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Scheduling Problems

Taxonomy of scheduling problems:
• Offline Scheduling vs. Online Scheduling

- Offline: All tasks are known in advance (NP-hard problems)
- Online: Tasks are released on the fly (over time or one-by-one)

• Scheduling Independent Tasks vs. Task Graphs
- Independent tasks: There are no dependencies among tasks
- Task graphs: Tasks have dependencies in the form of a

directed acyclic graph (DAG)

In this work, we focus on online scheduling of task graphs
• A task is not known until all predecessors are completed
• Has applications in dynamic workflow scheduling
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• At first, only task A is known, and others are unknown yet
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• When task A is done, the scheduler discovers tasks B and C
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• When task B is done, task D is still not known yet
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• Only when task C is also done, task D becomes known
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• Finally, when task D is done, tasks E and F are discovered
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• Tasks E and F are then processed to complete whole graph
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Parallel Tasks

Taxonomy of parallel tasks:
• Rigid tasks: Processor allocation is fixed
• Moldable tasks: Processor allocation is decided by the

system but cannot be changed once task starts running
• Malleable tasks: Processor allocation can be dynamically

changed during runtime

In this work, we focus on moldable tasks
• Easily adapt to amount of available resources

(contrarily to rigid tasks)
• Easy to design and implement

(contrarily to malleable tasks)
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Scheduling Model

• A graph of n moldable tasks. Each task only becomes known
when all of its predecessors are completed (i.e., online)

• P identical processors to process the tasks

• For each task j :
• Execution time tj(pj) depends on number of processors pj

allocated to it, and this function also becomes known when
the task is discovered

• Area is aj(pj) = pj × tj(pj)
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Speedup Models

We mainly focus on a general speedup model:

tj(pj) = wj
min(pj , p̄j)

+ dj + (pj − 1)cj

which contains several common models as special cases
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tj(pj) = wj
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which contains several common models as special cases
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Speedup Models

We mainly focus on a general speedup model:

tj(pj) = wj
min(pj , p̄j)

+ dj + (pj − 1)cj

which contains several common models as special cases

• Communication model: tj(pj) = wj
pj

+ (pj − 1)cj
where cj is communication overhead
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Speedup Models

We mainly focus on a general speedup model:

tj(pj) = wj
min(pj , p̄j)

+ dj + (pj − 1)cj

which contains several common models as special cases

• Amdahl’s model: tj(pj) = wj
pj

+ dj
where dj is inherently sequential work
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Speedup Models

We mainly focus on a general speedup model:

tj(pj) = wj
min(pj , p̄j)

+ dj + (pj − 1)cj

which contains several common models as special cases

• Additionally, we consider the arbitrary model, where tj(pj) can be
an arbitrary function of pj
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Scheduling Objective

Find an online moldable schedule (i.e., processor allocation pj and
starting time sj for each task j):
• minimizes makespan: T = maxj(sj + tj(pj))
• subject to processor constraint: ∑

j active at time t pj ≤ P,∀t
• subject to precedence constraint: j1 → j2 ⇒ sj2 ≥ sj1 + tj1

Competitive Ratio:
An online algorithm is said to be r -competitive if its makespan T
for any task graph satisfies:

T
Topt

≤ r

where Topt is the optimal offline makespan for the same graph
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Our Main Results

• New online algorithm with almost tight competitive ratios for
several common speedup models

Model Roofline Comm. Amdahl General
Upper bound 2.62 3.61 4.74 5.72
Lower bound 2.61 3.51 4.73 5.25

• Negative result for the arbitrary speedup model:
Any deterministic online algorithm is Ω(ln(D))-competitive,
where D is the length of the longest path in the graph
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(Closely) Related Work
• Feldmann, Kao, Sgall, Teng (1998):

• Online scheduling of moldable task graphs in “non-clairvoyant”
setting (i.e., work of a task is unknown until completion)

• A 2.62-competitive algorithm for roofline model

• Lepère, Trystram, Woeginger (2001):
• Offline scheduling of moldable task graphs
• A 5.24-approximation algorithm for monotonic model (i.e.,

t(p) is non-increasing and a(p) is non-decreasing with p)

• Havill, Mao (2008):
• Online scheduling of independent moldable tasks that arrive

over time
• A 4-competitive algorithm for communication model

• Ye, Chen, Zhang (2018):
• Online scheduling of independent moldable tasks in

“one-by-one” setting (i.e., tasks are released sequentially and
each task must be scheduled immediately upon release)

• A 16.74-competitive algorithm for arbitrary model
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Lower Bound on Makespan

For each task j :
• Minimum area: amin

j = minp aj(p)

• Minimum execution time: tmin
j = minp tj(p)

For task graph:
• Minimum total area: Amin =

∑n
j=1 amin

j

• Minimum critical-path length: Cmin = maxf
∑

j∈f tmin
j

Proposition
The optimal makespan satisfies:

Topt ≥ max
(Amin

P , Cmin

)
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Two-Phase Approach [Turek et al. ’92]

• Phase 1: Determine a resource allocation for each task once
it becomes available

• Phase 2: Construct a schedule based on resource allocations
of the available tasks
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Phase 1: (Local) Resource Allocation

• Step (1): Initial allocation [Benoit et al. 20]
Find an allocation pj ∈ [1, P] from the following problem:

min
p

α(p) ≜ aj(p)
amin

j

s.t. β(p) ≜ tj(p)
tmin
j
≤ 1− 2µ

µ(1− µ)

⇒ Allocate resource locally for each task: minimize area
subject to a time constraint

• Step (2): Adjusted allocation [Lepère et al. 01]
If pj > ⌈µP⌉ then p′

j ← ⌈µP⌉ else p′
j ← pj

⇒ Reduce high allocation to increase overall resource
utilization: choice of µ ∈ (0, 0.5) depends on speedup model
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Phase 2: (Online) List Scheduling

• Insert a task in a list (i.e., waiting queue) as it becomes
available
• Whenever an existing task completes, which releases

resources, scan the list and schedule each task that fits

Note: when a task becomes available, it is not required to be
immediately scheduled (one-by-one model)
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(1) Local Analysis

Can we say something about each individual task?

Proposition
For a given speedup model M, there exists an (α, β) pair and an
initial resource allocation pj for any task j such that:

aj(pj) ≤ α · amin
j

tj(pj) ≤ β · tmin
j

These local bounds will carry over to the global analysis!∑
j∈J

aj(pj) ≤ α ·
∑
j∈J

amin
j

≤ α · Amin

∑
j∈f

tj(pj) ≤ β ·
∑
j∈f

tmin
j

≤ β · Cmin
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(2) Global Analysis

Total makespan interval [0, T ] divided in three sets [Lepère et al. 01]:
• T1: Less than µP processors are used.
• T2: Between µP and (1− µ)P processors are used
• T3: More than (1− µ)P processor are used

T1 and T2 can be charged to the critical-path length
T2 and T3 can be charged to the total area
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(3) Combining Two Analyses

Critical-path bound: T1
β

+ µT2 ≤ Cmin

≤ Topt

Total area bound: µT2 + (1− µ)T3 ≤
α · Amin

P

≤ α · Topt

Proposition
Combining the two bounds with T = T1 + T2 + T3, we get:

T
Topt

≤ µα + 1− 2µ

µ(1− µ) subject to β ≤ 1− 2µ

µ(1− µ)
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Final Results

Proposition
Combining the two bounds with T = T1 + T2 + T3, we get:

T
Topt

≤ µα + 1− 2µ

µ(1− µ) subject to β ≤ 1− 2µ

µ(1− µ)

Optimization procedure for a given speedup model:
1 Find an upper bound for α as a function of µ

2 Find µ minimizing the ratio subject to β constraint

Model Roofline Comm. Amdahl General
Choice of µ 0.382 0.324 0.271 0.211

Upper bound 2.62 3.61 4.74 5.72
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Instance for Common Speedup Models

Task parameters are chosen so that:
• For online algorithm (a): Barely

impossible to process a full layer in
parallel

• For optimal algorithm (b): First
process all A’s and then B’s and C ’s in
parallel

Model Roofline Comm. Amdahl General
Upper bound 2.62 3.61 4.74 5.72
Lower bound 2.61 3.51 4.73 5.25
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Instance for Arbitrary Speedup Model

• D = 2ℓ groups of identical tasks with
execution time function t(p) = 1

lg(p)+1

• For optimal algorithm (a): 2i−1 processors
for tasks in group i ⇒ makespan of 1

• For online algorithm (b): same processors
for all tasks (best online strategy) ⇒
makespan of Ω(ln(D))
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Conclusion

• A new algorithm for online scheduling of moldable task graphs
• Almost tight competitive ratios for several common speedup

models
• No constant competitive ratio for arbitrary speedup model by

any deterministic online algorithm

Future work:
• Consider other speedup models or special task graphs
• Improve the ratios for upper and/or lower bounds
• Experimental evaluation of the algorithm’s performance
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Latest Results

Model Roofline Comm. Amdahl General
Old Results ≈ 2.62 ≈ 3.61 ≈ 4.74 ≈ 5.72

New Results1 ≈ 2.62 ≈ 3.39 ≈ 4.55 ≈ 4.63︸ ︷︷ ︸
with matching lower bounds

• New upper bounds benefit from a tighter (α, β) analysis:
worst-case time and area bounds don’t happen simultaneously
• New lower bounds also apply to a class of algorithms with

deterministic local processor allocation (i.e., stronger)

1Lucas Perotin, Hongyang Sun. Improved Online Scheduling of Moldable Task
Graphs under Common Speedup Models. 2023. https://arxiv.org/abs/2304.14127

https://arxiv.org/abs/2304.14127
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