Identifying the Right Replication Level to Detect and Correct Silent Errors at Scale

Anne Benoit¹ Aurélien Cavelan¹ Franck Cappello² Padma Raghavan⁴ Yves Robert^{1,3} Hongyang Sun⁴

¹ENS Lyon & INRIA, France

²Argonne National Laboratory, USA

³University of Tennessee Knoxville, USA

⁴Vanderbilt University, USA

hongyang.sun@vanderbilt.edu

Fault Tolerance for HPC at eXtreme Scale (FTXS) Workshop June 26, 2017@Washington, D.C., USA

An Inconvenient Truth

Top ranked supercomputers in the US (June 2017)

Rank	Name	Laboratory	Technology	Cores	PFlops/s	MTBF
4	Titan	ORNL	Cray XK7	560,640	17.59	pprox 1 day
5	Sequoia	LLNL	BG/Q	1,572,864	17.17	pprox 1 day
6	Cori	LBNL	Cray XC40	622,336	14.01	pprox 1 day
9	Mira	ANL	BG/Q	786,432	8.59	pprox 1 day

Fail-stop errors: Node failure, resource crashes

Silent errors or silent data corruptions (SDCs): Double bit flips, soft faults

An Inconvenient Truth

Top ranked supercomputers in the US (June 2017)

Rank	Name	Laboratory	Technology	Cores	PFlops/s	MTBF
4	Titan	ORNL	Cray XK7	560,640	17.59	pprox 1 day
5	Sequoia	LLNL	BG/Q	1,572,864	17.17	pprox 1 day
6	Cori	LBNL	Cray XC40	622,336	14.01	pprox 1 day
9	Mira	ANL	BG/Q	786,432	8.59	pprox 1 day

Fail-stop errors: Node failure, resource crashes

Silent errors or silent data corruptions (SDCs): Double bit flips, soft faults

Exascale computing (1000 PFlops/s):

- Larger core count: millions or even billions of cores
- Shorter Mean Time Between Failures (MTBF) μ

An Inconvenient Truth

Top ranked supercomputers in the US (June 2017)

Rank	Name	Laboratory	Technology	Cores	PFlops/s	MTBF
4	Titan	ORNL	Cray XK7	560,640	17.59	pprox 1 day
5	Sequoia	LLNL	BG/Q	1,572,864	17.17	pprox 1 day
6	Cori	LBNL	Cray XC40	622,336	14.01	pprox 1 day
9	Mira	ANL	BG/Q	786,432	8.59	pprox 1 day

Fail-stop errors: Node failure, resource crashes

Silent errors or silent data corruptions (SDCs): Double bit flips, soft faults

Exascale computing (1000 PFlops/s):

- Larger core count: millions or even billions of cores
- Shorter Mean Time Between Failures (MTBF) μ

Coping with faults:

- Build more reliable hardware!
- Make applications more fault tolerant!
- Design better resilience techniques/algorithms!

Resilience Techniques for HPC

Fail-stop errors (instantaneous error detection) Standard approach: periodic checkpointing, rollback and recovery

Resilience Techniques for HPC

Fail-stop errors (instantaneous error detection) Standard approach: periodic checkpointing, rollback and recovery

Silent errors (arbitrary detection latency) Promising approach: checkpointing + verification (error detection)

[1] A. Benoit, A. Cavelan, Y. Robert and H. Sun. Assessing General-Purpose Algorithms to Cope with Fail-Stop and Silent Errors. ACM Transactions on Parallel Computing, 2016.

Approaches for Detecting Silent Errors

Application-specific approaches

- Algorithm-based fault tolerance (ABFT): checksums in dense matrices, limited to one error detection and/or correction in practice [Huang and Abraham 1984]
- Partial differential equations (PDE): use lower-order scheme as verification mechanism [Benson, Schmit and Schreiber 2014]
- Generalized minimal residual method (GMRES): inner-outer iterations [Hoemmen and Heroux 2011]
- Preconditioned conjugate gradients (PCG): orthogonalization check iteratively, re-orthogonalization if error detected [Sao and Vuduc 2013, Chen 2013]

Data-analytics/machine learning approaches

- Dynamic monitoring of datasets based on physical laws (e.g., temperature/speed limit) and space or temporal proximity [Bautista-Gomez and Cappello 2014]
- ▶ Time-series prediction, spatial multivariate interpolation [Di et al. 2014]
- Offline training, online detection based on SDC signature for convergent iterative applications [Liu and Agrawal 2016]
- Spatial regression based on support vector machines [Subasi et al. 2016]

General-purpose approaches

- Process replication [Fiala et al. 2012]
- ▶ Group replication [Casanova et al. 2014]
- Triple modular redundancy (TMR) and voting [Lyons and Vanderkulk 1962]

Focus:

Analytical model for applying replication/redundancy (general purpose approaches) in combination with checkpointing to detect and correct silent errors for HPC!

Question:

How to *optimally* execute a parallel job obeying Amdahl's law on an error-prone platform?

What is the optimal error-aware speedup?

When Amdahl Meets Young/Daly

Error-free speedup with *P* processors and α sequential fraction:

Amdahl's Law: $S(P) = \frac{1}{\alpha + \frac{1-\alpha}{P}}$

- \blacktriangleright Bounded above by $1/\alpha$
- Strictly increasing function of P

When Amdahl Meets Young/Daly

Error-free speedup with *P* processors and α sequential fraction:

Amdahl's Law: $S(P) = \frac{1}{\alpha + \frac{1-\alpha}{P}}$

- \blacktriangleright Bounded above by $1/\alpha$
- Strictly increasing function of P

Allocating more processors on an error-prone platform?

- Higher error-free speedup ^(C)
- More errors/faults 🙂
 - More frequent checkpointing 🙂
 - ► More resilience overhead 🙁

When Amdahl Meets Young/Daly

Error-free speedup with *P* processors and α sequential fraction:

Amdahl's Law: $S(P) = \frac{1}{\alpha + \frac{1-\alpha}{P}}$

- \blacktriangleright Bounded above by $1/\alpha$
- Strictly increasing function of P

Allocating more processors on an error-prone platform?

- ► Higher error-free speedup ☺
- More errors/faults 🙂
 - More frequent checkpointing 🙂
 - ► More resilience overhead 🙁

Optimal processor allocation and checkpointing interval?

[2] A. Cavelan, J. Li, Y. Robert and H. Sun, When Amdahl Meets Young/Daly. IEEE CLUSTER, 2016.

How Is Replication Used?

On a Q-processor platform, application is replicated n times:

- **Duplication**: each replica has P = Q/2 processors
- **Triplication**: each replica has P = Q/3 processors
- **General case**: each replica has P = Q/n processors

How Is Replication Used?

On a Q-processor platform, application is replicated n times:

- **Duplication**: each replica has P = Q/2 processors
- **Triplication**: each replica has P = Q/3 processors
- **General case**: each replica has P = Q/n processors

Having more replicas on an error-prone platform?

- Lower error-free speedup 🙁
- More resilient ⁽²⁾
 - Smaller checkpointing frequency ^(C)
 - ► Less resilience overhead ☺

How Is Replication Used?

On a Q-processor platform, application is replicated n times:

- **Duplication**: each replica has P = Q/2 processors
- **Triplication**: each replica has P = Q/3 processors
- **General case**: each replica has P = Q/n processors

Having more replicas on an error-prone platform?

- Lower error-free speedup 🙁
- More resilient ⁽²⁾
 - Smaller checkpointing frequency ^(C)
 - ► Less resilience overhead ☺

Optimal replication level, processor allocation per replica and checkpointing interval?

Error detection (duplication):

Error detection (duplication):

Error detection (duplication):

Error correction (triplication):

Error detection (duplication):

Error correction (triplication):

Error detection (duplication):

Error correction (triplication):

Two Replication Modes

Process Replication:

Group Replication:

Two Replication Modes

Process Replication:

Group Replication:

Independent process error distribution

- Exponential $Exp(\lambda)$, $\lambda = 1/\mu$ (Memoryless)
- Error probability of one process during T time of computation:

$$\mathbb{P}(T) = 1 - e^{-\lambda T}$$

Independent process error distribution

- Exponential $Exp(\lambda)$, $\lambda = 1/\mu$ (Memoryless)
- Error probability of one process during T time of computation:

$$\mathbb{P}(T) = 1 - e^{-\lambda T}$$

Process Triplication:

Failure probability of any triplicated process:

$$\mathbb{P}_{3}^{\mathsf{prc}}(T,1) = \binom{3}{2} \left(1 - \mathbb{P}(T)\right) \mathbb{P}(T)^{2} + \mathbb{P}(T)^{3}$$
$$= 3e^{-\lambda T} \left(1 - e^{-\lambda T}\right)^{2} + \left(1 - e^{-\lambda T}\right)^{3}$$
$$= 1 - 3e^{-2\lambda T} + 2e^{-3\lambda T}$$

Independent process error distribution

- Exponential $Exp(\lambda)$, $\lambda = 1/\mu$ (Memoryless)
- Error probability of one process during T time of computation:

$$\mathbb{P}(T) = 1 - e^{-\lambda T}$$

Process Triplication:

Failure probability of any triplicated process:

$$\mathbb{P}_{3}^{\mathsf{prc}}(T,1) = \binom{3}{2} \left(1 - \mathbb{P}(T)\right) \mathbb{P}(T)^{2} + \mathbb{P}(T)^{3}$$
$$= 3e^{-\lambda T} \left(1 - e^{-\lambda T}\right)^{2} + \left(1 - e^{-\lambda T}\right)^{3}$$
$$= 1 - 3e^{-2\lambda T} + 2e^{-3\lambda T}$$

Failure probability of P-process application:

$$\mathbb{P}_{3}^{\text{prc}}(T, P) = 1 - \mathbb{P}(\text{"No process fails"})$$
$$= 1 - (1 - \mathbb{P}_{3}^{\text{prc}}(T, 1))^{P}$$
$$= 1 - (3e^{-2\lambda T} - 2e^{-3\lambda T})^{P}$$

Group Triplication:

► Failure probability of any <u>P-process group</u>: $\mathbb{P}_1^{grp}(T, P) = 1 - \mathbb{P}(\text{``No process in group fails''})$ $= 1 - (1 - \mathbb{P}(T))^P$

$$= 1 - e^{-\lambda PT}$$

Group Triplication:

Failure probability of any <u>P-process group</u>:

$$\mathbb{P}_{1}^{grp}(T, P) = 1 - \mathbb{P}(\text{``No process in group fails''})$$
$$= 1 - (1 - \mathbb{P}(T))^{P}$$
$$= 1 - e^{-\lambda PT}$$

Failure probability of <u>three-group application</u>:

$$\mathbb{P}_{3}^{grp}(T,P) = \binom{3}{2} \left(1 - \mathbb{P}_{1}^{grp}(T,1)\right) \mathbb{P}_{1}^{grp}(T,1)^{2} + \mathbb{P}_{1}^{grp}(T,1)^{3}$$
$$= 3e^{-\lambda PT} \left(1 - e^{-\lambda PT}\right)^{2} + \left(1 - e^{-\lambda PT}\right)^{3}$$
$$= 1 - 3e^{-2\lambda PT} + 2e^{-3\lambda PT}$$

Group Triplication:

Failure probability of any <u>P-process group</u>:

$$\mathbb{P}_{1}^{grp}(T, P) = 1 - \mathbb{P}(\text{``No process in group fails''})$$
$$= 1 - (1 - \mathbb{P}(T))^{P}$$
$$= 1 - e^{-\lambda PT}$$

Failure probability of <u>three-group application</u>:

$$\mathbb{P}_{3}^{grp}(T,P) = \binom{3}{2} \left(1 - \mathbb{P}_{1}^{grp}(T,1)\right) \mathbb{P}_{1}^{grp}(T,1)^{2} + \mathbb{P}_{1}^{grp}(T,1)^{3}$$

= $3e^{-\lambda PT} \left(1 - e^{-\lambda PT}\right)^{2} + \left(1 - e^{-\lambda PT}\right)^{3}$
= $1 - 3e^{-2\lambda PT} + 2e^{-3\lambda PT}$
> $1 - \left(3e^{-2\lambda T} - 2e^{-3\lambda T}\right)^{P} = \mathbb{P}_{3}^{prc}(T,P)$

Group Triplication:

Failure probability of any <u>P-process group</u>:

$$\begin{split} \mathbb{P}_{1}^{\text{grp}}(\mathcal{T}, \mathcal{P}) &= 1 - \mathbb{P}(\text{``No process in group fails''}) \\ &= 1 - \left(1 - \mathbb{P}(\mathcal{T})\right)^{\mathcal{P}} \\ &= 1 - e^{-\lambda \mathcal{P}\mathcal{T}} \end{split}$$

Failure probability of <u>three-group application</u>:

$$\mathbb{P}_{3}^{grp}(T,P) = \binom{3}{2} \left(1 - \mathbb{P}_{1}^{grp}(T,1)\right) \mathbb{P}_{1}^{grp}(T,1)^{2} + \mathbb{P}_{1}^{grp}(T,1)^{3}$$

= $3e^{-\lambda PT} \left(1 - e^{-\lambda PT}\right)^{2} + \left(1 - e^{-\lambda PT}\right)^{3}$
= $1 - 3e^{-2\lambda PT} + 2e^{-3\lambda PT}$
> $1 - \left(3e^{-2\lambda T} - 2e^{-3\lambda T}\right)^{P} = \mathbb{P}_{3}^{prc}(T,P)$

What about duplication? (any error kills both cases)

$$\mathbb{P}_2^{\rm prc}(T,P) = \mathbb{P}_2^{\rm grp}(T,P) = 1 - e^{-2\lambda TP}$$

Two Observations

Observation 1 (Implementation)

- Process replication is more resilient than group replication (assuming same overhead)
- Group replication is easier to implement by treating an application as a blackbox

Two Observations

Observation 1 (Implementation)

- Process replication is more resilient than group replication (assuming same overhead)
- Group replication is easier to implement by treating an application as a blackbox

Observation 2 (Analysis)

Following two scenarios are equivalent w.r.t. failure probability:

- Group replication with *n* replicas, where each replica has *P* processes and each process has error rate λ
- Process replication with one process, which has error rate λP and which is replicated n times

Benefit of analysis: $Group(n, P, \lambda) \rightarrow Process(n, 1, \lambda P)$

Maximize error-aware speedup

$$\mathbb{S}_n(T,P) = \frac{S(P)}{\mathbb{E}_n(T,P)/T}$$

- 1. Derive failure probability $\mathbb{P}_n^{\text{prc}}(T, P)$ or $\mathbb{P}_n^{\text{grp}}(T, P)$ exact
- 2. Compute expected execution time $\mathbb{E}_n(T, P)$ exact
- 3. Compute first-order approx. of error-aware speedup $S_n(T, P)$
- 4. Derive optimal T_{opt} , P_{opt} and get $S_n(T_{opt}, P_{opt})$
- 5. Choose right replication level n

Analytical Results

Duplication:

On a platform with Q processors and checkpointing cost C, the optimal resilience parameters for *process/group duplication* are:

$$P_{\text{opt}} = \min\left\{\frac{Q}{2}, \left(\frac{1}{2}\left(\frac{1-\alpha}{\alpha}\right)^2 \frac{1}{C\lambda}\right)^{\frac{1}{3}}\right\}$$
$$T_{\text{opt}} = \left(\frac{C}{2\lambda P_{\text{opt}}}\right)^{\frac{1}{2}}$$
$$\mathbb{S}_{\text{opt}} = \frac{S(P_{\text{opt}})}{1+2(2\lambda C P_{\text{opt}})^{\frac{1}{2}}}$$

Analytical Results

Duplication:

On a platform with Q processors and checkpointing cost C, the optimal resilience parameters for *process/group duplication* are:

$$\begin{split} P_{\text{opt}} &= \min\left\{\frac{Q}{2}, \left(\frac{1}{2}\left(\frac{1-\alpha}{\alpha}\right)^2 \frac{1}{C\lambda}\right)^{\frac{1}{3}}\right\}\\ T_{\text{opt}} &= \left(\frac{C}{2\lambda P_{\text{opt}}}\right)^{\frac{1}{2}}\\ \mathbb{S}_{\text{opt}} &= \frac{S(P_{\text{opt}})}{1+2\left(2\lambda C P_{\text{opt}}\right)^{\frac{1}{2}}} \end{split}$$

Triplication & (n, k)-replication (k-out-of-n replica consensus): similar results but different for process and group, less practical for n > 3

Analytical Results

Duplication:

On a platform with Q processors and checkpointing cost C, the optimal resilience parameters for *process/group duplication* are:

$$\begin{split} P_{\text{opt}} &= \min\left\{\frac{Q}{2}, \left(\frac{1}{2}\left(\frac{1-\alpha}{\alpha}\right)^2 \frac{1}{C\lambda}\right)^{\frac{1}{3}}\right\}\\ T_{\text{opt}} &= \left(\frac{C}{2\lambda P_{\text{opt}}}\right)^{\frac{1}{2}}\\ \mathbb{S}_{\text{opt}} &= \frac{S(P_{\text{opt}})}{1+2\left(2\lambda C P_{\text{opt}}\right)^{\frac{1}{2}}} \end{split}$$

Triplication & (n, k)-replication (*k*-out-of-*n* replica consensus): similar results but different for process and group, less practical for n > 3

- ▶ For $\alpha > 0$, not necessarily use up all available Q processors
- Checkpointing interval T_{opt} nicely extends Young/Daly's result
- Error-aware speedup $\mathbb{S}_{\mathsf{opt}}$ minimally affected for small λ

Results Comparison

For fully parallel jobs, i.e., $\alpha = 0$ (similar for $\alpha > 0$)

Duplication v.s. Process triplication

$$\begin{split} P_{\text{opt}} &= \frac{Q}{2} & P_{\text{opt}} = \frac{Q}{3} & (\text{Processors }\downarrow) \\ T_{\text{opt}} &= \sqrt{\frac{C}{\lambda Q}} & T_{\text{opt}} = \sqrt[3]{\frac{C}{2\lambda^2 Q}} & (\text{Chkpt interval }\uparrow) \\ \mathbb{S}_{\text{opt}} &= \frac{Q/2}{1 + 2\sqrt{\lambda C Q}} & \mathbb{S}_{\text{opt}} = \frac{Q/3}{1 + 3\sqrt[3]{\left(\frac{\lambda C}{2}\right)^2 Q}} & (\text{Exp. speedup??}) \end{split}$$

Results Comparison

For fully parallel jobs, i.e., $\alpha = 0$ (similar for $\alpha > 0$)

Duplication v.s. Process triplication

$$\begin{split} P_{\text{opt}} &= \frac{Q}{2} & P_{\text{opt}} = \frac{Q}{3} & (\text{Processors }\downarrow) \\ T_{\text{opt}} &= \sqrt{\frac{C}{\lambda Q}} & T_{\text{opt}} = \sqrt[3]{\frac{C}{2\lambda^2 Q}} & (\text{Chkpt interval }\uparrow) \\ \mathbb{S}_{\text{opt}} &= \frac{Q/2}{1 + 2\sqrt{\lambda C Q}} & \mathbb{S}_{\text{opt}} = \frac{Q/3}{1 + 3\sqrt[3]{\left(\frac{\lambda C}{2}\right)^2 Q}} & (\text{Exp. speedup??}) \end{split}$$

Process triplication v.s. Group triplication

$$\begin{split} P_{\text{opt}} &= \frac{Q}{3} & P_{\text{opt}} = \frac{Q}{3} & (\text{Processors} =) \\ T_{\text{opt}} &= \sqrt[3]{\frac{C}{2\lambda^2 Q}} & T_{\text{opt}} = \sqrt[3]{\frac{3C}{2(\lambda Q)^2}} & (\text{Chkpt interval } \downarrow) \\ \mathbb{S}_{\text{opt}} &= \frac{Q/3}{1+3\sqrt[3]{\left(\frac{\lambda C}{2}\right)^2 Q}} & \mathbb{S}_{\text{opt}} = \frac{Q/3}{1+3\sqrt[3]{\frac{1}{3}\left(\frac{\lambda C Q}{2}\right)^2}} & (\text{Exp. speedup } \downarrow) \end{split}$$

Results Comparison

For fully parallel jobs, i.e., $\alpha = 0$ (similar for $\alpha > 0$)

Limitation of First-Order Approximation

Observation 3 (First-Order)

Suppose $P = \Theta(\lambda^{-x})$ and $T = \Theta(\lambda^{-y})$. Then, for first-order approximation to accurately estimate error probabilities (e.g., $1 - e^{-\lambda PT} \approx \lambda PT$), we need:

x + y < 1or $P \cdot T = o(\mu)$

e.g., $\mu = 10$ years $\Rightarrow P \cdot T < 3 \cdot 10^8$ processor-seconds Generally accurate for platform MTBF $\mu_P = \Theta(\text{days})$ or $\mu_P = \Theta(\text{hours})$ depending on checkpointing cost *C*

Limitation of First-Order Approximation

Observation 3 (First-Order)

Suppose $P = \Theta(\lambda^{-x})$ and $T = \Theta(\lambda^{-y})$. Then, for first-order approximation to accurately estimate error probabilities (e.g., $1 - e^{-\lambda PT} \approx \lambda PT$), we need:

x + y < 1or $P \cdot T = o(\mu)$

e.g., $\mu = 10$ years $\Rightarrow P \cdot T < 3 \cdot 10^8$ processor-seconds Generally accurate for platform MTBF $\mu_P = \Theta(\text{days})$ or $\mu_P = \Theta(\text{hours})$ depending on checkpointing cost *C*

What about larger systems?

One solution: multi-level checkpointing \Rightarrow error separation

[3] A. Benoit, A. Cavelan, V. Le Fèvre, Y. Robert and H. Sun. Towards Optimal Multi-Level Checkpointing. IEEE Transactions on Computers, 2017. Consider an platform with $Q = 10^6$, and study

$$\textit{Efficiency} = \frac{\mathbb{S}_{\mathsf{opt}}}{Q}$$

- Impact of MTBE and checkpointing cost C
- Impact of sequential fraction α
- Impact of number of processes P

Impact of MTBE and Checkpointing Cost

 $\alpha = 10^{-6}$

- First-order accurate except for duplication (where P is larger) and with small MTBE
- Duplication can be sufficient for large MTBE, especially for small checkpointing cost

Impact of Sequential Fraction

C = 1800s

- Increased α reduces efficiency
- Increased α increases minimum MTBE for which duplication is sufficient

Impact of Number of Processes

- Efficiency/error-aware speedup no longer strictly increasing function of P
- First-order P_{opt} close to actual optimum

Conclusion

What to Remember

- "Replication + checkpointing" as a general-purpose faulttolerance protocol for coping with silent errors in HPC
- Process replication is more resilient than group replication, but group replication is easier to implement
- ► Analytical solution for P_{opt}, T_{opt}, and S_{opt} and for choosing right replication mode and level

Future Work

- Analyzing partial replication paradigm: different replication modes and levels for tasks with different criticality
- Dealing with co-existence of fail-stop errors and silent errors
- Experimenting with real applications/platforms