
1/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Assessing the Impact of Partial Verifications
Against Silent Data Corruptions

Aurélien Cavelan1, Saurabh K. Raina2, Yves Robert1,3 and
Hongyang Sun1

1. Ecole Normale Superieure de Lyon & INRIA, France
2. Jaypee Institute of Information Technology, India

3. University of Tennessee Knoxville, USA

hongyang.sun@ens-lyon.fr

ICPP – September 3, 2015

hongyang.sun@ens-lyon.fr

2/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

HPC at Scale

Scale is a major opportunity:

Exascale platform: 105 or 106 nodes, each with 102 or 103 cores.

Scale is also a major threat:

Shorter Mean Time Between Failures (MTBF) µ.

Theorem: µp = µind
p for arbitrary distributions

MTBF (individual node) 1 year 10 years 120 years
MTBF (platform of 106 nodes) 30 sec 5 mn 1 h

Need more reliable components!!
Need more resilient techniques!!!

2/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

HPC at Scale

Scale is a major opportunity:

Exascale platform: 105 or 106 nodes, each with 102 or 103 cores.

Scale is also a major threat:

Shorter Mean Time Between Failures (MTBF) µ.

Theorem: µp = µind
p for arbitrary distributions

MTBF (individual node) 1 year 10 years 120 years
MTBF (platform of 106 nodes) 30 sec 5 mn 1 h

Need more reliable components!!
Need more resilient techniques!!!

3/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

General-purpose approach

Periodic checkpoint, rollback and recovery:

TimeW W

Error

Corrupt Detect

C C C

Fail-stop errors: e.g., hardware crash, node failure
- Instantaneous error detection.

Silent errors (aka silent data corruptions): e.g., soft faults in L1
cache, ALU, multiple bit flip due to cosmic radiation.

- Detected only when corrupted data leads to unexpected
results, which could happen long after its occurrence.

- Become a serious concern in Exascale systems.

Detection latency ⇒ risk of saving corrupted checkpoint!

3/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

General-purpose approach

Periodic checkpoint, rollback and recovery:

TimeW W

Error

Corrupt Detect

C C C

Fail-stop errors: e.g., hardware crash, node failure
- Instantaneous error detection.

Silent errors (aka silent data corruptions): e.g., soft faults in L1
cache, ALU, multiple bit flip due to cosmic radiation.

- Detected only when corrupted data leads to unexpected
results, which could happen long after its occurrence.

- Become a serious concern in Exascale systems.

Detection latency ⇒ risk of saving corrupted checkpoint!

3/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

General-purpose approach

Periodic checkpoint, rollback and recovery:

TimeW W

Error Corrupt Detect
C C C

Fail-stop errors: e.g., hardware crash, node failure
- Instantaneous error detection.

Silent errors (aka silent data corruptions): e.g., soft faults in L1
cache, ALU, multiple bit flip due to cosmic radiation.

- Detected only when corrupted data leads to unexpected
results, which could happen long after its occurrence.

- Become a serious concern in Exascale systems.

Detection latency ⇒ risk of saving corrupted checkpoint!

4/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Coping with silent errors
Couple checkpointing with verification:

TimeW W

Error Detect

V ∗ C V ∗ C V ∗ C

Before each checkpoint, run some verification mechanism
(checksum, ECC, coherence tests, TMR, etc).

Silent error is detected by verification ⇒ checkpoint always valid ,

What is the optimal checkpointing period (Young/Daly)?

Fail-stop (classical) Silent errors
Pattern T = W + C T = W + V ∗ + C

Optimal W ∗ =
√

2Cµ W ∗ =
√

(C + V ∗)µ

4/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Coping with silent errors
Couple checkpointing with verification:

TimeW W

Error Detect

V ∗ C V ∗ C V ∗ C

Before each checkpoint, run some verification mechanism
(checksum, ECC, coherence tests, TMR, etc).

Silent error is detected by verification ⇒ checkpoint always valid ,
What is the optimal checkpointing period (Young/Daly)?

Fail-stop (classical) Silent errors
Pattern T = W + C T = W + V ∗ + C

Optimal W ∗ =
√

2Cµ W ∗ =
√

(C + V ∗)µ

5/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

One step further: intermediate verifications

Perform several intermediate verifications before each checkpoint:

Time

Error Detect

V ∗ C V ∗ V ∗ V ∗ C V ∗ V ∗ V ∗ C

Pro: silent error is detected earlier in the execution ,
Con: additional overhead in error-free executions /

What is the optimal tradeoff?

5/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

One step further: intermediate verifications

Perform several intermediate verifications before each checkpoint:

Time

Error Detect

V ∗ C V ∗ V ∗ V ∗ C V ∗ V ∗ V ∗ C

Pro: silent error is detected earlier in the execution ,
Con: additional overhead in error-free executions /

What is the optimal tradeoff?

6/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

One more step further: partial verification

Guaranteed/perfect verifications (V ∗) can be very expensive!
Partial verifications (V) are available for many HPC applications!

Lower accuracy: recall (r) = #detected errors
#total errors < 1 /

Much lower cost, i.e., V � V ∗ ,

Time

Error Detect? Detect!

V ∗ C V V V ∗ C V V V ∗ C

What is the optimal checkpointing period?
How many partial verifications to use and their positions?

6/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

One more step further: partial verification

Guaranteed/perfect verifications (V ∗) can be very expensive!
Partial verifications (V) are available for many HPC applications!

Lower accuracy: recall (r) = #detected errors
#total errors < 1 /

Much lower cost, i.e., V � V ∗ ,

Time

Error Detect? Detect!

V ∗ C V V V ∗ C V V V ∗ C

What is the optimal checkpointing period?
How many partial verifications to use and their positions?

6/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

One more step further: partial verification

Guaranteed/perfect verifications (V ∗) can be very expensive!
Partial verifications (V) are available for many HPC applications!

Lower accuracy: recall (r) = #detected errors
#total errors < 1 /

Much lower cost, i.e., V � V ∗ ,

Time

Error Detect? Detect!

V ∗ C V V V ∗ C V V V ∗ C

What is the optimal checkpointing period?
How many partial verifications to use and their positions?

7/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Outline

1 Problem Statement

2 Theoretical Analysis

3 Performance Evaluations

4 Conclusion

8/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Model and Objective

Failure Model

Silent errors strike randomly and are uniformly distributed with
arrival rate λ = 1/µ, where µ is platform MTBF.

- Expect λT errors in computation of time T .

Failures only affect computations; checkpointing, recovery, and
verifications are protected.

Resilience parameters

Cost of checkpointing C , cost of recovery R.

Partial verification: cost V and recall r < 1.

Guaranteed verification: cost V ∗ and recall r∗ = 1.

Objective

Design an optimal periodic computing pattern that minimizes
execution time (or makespan) of the application.

9/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Pattern

Formally, a periodic computing pattern is defined by

W : work length of the pattern (or period);

n: number of segments in the pattern (or m = n − 1: number of
partial verifications);

α = [α1, α2, . . . , αn]: work fraction of each segment (or relative
positions of partial verifications)

- αi = wi
W and

∑n
i=1 αi = 1.

Time
W

w1 w2 w3 wn

· · ·
· · ·

V ∗ C V V V V V ∗ C

Last verification is perfect to avoid saving corrupted checkpoints.

10/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Outline

1 Problem Statement

2 Theoretical Analysis

3 Performance Evaluations

4 Conclusion

11/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Expected execution time of a pattern

Proposition

The expected time to execute a pattern with fixed W , n,α is

E(W) = W + (n − 1)V + V ∗ + C︸ ︷︷ ︸
off

+ λW︸︷︷︸
#errors

αT Aα︸ ︷︷ ︸
fre

·W

+ o(λ)

where A is a symmetric matrix defined by Ai,j = 1
2
(
1 + (1− r)|i−j|).

Remarks:

Two key parameters
- off: overhead in a fault-free execution.
- fre: fraction of re-executed work in case of fault.

Same result if assuming exponential error distribution with
first-order approximation (as in Young/Daly’s classic formula).

12/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Minimizing makespan

Matrix A is essential to analysis. For instance, when n = 4 we have:

A = 1
2

2 1 + (1− r) 1 + (1− r)2 1 + (1− r)3

1 + (1− r) 2 1 + (1− r) 1 + (1− r)2

1 + (1− r)2 1 + (1− r) 2 1 + (1− r)
1 + (1− r)3 1 + (1− r)2 1 + (1− r) 2

For an application with total work Tbase, the makespan Tfinal is

Tfinal ≈
E(W)

W · Tbase = (1 + H(W)) · Tbase

where H(W) is the total execution overhead given by

H(W) = E(W)
W − 1 = off

W + λWfre + o
(√

λ
)

e.g., if Tbase = 100 and Tfinal = 120, we have H(W) = 20%.

Minimizing makespan is equivalent to minimizing overhead!

12/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Minimizing makespan

Matrix A is essential to analysis. For instance, when n = 4 we have:

A = 1
2

2 1 + (1− r) 1 + (1− r)2 1 + (1− r)3

1 + (1− r) 2 1 + (1− r) 1 + (1− r)2

1 + (1− r)2 1 + (1− r) 2 1 + (1− r)
1 + (1− r)3 1 + (1− r)2 1 + (1− r) 2

For an application with total work Tbase, the makespan Tfinal is

Tfinal ≈
E(W)

W · Tbase = (1 + H(W)) · Tbase

where H(W) is the total execution overhead given by

H(W) = E(W)
W − 1 = off

W + λWfre + o
(√

λ
)

e.g., if Tbase = 100 and Tfinal = 120, we have H(W) = 20%.

Minimizing makespan is equivalent to minimizing overhead!

12/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Minimizing makespan

Matrix A is essential to analysis. For instance, when n = 4 we have:

A = 1
2

2 1 + (1− r) 1 + (1− r)2 1 + (1− r)3

1 + (1− r) 2 1 + (1− r) 1 + (1− r)2

1 + (1− r)2 1 + (1− r) 2 1 + (1− r)
1 + (1− r)3 1 + (1− r)2 1 + (1− r) 2

For an application with total work Tbase, the makespan Tfinal is

Tfinal ≈
E(W)

W · Tbase = (1 + H(W)) · Tbase

where H(W) is the total execution overhead given by

H(W) = E(W)
W − 1 = off

W + λWfre + o
(√

λ
)

e.g., if Tbase = 100 and Tfinal = 120, we have H(W) = 20%.

Minimizing makespan is equivalent to minimizing overhead!

13/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Optimal work length

Theorem

The execution overhead of a pattern is minimized when its length is

W ∗ =
√

off
λfre

.

The optimal overhead is

H(W ∗) = 2
√
λofffre + o(

√
λ).

When the platform MTBF µ = 1/λ is large, o(
√
λ) is negligible.

Minimizing overhead is equivalent to minimizing product offfre.
- Tradeoff between fault-free overhead and fault-induced

re-execution.

14/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Optimal segment lengths

Theorem

The re-execution fraction fre of a pattern is minimized when α = α∗,
where

α∗k =
{

1
(n−2)r+2 for k = 1, n

r
(n−2)r+2 for k = 2, 3, . . . , n − 1

and the optimal value of fre is

f ∗re = 1
2

(
1 + 2− r

(n − 2)r + 2

)

Time1 r r 1

· · ·
· · ·

V ∗ C V V V V V ∗ C

Special case: if all verifications are perfect, we get equal-length segments,
i.e., α∗k = 1

n ,∀1 ≤ k ≤ n and f ∗re = 1
2
(
1 + 1

n
)
.

14/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Optimal segment lengths

Theorem

The re-execution fraction fre of a pattern is minimized when α = α∗,
where

α∗k =
{

1
(n−2)r+2 for k = 1, n

r
(n−2)r+2 for k = 2, 3, . . . , n − 1

and the optimal value of fre is

f ∗re = 1
2

(
1 + 2− r

(n − 2)r + 2

)

Time1 r r 1

· · ·
· · ·

V ∗ C V V V V V ∗ C

Special case: if all verifications are perfect, we get equal-length segments,
i.e., α∗k = 1

n ,∀1 ≤ k ≤ n and f ∗re = 1
2
(
1 + 1

n
)
.

15/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Optimal number of segments

Theorem

The execution overhead of a pattern is minimized when the number of
segments is

n∗ =
{

1− 1
a +

√
1
a
(1

b −
1
a
)

if a
b > 2

1 if a
b ≤ 2

and the optimal overhead is

H∗ =
√

2λ(C + V ∗)
(√

1− b
a +

√
b
a

)

where a = r
2−r represents accuracy and b = V

C+V ∗ denotes relative cost
of the partial verification.

In practice, the number of segments can only be an integer. Thus,
the optimal number is either dn∗e or bn∗c.

16/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Optimal accuracy-cost tradeoff
Suppose a tradeoff exists between the cost V and recall r of a partial
verification. What is the optimal tradeoff?

Theorem
The execution overhead is minimized when the (V , r) pair maximizes the
accuracy-to-cost ratio a

b =
r

2−r
V

V ∗+C

20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

cost V

re
ca

ll
r

20 25 30 35 40 45 50
14.5

15

15.5

16

16.5

17

17.5

18

18.5

19

cost V

ac
cu

ra
cy

−
to

−
co

st
 r

at
io

 a
/b

20 25 30 35 40 45 50
0.287

0.288

0.289

0.29

0.291

0.292

0.293

0.294

0.295

0.296

cost V

ov
er

he
ad

 H

Remark:
The result is based on the optimal fractional solution (n∗). Thus,
the overhead in the optimal integer solution contains rounding error,
which, however, is small for practical parameter settings.

17/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Outline

1 Problem Statement

2 Theoretical Analysis

3 Performance Evaluations

4 Conclusion

18/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Evaluation setup
Parameters in Exascale Platform:

105 computing nodes with individual MTBF of 100 years
⇒ platform MTBF µ ≈ 8.7 hours.
Checkpoint size of 300GB with throughput of 0.5GB/s
⇒ C = 600s = 10 mins, and V ∗ in same order.
Partial verifications (from Argonne National Laboratory, USA)
⇒ V typically tens of seconds, and r ∈ [0.5, 0.95].

e.g., C = 600, V ∗ = 300, V = 30 and r = 0.8.
using partial verifications using perfect verifications

W 7335s ≈ 2 hours 5328s ≈ 1.5 hours
n 6 2
α (0.19, 0.15, 0.15, 0.15, 0.15, 0.19) (0.5, 0.5)
H 28.6% 33.8%

Using partial verifications gains 5% improvement in overhead.
⇒ Saving 1 hour for every 20 hours of computation!

18/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Evaluation setup
Parameters in Exascale Platform:

105 computing nodes with individual MTBF of 100 years
⇒ platform MTBF µ ≈ 8.7 hours.
Checkpoint size of 300GB with throughput of 0.5GB/s
⇒ C = 600s = 10 mins, and V ∗ in same order.
Partial verifications (from Argonne National Laboratory, USA)
⇒ V typically tens of seconds, and r ∈ [0.5, 0.95].

e.g., C = 600, V ∗ = 300, V = 30 and r = 0.8.
using partial verifications using perfect verifications

W 7335s ≈ 2 hours 5328s ≈ 1.5 hours
n 6 2
α (0.19, 0.15, 0.15, 0.15, 0.15, 0.19) (0.5, 0.5)
H 28.6% 33.8%

Using partial verifications gains 5% improvement in overhead.
⇒ Saving 1 hour for every 20 hours of computation!

19/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Impacts of m, V and r

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

m

E
x
p

ec
te

d
 O

v
er

h
ea

d

r = 0.9

r = 0.7

r = 0.5

r = 0.3

r = 0.1

20/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Impact of ACR and rounding error

Overhead decreases for increased accuracy-to-cost ratio (ACR).

Different (V , r) pair could share same ACR with different m∗,H∗.

Rounding error to theoretical optimal overhead H∗ is insignificant.

21/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Outline

1 Problem Statement

2 Theoretical Analysis

3 Performance Evaluations

4 Conclusion

22/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Conclusion

Summary

A first analysis of computing patterns to include partial verifications
for silent error detection.

Theoretically: derive the optimal pattern parameters, i.e., period,
number of partial verifications and their positions.

Practically: assess and compare the performance of the optimal
pattern with realistic parameters.

Future work

Partial verifications with false positives/alarms

precision(p) = #true errors
#detected errors < 1.

Coexistence of fail-stop and silent errors.

22/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Conclusion

Summary

A first analysis of computing patterns to include partial verifications
for silent error detection.

Theoretically: derive the optimal pattern parameters, i.e., period,
number of partial verifications and their positions.

Practically: assess and compare the performance of the optimal
pattern with realistic parameters.

Future work

Partial verifications with false positives/alarms

precision(p) = #true errors
#detected errors < 1.

Coexistence of fail-stop and silent errors.

	Problem Statement
	Theoretical Analysis
	Performance Evaluations
	Conclusion

