Resilient Scheduling of Moldable Jobs on Failure-Prone Platforms

Anne Benoit¹, Valentin Le Fèvre¹, Lucas Perotin¹, Padma Raghavan², Yves Robert^{1,3}, Hongyang Sun²

Laboratoire LIP, ENS Lyon, France
Vanderbilt University, USA
University of Tennessee Knoxville, USA

hongyang.sun@vanderbilt.edu

IEEE Cluster 2020

On large-scale HPC platforms:

- Scheduling parallel jobs is important to improve application performance and system utilization;
- Handling job failures is critical as failure/error rates increase dramatically with size of system.

This paper combines job scheduling and failure handling for moldable parallel jobs running on large HPC platforms that are prone to failures.

Parallel Job Models

In the scheduling literature:

- **Rigid Jobs**: Processor allocation is fixed by the user and cannot be changed by the system (i.e., fixed, static allocation);
- Moldable Jobs: Processor allocation is decided by the system but cannot be changed once jobs start execution (i.e., fixed, dynamic allocation).
- **Malleable Jobs**: Processor allocation can be dynamically changed by the system during runtime (i.e., variable, dynamic allocation).

We consider moldable jobs, because:

- They can easily adapt to the amount of available resources (contrarily to rigid jobs);
- They are easy to design/implement (contrarily to malleable jobs);
- Many computational kernels in scientific libraries are provided as moldable jobs.

Scheduling Model

- *n* moldable jobs to be scheduled on *P* identical processors.
- execution time t_j(p_j) of each job j (= 1, 2, ..., n) is a function of processor allocation p_j (= 1, 2, ..., P); area is a_j(p_j) = p_j · t_j(p_j);
- jobs are subject to arbitrary failure scenarios (defined in next slide), which are unknown ahead of time (i.e., semi-online);
- minimize the makespan (i.e., successful completion time of all jobs).

Speedup Models:

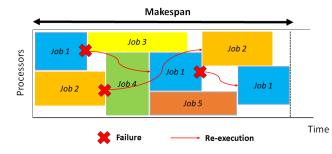
- Roofline model: $t_j(p_j) = \frac{w_j}{\max(p_j, \bar{p}_j)}$, for some $1 \le \bar{p}_j \le P$;
- Communication model: $t_j(p_j) = \frac{w_j}{p_j} + (p_j 1)c_j$, where c_j is the communication overhead;
- Amdahl's model: $t_j(p_j) = w_j \left(\frac{1-\gamma_j}{p_j} + \gamma_j\right)$, where γ_j is the inherently sequential fraction;
- Monotonic model: $t_j(p_j) \ge t_j(p_j + 1)$ and $a_j(p_j) \le a_j(p_j + 1)$, i.e., execution time non-increasing and area is non-decreasing;
- Arbitrary model: $t_j(p_j)$ is an arbitrary function of p_j .

Failure Model

- Jobs can fail due to silent errors (or silent data corruptions);
- A lightweight silent error detector (of negligible cost) is available to flag errors at the end of each job's execution;
- If a job is hit by silent errors, it must be re-executed (possibly multiple times) till successful completion.

A failure scenario $\mathbf{f} = (f_1, f_2, \dots, f_n)$ describes the number of failures each job experiences during a particular execution.

Example: $\mathbf{f} = (2, 1, 0, 0, 0)$ for an execution of 5 jobs.



We proposed two resilient scheduling algorithms with analysis of approximation ratios^{*} and simulation results.

- A list-based scheduling algorithm, called LPA-LIST, and approximation results for several speedup models.
- A batch-based scheduling algorithm, called BATCH-LIST, and approximation result for the arbitrary speedup model.
- Extensive simulations to evaluate and compare (average and worst-case) performance of both algorithms against baseline heuristics.

*A scheduling algorithm ALG is said to be a *c*-approximation if its makespan is at most *c* times that of an optimal algorithm OPT, i.e., $T_{ALG} \leq c \cdot T_{OPT}$, for any job set under any failure scenario.

Two-phase scheduling approach:

- Phase 1: Allocate processors to jobs using the Local Processor Allocation (LPA) strategy.
 - Minimize a local ratio individually for each job as guided by the property of the LIST scheduling (next slide).
 - The processor allocation will remain unchanged for different execution attempts of the same job.
- Phase 2: Schedule jobs with fixed processor allocations using the List Scheduling (LIST) strategy.
 - Organize all jobs in a list according to any priority order;
 - Schedule the jobs one by one at the earliest possible time (with backfilling whenever possible);
 - If a job fails after an execution, insert it back into the queue for rescheduling. Repeat this until the job completes successfully.

(1) LPA-LIST Scheduling Algorithm

Given a processor allocation $\mathbf{p} = (p_1, p_2, \dots, p_n)$ and a failure scenario $\mathbf{f} = (f_1, f_2, \dots, f_n)$:

- $A(\mathbf{f}, \mathbf{p}) = \sum_{j} a_j(p_j)$: total area of all jobs;
- $t_{\max}(\mathbf{f}, \mathbf{p}) = \max_j t_j(p_j)$: maximum execution time of any job.

Property of LIST Scheduling

For any failure scenario f, if the processor allocation p satisfies:

$$egin{aligned} & \mathcal{A}(\mathbf{f},\mathbf{p}) \leq lpha \cdot \mathcal{A}(\mathbf{f},\mathbf{p}^*) \;, \ & t_{\mathsf{max}}(\mathbf{f},\mathbf{p}) \leq eta \cdot t_{\mathsf{max}}(\mathbf{f},\mathbf{p}^*) \;, \end{aligned}$$

where \mathbf{p}^* is the processor allocation of an optimal schedule, then a LIST schedule using processor allocation \mathbf{p} is $r(\alpha, \beta)$ -approximation:

$$r(\alpha,\beta) = \begin{cases} 2\alpha, & \text{if } \alpha \ge \beta\\ \frac{P}{P-1}\alpha + \frac{P-2}{P-1}\beta, & \text{if } \alpha < \beta \end{cases}$$
(1)

Eq. (1) is used to guide the local processor allocation (LPA) for each job.

(1) LPA-LIST Scheduling Algorithm

Approximation results of $\ensuremath{\mathrm{LPA-LIST}}$ for some speedup models:

Speedup Model	Approximation Ratio
Roofline	2
Communication	3†
Amdahl	4
Monotonic	$\Theta(\sqrt{P})$

Advantages and disadvantages of LPA-LIST:

- **Pros**: Simple to implement, and constant approximation for some common speedup models.
- **Cons**: Uncoordinated processor allocation, and high approximation for monotonic/arbitrary model.

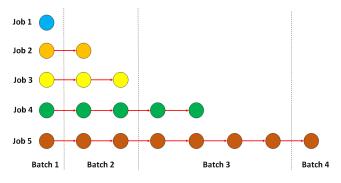
[†]For the communication model, our approx. ratio (3) improves upon the best ratio to date (4), which was obtained without any resilience considerations: [Havill and Mao. Competitive online scheduling of perfectly malleable jobs with setup times, European Journal of Operational Research, 187:1126–1142, 2008]

(2) BATCH-LIST Scheduling Algorithm

Batched scheduling approach:

- Different execution attempts of the jobs are organized in batches that are executed one after another;
- In each batch k (= 1, 2, ...), all pending jobs are executed a maximum of 2^{k-1} times;
- Uncompleted jobs in each batch will be processed in the next batch.

Example: an execution of 5 jobs under a failure scenario $\mathbf{f} = (0, 1, 2, 4, 7)$.



Within each batch k:

- Processor allocations are done for pending jobs using the MT-ALLOTMENT algorithm[‡], which guarantees near optimal allocation (within a factor of $1 + \epsilon$).
- The maximum of 2^{k-1} execution attempts of the pending jobs are scheduling using the LIST strategy.

Approximation Result of BATCH-LIST

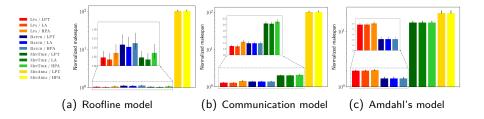
The BATCH-LIST algorithm is $\Theta((1 + \epsilon) \log_2(f_{\text{max}}))$ -approximation for arbitrary speedup model, where $f_{\text{max}} = \max_j f_j$ is the maximum number of failures of any job in a failure scenario.

[‡]The algorithm has runtime polynomial in $1/\epsilon$ and works for jobs in SP-graphs/trees (of which a set of independent linear chains is a special case). [Lepère, Trystram, and Woeginger. Approximation algorithms for scheduling malleable tasks under precedence constraints. European Symposium on Algorithms, 2001]

We evaluation the performance of our algorithms using simulations.

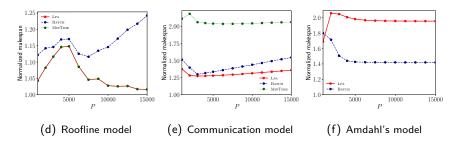
- Synthetic jobs under three speedup models (Roofline, Communication, Amdahl) and different parameter settings;
- Job failures follow exponential distribution with varying error rate λ ;
- Baseline algorithms for comparison:
 - MINTIME: allocates processors to minimize execution time of each job and schedules jobs using LIST;
 - MINAREA: allocates processors to minimize area of each job and schedules jobs using LIST.
- Priority rules used in LIST:
 - LPT (Longest Processing Time);
 - HPA (Highest Processor Allocation);
 - LA (Largest Area).

- LPA and BATCH generally perform better than the baselines;
- MINTIME performs well for Roofline model, but performs badly for Communication and Amdahl's models;
- MINAREA performs the worst for all models;
- LPT and LA priorities perform similarly, but better than HPA.



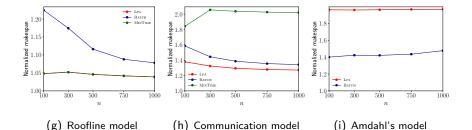
Simulation Results — with varying number of processors P

- In Roofline model, LPA (and MINTIME) has better performance, thanks to it simple and effective local processor allocation strategy.
- In Communication model, BATCH catches up with LPA and performs better than MINTIME;
- In Amdahl's model (where parallelizing a job becomes less efficient due to extra communication overhead), BATCH has the best performance, thanks to its coordinated processor allocation.



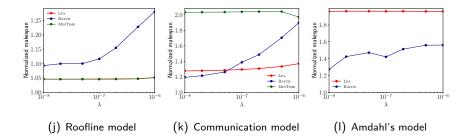
Simulation Results — with varying number of jobs n

- Same pattern of relative performance (as in last slide) for the three algorithms under the three speedup models;
- In Roofline and Communication models, having more jobs reduces number of available processors per job, thus reducing the total idle time between batches ⇒ performance gap between BATCH and LPA is decreasing (instead of increasing as in last slide).



Simulation Results — with varying error rate λ

- Same pattern of relative performance (as in last two slides) for the three algorithms under the three speedup models;
- A higher error rate increases the number of failures per jobs, which has little impact on LPA and MINTIME, but degrades performance of BATCH (corroborating our approximation results).



- Both of our algorithms (LPA and BATCH) perform significantly better than the baseline (MINTIME and MINAREA);
- Over the whole set of simulations, our best algorithm (LPA or BATCH) is within a factor of 1.47 of the optimal on average, and within a factor of 1.8 of the optimal in the worst case.

Speedup Model		Roofline	Communication	Amdahl
LPA	Expected	1.055	1.310	1.960
	Maximum	1.148	1.379	2.059
Batch	Expected	1.154	1.430	1.465
	Maximum	1.280	1.897	1.799
MINTIME	Expected	1.055	2.040	14.412
	Maximum	1.148	2.184	24.813

Table: Summary of the performance for three algorithms.

Conclusion

Take-aways:

- Future shared clusters demand simultaneous resource scheduling and resilience considerations for parallel applications;
- We proposed two resilient scheduling algorithms for moldable parallel jobs with provable performance guarantees;
- Extensive simulation results demonstrate the good performance of our algorithms under several common speedup models.

Future Work:

- Analysis of average-case performance of the algorithms (e.g., when some failure scenarios occur with higher probability);
- Considering alternative failure models (e.g., fail-stop errors), and the use of checkpointing to improve efficiency of scheduling;
- Performance validation of our algorithms using datasets with realistic job speedup profiles and failure traces.

19/20

20/20