
1

Competitive Online Adaptive Scheduling for Sets
of Parallel Jobs with Fairness and Efficiency

Hongyang Sun @ Institut de Recherche en Informatique de Toulouse (IRIT)

Joint work with
Wen-Jing Hsu, Yangjie Cao @ Nanyang Technological University, Singapore

07.02.2014 @ ENS de Lyon

Introduction

 Multi-core processors and supercomputers led to
massive development of parallel applications.

 Efficient scheduling of parallel jobs is an important
and challenging task for high-performance
computing environments.

07.02.2014 @ ENS de Lyon 2

Introduction

 Multi-core processors and supercomputers led to
massive development of parallel applications.

 Efficient scheduling of parallel jobs is an important
and challenging task for high-performance
computing environments.

 This work studies scheduling on multiprocessor-
based platforms

 for multiple sets of parallel jobs

 with fairness and efficiency

 in online nonclairvoyant adaptive manner

07.02.2014 @ ENS de Lyon 2

Outline

 Models and Objective

 Scheduling Algorithms

 Performance Analysis

 Simulation Results

 Remarks

07.02.2014 @ ENS de Lyon 3

 Each parallel job is assumed to have time-varying parallelism.

 Multiple jobs are to be scheduled on a set of identical processors.

4

Basic Scheduling Model

Time

Parallelism

Job

…

Processors

07.02.2014 @ ENS de Lyon

Time

Parallelism

Job
……

 Each parallel job is assumed to have time-varying parallelism.

 Multiple jobs are to be scheduled on a set of identical processors.

 Problem: Decide how many processors to allocate to each job.
 Online – Don’t know future job arrivals.

 Nonclairvoyant – Don’t know jobs’ future parallelism & remaining work.

 Adaptive – Processors allocations can be changed over time (malleable).

4

Basic Scheduling Model

Time

Parallelism

Job

…

Processors

07.02.2014 @ ENS de Lyon

Time

Parallelism

Job
……

Two-Level Scheduling Model

07.02.2014 @ ENS de Lyon 5

 Jobs are further grouped into sets.

 A set of jobs may belong to a particular user.

 Multiple sets of jobs need to be scheduled on the processors.

 Problem: Decide how many processors to allocate to each set
and how many processors to allocate to each job within a set.

Job Job

Set

…. Job Job

Set

…. Job Job

Set

….
….

Processors

Objective Function
 Minimize total response time of all job sets, or set response time

[Robert & Schabanel, 2007].
 Response time of one set: duration between the release time of first job to

the completion of last job in the set.
 Combines two other popular metrics: makespan and total response time.

07.02.2014 @ ENS de Lyon 6

Job Job

Set

…. Job Job

Set

…. Job Job

Set

….
….

Processors

Objective Function
 Minimize total response time of all job sets, or set response time

[Robert & Schabanel, 2007].
 Response time of one set: duration between the release time of first job to

the completion of last job in the set.
 Combines two other popular metrics: makespan and total response time.

 There is only 1 job set Makespan of all jobs (measures efficiency).

07.02.2014 @ ENS de Lyon 7

Job Job

Set

….

Processors

Makespan

Objective Function
 Minimize total response time of all job sets, or set response time

[Robert & Schabanel, 2007].
 Response time of one set: duration between the release time of first job to

the completion of last job in the set.
 Combines two other popular metrics: makespan and total response time.

 There is only 1 job set Makespan of all jobs (measures efficiency).
 Each set has only 1 job Total response time of all jobs (measures fairness).

07.02.2014 @ ENS de Lyon 8

Job

Set

Job

Set

Job

Set

….

Processors Total response
time

Objective Function
 Minimize total response time of all job sets, or set response time

[Robert & Schabanel, 2007].
 Response time of one set: duration between the release time of first job to

the completion of last job in the set.
 Combines two other popular metrics: makespan and total response time.

 There is only 1 job set Makespan of all jobs (measures efficiency).
 Each set has only 1 job Total response time of all jobs (measures fairness).

 Benchmark for both fairness (among sets) and efficiency (within sets).

07.02.2014 @ ENS de Lyon 9

Job Job

Set

…. Job Job

Set

…. Job Job

Set

….
….

Processors

Outline

 Models and Objective

 Scheduling Algorithms

 Performance Analysis

 Simulation Results

 Remarks

07.02.2014 @ ENS de Lyon 10

Overview of Scheduling Algorithm

 Scheduling for job sets
 Equi-Partitioning (EQUI) algorithm: evenly divides all available

processors among all active job sets at any time.

 Fairness by simple definition with performance guarantees.

07.02.2014 @ ENS de Lyon 11

Job Job

Set

…. Job Job

Set

…. Job Job

Set

….
….

Processors

Overview of Scheduling Algorithm

 Scheduling for jobs within each set
 Feedback-driven adaptive algorithms: reallocates processors periodically

among the jobs based on past execution of each job (feedbacks).

 Provable efficiency in terms of processor utilization.

07.02.2014 @ ENS de Lyon 12

Job Job

Set

…. Job Job

Set

…. Job Job

Set

….
….

Processors

07.02.2014 @ ENS de Lyon 13

Feedback-Driven Adaptive Schedulers
 Processors are reallocated after each scheduling quantum.

….

Processors

Scheduling quantum
Job Job

Set

Job

07.02.2014 @ ENS de Lyon 13

Feedback-Driven Adaptive Schedulers
 Processors are reallocated after each scheduling quantum.

 Each job computes its processor desire after a quantum as feedback.

….

Processor Desire

Processors

Scheduling quantum
Job Job

Set

Job

07.02.2014 @ ENS de Lyon 13

Feedback-Driven Adaptive Schedulers
 Processors are reallocated after each scheduling quantum.

 Each job computes its processor desire after a quantum as feedback.

 Set scheduler decides processor allocation for each job based on the
feedbacks of all jobs and some allocation policy.

….

Processors

Scheduling quantum
Job Job

Set

Job

Processor Allocation

07.02.2014 @ ENS de Lyon 14

Processor Desire Calculations
 A-Greedy [Agrawal et al. 2006]

 Uses a multiplicative-increase
multiplicative-decrease approach
based on processor utilization.

 Increase processor desire if utilization
is high (> a threshold); Decrease
processor desire if utilization is low
(< a threshold).

 Provably high overall processor
utilization, but desires may be
unstable.

 A-Control [Sun et al. 2010]
 Uses a control-theoretic approach

based on both processor utilization
and job progress.

 Sets processor desire to be a linear
combination of job’s average
parallelism and processor desire in
previous quantum.

 Settles the instability problem and
has been shown to have better
responsiveness.

Time

Parallelism

D
esire

D
esire

Time

Parallelism

07.02.2014 @ ENS de Lyon 15

Processor Allocation Policy
 Dynamic Equi-Partitioning (DEQ)

[McCann et al. 1993]
 Give each unsatisfied job one

processor in round-robin fashion until
all processors are allocated or all jobs
are satisfied.

D
esires

Job

07.02.2014 @ ENS de Lyon 15

Processor Allocation Policy
 Dynamic Equi-Partitioning (DEQ)

[McCann et al. 1993]
 Give each unsatisfied job one

processor in round-robin fashion until
all processors are allocated or all jobs
are satisfied.

 Jobs with low desires will be satisfied
and jobs with high desires will be
deprived and get an approximate
equal share.

Job

A
llocations

07.02.2014 @ ENS de Lyon 15

Processor Allocation Policy
 Dynamic Equi-Partitioning (DEQ)

[McCann et al. 1993]
 Give each unsatisfied job one

processor in round-robin fashion until
all processors are allocated or all jobs
are satisfied.

 Jobs with low desires will be satisfied
and jobs with high desires will be
deprived and get an approximate
equal share.

Job

 Combining A-Greedy or A-Control with DEQ, we get feedback-
driven adaptive schedulers AGDEQ or ACDEQ for scheduling each
individual job set.

A
llocations

 Combining AGDEQ or ACDEQ with EQUI, we get fair and
efficient schedulers EQUI-AGDEQ and EQUI-ACDEQ for
scheduling multiple sets of jobs.

Fair and Efficient Adaptive Scheduler

07.02.2014 @ ENS de Lyon 16

Job Job

Set

….
Job Job

Set

….
Job Job

Set

….

….

Processors

EQUI

AGDEQ or ACDEQ

Outline

 Models and Objective

 Scheduling Algorithms

 Performance Analysis

 Simulation Results

 Remarks

07.02.2014 @ ENS de Lyon 17

 Competitive analysis: An online algorithm is c-competitive if
there is a constant b, s.t. the set response time is at most c
times that of the optimal offline algorithm for all input
instances:
 Halg(J) ≤ c • Hopt(J) + b

 When jobs can have different release times, it is well-known
that no good competitive ratio is achievable even for
minimizing total response time (Lower Bound Ω(√n)) .

 Resource augmentation analysis: An online algorithm is s-
speed c-competitive if its set response time when using s
times faster processors is at most c times that of the optimal.
 Halg(s)(J) ≤ c • Hopt(1)(J) + b

 Competitive ratio is said to be strong if b = 0; otherwise, it is
achieved in the asymptotic sense.

Performance Analysis

07.02.2014 @ ENS de Lyon 18

Existing Results for EQUI-Based Algo.

 Total response time minimization.
 EQUI is (2+√3)-comp. for batched jobs [Edmonds 1997].
 EQUI is (2+ε)-speed (2+4/ε)-comp. [Edmonds 1999].

 Makespan minimization
 EQUI is O(lgn/lglgn)-comp. for batched jobs, where n is the

number of jobs in the set [Robert & Schabanel, 2007].

 Set response time minimization
 EQUI-EQUI is (2+√3+o(1))•O(lgn/lglgn)-comp. for batched job

sets, where n is the maximum number of jobs in any set
[Robert & Schabanel, 2007].

07.02.2014 @ ENS de Lyon 19

Existing Results for EQUI-Based Algo.

 Total response time minimization.
 EQUI is (2+√3)-comp. for batched jobs [Edmonds 1997].
 EQUI is (2+ε)-speed (2+4/ε)-comp. [Edmonds 1999].

 Makespan minimization
 EQUI is O(lgn/lglgn)-comp. for batched jobs, where n is the

number of jobs in the set [Robert & Schabanel, 2007].

 Set response time minimization
 EQUI-EQUI is (2+√3+o(1))•O(lgn/lglgn)-comp. for batched job

sets, where n is the maximum number of jobs in any set
[Robert & Schabanel, 2007].

07.02.2014 @ ENS de Lyon 19

Set response time ratio seems to combine the total response time
ratio and the makespan ratio? Indeed!

Generalized Analysis for EQUI-XY

07.02.2014 @ ENS de Lyon 20

 Property for feedback scheduler X that calculates jobs’
processor desires:
 a ≤ α · w
 tS ≤ β · l

Generalized Analysis for EQUI-XY

07.02.2014 @ ENS de Lyon 20

w : total work of job
l : total span of job
a : total processor allocation for the job
tS : total processing time for the job when it is satisfied

 Property for feedback scheduler X that calculates jobs’
processor desires:
 a ≤ α · w
 tS ≤ β · l

 Property for adaptive processor allocation policy Y:

 Conservative: never allocates more processors to a job than desired.
 Non-idle: never idles processors when a job set is deprived.

Generalized Analysis for EQUI-XY

07.02.2014 @ ENS de Lyon 20

w : total work of job
l : total span of job
a : total processor allocation for the job
tS : total processing time for the job when it is satisfied

 Property for feedback scheduler X that calculates jobs’
processor desires:
 a ≤ α · w
 tS ≤ β · l

 Property for adaptive processor allocation policy Y:

 Conservative: never allocates more processors to a job than desired.
 Non-idle: never idles processors when a job set is deprived.

 Theorem. EQUI-XY achieves the following results:
 2(α+β)-comp. for batched job sets
 (2α+ε)-speed (2+2(2α+β)/ε)-comp. for arbitrary released job sets

 The batched analysis relies on two lower bounds (squashed and height
bounds). The general case uses the standard potential function argument.

 Remarks. (α+β) is the comp. ratio of XY for makespan.

Generalized Analysis for EQUI-XY

07.02.2014 @ ENS de Lyon 20

w : total work of job
l : total span of job
a : total processor allocation for the job
tS : total processing time for the job when it is satisfied

Results for EQUI-XY Algo

07.02.2014 @ ENS de Lyon 21

α β
EQUI-AGDEQ (1+ρ)/δ 2/(1-δ)

EQUI-ACDEQ c+1 c+1

EQUI-EQUI O(lgn/lglgn) O(lgn/lglgn)

Achieved in amortized sense

 Theorem. EQUI-AGDEQ and EQUI-ACDEQ are
 O(1)-competitive for batched job sets.
 O(1)-speed O(1)-comp. for arbitrary released job sets.

 The bounds are achieved in asymptotic sense when jobs are
large enough; otherwise constant additive factor dominates,

i.e., HAGDEQ(J) = O(1) · HOPT(J) + b

Results for EQUI-XY Algo

07.02.2014 @ ENS de Lyon 21

α β
EQUI-AGDEQ (1+ρ)/δ 2/(1-δ)

EQUI-ACDEQ c+1 c+1

EQUI-EQUI O(lgn/lglgn) O(lgn/lglgn)

Achieved in amortized sense

Outline

 Models and Objective

 Scheduling Algorithms

 Performance Analysis

 Simulation Results

 Remarks

07.02.2014 @ ENS de Lyon 22

Simulation Setup

23

 Parallel Workloads:
 Job model from the parallel workload archive.
 The following regular patterns are used to generate

jobs’ internal parallelism variations.

07.02.2014 @ ENS de Lyon

2/5/2014 24

Results for Individual Job

Step Poly(II)

Ramp Poly(I)

 A-Greedy v.s. A-Control on a single job set.

07.02.2014 @ ENS de Lyon 25

Results for a Single Job Set
 Feedback-driven schedulers v.s. EQUI on a single job set.

 Feedback-driven schedulers outperform EQUI at medium loads.

 At light loads, enough processors for every job; no feedback is needed.

 At heavy loads, not enough processors even with feedbacks.

07.02.2014 @ ENS de Lyon 26

Results for Multiple Job Sets
 EQUI-Feedback v.s. EQUI-EQUI on multiple job sets. (64 procs)

 Fair and efficient schedulers outperform EQUI-EQUI in most cases.

 Combines results of makespan and total response time.

Following release time of the job model Identical release time

07.02.2014 @ ENS de Lyon 26

Results for Multiple Job Sets
 EQUI-Feedback v.s. EQUI-EQUI on multiple job sets. (64 procs)

 Fair and efficient schedulers outperform EQUI-EQUI in most cases.

 Combines results of makespan and total response time.

Following release time of the job model Identical release time

07.02.2014 @ ENS de Lyon 26

Results for Multiple Job Sets
 EQUI-Feedback v.s. EQUI-EQUI on multiple job sets. (64 procs)

 Fair and efficient schedulers outperform EQUI-EQUI in most cases.

 Combines results of makespan and total response time.

Load

Following release time of the job model Identical release time

Outline

 Models and Objective

 Scheduling Algorithms

 Performance Analysis

 Simulation Results

 Remarks

07.02.2014 @ ENS de Lyon 27

Remark on Multi-Level Scheduling

28 07.02.2014 @ ENS de Lyon

Remark on Multi-Level Scheduling

28 07.02.2014 @ ENS de Lyon

Proportional
allocator
= EQUI

X + desire aggregator +
conservative & non-idle

allocator Y

Remark on Multi-Level Scheduling

28 07.02.2014 @ ENS de Lyon

Proportional
allocator
= EQUI

X + desire aggregator +
conservative & non-idle

allocator Y

Reduced to EQUI-XY’ in
two-level scheduling,
where property for X
remains, and Y’ is also
conservative and non-idle.

07.02.2014 @ ENS de Lyon 29

Remark on Adaptive Parallel Job
Scheduling
 LAPS(β) algorithm generalizes EQUI [Edmonds & Pruhs 2009].

 Allocate processors to β fraction of jobs with latest arrival time.

 s=(1+β+ε)-speed (4s/βε)-comp. for total response time.

 Provides tradeoff between speed augmentation and competitive ratio.

07.02.2014 @ ENS de Lyon 29

Remark on Adaptive Parallel Job
Scheduling
 LAPS(β) algorithm generalizes EQUI [Edmonds & Pruhs 2009].

 Allocate processors to β fraction of jobs with latest arrival time.

 s=(1+β+ε)-speed (4s/βε)-comp. for total response time.

 Provides tradeoff between speed augmentation and competitive ratio.

 LAPS(β) can be combined with feedback-driven adaptive
schedulers to improve the comp. ratios by constant factors.

07.02.2014 @ ENS de Lyon 29

Remark on Adaptive Parallel Job
Scheduling
 LAPS(β) algorithm generalizes EQUI [Edmonds & Pruhs 2009].

 Allocate processors to β fraction of jobs with latest arrival time.

 s=(1+β+ε)-speed (4s/βε)-comp. for total response time.

 Provides tradeoff between speed augmentation and competitive ratio.

 LAPS(β) can be combined with feedback-driven adaptive
schedulers to improve the comp. ratios by constant factors.

 Open Question: Does universally scalable algorithm exist?
(i.e., (1+ε)-speed O(1)-comp. for any ε>0 and the algorithm’s
parameter does not depend on ε!)

07.02.2014 @ ENS de Lyon 30

Thank you!
Questions?

	Competitive Online Adaptive Scheduling for Sets of Parallel Jobs with Fairness and Efficiency
	Introduction
	Introduction
	Outline
	Basic Scheduling Model
	Basic Scheduling Model
	Two-Level Scheduling Model
	Objective Function
	Objective Function
	Objective Function
	Objective Function
	Outline
	Overview of Scheduling Algorithm
	Overview of Scheduling Algorithm
	Feedback-Driven Adaptive Schedulers
	Feedback-Driven Adaptive Schedulers
	Feedback-Driven Adaptive Schedulers
	Processor Desire Calculations
	Processor Allocation Policy
	Processor Allocation Policy
	Processor Allocation Policy
	Fair and Efficient Adaptive Scheduler
	Outline
	Performance Analysis
	Existing Results for EQUI-Based Algo.
	Existing Results for EQUI-Based Algo.
	Generalized Analysis for EQUI-XY
	Generalized Analysis for EQUI-XY
	Generalized Analysis for EQUI-XY
	Generalized Analysis for EQUI-XY
	Results for EQUI-XY Algo
	Results for EQUI-XY Algo
	Outline
	Simulation Setup
	Results for Individual Job
	Results for a Single Job Set
	Results for Multiple Job Sets
	Results for Multiple Job Sets
	Results for Multiple Job Sets
	Outline
	Remark on Multi-Level Scheduling
	Remark on Multi-Level Scheduling
	Remark on Multi-Level Scheduling
	Remark on Adaptive Parallel Job Scheduling
	Remark on Adaptive Parallel Job Scheduling
	Remark on Adaptive Parallel Job Scheduling
	Slide Number 47

