When Amdahl Meets Young/Daly

Aurélien Cavelan¹ Jiafan Li³ Yves Robert^{1,2} Hongyang Sun¹

¹ENS Lyon & INRIA, France.

²University of Tennessee Knoxville, USA.

³East China Normal University, China.

IEEE Cluster'16@Taipei, Taiwan September 14, 2016 What is the optimal number of processors to execute a parallel job obeying Amdahl's law on a failure-prone platform?

Amdahl's Law

Speedup with ${\it P}$ processors and α sequential fraction:

$$S(P) = rac{1}{lpha + rac{1-lpha}{P}}$$

- \blacktriangleright Bounded above by $1/\alpha$
- Strictly increasing function of P

Amdahl's Law

Speedup with P processors and α sequential fraction:

$$S(P) = rac{1}{lpha + rac{1-lpha}{P}}$$

- \blacktriangleright Bounded above by $1/\alpha$
- Strictly increasing function of P

Allocating processors on a failure-prone platform?

- ► Same speedup ☺
- ► More errors/failures 😟

MTBF
$$\mu_P = \frac{\mu_{\text{ind}}}{P}$$

Increased resilience overhead 🙂

Resilience for HPC

Fail-stop errors: e.g., resource crash, node failure

- Instantaneous error detection

Standard approach: periodic checkpointing, rollback and recovery

Resilience for HPC

Fail-stop errors: e.g., resource crash, node failure

- Instantaneous error detection

Standard approach: periodic checkpointing, rollback and recovery

Optimal checkpointing interval à la Young/Daly:

$$T^* = \sqrt{2\mu C}$$

where μ is MTBF and C is checkpointing time

- First-order approximation formula
- With fixed processor allocation

Coping with Silent Errors

Silent errors (or Silent Data Corruptions or SDCs): e.g., soft faults in L1 cache, ALU, double bit flip, due to cosmic radiation, packaging pollution, etc.

- Arbitrary detection latency

Promising approach: combine checkpointing with verification (for error detection)

Coping with Silent Errors

Silent errors (or Silent Data Corruptions or SDCs): e.g., soft faults in L1 cache, ALU, double bit flip, due to cosmic radiation, packaging pollution, etc.

- Arbitrary detection latency

Promising approach: combine checkpointing with verification (for error detection)

Coping with Silent Errors

Silent errors (or Silent Data Corruptions or SDCs): e.g., soft faults in L1 cache, ALU, double bit flip, due to cosmic radiation, packaging pollution, etc.

- Arbitrary detection latency

Promising approach: combine checkpointing with verification (for error detection)

- Extension of Young/Daly: $T^* = \sqrt{\mu(V+C)}$
- Many methods to detect silent errors

Methods for Detecting Silent Errors

General-purpose approaches

 Replication [*Fiala et al. 2012*] or triple modular redundancy and voting [*Lyons and Vanderkulk 1962*]

Application-specific approaches

- Algorithm-based fault tolerance (ABFT): checksums in dense matrices Limited to one error detection and/or correction in practice [*Huang and Abraham 1984*]
- Partial differential equations (PDE): use lower-order scheme as verification mechanism [*Benson, Schmit and Schreiber 2014*]
- Generalized minimal residual method (GMRES): inner-outer iterations [Hoemmen and Heroux 2011]
- Preconditioned conjugate gradients (PCG): orthogonalization check every k iterations, re-orthogonalization if problem detected [Sao and Vuduc 2013, Chen 2013]

Data-analytics approaches

- Dynamic monitoring of HPC datasets based on physical laws (e.g., temperature limit, speed limit) and space or temporal proximity [Bautista-Gomez and Cappello 2014]
- ▶ Time-series prediction, spatial multivariate interpolation [Di et al. 2014]

When Amdahl Meets Young/Daly

Optimizing performance (overhead H = 1/S):

- Optimal number of processors P*
- Optimal checkpointing interval T*

When Amdahl Meets Young/Daly

Optimizing performance (overhead H = 1/S):

- Optimal number of processors P*
- Optimal checkpointing interval T*

Coping with both fail-stop and silent errors:

without error

Models

Error model: exponential distribution, $\lambda_{ind} = 1/\mu_{ind}$ (memoryless and independent)

	error rate	error probability
Fail-stop errors	$\lambda_P^f = f \lambda_{\rm ind} P$	$q_P^f = 1 - e^{-\lambda_P^f T}$
Silent errors	$\lambda_P^s = s \lambda_{ind} P$	$q_P^s = 1 - e^{-\lambda_P^s T}$

Resilience model:

Checkpointing time	$C_P = a + b/P + cP$
Verification time	$V_P = v + u/P$
Down time (fail-stop)	D

All coefficients (a, b, c, v, u, f, s, D) are assumed to be constants

Main Results

Exact execution time of a pattern in expectation (see paper) First-order approximation of optimal P^* , T^* and H^*

Main Results

Exact execution time of a pattern in expectation (see paper) First-order approximation of optimal P^* , T^* and H^*

• **Case 1**: checkpoint cost increases with $P(C_P = cP + o(P))$

$$P^* = \left(\frac{1}{c\left(\frac{f}{2}+s\right)\lambda_{\text{ind}}}\right)^{1/4} \left(\frac{1-\alpha}{2\alpha}\right)^{1/2} = \Theta(\lambda_{\text{ind}}^{-1/4})$$
$$T^* = \left(\frac{c}{\left(\frac{f}{2}+s\right)\lambda_{\text{ind}}}\right)^{1/2} = \Theta(\lambda_{\text{ind}}^{-1/2})$$
$$H^* = \alpha + 2\left(4\alpha^2(1-\alpha)^2c\left(\frac{f}{2}+s\right)\lambda_{\text{ind}}\right)^{1/4} = \Theta(\lambda_{\text{ind}}^{1/4})$$

• **Case 2**: checkpoint/verif. cost constant $(C_P + V_P = d + o(1))$

$$P^* = \left(\frac{1}{d\left(\frac{f}{2} + s\right)\lambda_{\text{ind}}}\right)^{1/3} \left(\frac{1 - \alpha}{\alpha}\right)^{2/3} = \Theta(\lambda_{\text{ind}}^{-1/3})$$
$$T^* = \left(\frac{d^2}{\left(\frac{f}{2} + s\right)\lambda_{\text{ind}}}\right)^{1/3} \left(\frac{\alpha}{1 - \alpha}\right)^{1/3} = \Theta(\lambda_{\text{ind}}^{-1/3})$$
$$H^* = \alpha + 3\left(\alpha^2(1 - \alpha)d\left(\frac{f}{2} + s\right)\lambda_{\text{ind}}\right)^{1/3} = \Theta(\lambda_{\text{ind}}^{1/3})$$

Main Results

Exact execution time of a pattern in expectation (see paper) First-order approximation of optimal P^* , T^* and H^*

• **Case 1**: checkpoint cost increases with $P(C_P = cP + o(P))$

$$P^* = \left(\frac{1}{c\left(\frac{f}{2}+s\right)\lambda_{\text{ind}}}\right)^{1/4} \left(\frac{1-\alpha}{2\alpha}\right)^{1/2} = \Theta(\lambda_{\text{ind}}^{-1/4})$$
$$T^* = \left(\frac{c}{\left(\frac{f}{2}+s\right)\lambda_{\text{ind}}}\right)^{1/2} = \Theta(\lambda_{\text{ind}}^{-1/2})$$
$$H^* = \alpha + 2\left(4\alpha^2(1-\alpha)^2c\left(\frac{f}{2}+s\right)\lambda_{\text{ind}}\right)^{1/4} = \Theta(\lambda_{\text{ind}}^{1/4})$$

• Case 2: checkpoint/verif. cost constant $(C_P + V_P = d + o(1))$

Processors
$$\uparrow$$
 $P^* = \left(\frac{1}{d\left(\frac{f}{2}+s\right)\lambda_{\text{ind}}}\right)^{1/3} \left(\frac{1-\alpha}{\alpha}\right)^{2/3} =\Theta(\lambda_{\text{ind}}^{-1/3})$
Interval \downarrow $T^* = \left(\frac{d^2}{\left(\frac{f}{2}+s\right)\lambda_{\text{ind}}}\right)^{1/3} \left(\frac{\alpha}{1-\alpha}\right)^{1/3} =\Theta(\lambda_{\text{ind}}^{-1/3})$
Overhead \downarrow $H^* = \alpha + 3\left(\alpha^2(1-\alpha)d\left(\frac{f}{2}+s\right)\lambda_{\text{ind}}\right)^{1/3} =\Theta(\lambda_{\text{ind}}^{1/3})$

Limitation of First-Order Approximation

Difficulty with other (less practical) cases: e.g., $C_P + V_P = h/P$ or $\alpha = 0$

Observation: Suppose $P = \Theta(\lambda_{ind}^{-x})$ and $T = \Theta(\lambda_{ind}^{-y})$. Then, for first-order approx. to accurately estimate error probabilities (e.g., $e^{-\lambda_P C_P}$, $e^{-\lambda_P V_P}$ and $e^{\lambda_P T}$), we need:

$$\begin{aligned} x < \delta, \text{ where } \delta = \begin{cases} 1/2 & \text{if } c \neq 0\\ 1 & \text{if } c = 0 \end{cases} \\ x + y < 1 \\ \Rightarrow P \cdot T < 1/\lambda_{\text{ind}} = \mu_{\text{ind}} \text{ (MTBF)} \end{aligned}$$

Limitation of First-Order Approximation

Difficulty with other (less practical) cases: e.g., $C_P + V_P = h/P$ or $\alpha = 0$

Observation: Suppose $P = \Theta(\lambda_{ind}^{-x})$ and $T = \Theta(\lambda_{ind}^{-y})$. Then, for first-order approx. to accurately estimate error probabilities (e.g., $e^{-\lambda_P C_P}$, $e^{-\lambda_P V_P}$ and $e^{\lambda_P T}$), we need:

$$\begin{aligned} x < \delta, \text{ where } \delta &= \begin{cases} 1/2 & \text{ if } c \neq 0\\ 1 & \text{ if } c = 0 \end{cases}\\ x + y < 1 \\ \Rightarrow P \cdot T < 1/\lambda_{\text{ind}} = \mu_{\text{ind}} \text{ (MTBF)} \end{aligned}$$

Possible solution: second or high-order approximations with numerical methods

Simulation Settings

Platform	Hera	Atlas	Coastal	Coastal SSD	
λ_{ind}	1.69e-8	1.62e-8	2.34e-9	2.34e-9	
f	0.2188	0.0625	0.1667	0.1667	
S	0.7812	0.9375	0.8333	0.8333	
Р	512	1024	2048	2048	
C _P	300 <i>s</i>	439 <i>s</i>	1051 <i>s</i>	2500 <i>s</i>	
VP	15.4 <i>s</i>	9.1 <i>s</i>	4.5 <i>s</i>	180 <i>s</i>	

Table: Model parameters from SCR library [Moody et al. 2010]

Table: Different resilience scenarios

Scenario	1	2	3	4	5	6
C _P	сP	сP	а	а	b/P	b/P
V _P	v	u/P	v	u/P	v	u/P

Simulation Results

 $\alpha = 0.1$

Simulation Results

- Impact of sequential fraction α and error rate $\lambda_{\rm ind}$

Simulation Results

- Order of optimal P^* and T^*

What to remember

 Optimal P* and T* as function of MTBF μ_{ind} = 1/λ_{ind}
 1 Checkpointing cost increases with P ⇒ P* = Θ(λ_{ind}^{-1/4}), T* = Θ(λ_{ind}^{-1/2})
 2 Checkpointing/verification cost remains constant ⇒ P* = Θ(λ_{ind}^{-1/3}), T* = Θ(λ_{ind}^{-1/3})

Future work

 Explore different speedup profiles, weak scaling, higher-order approximations