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HPC at Scale

Scale is a major opportunity:

Exascale platform: 105 or 106 nodes, each with 102 or 103 cores.

Scale is also a major threat:

Shorter Mean Time Between Failures (MTBF) µ.

Theorem: µp = µind
p for arbitrary distributions

MTBF (individual node) 1 year 10 years 120 years
MTBF (platform of 106 nodes) 30 sec 5 mn 1 h

Need more reliable components!!
Need more resilient techniques!!!
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General-purpose approach

Periodic checkpoint, rollback and recovery:

TimeW W

Error

Corrupt Detect

C C C

Fail-stop errors: e.g., hardware crash, node failure
- Instantaneous error detection.

Silent errors (aka silent data corruptions): e.g., soft faults in L1
cache, ALU, multiple bit flip due to cosmic radiation.

- Detected only when corrupted data leads to unexpected
results, which could happen long after its occurrence.

- Become a serious concern in Exascale systems.

Detection latency ⇒ risk of saving corrupted checkpoint!
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Coping with silent errors
Couple checkpointing with verification:

TimeW W

Error Detect

V ∗ C V ∗ C V ∗ C

Before each checkpoint, run some verification mechanism
(checksum, ECC, coherence tests, TMR, etc).

Silent error is detected by verification ⇒ checkpoint always valid ,

What is the optimal checkpointing period (Young/Daly)?

Fail-stop (classical) Silent errors
Pattern T = W + C T = W + V ∗ + C

Optimal W ∗ =
√

2Cµ W ∗ =
√

(C + V ∗)µ
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One step further: intermediate verifications

Perform several intermediate verifications before each checkpoint:

Time

Error Detect

V ∗ C V ∗ V ∗ V ∗ C V ∗ V ∗ V ∗ C

Pro: silent error is detected earlier in the execution ,
Con: additional overhead in error-free executions /

What is the optimal tradeoff?
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One more step further: partial verification

Guaranteed/perfect verifications (V ∗) can be very expensive!
Partial verifications (V ) are available for many HPC applications!

Lower accuracy: recall (r) = #detected errors
#total errors < 1 /

Much lower cost, i.e., V � V ∗ ,

Time

Error Detect? Detect!

V ∗ C V V V ∗ C V V V ∗ C

What is the optimal checkpointing period?
How many partial verifications to use and their positions?
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Model and Objective

Failure Model

Silent errors strike randomly and are uniformly distributed with
arrival rate λ = 1/µ, where µ is platform MTBF.

- Expect λT errors in computation of time T .

Failures only affect computations; checkpointing, recovery, and
verifications are protected.

Resilience parameters

Cost of checkpointing C , cost of recovery R.

Partial verification: cost V and recall r < 1.

Guaranteed verification: cost V ∗ and recall r∗ = 1.

Objective

Design an optimal periodic computing pattern that minimizes
execution time (or makespan) of the application.
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Pattern

Formally, a periodic computing pattern is defined by

W : work length of the pattern (or period);

n: number of segments in the pattern (or m = n − 1: number of
partial verifications);

α = [α1, α2, . . . , αn]: work fraction of each segment (or relative
positions of partial verifications)

- αi = wi
W and

∑n
i=1 αi = 1.

Time
W

w1 w2 w3 wn

· · ·
· · ·

V ∗ C V V V V V ∗ C

Last verification is perfect to avoid saving corrupted checkpoints.



10/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Outline

1 Problem Statement

2 Theoretical Analysis

3 Performance Evaluations

4 Conclusion



11/22

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Expected execution time of a pattern

Proposition

The expected time to execute a pattern with fixed W , n,α is

E(W ) = W + (n − 1)V + V ∗ + C︸ ︷︷ ︸
off

+ λW︸︷︷︸
#errors

αT Aα︸ ︷︷ ︸
fre

·W

+ o(λ)

where A is a symmetric matrix defined by Ai,j = 1
2
(
1 + (1− r)|i−j|).

Remarks:

Two key parameters
- off: overhead in a fault-free execution.
- fre: fraction of re-executed work in case of fault.

Same result if assuming exponential error distribution with
first-order approximation (as in Young/Daly’s classic formula).
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Minimizing makespan

Matrix A is essential to analysis. For instance, when n = 4 we have:

A = 1
2


2 1 + (1− r) 1 + (1− r)2 1 + (1− r)3

1 + (1− r) 2 1 + (1− r) 1 + (1− r)2

1 + (1− r)2 1 + (1− r) 2 1 + (1− r)
1 + (1− r)3 1 + (1− r)2 1 + (1− r) 2



For an application with total work Tbase, the makespan Tfinal is

Tfinal ≈
E(W )

W · Tbase = (1 + H(W )) · Tbase

where H(W ) is the total execution overhead given by

H(W ) = E(W )
W − 1 = off

W + λWfre + o
(√

λ
)

e.g., if Tbase = 100 and Tfinal = 120, we have H(W ) = 20%.

Minimizing makespan is equivalent to minimizing overhead!
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Optimal work length

Theorem

The execution overhead of a pattern is minimized when its length is

W ∗ =
√

off
λfre

.

The optimal overhead is

H(W ∗) = 2
√
λofffre + o(

√
λ).

When the platform MTBF µ = 1/λ is large, o(
√
λ) is negligible.

Minimizing overhead is equivalent to minimizing product offfre.
- Tradeoff between fault-free overhead and fault-induced

re-execution.
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Optimal segment lengths

Theorem

The re-execution fraction fre of a pattern is minimized when α = α∗,
where

α∗k =
{

1
(n−2)r+2 for k = 1, n

r
(n−2)r+2 for k = 2, 3, . . . , n − 1

and the optimal value of fre is

f ∗re = 1
2

(
1 + 2− r

(n − 2)r + 2

)

Time1 r r 1

· · ·
· · ·

V ∗ C V V V V V ∗ C

Special case: if all verifications are perfect, we get equal-length segments,
i.e., α∗k = 1

n ,∀1 ≤ k ≤ n and f ∗re = 1
2
(
1 + 1

n
)
.
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Optimal number of segments

Theorem

The execution overhead of a pattern is minimized when the number of
segments is

n∗ =
{

1− 1
a +

√
1
a
( 1

b −
1
a
)

if a
b > 2

1 if a
b ≤ 2

and the optimal overhead is

H∗ =
√

2λ(C + V ∗)
(√

1− b
a +

√
b
a

)

where a = r
2−r represents accuracy and b = V

C+V ∗ denotes relative cost
of the partial verification.

In practice, the number of segments can only be an integer. Thus,
the optimal number is either dn∗e or bn∗c.
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Optimal accuracy-cost tradeoff
Suppose a tradeoff exists between the cost V and recall r of a partial
verification. What is the optimal tradeoff?

Theorem
The execution overhead is minimized when the (V , r) pair maximizes the
accuracy-to-cost ratio a

b =
r

2−r
V

V ∗+C
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Remark:
The result is based on the optimal fractional solution (n∗). Thus,
the overhead in the optimal integer solution contains rounding error,
which, however, is small for practical parameter settings.
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Evaluation setup
Parameters in Exascale Platform:

105 computing nodes with individual MTBF of 100 years
⇒ platform MTBF µ ≈ 8.7 hours.
Checkpoint size of 300GB with throughput of 0.5GB/s
⇒ C = 600s = 10 mins, and V ∗ in same order.
Partial verifications (from Argonne National Laboratory, USA)
⇒ V typically tens of seconds, and r ∈ [0.5, 0.95].

e.g., C = 600, V ∗ = 300, V = 30 and r = 0.8.
using partial verifications using perfect verifications

W 7335s ≈ 2 hours 5328s ≈ 1.5 hours
n 6 2
α (0.19, 0.15, 0.15, 0.15, 0.15, 0.19) (0.5, 0.5)
H 28.6% 33.8%

Using partial verifications gains 5% improvement in overhead.
⇒ Saving 1 hour for every 20 hours of computation!
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Impacts of m, V and r
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Impact of ACR and rounding error

Overhead decreases for increased accuracy-to-cost ratio (ACR).

Different (V , r) pair could share same ACR with different m∗,H∗.

Rounding error to theoretical optimal overhead H∗ is insignificant.
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Conclusion

Summary

A first analysis of computing patterns to include partial verifications
for silent error detection.

Theoretically: derive the optimal pattern parameters, i.e., period,
number of partial verifications and their positions.

Practically: assess and compare the performance of the optimal
pattern with realistic parameters.

Future work

Partial verifications with false positives/alarms

precision(p) = #true errors
#detected errors < 1.

Coexistence of fail-stop and silent errors.
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