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What is the optimal number of processors to
execute a parallel job obeying Amdahl’s law
on a failure-prone platform?
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Amdahl’s Law

Speedup with P processors and α sequential fraction:

S(P) = 1
α + 1−α

P

I Bounded above by 1/α
I Strictly increasing function of P

Allocating processors on a failure-prone platform?
I Same speedup ,
I More errors/failures /

MTBF µP = µind
P

I Increased resilience overhead /
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Resilience for HPC

Fail-stop errors: e.g., resource crash, node failure
- Instantaneous error detection

Standard approach: periodic checkpointing, rollback and recovery

T

1. fail-stop error
2. recover

3. re-execute

C C C

Optimal checkpointing interval à la Young/Daly:

T ∗ =
√

2µC

where µ is MTBF and C is checkpointing time
I First-order approximation formula
I With fixed processor allocation



4/15

Resilience for HPC

Fail-stop errors: e.g., resource crash, node failure
- Instantaneous error detection

Standard approach: periodic checkpointing, rollback and recovery

T

1. fail-stop error
2. recover

3. re-execute

C C C

Optimal checkpointing interval à la Young/Daly:
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Coping with Silent Errors

Silent errors (or Silent Data Corruptions or SDCs): e.g., soft faults
in L1 cache, ALU, double bit flip, due to cosmic radiation,
packaging pollution, etc.

- Arbitrary detection latency
Promising approach: combine checkpointing with verification (for
error detection)

T

1. silent error
2. detect error

3. recover

4. re-execute

V C V C V C

I Extension of Young/Daly: T ∗ =
√
µ(V + C)

I Many methods to detect silent errors
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Methods for Detecting Silent Errors
General-purpose approaches

I Replication [Fiala et al. 2012] or triple modular redundancy and voting
[Lyons and Vanderkulk 1962]

Application-specific approaches
I Algorithm-based fault tolerance (ABFT): checksums in dense matrices

Limited to one error detection and/or correction in practice [Huang and
Abraham 1984]

I Partial differential equations (PDE): use lower-order scheme as
verification mechanism [Benson, Schmit and Schreiber 2014]

I Generalized minimal residual method (GMRES): inner-outer iterations
[Hoemmen and Heroux 2011]

I Preconditioned conjugate gradients (PCG): orthogonalization check every
k iterations, re-orthogonalization if problem detected [Sao and Vuduc
2013, Chen 2013]

Data-analytics approaches
I Dynamic monitoring of HPC datasets based on physical laws (e.g.,

temperature limit, speed limit) and space or temporal proximity
[Bautista-Gomez and Cappello 2014]

I Time-series prediction, spatial multivariate interpolation [Di et al. 2014]
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When Amdahl Meets Young/Daly
Optimizing performance (overhead H = 1/S):

I Optimal number of processors P∗

I Optimal checkpointing interval T ∗

Coping with both fail-stop and silent errors:

Time
V C T V C T V C

without error

pattern

Time
V C D R T V C T V C

Fail-stop error

Time
V C T V R T V C T V C

Silent error
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Models

Error model: exponential distribution, λind = 1/µind
(memoryless and independent)

error rate error probability
Fail-stop errors λf

P = f λindP qf
P = 1− e−λf

PT

Silent errors λs
P = sλindP qs

P = 1− e−λs
PT

Resilience model:

Checkpointing time CP = a + b/P + cP
Verification time VP = v + u/P
Down time (fail-stop) D

All coefficients (a, b, c, v , u, f , s,D) are assumed to be constants



9/15

Main Results
Exact execution time of a pattern in expectation (see paper)
First-order approximation of optimal P∗,T ∗ and H∗

I Case 1: checkpoint cost increases with P (CP = cP + o(P))

P∗ =
(

1
c
( f

2 + s
)

λind

)1/4(1− α

2α

)1/2

=Θ(λ−1/4
ind )

T ∗ =
(

c( f
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)
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ind )
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( f
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ind )

I Case 2: checkpoint/verif. cost constant (CP + VP = d + o(1))

Processors ↑
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d2( f
2 + s

)
λind

)1/3 (
α

1− α

)1/3
=Θ(λ−1/3

ind )
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Limitation of First-Order Approximation

Difficulty with other (less practical) cases:
e.g., CP + VP = h/P or α = 0

Observation: Suppose P = Θ(λ−x
ind) and T = Θ(λ−y

ind). Then,
for first-order approx. to accurately estimate error probabilities
(e.g., e−λPCP , e−λPVP and eλPT ), we need:

x < δ, where δ =
{

1/2 if c 6= 0
1 if c = 0

x + y < 1
⇒ P · T < 1/λind = µind (MTBF)

Possible solution: second or high-order approximations with
numerical methods
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Simulation Settings

Table: Model parameters from SCR library [Moody et al. 2010]
Platform Hera Atlas Coastal Coastal SSD
λind 1.69e-8 1.62e-8 2.34e-9 2.34e-9
f 0.2188 0.0625 0.1667 0.1667
s 0.7812 0.9375 0.8333 0.8333
P 512 1024 2048 2048
CP 300s 439s 1051s 2500s
VP 15.4s 9.1s 4.5s 180s

Table: Different resilience scenarios
Scenario 1 2 3 4 5 6

CP cP cP a a b/P b/P
VP v u/P v u/P v u/P
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Simulation Results
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Simulation Results

- Impact of sequential fraction α and error rate λind
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Simulation Results

- Order of optimal P∗ and T ∗
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Conclusion

What to remember
I Optimal P∗ and T ∗ as function of MTBF µind = 1/λind

1 Checkpointing cost increases with P
⇒ P∗ = Θ(λ−1/4

ind ),T ∗ = Θ(λ−1/2
ind )

2 Checkpointing/verification cost remains constant
⇒ P∗ = Θ(λ−1/3

ind ),T ∗ = Θ(λ−1/3
ind )

Future work
I Explore different speedup profiles, weak scaling, higher-order

approximations
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