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Introduction

Multi-core processors and supercomputers led to
massive development of parallel applications.

Efficient scheduling of parallel jobs is an important
and challenging task for high-performance
computing environments.
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Introduction

Multi-core processors and supercomputers led to
massive development of parallel applications.

Efficient scheduling of parallel jobs is an important
and challenging task for high-performance
computing environments.

This work studies scheduling on multiprocessor-
based platforms

for multiple sets of parallel jobs
with fairness and efficiency
in online nonclairvoyant adaptive manner
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‘ Basic Scheduling Model

= Each parallel job is assumed to have time-varying parallelism.
= Multiple jobs are to be scheduled on a set of identical processors.
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Basic Scheduling Model

Each parallel job is assumed to have time-varying parallelism.
Multiple jobs are to be scheduled on a set of identical processors.
Problem: Decide how many processors to allocate to each job.

0 Online — Don’t know future job arrivals.
0 Nonclairvoyant — Don’t know jobs’ future parallelism & remaining work.
o Adaptive — Processors allocations can be changed over time (malleable).

Processors

Job Job

-
»

-
>

wisijo|[eied

WHIEEZEE]

v

v

Time Time

07.02.2014 @ ENS de Lyon 4



Two-Level Scheduling Model

= Jobs are further grouped into sets.
= A set of jobs may belong to a particular user.
= Multiple sets of jobs need to be scheduled on the processors.

= Problem: Decide how many processors to allocate to each set
and how many processors to allocate to each job within a set.

Processors
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‘ Objective Function

= Minimize total response time of all job sets, or set response time
[Robert & Schabanel, 2007].

0 Response time of one set: duration between the release time of first job to
the completion of last job in the set.

o Combines two other popular metrics: makespan and total response time.

Processors
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‘ Objective Function

= Minimize total response time of all job sets, or set response time
[Robert & Schabanel, 2007].

0 Response time of one set: duration between the release time of first job to
the completion of last job in the set.

o Combines two other popular metrics: makespan and total response time.
= Thereisonly 1 job set > Makespan of all jobs (measures efficiency).
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‘ Objective Function

= Minimize total response time of all job sets, or set response time
[Robert & Schabanel, 2007].

0 Response time of one set: duration between the release time of first job to
the completion of last job in the set.

o Combines two other popular metrics: makespan and total response time.
= Thereisonly 1 job set > Makespan of all jobs (measures efficiency).
= Each set has only 1 job - Total response time of all jobs (measures fairness).
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‘ Objective Function

= Minimize total response time of all job sets, or set response time
[Robert & Schabanel, 2007].

0 Response time of one set: duration between the release time of first job to
the completion of last job in the set.

o Combines two other popular metrics: makespan and total response time.
= Thereis only 1 job set > Makespan of all jobs (measures efficiency).
= Each set has only 1 job = Total response time of all jobs (measures fairness).

o Benchmark for both fairness (among sets) and efficiency (within sets).

Processors
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‘ Overview of Scheduling Algorithm

= Scheduling for job sets

o Equi-Partitioning (EQUI) algorithm: evenly divides all available
processors among all active job sets at any time.

0 Fairness by simple definition with performance guarantees.
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‘ Overview of Scheduling Algorithm

= Scheduling for jobs within each set

o Feedback-driven adaptive algorithms: reallocates processors periodically
among the jobs based on past execution of each job (feedbacks).

o Provable efficiency in terms of processor utilization.
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‘ Feedback-Driven Adaptive Schedulers

m Processors are reallocated after each scheduling quantum.

SJ0SS9J0.4d

Scheduling quantum
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‘ Feedback-Driven Adaptive Schedulers

= Processors are reallocated after each scheduling quantum.
= Each job computes its processor desire after a quantum as feedback.

Processor Desire
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‘ Feedback-Driven Adaptive Schedulers

= Processors are reallocated after each scheduling quantum.
= Each job computes its processor desire after a quantum as feedback.

= Set scheduler decides processor allocation for each job based on the
feedbacks of all jobs and some allocation policy.

Processor Allocation
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Processor Desire Calculations

A-Control [Sun et al. 2010]

0 Uses a control-theoretic approach
based on both processor utilization
and job progress.

A-Greedy [Agrawal et al. 2006]

o Uses a multiplicative-increase
multiplicative-decrease approach
based on processor utilization.

Sets processor desire to be a linear
combination of job’s average

0 Increase processor desire if utilization 0
is high (> a threshold); Decrease

processor desire if utilization is low
(< a threshold).

Provably high overall processor
utilization, but desires may be
unstable.
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parallelism and processor desire in
previous quantum.

Settles the instability problem and
has been shown to have better
responsiveness.
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Processor Allocation Policy

Dynamic Equi-Partitioning (DEQ)
[McCann et al. 1993]

o Give each unsatisfied job one
processor in round-robin fashion until
all processors are allocated or all jobs
are satisfied.
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Processor Allocation Policy

Dynamic Equi-Partitioning (DEQ) N
[McCann et al. 1993]

o Give each unsatisfied job one
processor in round-robin fashion until
all processors are allocated or all jobs
are satisfied.

o Jobs with low desires will be satisfied
and jobs with high desires will be
deprived and get an approximate Job
equal share.

suoneso|y
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Processor Allocation Policy

Dynamic Equi-Partitioning (DEQ) N
[McCann et al. 1993]

o Give each unsatisfied job one
processor in round-robin fashion until
all processors are allocated or all jobs
are satisfied.

o Jobs with low desires will be satisfied
and jobs with high desires will be
deprived and get an approximate Job
equal share.

suoneso|y

Combining A-Greedy or A-Control with DEQ, we get feedback-
driven adaptive schedulers AGDEQ or ACDEQ for scheduling each
individual job set.
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‘ Fair and Efficient Adaptive Scheduler

_scheduling multiple sets of jobs.

= Combining AGDEQ or ACDEQ with EQUI, we get fair and
efficient schedulers EQUI-AGDEQ and EQUI-ACDEQ for

J
Processors
AGDEQ or ACDEQ
Job | " | Job Job | " | Job Job | " | Job
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Performance Analysis

Competitive analysis: An online algorithm is c-competitive if
there is a constant b, s.t. the set response time is at most ¢
times that of the optimal offline algorithm for all input
instances:

H, ) <c-H,,J)+b
When jobs can have different release times, it is well-known
that no good competitive ratio is achievable even for
minimizing total response time (Lower Bound Q(vn)) .

Resource augmentation analysis: An online algorithm is s-

speed c-competitive if its set response time when using s

times faster processors is at most ¢ times that of the optimal.
Hage () S €« HopylJ) + b

Competitive ratio is said to be strong if b = 0; otherwise, it is

achieved in the asymptotic sense.
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Existing Results for EQUI-Based Algo.

Total response time minimization.

0 EQUI is (2+V3)-comp. for batched jobs [Edmonds 1997].
o EQUI is (2+€)-speed (2+4/€)-comp. [Edmonds 1999].
Makespan minimization

o EQUI is O(lgn/lIglgn)-comp. for batched jobs, where n is the
number of jobs in the set [Robert & Schabanel, 2007].

Set response time minimization

o EQUI-EQUI is (24+V3+0(1))-O(lgn/lIglgn)-comp. for batched job
sets, where n is the maximum number of jobs in any set
[Robert & Schabanel, 2007].
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Existing Results for EQUI-Based Algo.

Total response time minimization.

0 EQUI is (2+V3)-comp. for batched jobs [Edmonds 1997].
o EQUI is (2+€)-speed (2+4/€)-comp. [Edmonds 1999].
Makespan minimization

o EQUI is O(lgn/lIglgn)-comp. for batched jobs, where n is the
number of jobs in the set [Robert & Schabanel, 2007].

Set response time minimization

o EQUI-EQUI is (24+V3+0(1))-O(lgn/lIglgn)-comp. for batched job
sets, where n is the maximum number of jobs in any set
[Robert & Schabanel, 2007].

Set response time ratio seems to combine the total response time
ratio and the makespan ratio? Indeed!
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‘ Generalized Analysis for EQUI-XY
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Generalized Analysis for EQUI-XY

Property for feedback scheduler X that calculates jobs’
processor desires:
asa-w

w : total work of job

| : total span of job

ts<B-1 a : total processor allocation for the job

to : total processing time for the job when it is satisfied
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Generalized Analysis for EQUI-XY

Property for feedback scheduler X that calculates jobs’

processor desires: _
w : total work of job

agsa-w | : total span of job
ts<B-1 a : total processor allocation for the job
to : total processing time for the job when it is satisfied

Property for adaptive processor allocation policy Y:
Conservative: never allocates more processors to a job than desired.
Non-idle: never idles processors when a job set is deprived.
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Generalized Analysis for EQUI-XY

Property for feedback scheduler X that calculates jobs’
processor desires:
asa-w

w : total work of job

| : total span of job

ts<B-1 a : total processor allocation for the job

to : total processing time for the job when it is satisfied

Property for adaptive processor allocation policy Y:
Conservative: never allocates more processors to a job than desired.
Non-idle: never idles processors when a job set is deprived.

Theorem. EQUI-XY achieves the following results:
2(a+B)-comp. for batched job sets
(2a+e)-speed (2+2(2a+B)/g)-comp. for arbitrary released job sets

The batched analysis relies on two lower bounds (squashed and height
bounds). The general case uses the standard potential function argument.

Remarks. (a+pB) is the comp. ratio of XY for makespan.
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‘Results for EQUI-XY Algo
S

EQUI-AGDEQ (1+p)/6 2/(1-6)
EQUI-ACDEQ c+1 c+1
EQUI-EQUI O(lgn/Iglgn) O(lgn/lglgn)
~N

Achieved in amortized sense
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‘Results for EQUI-XY Algo
S

EQUI-AGDEQ (1+p)/6 2/(1-6)
EQUI-ACDEQ c+1 c+1
EQUI-EQUI O(lgn/Iglgn) O(lgn/lglgn)
~N

Achieved in amortized sense

= (Theorem. EQUI-AGDEQ and EQUI-ACDEQ are R
u O(1)-competitive for batched job sets.
_#® O(1)-speed O(1)-comp. for arbitrary released job sets. |

= The bounds are achieved in asymptotic sense when jobs are
large enough; otherwise constant additive factor dominates,

2. Huspeol) = O(2) - Hoprld) + D
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Simulation Setup

Parallel Workloads:
Job model from the parallel workload archive.

The following regular patterns are used to generate
jobs’ internal parallelism variations.
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Results for Individual Job

A-Greedy v.s. A-Control on a single job set.
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Results for a Single Job Set

Feedback-driven schedulers v.s. EQUI on a single job set.

0 Feedback-driven schedulers outperform EQUI at medium loads.

o At light loads, enough processors for every job; no feedback is needed.
0 At heavy loads, not enough processors even with feedbacks.
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Results for Multiple Job Sets

EQUI-Feedback v.s. EQUI-EQUI on multiple job sets. (64 procs)

o Fair and efficient schedulers outperform EQUI-EQUI in most cases.

o Combines results of makespan and total response time.
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Results for Multiple Job Sets

EQUI-Feedback v.s. EQUI-EQUI on multiple job sets. (64 procs)

o Fair and efficient schedulers outperform EQUI-EQUI in most cases.

o Combines results of makespan and total response time.
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‘ Results for Multiple Job Sets

= EQUI-Feedback v.s. EQUI-EQUI on multiple job sets. (64 procs)

o Fair and efficient schedulers outperform EQUI-EQUI in most cases.

o Combines results of makespan and total response time.
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Remark on Multi-Level Scheduling
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Remark on Adaptive Parallel Job
Scheduling

LAPS(B) algorithm generalizes EQUI [Edmonds & Pruhs 2009].
o Allocate processors to B fraction of jobs with latest arrival time.

0 s=(1+B+e)-speed (4s/Be)-comp. for total response time.

o Provides tradeoff between speed augmentation and competitive ratio.
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LAPS(B) algorithm generalizes EQUI [Edmonds & Pruhs 2009].

o Allocate processors to B fraction of jobs with latest arrival time.
0 s=(1+B+e)-speed (4s/Be)-comp. for total response time.
o Provides tradeoff between speed augmentation and competitive ratio.

LAPS(B) can be combined with feedback-driven adaptive
schedulers to improve the comp. ratios by constant factors.
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Remark on Adaptive Parallel Job
Scheduling

LAPS(B) algorithm generalizes EQUI [Edmonds & Pruhs 2009].

o Allocate processors to B fraction of jobs with latest arrival time.
0 s=(1+B+e)-speed (4s/Be)-comp. for total response time.

o Provides tradeoff between speed augmentation and competitive ratio.

LAPS(B) can be combined with feedback-driven adaptive
schedulers to improve the comp. ratios by constant factors.

Open Question: Does universally scalable algorithm exist?
(i.e., (1+&)-speed O(1)-comp. for any >0 and the algorithm’s
parameter does not depend on €!)
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Thank youl!
Questions?
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