sandra Gesing, Johan Montagnat, and Ian Taylor. 2017. Scientific workflows: Past, present and

future. Fut. Gener. Comput. Syst. 75 (2017), 216–227.

[4] Guillaume Aupy, Anne Benoit, Henri Casanova, and Yves Robert. 2016. Scheduling computational workflows on

failure-prone platforms. Int. J. Netw. Comput. 6, 1 (2016), 2–26.

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

https://graal.ens-lyon.fr/~yrobert/simulator.zip
https://reports.alcf.anl.gov/data/mira.html

14:24 Y. Robert et al.

[5] Anne Benoit, Aurélien Cavelan, Yves Robert, and Hongyang Sun. 2016. Assessing general-purpose algorithms to cope

with fail-stop and silent errors. ACM Trans. Parallel Comput. 3, 2 (2016).

[6] Wesley Bland, Aurelien Bouteiller, Thomas Herault, Joshua Hursey, George Bosilca, and Jack J. Dongarra. 2013. An

evaluation of User-Level Failure Mitigation support in MPI. Computing 95, 12 (2013), 1171–1184.

[7] Marin Bougeret, Henri Casanova, Mikael Rabie, Yves Robert, and Frédéric Vivien. 2011. Checkpointing Strategies for

Parallel Jobs. Research Report 7520. INRIA, France.

[8] Franck Cappello, Al Geist, William Gropp, Sanjay Kale, Bill Kramer, and Marc Snir. 2014. Toward exascale resilience:

2014 update. Supercomput. Front. Innov. 1, 1 (2014).

[9] F. Cappello, K. Mohror, et al. 2019. VeloC: Very Low Overhead Checkpointing System. Retrieved from https://veloc.

readthedocs.io/en/latest/.

[10] K. M. Chandy and L. Lamport. 1985. Distributed snapshots: Determining global states of distributed systems. ACM

Trans. Comput. Syst. 3, 1 (1985), 63–75.

[11] E. G. Coffman and R. L. Graham. 1972. Optimal scheduling for two-processor systems. Acta Inf. 1, 3 (1972), 200–213.

[12] J. T. Daly. 2006. A higher order estimate of the optimum checkpoint interval for restart dumps. Fut. Gener. Comput.

Syst. 22, 3 (2006), 303–312.

[13] Gökalp Demirci, Henry Hoffmann, and David H. K. Kim. 2018. Approximation algorithms for scheduling with resource

and precedence constraints. In Proceedings of the Symposium on Theoretical Aspects of Computer Science (STACS’18).

25:1–25:14.

[14] Nosayba El-Sayed and Bianca Schroeder. 2013. Reading between the lines of failure logs: Understanding how HPC

systems fail. In Proceedings of the 43rd International Conference on Dependable Systems and Networks (DSN’13). IEEE,

1–12.

[15] Fault-Tolerance Research Hub. 2021. User Level Failure Mitigation. Retrieved from https://fault-tolerance.org.

[16] Dror G. Feitelson and Larry Rudolph. 1996. Toward convergence in job schedulers for parallel supercomputers. In Job

Scheduling Strategies for Parallel Processing. Springer, 1–26.

[17] Anja Feldmann, Ming-Yang Kao, Jiří Sgall, and Shang-Hua Teng. 1998. Optimal on-line scheduling of parallel jobs

with dependencies. J. Combin. Optim. 1, 4 (1998), 393–411.

[18] K. Ferreira, J. Stearley, J. H. III Laros, R. Oldfield, K. Pedretti, R. Brightwell, R. Riesen, P. G. Bridges, and D. Arnold.

2011. Evaluating the viability of process replication reliability for exascale systems. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis (SC’11). ACM.

[19] Rafael Ferreira da Silva, Loïc Pottier, Tainã Coleman, Ewa Deelman, and Henri Casanova. 2020. WorkflowHub: Com-

munity framework for enabling scientific workflow research and development. In Proceedings of the IEEE/ACM Work-

flows in Support of Large-Scale Science (WORKS’20). 49–56. https://doi.org/10.1109/WORKS51914.2020.00012

[20] M. R. Garey and D. S. Johnson. 1979. Computers and Intractability, a Guide to the Theory of NP-Completeness. W. H.

Freeman & Company.

[21] Pter J. Grabner and Helmut Prodinger. 1997. Maximum statistics of N random variables distributed by the negative

binomial distribution. Combin. Probab. Comput. 6, 2 (1997), 179–183.

[22] R. L. Graham. 1969. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17, 2 (1969), 416–429.

[23] Li Han, Louis-Claude Canon, Henri Casanova, Yves Robert, and Frédéric Vivien. 2018. Checkpointing workflows for

fail-stop errors. IEEE Trans. Comput. 67, 8 (2018), 1105–1120.

[24] Li Han, Valentin Le Fèvre, Louis-Claude Canon, Yves Robert, and Frédéric Vivien. 2018. A generic approach to schedul-

ing and checkpointing workflows. In Proceedings of the 47th Int. Conf. on Parallel Processing (ICPP’18). IEEE Computer

Society Press.

[25] Thomas Herault and Yves Robert (Eds.). 2015. Fault-Tolerance Techniques for High-Performance Computing. Springer

Verlag.

[26] Udo Hönig and Wolfram Schiffmann. 2003. A parallel branch-and-bound algorithm for computing optimal task graph

schedules. In Proceedings of the 2nd International Workshop on Grid and Cooperative Computing (GCC’03). 18–25.

[27] T. C. Hu. 1961. Parallel sequencing and assembly line problems. Operat. Res. 9, 6 (1961), 841–848.

[28] IBM Spectrum LSF Job Scheduler. 2021. Fault Tolerance and Automatic Management Host Failover. Retrieved from

https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=cluster-fault-tolerance.

[29] Klaus Jansen and Hu Zhang. 2006. An approximation algorithm for scheduling malleable tasks under general prece-

dence constraints. ACM Trans. Algor. 2, 3 (2006), 416–434.

[30] Yu-Kwong Kwok and Ishfaq Ahmad. 1999. Static scheduling algorithms for allocating directed task graphs to multi-

processors. ACM Comput. Surv. 31, 4 (1999), 406–471.

[31] Renaud Lepère, Denis Trystram, and Gerhard J. Woeginger. 2001. Approximation algorithms for scheduling malleable

tasks under precedence constraints. In Proceedings of the European Symposium on Algorithms (ESA’01). 146–157.

[32] Keqin Li. 1999. Analysis of the list scheduling algorithm for precedence constrained parallel tasks. J. Combin. Optim.

3, 1 (1999), 73–88.

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

https://veloc.readthedocs.io/en/latest/
https://fault-tolerance.org
https://doi.org/10.1109/WORKS51914.2020.00012
https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=cluster-fault-tolerance

Checkpointing Workflows à la Young/Daly Is Not Good Enough 14:25

[33] National Energy Research Scientific Computing Center (NERSC). Cori Log Traces. Retrieved from https://docs.nersc.

gov/systems/cori/.

[34] B. Schroeder and G. A. Gibson. 2007. Understanding failures in petascale computers. J. Phys.: Conf. Ser. 78, 1 (2007).

[35] Ahmed Zaki Semar Shahul and Oliver Sinnen. 2010. Scheduling task graphs optimally with A*. J. Supercomput.

51 (2010), 310–332.

[36] Pegasus Team. 2014. Pegasus Workflow Generator. Retrieved from https://confluence.pegasus.isi.edu/display/pegasus/

WorkflowGenerator.

[37] Sam Toueg and Özalp Babaoğlu. 1984. On the optimum checkpoint selection problem. SIAM J. Comput. 13, 3 (1984).

[38] John W. Young. 1974. A first order approximation to the optimum checkpoint interval. Commun. ACM 17, 9 (1974),

530–531.

Received 18 November 2021; revised 7 July 2022; accepted 11 July 2022

ACM Transactions on Parallel Computing, Vol. 9, No. 4, Article 14. Publication date: December 2022.

https://docs.nersc.gov/systems/cori/
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

