Online Scheduling of Moldable Task Graphs
under Common Speedup Models

Anne Benoit® Lucas Perotin! Yves Robert!?
Hongyang Sun (Speaker)?

1Ecole Normale Supérieure de Lyon, France
2University of Tennessee Knoxville, USA

3University of Kansas, USA

—-_-— THE UNIVERSITY OF
— i — KANSAS
ENS DE LYON TEN ‘E -
KN

ICPP'22 Best Paper @ ICPP'23
Salt Lake City, Utah, USA, August 8, 2023

INTERNATIONAL
CONFERENCE ON
PARALLEL
PROCESSING

Scheduling Problems

Taxonomy of scheduling problems:
¢ Offline Scheduling vs. Online Scheduling

- Offline: All tasks are known in advance (NP-hard problems)
- Online: Tasks are released on the fly (over time or one-by-one)

® Scheduling Independent Tasks vs. Task Graphs
- Independent tasks: There are no dependencies among tasks
- Task graphs: Tasks have dependencies in the form of a
directed acyclic graph (DAG)

Scheduling Problems

Taxonomy of scheduling problems:
¢ Offline Scheduling vs. Online Scheduling

- Offline: All tasks are known in advance (NP-hard problems)
- Online: Tasks are released on the fly (over time or one-by-one)

® Scheduling Independent Tasks vs. Task Graphs

- Independent tasks: There are no dependencies among tasks
- Task graphs: Tasks have dependencies in the form of a
directed acyclic graph (DAG)

In this work, we focus on online scheduling of task graphs
® A task is not known until all predecessors are completed

® Has applications in dynamic workflow scheduling

Example

o At first, only task A is known, and others are unknown yet

Example

® When task A is done, the scheduler discovers tasks B and C

Example

® When task B is done, task D is still not known yet

Example

(B) B
(¢) F

® Only when task C is also done, task D becomes known

Example

® Finally, when task D is done, tasks E and F are discovered

Example

® Tasks E and F are then processed to complete whole graph

Parallel Tasks

Taxonomy of parallel tasks:
® Rigid tasks: Processor allocation is fixed

® Moldable tasks: Processor allocation is decided by the
system but cannot be changed once task starts running

® Malleable tasks: Processor allocation can be dynamically
changed during runtime

Parallel Tasks

Taxonomy of parallel tasks:
® Rigid tasks: Processor allocation is fixed

® Moldable tasks: Processor allocation is decided by the
system but cannot be changed once task starts running

® Malleable tasks: Processor allocation can be dynamically
changed during runtime

In this work, we focus on moldable tasks

® Easily adapt to amount of available resources
(contrarily to rigid tasks)

® Easy to design and implement
(contrarily to malleable tasks)

Scheduling Model

® A graph of n moldable tasks. Each task only becomes known
when all of its predecessors are completed (i.e., online)

® P identical processors to process the tasks

® For each task j:

® Execution time t;(p;) depends on number of processors p;
allocated to it, and this function also becomes known when
the task is discovered

o Areais 3i(p)) = p; % 5(p))

!

pj aj(pj)

|

«— (@) ——

Speedup Models

We mainly focus on a general speedup model:

o
t:(p;) = _J d: . — 1)c;
5(Pj) min(p;, B;) +dj + (pj)<

which contains several common models as special cases

Speedup Models

We mainly focus on a general speedup model:
o
ti(pj) = ——"—=~ +di + (p — 1)
T min(py) T T
which contains several common models as special cases
e Roofline model: t;j(p;) =

wj
o] min(p;,p;)]
where p; is maximum degree of parallelism

Execution Time ¢(p)
Speedup s(p)

Number of Processors p Number of Processors p

Speedup Models

We mainly focus on a general speedup model:

-
tilp)= —~L1— +d; i — 1)
5(pj) min(pj, f’j) +d; + (p;)<

which contains several common models as special cases

e Communication model: tj(p;) = :)V—j + (pj — 1)¢;

where ¢; is communication overhead

Speedup s(p)

Execution Time ¢(p)

Number of Processors p Number of Processors p

Speedup Models

We mainly focus on a general speedup model:
o
ti(p)) = ———=< +di+(p — 1)g
ST min(py,py) T !
which contains several common models as special cases

e Amdahl's model: tj(p;) = X + d
Pj
where d; is inherently sequential work

Speedup s(p)

~ Execution Time ¢(p)

Number of Processors p Number of Processors p

Speedup Models

We mainly focus on a general speedup model:

-
tilp)= —~L1— +d; i — 1)
5(pj) min(p;, B;) +d; + (p;)<

which contains several common models as special cases

e Additionally, we consider the arbitrary model, where t;(p;) can be
an arbitrary function of p;

Scheduling Objective

Find an online moldable schedule (i.e., processor allocation p; and
starting time s; for each task j):

® minimizes makespan: T = max;(s; + tj(p;))

® subject to processor constraint: > . e at time ¢ Pi

< PVt

® subject to precedence constraint: j1 — jo = s;, > 55, +tj

Competitive Ratio:
An online algorithm is said to be r-competitive if its makespan T
for any task graph satisfies:

T
TOPT

<r

where Topr is the optimal offline makespan for the same graph

Our Main Results

® New online algorithm with almost tight competitive ratios for
several common speedup models

Model Roofline | Comm. | Amdahl | General
Upper bound 2.62 3.61 4.74 5.72
Lower bound 2.61 3.51 4.73 5.25

® Negative result for the arbitrary speedup model:
Any deterministic online algorithm is Q(In(D))-competitive,
where D is the length of the longest path in the graph

(Closely) Related Work

¢ Feldmann, Kao, Sgall, Teng (1998):
® Online scheduling of moldable task graphs in “non-clairvoyant”
setting (i.e., work of a task is unknown until completion)
® A 2.62-competitive algorithm for roofline model

(Closely) Related Work

¢ Feldmann, Kao, Sgall, Teng (1998):
® Online scheduling of moldable task graphs in “non-clairvoyant”
setting (i.e., work of a task is unknown until completion)
® A 2.62-competitive algorithm for roofline model

® Lepere, Trystram, Woeginger (2001):
® Offline scheduling of moldable task graphs
® A 5.24-approximation algorithm for monotonic model (i.e.,
t(p) is non-increasing and a(p) is non-decreasing with p)

(Closely) Related Work

¢ Feldmann, Kao, Sgall, Teng (1998):
® Online scheduling of moldable task graphs in “non-clairvoyant”
setting (i.e., work of a task is unknown until completion)
® A 2.62-competitive algorithm for roofline model

® Lepere, Trystram, Woeginger (2001):
® Offline scheduling of moldable task graphs
® A 5.24-approximation algorithm for monotonic model (i.e.,
t(p) is non-increasing and a(p) is non-decreasing with p)

¢ Havill, Mao (2008):
® Online scheduling of independent moldable tasks that arrive
over time
® A 4-competitive algorithm for communication model

(Closely) Related Work

¢ Feldmann, Kao, Sgall, Teng (1998):
® Online scheduling of moldable task graphs in “non-clairvoyant”
setting (i.e., work of a task is unknown until completion)
® A 2.62-competitive algorithm for roofline model

® Lepere, Trystram, Woeginger (2001):
® Offline scheduling of moldable task graphs
® A 5.24-approximation algorithm for monotonic model (i.e.,
t(p) is non-increasing and a(p) is non-decreasing with p)

¢ Havill, Mao (2008):
® Online scheduling of independent moldable tasks that arrive
over time
® A 4-competitive algorithm for communication model

® Ye, Chen, Zhang (2018):
® Online scheduling of independent moldable tasks in
“one-by-one” setting (i.e., tasks are released sequentially and
each task must be scheduled immediately upon release)
® A 16.74-competitive algorithm for arbitrary model

Introduction
Algorithm
Analysis
Lower bounds

Conclusion

15/30

Lower Bound on Makespan

For each task j:
min

® Minimum area: a"" = min, a;(p)

® Minimum execution time: t™" = min, t;(p)

Lower Bound on Makespan

For each task j:

Ho . omin __ H .
® Minimum area: a"" = min, a;(p)

® Minimum execution time: t™" = min, t;(p)

For task graph:

® Minimum total area: Amin = > ; am"

® Minimum critical-path length: Cyi, = maxs Zjef tj"””

Lower Bound on Makespan

For each task j:

Ho . omin __ H .
® Minimum area: a"" = min, a;(p)

® Minimum execution time: t™" = min, t;(p)

For task graph:

® Minimum total area: Amin = > ; am"

® Minimum critical-path length: Cyi, = maxs Zjef tj"””

Proposition

The optimal makespan satisfies:

Amin
Topr > max < p Cmin)

Two-Phase Approach [Turek et al. '92]

® Phase 1: Determine a resource allocation for each task once

it becomes available
—LLL‘ Taskj

j_‘

Execution Time

Resource

® Phase 2: Construct a schedule based on resource allocations
of the available tasks

Task j

Resource

Time

Phase 1: (Local) Resource Allocation

e Step (1): Initial allocation [Benoit et al. 20]
Find an allocation p; € [1, P] from the following problem:

= Allocate resource locally for each task: minimize area
subject to a time constraint

Phase 1: (Local) Resource Allocation

e Step (1): Initial allocation [Benoit et al. 20]
Find an allocation p; € [1, P] from the following problem:

mn o(p) 2 %0
a ti(p) 1—-2p
s.t B(p) - ;Jmin S M(]- _ #)

= Allocate resource locally for each task: minimize area
subject to a time constraint

e Step (2): Adjusted allocation [Lepere et al. 01]
If p; > [1P] then p; < [uP] else p; < p;
= Reduce high allocation to increase overall resource
utilization: choice of u € (0,0.5) depends on speedup model

Phase 2: (Online) List Scheduling

e Insert a task in a list (i.e., waiting queue) as it becomes
available

® Whenever an existing task completes, which releases
resources, scan the list and schedule each task that fits

Note: when a task becomes available, it is not required to be
immediately scheduled (one-by-one model)

Introduction
Algorithm
Analysis
Lower bounds

Conclusion

20/30

(1) Local Analysis

Can we say something about each individual task?

Proposition

For a given speedup model M, there exists an («,) pair and an
initial resource allocation p; for any task j such that:

ti(p)) <B-t

(1) Local Analysis

Can we say something about each individual task?

Proposition

For a given speedup model M, there exists an («,) pair and an
initial resource allocation p; for any task j such that:

ti(p)) <B-t

These local bounds will carry over to the global analysis!
>) sa-) a"
jeJd jed

> tilp) < 8- "

Jjef Jjef

(1) Local Analysis

Can we say something about each individual task?

Proposition

For a given speedup model M, there exists an («,) pair and an
initial resource allocation p; for any task j such that:

o -

ti(pj) <6 -t

These local bounds will carry over to the global analysis!
2{:50(90 5204'§£:a?ﬂn§;a"4mm

jeJ jed

ZE:U(RD §,8~§£:q“m§§ﬁ- Cnin

Jjef Jjef

(2) Global Analysis

Total makespan interval [0, T] divided in three sets [Lepere et al. 01]:
® Ti: Less than uP processors are used.
e T,: Between uP and (1 — p)P processors are used

® T3: More than (1 — u)P processor are used

(2) Global Analysis

Total makespan interval [0, T] divided in three sets [Lepere et al. 01]:
® Ti: Less than uP processors are used.
e T,: Between uP and (1 — p)P processors are used

® T3: More than (1 — u)P processor are used

Ty and T, can be charged to the critical-path length
T> and T3 can be charged to the total area

(3) Combining Two Analyses

T
Critical-path bound: Fl + uTa < Gin

o - Anmin

Total area bound: puTy+ (1 —pu)T3 < 2

(3) Combining Two Analyses

T
Critical-path bound: Fl + 1T < Ghin< Topr

Total area bound: puTy+ (1 —pu)T3 < a'T/i\ming o Topr

(3) Combining Two Analyses

T
Critical-path bound: ?1 + 1T < Ghin< Topr

. Amin

Total area bound: puTy+ (1 —pu)T3 < QTS o Topr

Proposition
Combining the two bounds with T = Ty + To + T3, we get:
T < b +1-—-2u

Torr = (1 —p)

1—2u
(1 = p)

subject to [<

Final Results

Proposition
Combining the two bounds with T = Ty + To + T3, we get:
T < b +1-2u

Torr = w(l1—p)

1—-2u
(1 = p)

subject to (8 <

Optimization procedure for a given speedup model:
@ Find an upper bound for « as a function of p
® Find p minimizing the ratio subject to S constraint

Model Roofline | Comm. | Amdahl | General

Choice of 0.382 0.324 0.271 0.211
Upper bound 2.62 3.61 4.74 5.72

Introduction
Algorithm
Analysis
Lower bounds

Conclusion

25/30

Instance for Common Speedup Models

Instance for Common Speedup Models

Task parameters are chosen so that:

¢ For online algorithm (a): Barely
impossible to process a full layer in
parallel

® For optimal algorithm (b): First
process all A's and then B’s and C's in
parallel

all the B; j’s

time

(b)

Instance for Common Speedup Models

Task parameters are chosen so that:

¢ For online algorithm (a): Barely
impossible to process a full layer in

parallel
P
® For optimal algorithm (b): First s
process all A's and then B’s and C's in all the B, j's
parallel time
(b)
Model Roofline | Comm. | Amdahl | General
Upper bound 2.62 3.61 4.74 5.72
Lower bound 2.61 3.51 4.73 5.25

Instance for Arbitrary Speedup Model

{ © © © O

®© © © ©

{ @ —

@—@) @—)
{) —E)—)
() — () —()

‘‘‘‘‘‘‘‘ | @—e—6—®

e D =2 groups of identical tasks with

execution time function t(p) = m

Instance for Arbitrary Speedup Model

{ ®© ®© © O

® @ © © T
{ @—® @—@ A o
1 e
|

&l so 13(2) 130)

(—C) @ —)
14(1) 14(2) 14(3)
() — ()
150) | 15) | 156)
@ —@—@
0 1 3 1
i i
O—E—E—@

! 9(2)
e D = 2¢ groups of identical tasks with s o)
. . . 1 3 1002)
X ion time function = :
execution time function t(p) FOE! 5 —
* For optimal algorithm (a): 2/~! processors ||
for tasks in group i = makespan of 1 o —_|
11(1)
* For online algorithm (b): same processors o] = I
. 131)
for all tasks (best online strategy) =] e
makespan of Q(In(D)) b e

Introduction
Algorithm
Analysis
Lower bounds

Conclusion

28/30

Conclusion

® A new algorithm for online scheduling of moldable task graphs

® Almost tight competitive ratios for several common speedup
models

® No constant competitive ratio for arbitrary speedup model by
any deterministic online algorithm

Future work:
e Consider other speedup models or special task graphs
® |mprove the ratios for upper and/or lower bounds

® Experimental evaluation of the algorithm’s performance

Latest Results

Model Roofline | Comm. | Amdahl | General
Old Results ~262 | ~361 | ~474 | =572
New Results! | ~2.62 | ~3.39 | ~ 455 | ~4.63

with matching lower bounds

® New upper bounds benefit from a tighter («, 3) analysis:
worst-case time and area bounds don’t happen simultaneously

® New lower bounds also apply to a class of algorithms with
deterministic local processor allocation (i.e., stronger)

!Lucas Perotin, Hongyang Sun. Improved Online Scheduling of Moldable Task
Graphs under Common Speedup Models. 2023. https://arxiv.org/abs/2304.14127

https://arxiv.org/abs/2304.14127

	Introduction
	Algorithm
	Analysis
	Lower bounds
	Conclusion

