
1/30

Online Scheduling of Moldable Task Graphs
under Common Speedup Models

Anne Benoit1 Lucas Perotin1 Yves Robert1,2

Hongyang Sun (Speaker)3

1École Normale Supérieure de Lyon, France

2University of Tennessee Knoxville, USA

3University of Kansas, USA

ICPP’22 Best Paper @ ICPP’23
Salt Lake City, Utah, USA, August 8, 2023



2/30

Scheduling Problems

Taxonomy of scheduling problems:
• Offline Scheduling vs. Online Scheduling

- Offline: All tasks are known in advance (NP-hard problems)
- Online: Tasks are released on the fly (over time or one-by-one)

• Scheduling Independent Tasks vs. Task Graphs
- Independent tasks: There are no dependencies among tasks
- Task graphs: Tasks have dependencies in the form of a

directed acyclic graph (DAG)

In this work, we focus on online scheduling of task graphs
• A task is not known until all predecessors are completed
• Has applications in dynamic workflow scheduling



2/30

Scheduling Problems

Taxonomy of scheduling problems:
• Offline Scheduling vs. Online Scheduling

- Offline: All tasks are known in advance (NP-hard problems)
- Online: Tasks are released on the fly (over time or one-by-one)

• Scheduling Independent Tasks vs. Task Graphs
- Independent tasks: There are no dependencies among tasks
- Task graphs: Tasks have dependencies in the form of a

directed acyclic graph (DAG)

In this work, we focus on online scheduling of task graphs
• A task is not known until all predecessors are completed
• Has applications in dynamic workflow scheduling



3/30

Example

A

B

C

D

E

F

• At first, only task A is known, and others are unknown yet



4/30

Example

A

B

C

D

E

F

• When task A is done, the scheduler discovers tasks B and C



5/30

Example

A

B

C

D

E

F

• When task B is done, task D is still not known yet



6/30

Example

A

B

C

D

E

F

• Only when task C is also done, task D becomes known



7/30

Example

A

B

C

D

E

F

• Finally, when task D is done, tasks E and F are discovered



8/30

Example

A

B

C

D

E

F

• Tasks E and F are then processed to complete whole graph



9/30

Parallel Tasks

Taxonomy of parallel tasks:
• Rigid tasks: Processor allocation is fixed
• Moldable tasks: Processor allocation is decided by the

system but cannot be changed once task starts running
• Malleable tasks: Processor allocation can be dynamically

changed during runtime

In this work, we focus on moldable tasks
• Easily adapt to amount of available resources

(contrarily to rigid tasks)
• Easy to design and implement

(contrarily to malleable tasks)



9/30

Parallel Tasks

Taxonomy of parallel tasks:
• Rigid tasks: Processor allocation is fixed
• Moldable tasks: Processor allocation is decided by the

system but cannot be changed once task starts running
• Malleable tasks: Processor allocation can be dynamically

changed during runtime

In this work, we focus on moldable tasks
• Easily adapt to amount of available resources

(contrarily to rigid tasks)
• Easy to design and implement

(contrarily to malleable tasks)



10/30

Scheduling Model

• A graph of n moldable tasks. Each task only becomes known
when all of its predecessors are completed (i.e., online)

• P identical processors to process the tasks

• For each task j :
• Execution time tj(pj) depends on number of processors pj

allocated to it, and this function also becomes known when
the task is discovered

• Area is aj(pj) = pj × tj(pj)



11/30

Speedup Models

We mainly focus on a general speedup model:

tj(pj) = wj
min(pj , p̄j)

+ dj + (pj − 1)cj

which contains several common models as special cases



11/30

Speedup Models

We mainly focus on a general speedup model:

tj(pj) = wj
min(pj , p̄j)

+ dj + (pj − 1)cj

which contains several common models as special cases

• Roofline model: tj(pj) = wj
min(pj ,p̄j )

where p̄j is maximum degree of parallelism



11/30

Speedup Models

We mainly focus on a general speedup model:

tj(pj) = wj
min(pj , p̄j)

+ dj + (pj − 1)cj

which contains several common models as special cases

• Communication model: tj(pj) = wj
pj

+ (pj − 1)cj
where cj is communication overhead



11/30

Speedup Models

We mainly focus on a general speedup model:

tj(pj) = wj
min(pj , p̄j)

+ dj + (pj − 1)cj

which contains several common models as special cases

• Amdahl’s model: tj(pj) = wj
pj

+ dj
where dj is inherently sequential work



11/30

Speedup Models

We mainly focus on a general speedup model:

tj(pj) = wj
min(pj , p̄j)

+ dj + (pj − 1)cj

which contains several common models as special cases

• Additionally, we consider the arbitrary model, where tj(pj) can be
an arbitrary function of pj



12/30

Scheduling Objective

Find an online moldable schedule (i.e., processor allocation pj and
starting time sj for each task j):
• minimizes makespan: T = maxj(sj + tj(pj))
• subject to processor constraint: ∑

j active at time t pj ≤ P,∀t
• subject to precedence constraint: j1 → j2 ⇒ sj2 ≥ sj1 + tj1

Competitive Ratio:
An online algorithm is said to be r -competitive if its makespan T
for any task graph satisfies:

T
Topt

≤ r

where Topt is the optimal offline makespan for the same graph



13/30

Our Main Results

• New online algorithm with almost tight competitive ratios for
several common speedup models

Model Roofline Comm. Amdahl General
Upper bound 2.62 3.61 4.74 5.72
Lower bound 2.61 3.51 4.73 5.25

• Negative result for the arbitrary speedup model:
Any deterministic online algorithm is Ω(ln(D))-competitive,
where D is the length of the longest path in the graph



14/30

(Closely) Related Work
• Feldmann, Kao, Sgall, Teng (1998):

• Online scheduling of moldable task graphs in “non-clairvoyant”
setting (i.e., work of a task is unknown until completion)

• A 2.62-competitive algorithm for roofline model

• Lepère, Trystram, Woeginger (2001):
• Offline scheduling of moldable task graphs
• A 5.24-approximation algorithm for monotonic model (i.e.,

t(p) is non-increasing and a(p) is non-decreasing with p)

• Havill, Mao (2008):
• Online scheduling of independent moldable tasks that arrive

over time
• A 4-competitive algorithm for communication model

• Ye, Chen, Zhang (2018):
• Online scheduling of independent moldable tasks in

“one-by-one” setting (i.e., tasks are released sequentially and
each task must be scheduled immediately upon release)

• A 16.74-competitive algorithm for arbitrary model



14/30

(Closely) Related Work
• Feldmann, Kao, Sgall, Teng (1998):

• Online scheduling of moldable task graphs in “non-clairvoyant”
setting (i.e., work of a task is unknown until completion)

• A 2.62-competitive algorithm for roofline model

• Lepère, Trystram, Woeginger (2001):
• Offline scheduling of moldable task graphs
• A 5.24-approximation algorithm for monotonic model (i.e.,

t(p) is non-increasing and a(p) is non-decreasing with p)

• Havill, Mao (2008):
• Online scheduling of independent moldable tasks that arrive

over time
• A 4-competitive algorithm for communication model

• Ye, Chen, Zhang (2018):
• Online scheduling of independent moldable tasks in

“one-by-one” setting (i.e., tasks are released sequentially and
each task must be scheduled immediately upon release)

• A 16.74-competitive algorithm for arbitrary model



14/30

(Closely) Related Work
• Feldmann, Kao, Sgall, Teng (1998):

• Online scheduling of moldable task graphs in “non-clairvoyant”
setting (i.e., work of a task is unknown until completion)

• A 2.62-competitive algorithm for roofline model

• Lepère, Trystram, Woeginger (2001):
• Offline scheduling of moldable task graphs
• A 5.24-approximation algorithm for monotonic model (i.e.,

t(p) is non-increasing and a(p) is non-decreasing with p)

• Havill, Mao (2008):
• Online scheduling of independent moldable tasks that arrive

over time
• A 4-competitive algorithm for communication model

• Ye, Chen, Zhang (2018):
• Online scheduling of independent moldable tasks in

“one-by-one” setting (i.e., tasks are released sequentially and
each task must be scheduled immediately upon release)

• A 16.74-competitive algorithm for arbitrary model



14/30

(Closely) Related Work
• Feldmann, Kao, Sgall, Teng (1998):

• Online scheduling of moldable task graphs in “non-clairvoyant”
setting (i.e., work of a task is unknown until completion)

• A 2.62-competitive algorithm for roofline model

• Lepère, Trystram, Woeginger (2001):
• Offline scheduling of moldable task graphs
• A 5.24-approximation algorithm for monotonic model (i.e.,

t(p) is non-increasing and a(p) is non-decreasing with p)

• Havill, Mao (2008):
• Online scheduling of independent moldable tasks that arrive

over time
• A 4-competitive algorithm for communication model

• Ye, Chen, Zhang (2018):
• Online scheduling of independent moldable tasks in

“one-by-one” setting (i.e., tasks are released sequentially and
each task must be scheduled immediately upon release)

• A 16.74-competitive algorithm for arbitrary model



15/30

Outline

Introduction

Algorithm

Analysis

Lower bounds

Conclusion



16/30

Lower Bound on Makespan

For each task j :
• Minimum area: amin

j = minp aj(p)

• Minimum execution time: tmin
j = minp tj(p)

For task graph:
• Minimum total area: Amin =

∑n
j=1 amin

j

• Minimum critical-path length: Cmin = maxf
∑

j∈f tmin
j

Proposition
The optimal makespan satisfies:

Topt ≥ max
(Amin

P , Cmin

)



16/30

Lower Bound on Makespan

For each task j :
• Minimum area: amin

j = minp aj(p)

• Minimum execution time: tmin
j = minp tj(p)

For task graph:
• Minimum total area: Amin =

∑n
j=1 amin

j

• Minimum critical-path length: Cmin = maxf
∑

j∈f tmin
j

Proposition
The optimal makespan satisfies:

Topt ≥ max
(Amin

P , Cmin

)



16/30

Lower Bound on Makespan

For each task j :
• Minimum area: amin

j = minp aj(p)

• Minimum execution time: tmin
j = minp tj(p)

For task graph:
• Minimum total area: Amin =

∑n
j=1 amin

j

• Minimum critical-path length: Cmin = maxf
∑

j∈f tmin
j

Proposition
The optimal makespan satisfies:

Topt ≥ max
(Amin

P , Cmin

)



17/30

Two-Phase Approach [Turek et al. ’92]

• Phase 1: Determine a resource allocation for each task once
it becomes available

• Phase 2: Construct a schedule based on resource allocations
of the available tasks



18/30

Phase 1: (Local) Resource Allocation

• Step (1): Initial allocation [Benoit et al. 20]
Find an allocation pj ∈ [1, P] from the following problem:

min
p

α(p) ≜ aj(p)
amin

j

s.t. β(p) ≜ tj(p)
tmin
j
≤ 1− 2µ

µ(1− µ)

⇒ Allocate resource locally for each task: minimize area
subject to a time constraint

• Step (2): Adjusted allocation [Lepère et al. 01]
If pj > ⌈µP⌉ then p′

j ← ⌈µP⌉ else p′
j ← pj

⇒ Reduce high allocation to increase overall resource
utilization: choice of µ ∈ (0, 0.5) depends on speedup model



18/30

Phase 1: (Local) Resource Allocation

• Step (1): Initial allocation [Benoit et al. 20]
Find an allocation pj ∈ [1, P] from the following problem:

min
p

α(p) ≜ aj(p)
amin

j

s.t. β(p) ≜ tj(p)
tmin
j
≤ 1− 2µ

µ(1− µ)

⇒ Allocate resource locally for each task: minimize area
subject to a time constraint

• Step (2): Adjusted allocation [Lepère et al. 01]
If pj > ⌈µP⌉ then p′

j ← ⌈µP⌉ else p′
j ← pj

⇒ Reduce high allocation to increase overall resource
utilization: choice of µ ∈ (0, 0.5) depends on speedup model



19/30

Phase 2: (Online) List Scheduling

• Insert a task in a list (i.e., waiting queue) as it becomes
available
• Whenever an existing task completes, which releases

resources, scan the list and schedule each task that fits

Note: when a task becomes available, it is not required to be
immediately scheduled (one-by-one model)



20/30

Outline

Introduction

Algorithm

Analysis

Lower bounds

Conclusion



21/30

(1) Local Analysis

Can we say something about each individual task?

Proposition
For a given speedup model M, there exists an (α, β) pair and an
initial resource allocation pj for any task j such that:

aj(pj) ≤ α · amin
j

tj(pj) ≤ β · tmin
j

These local bounds will carry over to the global analysis!∑
j∈J

aj(pj) ≤ α ·
∑
j∈J

amin
j

≤ α · Amin

∑
j∈f

tj(pj) ≤ β ·
∑
j∈f

tmin
j

≤ β · Cmin



21/30

(1) Local Analysis

Can we say something about each individual task?

Proposition
For a given speedup model M, there exists an (α, β) pair and an
initial resource allocation pj for any task j such that:

aj(pj) ≤ α · amin
j

tj(pj) ≤ β · tmin
j

These local bounds will carry over to the global analysis!∑
j∈J

aj(pj) ≤ α ·
∑
j∈J

amin
j

≤ α · Amin

∑
j∈f

tj(pj) ≤ β ·
∑
j∈f

tmin
j

≤ β · Cmin



21/30

(1) Local Analysis

Can we say something about each individual task?

Proposition
For a given speedup model M, there exists an (α, β) pair and an
initial resource allocation pj for any task j such that:

aj(pj) ≤ α · amin
j

tj(pj) ≤ β · tmin
j

These local bounds will carry over to the global analysis!∑
j∈J

aj(pj) ≤ α ·
∑
j∈J

amin
j ≤ α · Amin∑

j∈f
tj(pj) ≤ β ·

∑
j∈f

tmin
j ≤ β · Cmin



22/30

(2) Global Analysis

Total makespan interval [0, T ] divided in three sets [Lepère et al. 01]:
• T1: Less than µP processors are used.
• T2: Between µP and (1− µ)P processors are used
• T3: More than (1− µ)P processor are used

T1 and T2 can be charged to the critical-path length
T2 and T3 can be charged to the total area



22/30

(2) Global Analysis

Total makespan interval [0, T ] divided in three sets [Lepère et al. 01]:
• T1: Less than µP processors are used.
• T2: Between µP and (1− µ)P processors are used
• T3: More than (1− µ)P processor are used

T1 and T2 can be charged to the critical-path length
T2 and T3 can be charged to the total area



23/30

(3) Combining Two Analyses

Critical-path bound: T1
β

+ µT2 ≤ Cmin

≤ Topt

Total area bound: µT2 + (1− µ)T3 ≤
α · Amin

P

≤ α · Topt

Proposition
Combining the two bounds with T = T1 + T2 + T3, we get:

T
Topt

≤ µα + 1− 2µ

µ(1− µ) subject to β ≤ 1− 2µ

µ(1− µ)



23/30

(3) Combining Two Analyses

Critical-path bound: T1
β

+ µT2 ≤ Cmin≤ Topt

Total area bound: µT2 + (1− µ)T3 ≤
α · Amin

P ≤ α · Topt

Proposition
Combining the two bounds with T = T1 + T2 + T3, we get:

T
Topt

≤ µα + 1− 2µ

µ(1− µ) subject to β ≤ 1− 2µ

µ(1− µ)



23/30

(3) Combining Two Analyses

Critical-path bound: T1
β

+ µT2 ≤ Cmin≤ Topt

Total area bound: µT2 + (1− µ)T3 ≤
α · Amin

P ≤ α · Topt

Proposition
Combining the two bounds with T = T1 + T2 + T3, we get:

T
Topt

≤ µα + 1− 2µ

µ(1− µ) subject to β ≤ 1− 2µ

µ(1− µ)



24/30

Final Results

Proposition
Combining the two bounds with T = T1 + T2 + T3, we get:

T
Topt

≤ µα + 1− 2µ

µ(1− µ) subject to β ≤ 1− 2µ

µ(1− µ)

Optimization procedure for a given speedup model:
1 Find an upper bound for α as a function of µ

2 Find µ minimizing the ratio subject to β constraint

Model Roofline Comm. Amdahl General
Choice of µ 0.382 0.324 0.271 0.211

Upper bound 2.62 3.61 4.74 5.72



25/30

Outline

Introduction

Algorithm

Analysis

Lower bounds

Conclusion



26/30

Instance for Common Speedup Models

Task parameters are chosen so that:
• For online algorithm (a): Barely

impossible to process a full layer in
parallel

• For optimal algorithm (b): First
process all A’s and then B’s and C ’s in
parallel

Model Roofline Comm. Amdahl General
Upper bound 2.62 3.61 4.74 5.72
Lower bound 2.61 3.51 4.73 5.25



26/30

Instance for Common Speedup Models

Task parameters are chosen so that:
• For online algorithm (a): Barely

impossible to process a full layer in
parallel

• For optimal algorithm (b): First
process all A’s and then B’s and C ’s in
parallel

Model Roofline Comm. Amdahl General
Upper bound 2.62 3.61 4.74 5.72
Lower bound 2.61 3.51 4.73 5.25



26/30

Instance for Common Speedup Models

Task parameters are chosen so that:
• For online algorithm (a): Barely

impossible to process a full layer in
parallel

• For optimal algorithm (b): First
process all A’s and then B’s and C ’s in
parallel

Model Roofline Comm. Amdahl General
Upper bound 2.62 3.61 4.74 5.72
Lower bound 2.61 3.51 4.73 5.25



27/30

Instance for Arbitrary Speedup Model

• D = 2ℓ groups of identical tasks with
execution time function t(p) = 1

lg(p)+1

• For optimal algorithm (a): 2i−1 processors
for tasks in group i ⇒ makespan of 1

• For online algorithm (b): same processors
for all tasks (best online strategy) ⇒
makespan of Ω(ln(D))



27/30

Instance for Arbitrary Speedup Model

• D = 2ℓ groups of identical tasks with
execution time function t(p) = 1

lg(p)+1

• For optimal algorithm (a): 2i−1 processors
for tasks in group i ⇒ makespan of 1

• For online algorithm (b): same processors
for all tasks (best online strategy) ⇒
makespan of Ω(ln(D))



28/30

Outline

Introduction

Algorithm

Analysis

Lower bounds

Conclusion



29/30

Conclusion

• A new algorithm for online scheduling of moldable task graphs
• Almost tight competitive ratios for several common speedup

models
• No constant competitive ratio for arbitrary speedup model by

any deterministic online algorithm

Future work:
• Consider other speedup models or special task graphs
• Improve the ratios for upper and/or lower bounds
• Experimental evaluation of the algorithm’s performance



30/30

Latest Results

Model Roofline Comm. Amdahl General
Old Results ≈ 2.62 ≈ 3.61 ≈ 4.74 ≈ 5.72

New Results1 ≈ 2.62 ≈ 3.39 ≈ 4.55 ≈ 4.63︸ ︷︷ ︸
with matching lower bounds

• New upper bounds benefit from a tighter (α, β) analysis:
worst-case time and area bounds don’t happen simultaneously
• New lower bounds also apply to a class of algorithms with

deterministic local processor allocation (i.e., stronger)

1Lucas Perotin, Hongyang Sun. Improved Online Scheduling of Moldable Task
Graphs under Common Speedup Models. 2023. https://arxiv.org/abs/2304.14127

https://arxiv.org/abs/2304.14127

	Introduction
	Algorithm
	Analysis
	Lower bounds
	Conclusion

