
1/20

Resilient Scheduling of Moldable Jobs on
Failure-Prone Platforms

Anne Benoit1, Valentin Le Fèvre1, Lucas Perotin1,
Padma Raghavan2, Yves Robert1,3, Hongyang Sun2

1. Laboratoire LIP, ENS Lyon, France
2. Vanderbilt University, USA

3. University of Tennessee Knoxville, USA

hongyang.sun@vanderbilt.edu

IEEE Cluster 2020

hongyang.sun@vanderbilt.edu

2/20

What Is This Paper About?

On large-scale HPC platforms:

Scheduling parallel jobs is important to improve application
performance and system utilization;

Handling job failures is critical as failure/error rates increase
dramatically with size of system.

This paper combines job scheduling and failure handling for moldable
parallel jobs running on large HPC platforms that are prone to failures.

3/20

Parallel Job Models

In the scheduling literature:

Rigid Jobs: Processor allocation is fixed by the user and cannot be
changed by the system (i.e., fixed, static allocation);

Moldable Jobs: Processor allocation is decided by the system but
cannot be changed once jobs start execution (i.e., fixed, dynamic
allocation).

Malleable Jobs: Processor allocation can be dynamically changed
by the system during runtime (i.e., variable, dynamic allocation).

We consider moldable jobs, because:

They can easily adapt to the amount of available resources
(contrarily to rigid jobs);

They are easy to design/implement (contrarily to malleable jobs);

Many computational kernels in scientific libraries are provided as
moldable jobs.

4/20

Scheduling Model

n moldable jobs to be scheduled on P identical processors.
execution time tj (pj) of each job j (= 1, 2, . . . , n) is a function of
processor allocation pj (= 1, 2, . . . ,P); area is aj (pj) = pj · tj (pj);
jobs are subject to arbitrary failure scenarios (defined in next slide),
which are unknown ahead of time (i.e., semi-online);
minimize the makespan (i.e., successful completion time of all jobs).

Speedup Models:
Roofline model: tj (pj) = wj

max(pj ,p̄j) , for some 1 ≤ p̄j ≤ P;

Communication model: tj (pj) = wj
pj

+ (pj − 1)cj ,
where cj is the communication overhead;

Amdahl’s model: tj (pj) = wj
(1−γj

pj
+ γj

)
,

where γj is the inherently sequential fraction;
Monotonic model: tj (pj) ≥ tj (pj + 1) and aj (pj) ≤ aj (pj + 1),
i.e., execution time non-increasing and area is non-decreasing;
Arbitrary model: tj (pj) is an arbitrary function of pj .

5/20

Failure Model
Jobs can fail due to silent errors (or silent data corruptions);
A lightweight silent error detector (of negligible cost) is available to
flag errors at the end of each job’s execution;
If a job is hit by silent errors, it must be re-executed (possibly
multiple times) till successful completion.

A failure scenario f = (f1, f2, . . . , fn) describes the number of failures each
job experiences during a particular execution.

Example: f = (2, 1, 0, 0, 0) for an execution of 5 jobs.

6/20

Main Results

We proposed two resilient scheduling algorithms with analysis of
approximation ratios∗ and simulation results.

1 A list-based scheduling algorithm, called Lpa-List, and
approximation results for several speedup models.

2 A batch-based scheduling algorithm, called Batch-List, and
approximation result for the arbitrary speedup model.

3 Extensive simulations to evaluate and compare (average and
worst-case) performance of both algorithms against baseline
heuristics.

∗A scheduling algorithm Alg is said to be a c-approximation if its
makespan is at most c times that of an optimal algorithm Opt, i.e.,
TAlg ≤ c · TOpt, for any job set under any failure scenario.

7/20

(1) Lpa-List Scheduling Algorithm

Two-phase scheduling approach:

Phase 1: Allocate processors to jobs using the Local Processor
Allocation (Lpa) strategy.

Minimize a local ratio individually for each job as guided by
the property of the List scheduling (next slide).
The processor allocation will remain unchanged for different
execution attempts of the same job.

Phase 2: Schedule jobs with fixed processor allocations using the
List Scheduling (List) strategy.

Organize all jobs in a list according to any priority order;
Schedule the jobs one by one at the earliest possible time (with
backfilling whenever possible);
If a job fails after an execution, insert it back into the queue for
rescheduling. Repeat this until the job completes successfully.

8/20

(1) Lpa-List Scheduling Algorithm
Given a processor allocation p = (p1, p2, . . . , pn) and a failure scenario
f = (f1, f2, . . . , fn):

A(f,p) =
∑

j aj (pj): total area of all jobs;
tmax(f,p) = maxj tj (pj): maximum execution time of any job.

Property of List Scheduling
For any failure scenario f, if the processor allocation p satisfies:

A(f,p) ≤ α · A(f,p∗) ,
tmax(f,p) ≤ β · tmax(f,p∗) ,

where p∗ is the processor allocation of an optimal schedule, then a List
schedule using processor allocation p is r(α, β)-approximation:

r(α, β) =
{

2α, if α ≥ β
P

P−1α + P−2
P−1β, if α < β

(1)

Eq. (1) is used to guide the local processor allocation (Lpa) for each job.

9/20

(1) Lpa-List Scheduling Algorithm

Approximation results of Lpa-List for some speedup models:

Speedup Model Approximation Ratio
Roofline 2

Communication 3†

Amdahl 4
Monotonic Θ(

√
P)

Advantages and disadvantages of Lpa-List:

Pros: Simple to implement, and constant approximation for some
common speedup models.

Cons: Uncoordinated processor allocation, and high approximation
for monotonic/arbitrary model.

†For the communication model, our approx. ratio (3) improves upon the
best ratio to date (4), which was obtained without any resilience considerations:
[Havill and Mao. Competitive online scheduling of perfectly malleable jobs with setup
times, European Journal of Operational Research, 187:1126–1142, 2008]

10/20

(2) Batch-List Scheduling Algorithm
Batched scheduling approach:

Different execution attempts of the jobs are organized in batches
that are executed one after another;
In each batch k (= 1, 2, . . .), all pending jobs are executed a
maximum of 2k−1 times;
Uncompleted jobs in each batch will be processed in the next batch.

Example: an execution of 5 jobs under a failure scenario f = (0, 1, 2, 4, 7).

11/20

(2) Batch-List Scheduling Algorithm

Within each batch k:

Processor allocations are done for pending jobs using the
Mt-Allotment algorithm‡, which guarantees near optimal
allocation (within a factor of 1 + ε).

The maximum of 2k−1 execution attempts of the pending jobs are
scheduling using the List strategy.

Approximation Result of Batch-List
The Batch-List algorithm is Θ((1 + ε) log2(fmax))-approximation for
arbitrary speedup model, where fmax = maxj fj is the maximum number
of failures of any job in a failure scenario.

‡The algorithm has runtime polynomial in 1/ε and works for jobs in
SP-graphs/trees (of which a set of independent linear chains is a special case).
[Lepère, Trystram, and Woeginger. Approximation algorithms for scheduling malleable
tasks under precedence constraints. European Symposium on Algorithms, 2001]

12/20

Performance Evaluation

We evaluation the performance of our algorithms using simulations.

Synthetic jobs under three speedup models (Roofline,
Communication, Amdahl) and different parameter settings;

Job failures follow exponential distribution with varying error rate λ;

Baseline algorithms for comparison:
MinTime: allocates processors to minimize execution time of
each job and schedules jobs using List;
MinArea: allocates processors to minimize area of each job
and schedules jobs using List.

Priority rules used in List:
LPT (Longest Processing Time);
HPA (Highest Processor Allocation);
LA (Largest Area).

13/20

Simulation Results — with P =7500, n=500, and λ=10−7

Lpa and Batch generally perform better than the baselines;

MinTime performs well for Roofline model, but performs badly for
Communication and Amdahl’s models;

MinArea performs the worst for all models;

LPT and LA priorities perform similarly, but better than HPA.

(a) Roofline model (b) Communication model (c) Amdahl’s model

14/20

Simulation Results — with varying number of processors P

In Roofline model, Lpa (and MinTime) has better performance,
thanks to it simple and effective local processor allocation strategy.

In Communication model, Batch catches up with Lpa and
performs better than MinTime;

In Amdahl’s model (where parallelizing a job becomes less efficient
due to extra communication overhead), Batch has the best
performance, thanks to its coordinated processor allocation.

5000 10000 15000
P

1.00

1.05

1.10

1.15

1.20

1.25

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpa

Batch

MinTime

(d) Roofline model

5000 10000 15000
P

1.00

1.25

1.50

1.75

2.00

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpa

Batch

MinTime

(e) Communication model

5000 10000 15000
P

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpa

Batch

(f) Amdahl’s model

15/20

Simulation Results — with varying number of jobs n

Same pattern of relative performance (as in last slide) for the three
algorithms under the three speedup models;

In Roofline and Communication models, having more jobs reduces
number of available processors per job, thus reducing the total idle
time between batches ⇒ performance gap between Batch and
Lpa is decreasing (instead of increasing as in last slide).

100 300 500 750 1000
n

1.00

1.05

1.10

1.15

1.20

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpa

Batch

MinTime

(g) Roofline model

100 300 500 750 1000
n

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpa

Batch

MinTime

(h) Communication model

100 300 500 750 1000
n

1.0

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpa

Batch

(i) Amdahl’s model

16/20

Simulation Results — with varying error rate λ

Same pattern of relative performance (as in last two slides) for the
three algorithms under the three speedup models;

A higher error rate increases the number of failures per jobs, which
has little impact on Lpa and MinTime, but degrades performance
of Batch (corroborating our approximation results).

10−8 10−7 10−6

λ

1.00

1.05

1.10

1.15

1.20

1.25

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpa

Batch

MinTime

(j) Roofline model

10−8 10−7 10−6

λ

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpa

Batch

MinTime

(k) Communication model

10−8 10−7 10−6

λ

1.0

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpa

Batch

(l) Amdahl’s model

17/20

Simulation Results — Summary

Both of our algorithms (Lpa and Batch) perform significantly
better than the baseline (MinTime and MinArea);

Over the whole set of simulations, our best algorithm (Lpa or
Batch) is within a factor of 1.47 of the optimal on average, and
within a factor of 1.8 of the optimal in the worst case.

Table: Summary of the performance for three algorithms.

Speedup Model Roofline Communication Amdahl

Lpa Expected 1.055 1.310 1.960
Maximum 1.148 1.379 2.059

Batch Expected 1.154 1.430 1.465
Maximum 1.280 1.897 1.799

MinTime Expected 1.055 2.040 14.412
Maximum 1.148 2.184 24.813

18/20

Conclusion

Take-aways:

Future shared clusters demand simultaneous resource scheduling
and resilience considerations for parallel applications;

We proposed two resilient scheduling algorithms for moldable
parallel jobs with provable performance guarantees;

Extensive simulation results demonstrate the good performance of
our algorithms under several common speedup models.

Future Work:

Analysis of average-case performance of the algorithms (e.g., when
some failure scenarios occur with higher probability);

Considering alternative failure models (e.g., fail-stop errors), and
the use of checkpointing to improve efficiency of scheduling;

Performance validation of our algorithms using datasets with
realistic job speedup profiles and failure traces.

19/20

20/20

