Which Verification for Soft Error Detection?

Leonardo Bautista-Gomez¹, Anne Benoit², Aurélien Cavelan², Saurabh K. Raina³, Yves Robert^{2,4} and Hongyang Sun²

Argonne National Laboratory, USA
ENS Lyon & INRIA, France
Jaypee Institute of Information Technology, India
University of Tennessee Knoxville, USA

hongyang.sun@ens-lyon.fr

JLESC Workshop July 1, 2015, Barcelona

Computing at Exascale

Exascale platform:

- 10^5 or 10^6 nodes, each equipped with 10^2 or 10^3 cores.
- Shorter Mean Time Between Failures (MTBF) μ .

Theorem: $\mu_p = \frac{\mu_{\text{ind}}}{p}$ for arbitrary distributions

MTBF (individual node)	1 year	10 years	120 years
MTBF (platform of 10 ⁶ nodes)	30 sec	5 mn	1 h

Computing at Exascale

Exascale platform:

- 10^5 or 10^6 nodes, each equipped with 10^2 or 10^3 cores.
- Shorter Mean Time Between Failures (MTBF) μ .

Theorem: $\mu_p = \frac{\mu_{\text{ind}}}{p}$ for arbitrary distributions

MTBF (individual node)	1 year	10 years	120 years
MTBF (platform of 10 ⁶ nodes)	30 sec	5 mn	1 h

Need more reliable components!! Need more resilient techniques!!!

General-purpose approach

Periodic checkpoint, rollback and recovery:

- Fail-stop errors: instantaneous error detection, e.g., resource crash.
- Silent errors (aka silent data corruptions): e.g., soft faults in L1 cache, ALU, double bit flip.

General-purpose approach

Periodic checkpoint, rollback and recovery:

- Fail-stop errors: instantaneous error detection, e.g., resource crash.
- Silent errors (aka silent data corruptions): e.g., soft faults in L1 cache, ALU, double bit flip.

Silent error is detected only when corrupted data is activated, which could happen long after its occurrence.

Detection latency is problematic \Rightarrow risk of saving corrupted checkpoint!

Coping with silent errors

Couple checkpointing with verification:

- Before each checkpoint, run some verification mechanism (checksum, ECC, coherence tests, TMR, etc).
- Silent error is detected by verification \Rightarrow checkpoint always valid \bigcirc

Coping with silent errors

Couple checkpointing with verification:

- Before each checkpoint, run some verification mechanism (checksum, ECC, coherence tests, TMR, etc).
- Silent error is detected by verification \Rightarrow checkpoint always valid \bigcirc

Optimal period (Young/Daly):

	Fail-stop (classical)	Silent errors
Pattern	T = W + C	S = W + V + C
Optimal	$W^* = \sqrt{2C\mu}$	$W^* = \sqrt{(C+V)\mu}$

One step further

Perform several verifications before each checkpoint:

- ullet Pro: silent error is detected earlier in the pattern igodot
- Con: additional overhead in error-free executions 🙂

One step further

Perform several verifications before each checkpoint:

- ullet Pro: silent error is detected earlier in the pattern igodot
- Con: additional overhead in error-free executions 😊

How many intermediate verifications to use and the positions?

Guaranteed/perfect verifications (V^*) can be very expensive! Partial verifications (V) are available for many HPC applications!

- Lower accuracy: recall $(r) = \frac{\# \text{detected errors}}{\# \text{total errors}} < 1 \bigcirc$
- Much lower cost, i.e., $V < V^*$ \bigcirc

Guaranteed/perfect verifications (V^*) can be very expensive! Partial verifications (V) are available for many HPC applications!

• Lower accuracy: recall $(r) = \frac{\# \text{detected errors}}{\# \text{total errors}} < 1$

• Much lower cost, i.e., $V < V^*$ \bigcirc

Guaranteed/perfect verifications (V^*) can be very expensive! Partial verifications (V) are available for many HPC applications!

• Lower accuracy: recall $(r) = \frac{\# \text{detected errors}}{\# \text{total errors}} < 1$

• Much lower cost, i.e., $V < V^*$ \bigcirc

Which verification(s) to use? How many? Positions?

Guaranteed/perfect verifications (V^*) can be very expensive! Partial verifications (V) are available for many HPC applications!

• Lower accuracy: recall $(r) = \frac{\# \text{detected errors}}{\# \text{total errors}} < 1 \bigcirc$

• Much lower cost, i.e., $V < V^*$ \bigcirc

Which verification(s) to use? How many? Positions?

The terms "verification" and "detector" are used interchangeably.

2 Theoretical Analysis

Model and Objective

Divisible-load application

• Checkpoints and verifications can be inserted at arbitrary locations.

Silent errors

- Poisson process: arrival rate $\lambda = 1/\mu$, where μ is platform MTBF.
- Strike only computations; checkpointing, recovery, and verifications are protected.

Resilience parameters

- Cost of checkpointing *C*, cost of recovery *R*.
- k types of partial detectors and a perfect detector (D⁽¹⁾, D⁽²⁾,..., D^(k), D*).
 - $D^{(i)}$: cost $V^{(i)}$ and recall $r^{(i)} < 1$.
 - D^* : cost V^* and recall $r^* = 1$.

Model and Objective

Divisible-load application

• Checkpoints and verifications can be inserted at arbitrary locations.

Silent errors

- Poisson process: arrival rate $\lambda = 1/\mu$, where μ is platform MTBF.
- Strike only computations; checkpointing, recovery, and verifications are protected.

Resilience parameters

- Cost of checkpointing *C*, cost of recovery *R*.
- k types of partial detectors and a perfect detector (D⁽¹⁾, D⁽²⁾,..., D^(k), D*).
 - $D^{(i)}$: cost $V^{(i)}$ and recall $r^{(i)} < 1$.
 - D^* : cost V^* and recall $r^* = 1$.

Design an optimal periodic computing pattern that minimizes execution time (or makespan) of the application.

Pattern

Formally, a pattern $PATTERN(W, n, \alpha, D)$ is defined by

- W: pattern work length (or period);
- n: number of work segments;
- $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n]$: work fraction of each segment ($\alpha_i = w_i/W$ and $\sum_{i=1}^n \alpha_i = 1$);
- D = [D₁, D₂, ..., D_{n-1}, D^{*}]: detectors used at the end of each segment (D_i = D^(j) for some type j).

Pattern

Formally, a pattern $PATTERN(W, n, \alpha, D)$ is defined by

- W: pattern work length (or period);
- n: number of work segments;
- $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n]$: work fraction of each segment $(\alpha_i = w_i/W)$ and $\sum_{i=1}^n \alpha_i = 1$;
- D = [D₁, D₂, ..., D_{n-1}, D^{*}]: detectors used at the end of each segment (D_i = D^(j) for some type j).

- Last detector is perfect to avoid saving corrupted checkpoints.
- The same detector type $D^{(j)}$ could be used at the end of several segments.

2 Theoretical Analysis

Summary of results

In a nutshell:

- We prove that finding the optimal pattern is NP-hard.
- We design an FPTAS (Fully Polynomial-Time Approximation Scheme) that gives a makespan within $(1 + \epsilon)$ times the optimal with running time polynomial in the input size and $1/\epsilon$.
- We show a simple Greedy algorithm works well in practice.

Summary of results

In a nutshell:

- We prove that finding the optimal pattern is NP-hard.
- We design an FPTAS (Fully Polynomial-Time Approximation Scheme) that gives a makespan within $(1 + \epsilon)$ times the optimal with running time polynomial in the input size and $1/\epsilon$.
- We show a simple Greedy algorithm works well in practice.

Algorithm to determine a pattern $PATTERN(W, n, \alpha, \mathbf{D})$:

- Use FPTAS or Greedy (or even brute force for small instances) to find (optimal) number *n* of segments and set **D** of detectors.
- Arrange the n-1 partial detectors in any order.

• Compute
$$W^* = \sqrt{\frac{o_{\text{ff}}}{\lambda f_{\text{re}}}}$$
 and $\alpha_i^* = \frac{1}{U_n} \cdot \frac{1 - g_{i-1}g_i}{(1 + g_{i-1})(1 + g_i)}$ for $1 \le i \le n$,
where $o_{\text{ff}} = \sum_{i=1}^{n-1} V_i + V^* + C$ and $f_{\text{re}} = \frac{1}{2} \left(1 + \frac{1}{U_n} \right)$
with $g_i = 1 - r_i$ and $U_n = 1 + \sum_{i=1}^{n-1} \frac{1 - g_i}{1 + g_i}$

1/24

Expected execution time of a pattern

Proposition

The expected time to execute a pattern $\operatorname{PATTERN}(W, n, \alpha, \mathsf{D})$ is

$$\mathbb{E}(W) = W + \sum_{i=1}^{n-1} V_i + V^* + C + \lambda W (R + W \alpha^T A \alpha + \mathbf{d}^T \alpha) + o(\lambda)$$

where A is a symmetric matrix defined by $A_{ij} = \frac{1}{2} \left(1 + \prod_{k=i}^{j-1} g_k \right)$ for $i \leq j$ and **d** is a vector defined by $\mathbf{d}_i = \sum_{j=i}^n \left(\prod_{k=i}^{j-1} g_k \right) V_i$ for $1 \leq i \leq n$.

• First-order approximation (as in Young/Daly's classic formula).

Expected execution time of a pattern

Proposition

The expected time to execute a pattern $\operatorname{PATTERN}(W, n, \alpha, \mathsf{D})$ is

$$\mathbb{E}(W) = W + \sum_{i=1}^{n-1} V_i + V^* + C + \lambda W (R + W \alpha^T A \alpha + \mathbf{d}^T \alpha) + o(\lambda)$$

where A is a symmetric matrix defined by $A_{ij} = \frac{1}{2} \left(1 + \prod_{k=i}^{j-1} g_k \right)$ for $i \leq j$ and **d** is a vector defined by $\mathbf{d}_i = \sum_{j=i}^n \left(\prod_{k=i}^{j-1} g_k \right) V_i$ for $1 \leq i \leq n$.

- First-order approximation (as in Young/Daly's classic formula).
- Matrix A is essential to analysis. For instance, when n = 4 we have:

$$A = \frac{1}{2} \begin{bmatrix} 2 & 1+g_1 & 1+g_1g_2 & 1+g_1g_2g_3 \\ 1+g_1 & 2 & 1+g_2 & 1+g_2g_3 \\ 1+g_1g_2 & 1+g_2 & 2 & 1+g_3 \\ 1+g_1g_2g_3 & 1+g_2g_3 & 1+g_3 & 2 \end{bmatrix}.$$

12/24

Minimizing makespan

For an application with total work $\mathit{W}_{\mathsf{base}},$ the makespan is

$$egin{array}{rcl} \mathcal{W}_{ ext{final}} &pprox & rac{\mathbb{E}(\mathcal{W})}{\mathcal{W}} imes \mathcal{W}_{ ext{base}} \ &= & \mathcal{W}_{ ext{base}} + \mathcal{H}(\mathcal{W}) imes \mathcal{W}_{ ext{base}}, \end{array}$$

where $H(W) = \frac{\mathbb{E}(W)}{W} - 1$ is the execution overhead.

For instance, if $W_{\text{base}} = 100$, $W_{\text{final}} = 120$, we have H(W) = 20%.

Minimizing makespan

For an application with total work $\mathit{W}_{\mathsf{base}},$ the makespan is

$$egin{array}{rcl} \mathcal{W}_{\mathsf{final}} &pprox & rac{\mathbb{E}(\mathcal{W})}{\mathcal{W}} imes \mathcal{W}_{\mathsf{base}} \ &= & \mathcal{W}_{\mathsf{base}} + \mathcal{H}(\mathcal{W}) imes \mathcal{W}_{\mathsf{base}}, \end{array}$$

where $H(W) = \frac{\mathbb{E}(W)}{W} - 1$ is the execution overhead.

For instance, if $W_{\text{base}} = 100$, $W_{\text{final}} = 120$, we have H(W) = 20%.

Minimizing makespan is equivalent to minimizing overhead!

$$H(W) = \frac{o_{\rm ff}}{W} + \lambda f_{\rm re} W + \lambda (R + \mathbf{d}^T \alpha) + o(\lambda),$$

fault-free overhead: $o_{\rm ff} = \sum_{i=1}^{n-1} V_i + V^* + C$, re-execution fraction: $f_{\rm re} = \alpha^T A \alpha$.

Optimal pattern length to minimize overhead

Proposition

The execution overhead of a pattern $PATTERN(W, n, \alpha, D)$ is minimized when its length is

$$W^* = \sqrt{rac{o_{ff}}{\lambda f_{re}}}$$

The optimal overhead is

$$H(W^*) = 2\sqrt{\lambda o_{ff}f_{re}} + o(\sqrt{\lambda}).$$

Optimal pattern length to minimize overhead

Proposition

The execution overhead of a pattern $PATTERN(W, n, \alpha, D)$ is minimized when its length is

$$\mathcal{N}^* = \sqrt{rac{o_{ff}}{\lambda f_{re}}}$$

The optimal overhead is

$$H(W^*) = 2\sqrt{\lambda o_{ff}f_{re}} + o(\sqrt{\lambda}).$$

- When the platform MTBF $\mu = 1/\lambda$ is large, $o(\sqrt{\lambda})$ is negligible.
- Minimizing overhead is reduced to minimizing the product off fre!
 - Tradeoff between fault-free overhead and fault-induced re-execution.

Optimal positions of verifications to minimize f_{re}

Theorem

The re-execution fraction f_{re} of a pattern PATTERN(W, n, α, D) is minimized when $\alpha = \alpha^*$, where

$$lpha_{k}^{*} = rac{1}{U_{n}} imes rac{1 - g_{k-1}g_{k}}{(1 + g_{k-1})(1 + g_{k})} \quad \textit{ for } 1 \le k \le n,$$

where $g_0 = g_n = 0$ and $U_n = 1 + \sum_{i=1}^{n-1} \frac{1-g_i}{1+g_i}$. In this case, the optimal value of f_{re} is

$$f_{re}^* = \frac{1}{2} \left(1 + \frac{1}{U_n} \right).$$

Optimal positions of verifications to minimize f_{re}

Theorem

The re-execution fraction f_{re} of a pattern PATTERN(W, n, α, D) is minimized when $\alpha = \alpha^*$, where

$$\alpha_k^* = \frac{1}{U_n} \times \frac{1 - g_{k-1}g_k}{(1 + g_{k-1})(1 + g_k)} \quad \text{for } 1 \le k \le n,$$

where $g_0 = g_n = 0$ and $U_n = 1 + \sum_{i=1}^{n-1} \frac{1-g_i}{1+g_i}$. In this case, the optimal value of f_{re} is

$$f_{re}^* = \frac{1}{2} \left(1 + \frac{1}{U_n} \right).$$

- Most technically involved result (lengthy proof of 3 pages!).
- Given a set of partial verifications, the minimal value of f_{re} does not depend upon their ordering within the pattern.

• When all verifications use the same partial detector (g), we get

$$\alpha_{k}^{*} = \begin{cases} \frac{(n-2)(1-g)+2}{1-g} & \text{for } k = 1 \text{ and } k = n \\ \frac{1-g}{(n-2)(1-g)+2} & \text{for } 2 \le k \le n-1 \end{cases}$$

When all verifications use the perfect detector, we get equal-length segments, i.e., α^{*}_k = ¹/_n for all 1 ≤ k ≤ n.

Optimal number and set of detectors

It remains to determine optimal n and **D** of a pattern PATTERN(W, n, α , **D**).

Optimal number and set of detectors

It remains to determine optimal n and **D** of a pattern PATTERN $(W, n, \alpha, \mathbf{D})$.

Equivalent to the following optimization problem:

$$\begin{array}{ll} \text{Minimize} & f_{\text{re}}o_{\text{ff}} = \frac{V^* + C}{2} \left(1 + \frac{1}{1 + \sum_{j=1}^k m_j a^{(j)}} \right) \left(1 + \sum_{j=1}^k m_j b^{(j)} \right) \\ \text{subject to} & m_j \in \mathbb{N}_0 \quad \forall j = 1, 2, \dots, k \end{array}$$

accuracy:
$$a^{(j)} = \frac{1 - g^{(j)}}{1 + g^{(j)}}$$
 relative cost: $b^{(j)} = \frac{V^{(j)}}{V^* + C}$
accuracy-to-cost ratio: $\phi^{(j)} = \frac{a^{(j)}}{b^{(j)}}$

Optimal number and set of detectors

It remains to determine optimal n and \mathbf{D} of a pattern PATTERN $(W, n, \alpha, \mathbf{D})$.

Equivalent to the following optimization problem:

$$\begin{array}{ll} \text{Minimize} & f_{\text{re}} o_{\text{ff}} = \frac{V^* + C}{2} \left(1 + \frac{1}{1 + \sum_{j=1}^k m_j a^{(j)}} \right) \left(1 + \sum_{j=1}^k m_j b^{(j)} \right) \\ \text{subject to} & m_j \in \mathbb{N}_0 \quad \forall j = 1, 2, \dots, k \end{array}$$

accuracy:
$$a^{(j)} = \frac{1 - g^{(j)}}{1 + g^{(j)}}$$
 relative cost: $b^{(j)} = \frac{V^{(j)}}{V^* + C}$
accuracy-to-cost ratio: $\phi^{(j)} = \frac{a^{(j)}}{b^{(j)}}$

NP-hard even when all detectors share the same accuracy-to-cost ratio (reduction from unbounded subset sum), but admits an FPTAS.

Greedy algorithm

Practically, a Greedy algorithm:

• Employs only the detector with highest accuracy-to-cost ratio $\phi^{\max} = \frac{a}{b}$.

Optimal #detectors:
$$m^* = -\frac{1}{a} + \sqrt{\frac{1}{a}\left(\frac{1}{b} - \frac{1}{a}\right)}$$

Optimal overhead: $H^* = \sqrt{\frac{2(C + V^*)}{\mu}} \left(\sqrt{\frac{1}{\phi^{\max}}} + \sqrt{1 - \frac{1}{\phi^{\max}}}\right)$

• Rounds up the optimal rational solution $\lceil m^* \rceil$.

Greedy algorithm

Practically, a Greedy algorithm:

• Employs only the detector with highest accuracy-to-cost ratio $\phi^{\max} = \frac{a}{b}$.

Optimal #detectors:
$$m^* = -\frac{1}{a} + \sqrt{\frac{1}{a}\left(\frac{1}{b} - \frac{1}{a}\right)}$$

Optimal overhead: $H^* = \sqrt{\frac{2(C + V^*)}{\mu}} \left(\sqrt{\frac{1}{\phi^{\max}}} + \sqrt{1 - \frac{1}{\phi^{\max}}}\right)$

• Rounds up the optimal rational solution $\lceil m^* \rceil$.

The Greedy algorithm has an approximation ratio $\sqrt{3/2} < 1.23$.

2 Theoretical Analysis

Simulation configuration

Exascale Platform:

- 10⁵ computing nodes with individual MTBF of 100 years \Rightarrow platform MTBF $\mu \approx$ 8.7 hours.
- Checkpoints size of 300GB with throughput of 0.5GB/s $\Rightarrow C = 600s$.

Simulation configuration

Exascale Platform:

- 10⁵ computing nodes with individual MTBF of 100 years \Rightarrow platform MTBF $\mu \approx$ 8.7 hours.
- Checkpoints size of 300GB with throughput of 0.5GB/s $\Rightarrow C = 600s$.

Realistic detectors (designed at ANL):

	cost	recall	ACR
Time series prediction $D^{(1)}$	$V^{(1)} = 3s$	$r^{(1)} = 0.5$	$\phi^{(1)} = 133$
Spatial interpolation $D^{(2)}$	$V^{(2)} = 30s$	$r^{(2)} = 0.95$	$\phi^{(2)} = 36$
Combination of the two $D^{(3)}$	$V^{(3)} = 6s$	$r^{(3)} = 0.8$	$\phi^{(3)}=133$
Perfect detector D^*	$V^* = 600s$	$r^* = 1$	$\phi^* = 2$

Evaluation results

Using individual detector (Greedy algorithm)

Best partial detectors offer \sim 9% improvement in overhead. Saving \sim 55 minutes for every 10 hours of computation!

Evaluation results

Mixing two detectors: depending on application or dataset, a detector's recall may vary, but its cost stays the same.

		m	overhead H	diff. from opt.
Realistic data again! $r^{(1)} = [0.5, 0.9]$ $r^{(2)} = [0.75, 0.95]$ $r^{(3)} = [0.8, 0.99]$ $\phi^{(1)} = [133, 327]$	Scenario 1: $r^{(1)} =$ Optimal solution Greedy with $D^{(3)}$	$\begin{array}{c} 0.51, \ r^{(3)} \\ (1, \ 15) \\ (0, \ 16) \end{array}$	$= 0.82, \ \phi^{(1)} \approx \\ 29.828\% \\ 29.829\%$	$egin{array}{c c} 137, \ \phi^{(3)} pprox 139 \ 0\% \ 0.001\% \end{array}$
	Scenario 2: $r^{(1)} =$ Optimal solution Greedy with $D^{(3)}$	$\begin{array}{c} 0.58, \ r^{(3)} \\ \hline (1, \ 14) \\ (0, \ 15) \end{array}$	$= 0.9, \ \phi^{(1)} pprox 1 \ 29.659\% \ 29.661\%$	$\begin{array}{c} 63, \ \phi^{(3)} \approx 164 \\ \hline 0\% \\ 0.002\% \end{array}$
$\phi^{(2)} = [24, 36]$ $\phi^{(3)} = [133, 106]$	Scenario 3: $r^{(1)} = 0.64$, $r^{(3)} = 0.97$, $\phi^{(1)} \approx 188$, $\phi^{(3)} \approx 188$			
$\varphi^{*} = [135, 190]$	Optimal solution Groody with $D^{(1)}$	(1, 13)	29.523% 20.524%	0%
	Greedy with $D^{(3)}$	(27, 0) (0, 14)	29.525%	0.002%

The Greedy algorithm works very well in this practical scenario!

Problem Statement

2 Theoretical Analysis

A first comprehensive analysis of computing patterns with partial verifications to detect silent errors

- Theoretically: assess the complexity of the problem and propose efficient approximation schemes.
- Practically: present a Greedy algorithm and demonstrate its good performance with realistic detectors.

A first comprehensive analysis of computing patterns with partial verifications to detect silent errors

- Theoretically: assess the complexity of the problem and propose efficient approximation schemes.
- Practically: present a Greedy algorithm and demonstrate its good performance with realistic detectors.

Future directions

• Partial detectors with false positives/alarms

$$precision(p) = \frac{\#true \ errors}{\#detected \ errors} < 1.$$

- Errors in checkpointing, recovery, and verifications.
- Coexistence of fail-stop and silent errors.

A first comprehensive analysis of computing patterns with partial verifications to detect silent errors

- Theoretically: assess the complexity of the problem and propose efficient approximation schemes.
- Practically: present a Greedy algorithm and demonstrate its good performance with realistic detectors.

Future directions

• Partial detectors with false positives/alarms

$$precision(p) = rac{\#true \ errors}{\#detected \ errors} < 1.$$

- Errors in checkpointing, recovery, and verifications.
- Coexistence of fail-stop and silent errors.

Research report available at https://hal.inria.fr/hal-01164445v1