Online Scheduling of Moldable Task Graphs under Common Speedup Models

Anne Benoit¹ Lucas Perotin¹ Yves Robert¹,²
Hongyang Sun (Speaker)³

¹École Normale Supérieure de Lyon, France
²University of Tennessee Knoxville, USA
³University of Kansas, USA

ICPP’22 Best Paper @ ICPP’23
Salt Lake City, Utah, USA, August 8, 2023
Scheduling Problems

Taxonomy of scheduling problems:

- **Offline Scheduling vs. Online Scheduling**
 - Offline: All tasks are known in advance (NP-hard problems)
 - Online: Tasks are released on the fly (over time or one-by-one)

- **Scheduling Independent Tasks vs. Task Graphs**
 - Independent tasks: There are no dependencies among tasks
 - Task graphs: Tasks have dependencies in the form of a directed acyclic graph (DAG)
Scheduling Problems

Taxonomy of scheduling problems:

• **Offline Scheduling vs. Online Scheduling**
 - **Offline**: All tasks are known in advance (NP-hard problems)
 - **Online**: Tasks are released on the fly (over time or one-by-one)

• **Scheduling Independent Tasks vs. Task Graphs**
 - **Independent tasks**: There are no dependencies among tasks
 - **Task graphs**: Tasks have dependencies in the form of a directed acyclic graph (DAG)

In this work, we focus on **online scheduling of task graphs**

• A task is not known until all predecessors are completed
• Has applications in dynamic workflow scheduling
At first, only task A is known, and others are unknown yet.
When task A is done, the scheduler discovers tasks B and C
• When task B is done, task D is still not known yet
• Only when task C is also done, task D becomes known
• Finally, when task D is done, tasks E and F are discovered
• Tasks E and F are then processed to complete whole graph
Parallel Tasks

Taxonomy of parallel tasks:

- **Rigid tasks:** Processor allocation is fixed
- **Moldable tasks:** Processor allocation is decided by the system but cannot be changed once task starts running
- **Malleable tasks:** Processor allocation can be dynamically changed during runtime
Parallel Tasks

Taxonomy of parallel tasks:

- **Rigid tasks**: Processor allocation is fixed
- **Moldable tasks**: Processor allocation is decided by the system but cannot be changed once task starts running
- **Malleable tasks**: Processor allocation can be dynamically changed during runtime

In this work, we focus on **moldable tasks**

- Easily adapt to amount of available resources (contrarily to rigid tasks)
- Easy to design and implement (contrarily to malleable tasks)
Scheduling Model

• A graph of \(n \) moldable tasks. Each task only becomes known when all of its predecessors are completed (i.e., online)

• \(P \) identical processors to process the tasks

• For each task \(j \):
 • Execution time \(t_j(p_j) \) depends on number of processors \(p_j \) allocated to it, and this function also becomes known when the task is discovered
 • Area is \(a_j(p_j) = p_j \times t_j(p_j) \)
Speedup Models

We mainly focus on a general speedup model:

$$t_j(p_j) = \frac{w_j}{\min(p_j, \bar{p}_j)} + d_j + (p_j - 1)c_j$$

which contains several common models as special cases.
Speedup Models

We mainly focus on a general speedup model:

\[t_j(p_j) = \frac{w_j}{\min(p_j, \bar{p}_j)} + d_j + (p_j - 1)c_j \]

which contains several common models as special cases

- **Roofline model:**
 \[t_j(p_j) = \frac{w_j}{\min(p_j, \bar{p}_j)} \]
 where \(\bar{p}_j \) is maximum degree of parallelism
We mainly focus on a general speedup model:

\[t_j(p_j) = \frac{w_j}{\min(p_j, \bar{p}_j)} + d_j + (p_j - 1)c_j \]

which contains several common models as special cases

- Communication model: \(t_j(p_j) = \frac{w_j}{p_j} + (p_j - 1)c_j \)
 where \(c_j \) is communication overhead
We mainly focus on a general speedup model:

\[t_j(p_j) = \frac{w_j}{\min(p_j, \bar{p}_j)} + d_j + (p_j - 1)c_j \]

which contains several common models as special cases

- **Amdahl’s model:** \[t_j(p_j) = \frac{w_j}{p_j} + d_j \]
 where \(d_j \) is inherently sequential work
We mainly focus on a general speedup model:

\[t_j(p_j) = \frac{w_j}{\min(p_j, \bar{p}_j)} + d_j + (p_j - 1)c_j \]

which contains several common models as special cases

- Additionally, we consider the arbitrary model, where \(t_j(p_j) \) can be an arbitrary function of \(p_j \)
Scheduling Objective

Find an online moldable schedule (i.e., processor allocation p_j and starting time s_j for each task j):

- minimizes makespan: $T = \max_j(s_j + t_j(p_j))$
- subject to processor constraint: $\sum_{j \text{ active at time } t} p_j \leq P, \forall t$
- subject to precedence constraint: $j_1 \rightarrow j_2 \Rightarrow s_{j_2} \geq s_{j_1} + t_{j_1}$

Competitive Ratio:
An online algorithm is said to be r-competitive if its makespan T for any task graph satisfies:

$$\frac{T}{T_{\text{OPT}}} \leq r$$

where T_{OPT} is the optimal offline makespan for the same graph
Our Main Results

• **New online algorithm** with almost tight **competitive ratios** for several common speedup models

<table>
<thead>
<tr>
<th>Model</th>
<th>Roofline</th>
<th>Comm.</th>
<th>Amdahl</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper bound</td>
<td>2.62</td>
<td>3.61</td>
<td>4.74</td>
<td>5.72</td>
</tr>
<tr>
<td>Lower bound</td>
<td>2.61</td>
<td>3.51</td>
<td>4.73</td>
<td>5.25</td>
</tr>
</tbody>
</table>

• **Negative result** for the arbitrary speedup model: Any deterministic online algorithm is $\Omega(\ln(D))$-competitive, where D is the length of the longest path in the graph
(Closely) Related Work

- **Feldmann, Kao, Sgall, Teng (1998):**
 - Online scheduling of moldable task graphs in “non-clairvoyant” setting (i.e., work of a task is unknown until completion)
 - A 2.62-competitive algorithm for roofline model
(Closely) Related Work

- **Feldmann, Kao, Sgall, Teng (1998):**
 - **Online scheduling of moldable task graphs** in "non-clairvoyant" setting (i.e., work of a task is unknown until completion)
 - A 2.62-competitive algorithm for **roofline model**

- **Lepère, Trystram, Woeginger (2001):**
 - ** Offline scheduling of moldable task graphs**
 - A 5.24-approximation algorithm for **monotonic model** (i.e., \(t(p) \) is non-increasing and \(a(p) \) is non-decreasing with \(p \))
(Closely) Related Work

- **Feldmann, Kao, Sgall, Teng (1998):**
 - Online scheduling of moldable task graphs in “non-clairvoyant” setting (i.e., work of a task is unknown until completion)
 - A 2.62-competitive algorithm for roofline model

- **Lepère, Trystram, Woeginger (2001):**
 - Offline scheduling of moldable task graphs
 - A 5.24-approximation algorithm for monotonic model (i.e., \(t(p) \) is non-increasing and \(a(p) \) is non-decreasing with \(p \))

- **Havill, Mao (2008):**
 - Online scheduling of independent moldable tasks that arrive over time
 - A 4-competitive algorithm for communication model
(Closely) Related Work

- **Feldmann, Kao, Sgall, Teng (1998):**
 - Online scheduling of moldable task graphs in "non-clairvoyant" setting (i.e., work of a task is unknown until completion)
 - A 2.62-competitive algorithm for roofline model

- **Lepère, Trystram, Woeginger (2001):**
 - Offline scheduling of moldable task graphs
 - A 5.24-approximation algorithm for monotonic model (i.e., \(t(p) \) is non-increasing and \(a(p) \) is non-decreasing with \(p \))

- **Havill, Mao (2008):**
 - Online scheduling of independent moldable tasks that arrive over time
 - A 4-competitive algorithm for communication model

- **Ye, Chen, Zhang (2018):**
 - Online scheduling of independent moldable tasks in "one-by-one" setting (i.e., tasks are released sequentially and each task must be scheduled immediately upon release)
 - A 16.74-competitive algorithm for arbitrary model
Outline

Introduction

Algorithm

Analysis

Lower bounds

Conclusion
Lower Bound on Makespan

For each task j:

- Minimum area: $a_{j}^{\text{min}} = \min_{p} a_{j}(p)$
- Minimum execution time: $t_{j}^{\text{min}} = \min_{p} t_{j}(p)$
Lower Bound on Makespan

For each task j:

- Minimum area: $a_{j}^{\text{min}} = \min_{p} a_{j}(p)$
- Minimum execution time: $t_{j}^{\text{min}} = \min_{p} t_{j}(p)$

For task graph:

- Minimum total area: $A_{\text{min}} = \sum_{j=1}^{n} a_{j}^{\text{min}}$
- Minimum critical-path length: $C_{\text{min}} = \max_{f} \sum_{j \in f} t_{j}^{\text{min}}$
Lower Bound on Makespan

For each task j:

- Minimum area: $a_{j}^{\min} = \min_{p} a_{j}(p)$
- Minimum execution time: $t_{j}^{\min} = \min_{p} t_{j}(p)$

For task graph:

- Minimum total area: $A_{\min} = \sum_{j=1}^{n} a_{j}^{\min}$
- Minimum critical-path length: $C_{\min} = \max_{f} \sum_{j \in f} t_{j}^{\min}$

Proposition

The optimal makespan satisfies:

$$T_{\text{OPT}} \geq \max\left(\frac{A_{\min}}{P}, C_{\min}\right)$$
Two-Phase Approach [Turek et al. ’92]

- **Phase 1**: Determine a resource allocation for each task once it becomes available

- **Phase 2**: Construct a schedule based on resource allocations of the available tasks
Phase 1: (Local) Resource Allocation

• Step (1): Initial allocation [Benoit et al. 20]
 Find an allocation $p_j \in [1, P]$ from the following problem:

$$\min_p \alpha(p) \triangleq \frac{a_j(p)}{a_j^{\min}}$$

s.t. $\beta(p) \triangleq \frac{t_j(p)}{t_j^{\min}} \leq \frac{1 - 2\mu}{\mu(1 - \mu)}$

⇒ Allocate resource locally for each task: minimize area subject to a time constraint
Phase 1: (Local) Resource Allocation

- **Step (1): Initial allocation** [Benoit et al. 20]
 Find an allocation \(p_j \in [1, P] \) from the following problem:

 \[
 \min_p \alpha(p) \triangleq \frac{a_j(p)}{a_j^{\min}} \\
 \text{s.t. } \beta(p) \triangleq \frac{t_j(p)}{t_j^{\min}} \leq \frac{1 - 2\mu}{\mu(1 - \mu)}
 \]

 ⇒ Allocate resource locally for each task: minimize area subject to a time constraint

- **Step (2): Adjusted allocation** [Lepère et al. 01]
 If \(p_j > \lceil \mu P \rceil \) then \(p_j' \leftarrow \lceil \mu P \rceil \) else \(p_j' \leftarrow p_j \)

 ⇒ Reduce high allocation to increase overall resource utilization: choice of \(\mu \in (0, 0.5) \) depends on speedup model
Phase 2: (Online) List Scheduling

• Insert a task in a list (i.e., waiting queue) as it becomes available

• Whenever an existing task completes, which releases resources, scan the list and schedule each task that fits

Note: when a task becomes available, it is not required to be immediately scheduled (one-by-one model)
Outline

Introduction

Algorithm

Analysis

Lower bounds

Conclusion
Can we say something about each individual task?

Proposition

For a given speedup model M, there exists an (α, β) pair and an initial resource allocation p_j for any task j such that:

$$a_j(p_j) \leq \alpha \cdot a_j^{\text{min}}$$

$$t_j(p_j) \leq \beta \cdot t_j^{\text{min}}$$
(1) Local Analysis

Can we say something about each individual task?

Proposition

For a given speedup model \(M \), there exists an \((\alpha, \beta)\) pair and an initial resource allocation \(p_j \) for any task \(j \) such that:

\[
a_j(p_j) \leq \alpha \cdot a_j^{\min}
\]

\[
t_j(p_j) \leq \beta \cdot t_j^{\min}
\]

These local bounds will carry over to the global analysis!

\[
\sum_{j \in J} a_j(p_j) \leq \alpha \cdot \sum_{j \in J} a_j^{\min}
\]

\[
\sum_{j \in f} t_j(p_j) \leq \beta \cdot \sum_{j \in f} t_j^{\min}
\]
(1) Local Analysis

Can we say something about each individual task?

Proposition

For a given speedup model M, there exists an (α, β) pair and an initial resource allocation p_j for any task j such that:

$$a_j(p_j) \leq \alpha \cdot a_j^{\text{min}}$$

$$t_j(p_j) \leq \beta \cdot t_j^{\text{min}}$$

These local bounds will carry over to the global analysis!

$$\sum_{j \in J} a_j(p_j) \leq \alpha \cdot \sum_{j \in J} a_j^{\text{min}} \leq \alpha \cdot A_{\text{min}}$$

$$\sum_{j \in \mathcal{F}} t_j(p_j) \leq \beta \cdot \sum_{j \in \mathcal{F}} t_j^{\text{min}} \leq \beta \cdot C_{\text{min}}$$
(2) Global Analysis

Total makespan interval $[0, T]$ divided in three sets [Lepère et al. 01]:

- T_1: Less than μP processors are used.
- T_2: Between μP and $(1 - \mu)P$ processors are used
- T_3: More than $(1 - \mu)P$ processor are used

![Diagram showing T_1, T_2, and T_3 intervals]

- P
- $(1 - \mu)P$
- μP

- T_1
- T_2
- T_3
Total makespan interval $[0, T]$ divided in three sets [Lepère et al. 01]:

- T_1: Less than μP processors are used.
- T_2: Between μP and $(1 - \mu)P$ processors are used.
- T_3: More than $(1 - \mu)P$ processor are used.

T_1 and T_2 can be charged to the critical-path length.

T_2 and T_3 can be charged to the total area.
(3) Combining Two Analyses

Critical-path bound: \[\frac{T_1}{\beta} + \mu T_2 \leq C_{\text{min}} \]

Total area bound: \[\mu T_2 + (1 - \mu) T_3 \leq \frac{\alpha \cdot A_{\text{min}}}{P} \]
(3) Combining Two Analyses

Critical-path bound:

\[
\frac{T_1}{\beta} + \mu T_2 \leq C_{\text{min}} \leq T_{\text{OPT}}
\]

Total area bound:

\[
\mu T_2 + (1 - \mu) T_3 \leq \frac{\alpha \cdot A_{\text{min}}}{P} \leq \alpha \cdot T_{\text{OPT}}
\]
(3) Combining Two Analyses

Critical-path bound:
\[
\frac{T_1}{\beta} + \mu T_2 \leq C_{\min} \leq T_{\text{opt}}
\]

Total area bound:
\[
\mu T_2 + (1 - \mu) T_3 \leq \frac{\alpha \cdot A_{\min}}{P} \leq \alpha \cdot T_{\text{opt}}
\]

Proposition

Combining the two bounds with \(T = T_1 + T_2 + T_3 \), we get:

\[
\frac{T}{T_{\text{OPT}}} \leq \frac{\mu \alpha + 1 - 2\mu}{\mu(1 - \mu)} \quad \text{subject to} \quad \beta \leq \frac{1 - 2\mu}{\mu(1 - \mu)}
\]
Final Results

Proposition

Combining the two bounds with $T = T_1 + T_2 + T_3$, we get:

$$\frac{T}{T_{\text{OPT}}} \leq \frac{\mu \alpha + 1 - 2\mu}{\mu(1 - \mu)} \quad \text{subject to} \quad \beta \leq \frac{1 - 2\mu}{\mu(1 - \mu)}$$

Optimization procedure for a given speedup model:

1. Find an upper bound for α as a function of μ
2. Find μ minimizing the ratio subject to β constraint

<table>
<thead>
<tr>
<th>Model</th>
<th>Roofline</th>
<th>Comm.</th>
<th>Amdahl</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choice of μ</td>
<td>0.382</td>
<td>0.324</td>
<td>0.271</td>
<td>0.211</td>
</tr>
<tr>
<td>Upper bound</td>
<td>2.62</td>
<td>3.61</td>
<td>4.74</td>
<td>5.72</td>
</tr>
</tbody>
</table>
Outline

Introduction

Algorithm

Analysis

Lower bounds

Conclusion
Instance for Common Speedup Models

Task parameters are chosen so that:

- For online algorithm (a): Barely impossible to process a full layer in parallel
- For optimal algorithm (b): First process all A’s and then B’s and C’s in parallel

Model

Roofline
Comm.
Amdahl
General

Upper bound

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.62</td>
<td>3.61</td>
<td>4.74</td>
<td>5.72</td>
<td></td>
</tr>
</tbody>
</table>

Lower bound

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.61</td>
<td>3.51</td>
<td>4.73</td>
<td>5.25</td>
<td></td>
</tr>
</tbody>
</table>
Task parameters are chosen so that:

- **For online algorithm** (a): Barely impossible to process a full layer in parallel
- **For optimal algorithm** (b): First process all A’s and then B’s and C’s in parallel
Task parameters are chosen so that:

- **For online algorithm** (a): Barely impossible to process a full layer in parallel

- **For optimal algorithm** (b): First process all A’s and then B’s and C’s in parallel

<table>
<thead>
<tr>
<th>Model</th>
<th>Roofline</th>
<th>Comm.</th>
<th>Amdahl</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper bound</td>
<td>2.62</td>
<td>3.61</td>
<td>4.74</td>
<td>5.72</td>
</tr>
<tr>
<td>Lower bound</td>
<td>2.61</td>
<td>3.51</td>
<td>4.73</td>
<td>5.25</td>
</tr>
</tbody>
</table>
• $D = 2^\ell$ groups of identical tasks with execution time function $t(p) = \frac{1}{\lg(p) + 1}$
• $D = 2^\ell$ groups of identical tasks with execution time function $t(p) = \frac{1}{\lg(p) + 1}$

• For optimal algorithm (a): 2^{i-1} processors for tasks in group $i \Rightarrow$ makespan of 1

• For online algorithm (b): same processors for all tasks (best online strategy) \Rightarrow makespan of $\Omega(\ln(D))$
Outline

Introduction

Algorithm

Analysis

Lower bounds

Conclusion
Conclusion

• A new algorithm for online scheduling of moldable task graphs
• Almost tight competitive ratios for several common speedup models
• No constant competitive ratio for arbitrary speedup model by any deterministic online algorithm

Future work:
• Consider other speedup models or special task graphs
• Improve the ratios for upper and/or lower bounds
• Experimental evaluation of the algorithm’s performance
Latest Results

<table>
<thead>
<tr>
<th>Model</th>
<th>Roofline</th>
<th>Comm.</th>
<th>Amdahl</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Results</td>
<td>≈ 2.62</td>
<td>≈ 3.61</td>
<td>≈ 4.74</td>
<td>≈ 5.72</td>
</tr>
<tr>
<td>New Results¹</td>
<td>≈ 2.62</td>
<td>≈ 3.39</td>
<td>≈ 4.55</td>
<td>≈ 4.63</td>
</tr>
</tbody>
</table>

with matching lower bounds

- New upper bounds benefit from a tighter \((\alpha, \beta)\) analysis: worst-case time and area bounds don’t happen simultaneously
- New lower bounds also apply to a class of algorithms with deterministic local processor allocation (i.e., stronger)
