TECHNOLOGICAL
UNIVERSITY

‘-l I\\Q-l l

CNRS - INPT - UPS - UT1 - UTM

Competitive Online Adaptive Scheduling for Sets
of Parallel Jobs with Fairness and Efficiency

Hongyang Sun @ Institut de Recherche en Informatique de Toulouse (IRIT)

Joint work with
Wen-Jing Hsu, Yangjie Cao @ Nanyang Technological University, Singapore

07.02.2014 @ ENS de Lyon 1

Introduction

Multi-core processors and supercomputers led to
massive development of parallel applications.

Efficient scheduling of parallel jobs is an important
and challenging task for high-performance
computing environments.

07.02.2014 @ ENS de Lyon

Introduction

Multi-core processors and supercomputers led to
massive development of parallel applications.

Efficient scheduling of parallel jobs is an important
and challenging task for high-performance
computing environments.

This work studies scheduling on multiprocessor-
based platforms

for multiple sets of parallel jobs
with fairness and efficiency
in online nonclairvoyant adaptive manner

07.02.2014 @ ENS de Lyon

Outline

Models and Objective
Scheduling Algorithms
Performance Analysis
Simulation Results

Remarks

07.02.2014 @ ENS de Lyon

‘ Basic Scheduling Model

= Each parallel job is assumed to have time-varying parallelism.
= Multiple jobs are to be scheduled on a set of identical processors.

Processors

/\

Job

Job

-
>

-
»

WHIEEZEE]

wisijo|[eied

v

v

Time Time

07.02.2014 @ ENS de Lyon

Basic Scheduling Model

Each parallel job is assumed to have time-varying parallelism.
Multiple jobs are to be scheduled on a set of identical processors.
Problem: Decide how many processors to allocate to each job.

0 Online — Don’t know future job arrivals.
0 Nonclairvoyant — Don’t know jobs’ future parallelism & remaining work.
o Adaptive — Processors allocations can be changed over time (malleable).

Processors

Job Job

-
»

-
>

wisijo|[eied

WHIEEZEE]

v

v

Time Time

07.02.2014 @ ENS de Lyon 4

Two-Level Scheduling Model

= Jobs are further grouped into sets.
= A set of jobs may belong to a particular user.
= Multiple sets of jobs need to be scheduled on the processors.

= Problem: Decide how many processors to allocate to each set
and how many processors to allocate to each job within a set.

Processors

07.02.2014 @ ENS de Lyon

‘ Objective Function

= Minimize total response time of all job sets, or set response time
[Robert & Schabanel, 2007].

0 Response time of one set: duration between the release time of first job to
the completion of last job in the set.

o Combines two other popular metrics: makespan and total response time.

Processors

07.02.2014 @ ENS de Lyon 6

‘ Objective Function

= Minimize total response time of all job sets, or set response time
[Robert & Schabanel, 2007].

0 Response time of one set: duration between the release time of first job to
the completion of last job in the set.

o Combines two other popular metrics: makespan and total response time.
= Thereisonly 1 job set > Makespan of all jobs (measures efficiency).

Processors

=

07.02.2014 @ ENS de Lyon 7

‘ Objective Function

= Minimize total response time of all job sets, or set response time
[Robert & Schabanel, 2007].

0 Response time of one set: duration between the release time of first job to
the completion of last job in the set.

o Combines two other popular metrics: makespan and total response time.
= Thereisonly 1 job set > Makespan of all jobs (measures efficiency).
= Each set has only 1 job - Total response time of all jobs (measures fairness).

Processors

07.02.2014 @ ENS de Lyon 8

‘ Objective Function

= Minimize total response time of all job sets, or set response time
[Robert & Schabanel, 2007].

0 Response time of one set: duration between the release time of first job to
the completion of last job in the set.

o Combines two other popular metrics: makespan and total response time.
= Thereis only 1 job set > Makespan of all jobs (measures efficiency).
= Each set has only 1 job = Total response time of all jobs (measures fairness).

o Benchmark for both fairness (among sets) and efficiency (within sets).

Processors

Job | -~~~ | Job Job | ---- | Job Job | -~~~ | Job

07.02.2014 @ ENS de Lyon 9

Outline

Scheduling Algorithms
Performance Analysis
Simulation Results
Remarks

07.02.2014 @ ENS de Lyon

10

‘ Overview of Scheduling Algorithm

= Scheduling for job sets

o Equi-Partitioning (EQUI) algorithm: evenly divides all available
processors among all active job sets at any time.

0 Fairness by simple definition with performance guarantees.

-

~

Processors

07.02.2014 @ ENS de Lyon

‘ Overview of Scheduling Algorithm

= Scheduling for jobs within each set

o Feedback-driven adaptive algorithms: reallocates processors periodically
among the jobs based on past execution of each job (feedbacks).

o Provable efficiency in terms of processor utilization.

Processors

\U

07.02.2014 @ ENS de Lyon 12

‘ Feedback-Driven Adaptive Schedulers

m Processors are reallocated after each scheduling quantum.

SJ0SS9J0.4d

Scheduling quantum

07.02.2014 @ ENS de Lyon 13

‘ Feedback-Driven Adaptive Schedulers

= Processors are reallocated after each scheduling quantum.
= Each job computes its processor desire after a quantum as feedback.

Processor Desire

SJOSS9J20.d

Job Job e Job

Scheduling quantum

07.02.2014 @ ENS de Lyon 13

‘ Feedback-Driven Adaptive Schedulers

= Processors are reallocated after each scheduling quantum.
= Each job computes its processor desire after a quantum as feedback.

= Set scheduler decides processor allocation for each job based on the
feedbacks of all jobs and some allocation policy.

Processor Allocation

SJOSS9J20.d

Job Job e Job

Scheduling quantum

07.02.2014 @ ENS de Lyon 13

Processor Desire Calculations

A-Control [Sun et al. 2010]

0 Uses a control-theoretic approach
based on both processor utilization
and job progress.

A-Greedy [Agrawal et al. 2006]

o Uses a multiplicative-increase
multiplicative-decrease approach
based on processor utilization.

Sets processor desire to be a linear
combination of job’s average

0 Increase processor desire if utilization 0
is high (> a threshold); Decrease

processor desire if utilization is low
(< a threshold).

Provably high overall processor
utilization, but desires may be
unstable.

Parallelism

A

al1saq

> Time

07.02.2014 @ ENS de Lyon

al1saq

parallelism and processor desire in
previous quantum.

Settles the instability problem and
has been shown to have better
responsiveness.

Parallelism

I

L

> Time

14

Processor Allocation Policy

Dynamic Equi-Partitioning (DEQ)
[McCann et al. 1993]

o Give each unsatisfied job one
processor in round-robin fashion until
all processors are allocated or all jobs
are satisfied.

A

Sallsa(d

v

Job

07.02.2014 @ ENS de Lyon 15

Processor Allocation Policy

Dynamic Equi-Partitioning (DEQ) N
[McCann et al. 1993]

o Give each unsatisfied job one
processor in round-robin fashion until
all processors are allocated or all jobs
are satisfied.

o Jobs with low desires will be satisfied
and jobs with high desires will be
deprived and get an approximate Job
equal share.

suoneso|y

07.02.2014 @ ENS de Lyon 15

Processor Allocation Policy

Dynamic Equi-Partitioning (DEQ) N
[McCann et al. 1993]

o Give each unsatisfied job one
processor in round-robin fashion until
all processors are allocated or all jobs
are satisfied.

o Jobs with low desires will be satisfied
and jobs with high desires will be
deprived and get an approximate Job
equal share.

suoneso|y

Combining A-Greedy or A-Control with DEQ, we get feedback-
driven adaptive schedulers AGDEQ or ACDEQ for scheduling each
individual job set.

07.02.2014 @ ENS de Lyon 15

‘ Fair and Efficient Adaptive Scheduler

_scheduling multiple sets of jobs.

= Combining AGDEQ or ACDEQ with EQUI, we get fair and
efficient schedulers EQUI-AGDEQ and EQUI-ACDEQ for

J
Processors
AGDEQ or ACDEQ
Job | " | Job Job | " | Job Job | " | Job

07.02.2014 @ ENS de Lyon

16

Outline

Performance Analysis
Simulation Results
Remarks

07.02.2014 @ ENS de Lyon

17

Performance Analysis

Competitive analysis: An online algorithm is c-competitive if
there is a constant b, s.t. the set response time is at most ¢
times that of the optimal offline algorithm for all input
instances:

H,) <c-H,,J)+b
When jobs can have different release times, it is well-known
that no good competitive ratio is achievable even for
minimizing total response time (Lower Bound Q(vn)) .

Resource augmentation analysis: An online algorithm is s-

speed c-competitive if its set response time when using s

times faster processors is at most ¢ times that of the optimal.
Hage () S €« HopylJ) + b

Competitive ratio is said to be strong if b = 0; otherwise, it is

achieved in the asymptotic sense.

07.02.2014 @ ENS de Lyon

Existing Results for EQUI-Based Algo.

Total response time minimization.

0 EQUI is (2+V3)-comp. for batched jobs [Edmonds 1997].
o EQUI is (2+€)-speed (2+4/€)-comp. [Edmonds 1999].
Makespan minimization

o EQUI is O(lgn/lIglgn)-comp. for batched jobs, where n is the
number of jobs in the set [Robert & Schabanel, 2007].

Set response time minimization

o EQUI-EQUI is (24+V3+0(1))-O(lgn/lIglgn)-comp. for batched job
sets, where n is the maximum number of jobs in any set
[Robert & Schabanel, 2007].

07.02.2014 @ ENS de Lyon 19

Existing Results for EQUI-Based Algo.

Total response time minimization.

0 EQUI is (2+V3)-comp. for batched jobs [Edmonds 1997].
o EQUI is (2+€)-speed (2+4/€)-comp. [Edmonds 1999].
Makespan minimization

o EQUI is O(lgn/lIglgn)-comp. for batched jobs, where n is the
number of jobs in the set [Robert & Schabanel, 2007].

Set response time minimization

o EQUI-EQUI is (24+V3+0(1))-O(lgn/lIglgn)-comp. for batched job
sets, where n is the maximum number of jobs in any set
[Robert & Schabanel, 2007].

Set response time ratio seems to combine the total response time
ratio and the makespan ratio? Indeed!

07.02.2014 @ ENS de Lyon 19

‘ Generalized Analysis for EQUI-XY

07.02.2014 @ ENS de Lyon

20

Generalized Analysis for EQUI-XY

Property for feedback scheduler X that calculates jobs’
processor desires:
asa-w

w : total work of job

| : total span of job

ts<B-1 a : total processor allocation for the job

to : total processing time for the job when it is satisfied

07.02.2014 @ ENS de Lyon 20

Generalized Analysis for EQUI-XY

Property for feedback scheduler X that calculates jobs’

processor desires: _
w : total work of job

agsa-w | : total span of job
ts<B-1 a : total processor allocation for the job
to : total processing time for the job when it is satisfied

Property for adaptive processor allocation policy Y:
Conservative: never allocates more processors to a job than desired.
Non-idle: never idles processors when a job set is deprived.

07.02.2014 @ ENS de Lyon 20

Generalized Analysis for EQUI-XY

Property for feedback scheduler X that calculates jobs’
processor desires:
asa-w

w : total work of job

| : total span of job

ts<B-1 a : total processor allocation for the job

to : total processing time for the job when it is satisfied

Property for adaptive processor allocation policy Y:
Conservative: never allocates more processors to a job than desired.
Non-idle: never idles processors when a job set is deprived.

Theorem. EQUI-XY achieves the following results:
2(a+B)-comp. for batched job sets
(2a+e)-speed (2+2(2a+B)/g)-comp. for arbitrary released job sets

The batched analysis relies on two lower bounds (squashed and height
bounds). The general case uses the standard potential function argument.

Remarks. (a+pB) is the comp. ratio of XY for makespan.

07.02.2014 @ ENS de Lyon 20

‘Results for EQUI-XY Algo
S

EQUI-AGDEQ (1+p)/6 2/(1-6)
EQUI-ACDEQ c+1 c+1
EQUI-EQUI O(lgn/Iglgn) O(lgn/lglgn)
~N

Achieved in amortized sense

07.02.2014 @ ENS de Lyon

21

‘Results for EQUI-XY Algo
S

EQUI-AGDEQ (1+p)/6 2/(1-6)
EQUI-ACDEQ c+1 c+1
EQUI-EQUI O(lgn/Iglgn) O(lgn/lglgn)
~N

Achieved in amortized sense

= (Theorem. EQUI-AGDEQ and EQUI-ACDEQ are R
u O(1)-competitive for batched job sets.
_#® O(1)-speed O(1)-comp. for arbitrary released job sets. |

= The bounds are achieved in asymptotic sense when jobs are
large enough; otherwise constant additive factor dominates,

2. Huspeol) = O(2) - Hoprld) + D

07.02.2014 @ ENS de Lyon 21

Outline

H

H

H

= Simulation Results
= Remarks

07.02.2014 @ ENS de Lyon 22

Simulation Setup

Parallel Workloads:
Job model from the parallel workload archive.

The following regular patterns are used to generate
jobs’ internal parallelism variations.

500
400}
Impulse Poly(l)

5 300} ‘
- Ramp
©
S 200 Step P‘?!Y(“)

100_ J‘*/l \\y

2 4 6 8 10

07.02.2014 @ ENS de Lyon

Results for Individual Job

A-Greedy v.s. A-Control on a single job set.

Step Poly{ll}) Ramp Poly(l)Impulse

]
o >
[y
=
1
TY
i
- ™ = — =
ueds ; aw} asuodsay
. L
—J —~~ -
m W —
GEQ <
sZW
597 & |
& < [l -
| 1 .
ik}
E
=
1 1 1 1 1 D
S ©§ 8 @ 8 B ©
m ('] m — —
alIsap 10 WSl &||eled
i L
= cL
o>
SEE o
T =W
25w ()
Eo0 +=]
& < .“w 7)) =
] . —
I |
........... A
R | @
1 ! E
ek BT ; =
= |
i
............. _
R i BT 1 14
O IS
1
||||||| 1
T
|
. . . . -
= [=] = = m = [==] =
= [} [[=n] == (]

allsep 10 Ws| 8.l

-
Q>
o
=
3
P9
‘m-m
N~ ®m ©§ 9 o o
- o o o @ o
WIONA [/ S1SEM JOSSI0) 4
T T T T T 5
— —
el =
N
.m_l_t UVJ
szul = _
BOO o !
fri o i,
_ i P 1=
Yo -
1
. 4
o1 !
r R
re=-=----gmesl Mii\\&
| ——
B = R B
e & & & 5
@ @®m F ® @& ¢
BIISAD 10 LS| 8||BIEY
T T T 5
m P
=
R 2
=Z 0 &
=i
599 G _
0 X o
1 e
[=
i
[-]
..... =t — e
! h T
R
i =
||||| |.m..mﬂf.5fs.ar!l_..“ o
|rrrrr|rr.Hm.|P|.II.H.Il
e & & & F
= Ty = Ty &
(%] — —

allsep 1o wWs)|ajjeled

Step Poly(ll) Ramp Poly(l) Impulse

Time

Time

24

2/5/2014

Results for a Single Job Set

Feedback-driven schedulers v.s. EQUI on a single job set.

0 Feedback-driven schedulers outperform EQUI at medium loads.

o At light loads, enough processors for every job; no feedback is needed.
0 At heavy loads, not enough processors even with feedbacks.

: : 16 : :

—EQUI/ ACDEQ —EQUI/ ACDEQ

—-EQUI/ AGDEQ o 1o ——EQUI/AGDEQ
2 o
s =
@ b
o =
s =
8
r 2

0.95

07.02.2014 @ ENS de Lyon 25

Results for Multiple Job Sets

EQUI-Feedback v.s. EQUI-EQUI on multiple job sets. (64 procs)

o Fair and efficient schedulers outperform EQUI-EQUI in most cases.

o Combines results of makespan and total response time.

L
—EQUIPEQUI / EQUIPACDEQ
1.4l ——EQUIPEQUI/ EQUIPAGDEQ
2 v
®
g'l_ﬂ-
@ 1.2t
=]
73
o T.1p
'] -
D_g 1 II. 1 1 1 -\I 1 1 1 1
10 20 30 40 50 60 70 80 90 100

Number of sets

Following release time of the job model

07.02.2014 @ ENS de Lyon

Set response time ratio

1.1

1.057

095

'[—EQUIFEQUI/ EQUIPACDEQ
----- EQUIPEQUI / EQUIFAGDEQ

5 10 15 20 25 30 35 40 45 50
Number of sets

Identical release time

26

Results for Multiple Job Sets

EQUI-Feedback v.s. EQUI-EQUI on multiple job sets. (64 procs)

o Fair and efficient schedulers outperform EQUI-EQUI in most cases.

o Combines results of makespan and total response time.

[
—EQUIPEQUI / EQUIPACDEQ
1.4l ——EQUIPEQUI/ EQUIPAGDEQ
2 v
®
g'l_ﬂ- "
@ 1.2t
=]
73
o T.1p
5 |
'] -
D_g 1 II. 1 1 1 -\I 1 1 1 1
10 20 30 40 50 60 70 80 90 100

Number of sets

Following release time of the job model

07.02.2014 @ ENS de Lyon

'[—EQUIFEQUI/ EQUIPACDEQ
----- EQUIPEQUI / EQUIFAGDEQ

Set response time ratio

0952015 20 25 30 35 40 45 50
Number of sets

Identical release time

26

‘ Results for Multiple Job Sets

= EQUI-Feedback v.s. EQUI-EQUI on multiple job sets. (64 procs)

o Fair and efficient schedulers outperform EQUI-EQUI in most cases.

o Combines results of makespan and total response time.

L
—EQUIPEQUI / EQUIPACDEQ

1.4l ——EQUIPEQUI/ EQUIPAGDEQ
2
& &
2 1.3 o
E E
@ 1.2} 3
o o
L o
o T.1p E
5 | 3

'] -
D_g 1 : L 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

NMumber of sets L oad

0.95=

'[—EQUIFEQUI/ EQUIPACDEQ
----- EQUIPEQUI / EQUIFAGDEQ

5 10 15 20 25 30 35 40 45 50
Number of sets

Following release time of the job model

>
Identical release time

07.02.2014 @ ENS de Lyon

26

Outline

= Remarks

07.02.2014 @ ENS de Lyon

27

L
_L.-_Jr---.i_-
L1

Remark on Multi-Level Scheduling

===t

e ———

Il

]
]
i
I
]
|
I
1
I
[
I
]
[
[
]
|
|
]
i

]

bencma==d
'T4

[
#
&

%

O TS
T

e

s s s

T,

28

07.02.2014 @ ENS de Lyon

ing

Remark on Multi-Level Schedul

===t

L
.l-.-.l‘----.q._-
L1

i

]

¥
#

__--:’:,

)

fma=m

¥

.‘Ar------

e ———

]
]
i
I
]
|
I
1
I
[
I
]
[
[
]
|
|
]
i

T

15

28

07.02.2014 @ ENS de Lyon

ing

Remark on Multi-Level Schedul

¥

I

e e e T

]

===t

L
_.I'..-_J‘-_--..i.__

¥
&
¥

-i'l- Jr------

ir--

[

-
IIIII

i

]

__--:’:,

)

fma=m

]
]
i
I
]
|
!
1
I
[
!
]
[
[
]
|
|
]
i

T

15

28

07.02.2014 @ ENS de Lyon

Remark on Adaptive Parallel Job
Scheduling

LAPS(B) algorithm generalizes EQUI [Edmonds & Pruhs 2009].
o Allocate processors to B fraction of jobs with latest arrival time.

0 s=(1+B+e)-speed (4s/Be)-comp. for total response time.

o Provides tradeoff between speed augmentation and competitive ratio.

07.02.2014 @ ENS de Lyon

29

Remark on Adaptive Parallel Job
Scheduling

LAPS(B) algorithm generalizes EQUI [Edmonds & Pruhs 2009].

o Allocate processors to B fraction of jobs with latest arrival time.
0 s=(1+B+e)-speed (4s/Be)-comp. for total response time.
o Provides tradeoff between speed augmentation and competitive ratio.

LAPS(B) can be combined with feedback-driven adaptive
schedulers to improve the comp. ratios by constant factors.

07.02.2014 @ ENS de Lyon 29

Remark on Adaptive Parallel Job
Scheduling

LAPS(B) algorithm generalizes EQUI [Edmonds & Pruhs 2009].

o Allocate processors to B fraction of jobs with latest arrival time.
0 s=(1+B+e)-speed (4s/Be)-comp. for total response time.

o Provides tradeoff between speed augmentation and competitive ratio.

LAPS(B) can be combined with feedback-driven adaptive
schedulers to improve the comp. ratios by constant factors.

Open Question: Does universally scalable algorithm exist?
(i.e., (1+&)-speed O(1)-comp. for any >0 and the algorithm’s
parameter does not depend on €!)

07.02.2014 @ ENS de Lyon

29

Thank youl!
Questions?

07.02.2014 @ ENS de Lyon

30

	Competitive Online Adaptive Scheduling for Sets of Parallel Jobs with Fairness and Efficiency
	Introduction
	Introduction
	Outline
	Basic Scheduling Model
	Basic Scheduling Model
	Two-Level Scheduling Model
	Objective Function
	Objective Function
	Objective Function
	Objective Function
	Outline
	Overview of Scheduling Algorithm
	Overview of Scheduling Algorithm
	Feedback-Driven Adaptive Schedulers
	Feedback-Driven Adaptive Schedulers
	Feedback-Driven Adaptive Schedulers
	Processor Desire Calculations
	Processor Allocation Policy
	Processor Allocation Policy
	Processor Allocation Policy
	Fair and Efficient Adaptive Scheduler
	Outline
	Performance Analysis
	Existing Results for EQUI-Based Algo.
	Existing Results for EQUI-Based Algo.
	Generalized Analysis for EQUI-XY
	Generalized Analysis for EQUI-XY
	Generalized Analysis for EQUI-XY
	Generalized Analysis for EQUI-XY
	Results for EQUI-XY Algo
	Results for EQUI-XY Algo
	Outline
	Simulation Setup
	Results for Individual Job
	Results for a Single Job Set
	Results for Multiple Job Sets
	Results for Multiple Job Sets
	Results for Multiple Job Sets
	Outline
	Remark on Multi-Level Scheduling
	Remark on Multi-Level Scheduling
	Remark on Multi-Level Scheduling
	Remark on Adaptive Parallel Job Scheduling
	Remark on Adaptive Parallel Job Scheduling
	Remark on Adaptive Parallel Job Scheduling
	Slide Number 47

