
1/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Which Verification for Soft Error Detection?

Leonardo Bautista-Gomez1, Anne Benoit2, Aurélien Cavelan2,
Saurabh K. Raina3, Yves Robert2,4 and Hongyang Sun2

1. Argonne National Laboratory, USA
2. ENS Lyon & INRIA, France

3. Jaypee Institute of Information Technology, India
4. University of Tennessee Knoxville, USA

hongyang.sun@ens-lyon.fr

JLESC Workshop
July 1, 2015, Barcelona

hongyang.sun@ens-lyon.fr


2/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Computing at Exascale

Exascale platform:

105 or 106 nodes, each equipped with 102 or 103 cores.

Shorter Mean Time Between Failures (MTBF) µ.

Theorem: µp = µind
p for arbitrary distributions

MTBF (individual node) 1 year 10 years 120 years
MTBF (platform of 106 nodes) 30 sec 5 mn 1 h

Need more reliable components!!
Need more resilient techniques!!!



2/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Computing at Exascale

Exascale platform:

105 or 106 nodes, each equipped with 102 or 103 cores.

Shorter Mean Time Between Failures (MTBF) µ.

Theorem: µp = µind
p for arbitrary distributions

MTBF (individual node) 1 year 10 years 120 years
MTBF (platform of 106 nodes) 30 sec 5 mn 1 h

Need more reliable components!!
Need more resilient techniques!!!



3/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

General-purpose approach

Periodic checkpoint, rollback and recovery:

TimeW W

Error

Corrupt Detect

C C C

Fail-stop errors: instantaneous error detection, e.g., resource crash.

Silent errors (aka silent data corruptions): e.g., soft faults in L1
cache, ALU, double bit flip.

Silent error is detected only when corrupted data is activated,
which could happen long after its occurrence.

Detection latency is problematic ⇒ risk of saving corrupted checkpoint!



3/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

General-purpose approach

Periodic checkpoint, rollback and recovery:

TimeW W

Error Corrupt Detect
C C C

Fail-stop errors: instantaneous error detection, e.g., resource crash.

Silent errors (aka silent data corruptions): e.g., soft faults in L1
cache, ALU, double bit flip.

Silent error is detected only when corrupted data is activated,
which could happen long after its occurrence.

Detection latency is problematic ⇒ risk of saving corrupted checkpoint!



4/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Coping with silent errors
Couple checkpointing with verification:

TimeW W

Error Detect

V ∗ C V ∗ C V ∗ C

Before each checkpoint, run some verification mechanism
(checksum, ECC, coherence tests, TMR, etc).

Silent error is detected by verification ⇒ checkpoint always valid ,

Optimal period (Young/Daly):

Fail-stop (classical) Silent errors
Pattern T = W + C S = W + V + C

Optimal W ∗ =
√

2Cµ W ∗ =
√

(C + V )µ



4/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Coping with silent errors
Couple checkpointing with verification:

TimeW W

Error Detect

V ∗ C V ∗ C V ∗ C

Before each checkpoint, run some verification mechanism
(checksum, ECC, coherence tests, TMR, etc).

Silent error is detected by verification ⇒ checkpoint always valid ,
Optimal period (Young/Daly):

Fail-stop (classical) Silent errors
Pattern T = W + C S = W + V + C

Optimal W ∗ =
√

2Cµ W ∗ =
√

(C + V )µ



5/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

One step further

Perform several verifications before each checkpoint:

Time

Error Detect

V ∗ C V ∗ V ∗ V ∗ C V ∗ V ∗ V ∗ C

Pro: silent error is detected earlier in the pattern ,
Con: additional overhead in error-free executions /

How many intermediate verifications to use and the positions?



5/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

One step further

Perform several verifications before each checkpoint:

Time

Error Detect

V ∗ C V ∗ V ∗ V ∗ C V ∗ V ∗ V ∗ C

Pro: silent error is detected earlier in the pattern ,
Con: additional overhead in error-free executions /

How many intermediate verifications to use and the positions?



6/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Partial verification

Guaranteed/perfect verifications (V ∗) can be very expensive!
Partial verifications (V ) are available for many HPC applications!

Lower accuracy: recall (r) = #detected errors
#total errors < 1 /

Much lower cost, i.e., V < V ∗ ,

Time

Error Detect? Detect!

V ∗ C V1 V2 V ∗ C V1 V2 V ∗ C

Which verification(s) to use? How many? Positions?

The terms “verification” and “detector” are used interchangeably.



6/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Partial verification

Guaranteed/perfect verifications (V ∗) can be very expensive!
Partial verifications (V ) are available for many HPC applications!

Lower accuracy: recall (r) = #detected errors
#total errors < 1 /

Much lower cost, i.e., V < V ∗ ,

Time

Error Detect? Detect!

V ∗ C V1 V2 V ∗ C V1 V2 V ∗ C

Which verification(s) to use? How many? Positions?

The terms “verification” and “detector” are used interchangeably.



6/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Partial verification

Guaranteed/perfect verifications (V ∗) can be very expensive!
Partial verifications (V ) are available for many HPC applications!

Lower accuracy: recall (r) = #detected errors
#total errors < 1 /

Much lower cost, i.e., V < V ∗ ,

Time

Error Detect? Detect!

V ∗ C V1 V2 V ∗ C V1 V2 V ∗ C

Which verification(s) to use? How many? Positions?

The terms “verification” and “detector” are used interchangeably.



6/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Partial verification

Guaranteed/perfect verifications (V ∗) can be very expensive!
Partial verifications (V ) are available for many HPC applications!

Lower accuracy: recall (r) = #detected errors
#total errors < 1 /

Much lower cost, i.e., V < V ∗ ,

Time

Error Detect? Detect!

V ∗ C V1 V2 V ∗ C V1 V2 V ∗ C

Which verification(s) to use? How many? Positions?

The terms “verification” and “detector” are used interchangeably.



7/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Outline

1 Problem Statement

2 Theoretical Analysis

3 Performance Evaluations

4 Conclusion



8/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Model and Objective
Divisible-load application

Checkpoints and verifications can be inserted at arbitrary locations.

Silent errors

Poisson process: arrival rate λ = 1/µ, where µ is platform MTBF.

Strike only computations; checkpointing, recovery, and verifications
are protected.

Resilience parameters

Cost of checkpointing C , cost of recovery R.

k types of partial detectors and a perfect detector(
D(1),D(2), . . . ,D(k),D∗).

D(i): cost V (i) and recall r (i) < 1.
D∗: cost V ∗ and recall r ∗ = 1.

Design an optimal periodic computing pattern that minimizes
execution time (or makespan) of the application.



8/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Model and Objective
Divisible-load application

Checkpoints and verifications can be inserted at arbitrary locations.

Silent errors

Poisson process: arrival rate λ = 1/µ, where µ is platform MTBF.

Strike only computations; checkpointing, recovery, and verifications
are protected.

Resilience parameters

Cost of checkpointing C , cost of recovery R.

k types of partial detectors and a perfect detector(
D(1),D(2), . . . ,D(k),D∗).

D(i): cost V (i) and recall r (i) < 1.
D∗: cost V ∗ and recall r ∗ = 1.

Design an optimal periodic computing pattern that minimizes
execution time (or makespan) of the application.



9/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Pattern
Formally, a pattern Pattern(W , n,α,D) is defined by

W : pattern work length (or period);

n: number of work segments;

α = [α1, α2, . . . , αn]: work fraction of each segment (αi = wi/W
and

∑n
i=1 αi = 1);

D = [D1,D2, . . . ,Dn−1,D∗]: detectors used at the end of each
segment (Di = D(j) for some type j).

Time
W

w1 w2 w3 wn

· · ·
· · ·

D∗ C D1 D2 D3 Dn−1 D∗ C

- Last detector is perfect to avoid saving corrupted checkpoints.
- The same detector type D(j) could be used at the end of several
segments.



9/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Pattern
Formally, a pattern Pattern(W , n,α,D) is defined by

W : pattern work length (or period);

n: number of work segments;

α = [α1, α2, . . . , αn]: work fraction of each segment (αi = wi/W
and

∑n
i=1 αi = 1);

D = [D1,D2, . . . ,Dn−1,D∗]: detectors used at the end of each
segment (Di = D(j) for some type j).

Time
W

w1 w2 w3 wn

· · ·
· · ·

D∗ C D1 D2 D3 Dn−1 D∗ C

- Last detector is perfect to avoid saving corrupted checkpoints.
- The same detector type D(j) could be used at the end of several
segments.



10/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Outline

1 Problem Statement

2 Theoretical Analysis

3 Performance Evaluations

4 Conclusion



11/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Summary of results
In a nutshell:

We prove that finding the optimal pattern is NP-hard.
We design an FPTAS (Fully Polynomial-Time Approximation
Scheme) that gives a makespan within (1 + ε) times the optimal
with running time polynomial in the input size and 1/ε.
We show a simple Greedy algorithm works well in practice.

Algorithm to determine a pattern Pattern(W , n,α,D):
Use FPTAS or Greedy (or even brute force for small instances) to
find (optimal) number n of segments and set D of detectors.
Arrange the n − 1 partial detectors in any order.

Compute W ∗ =
√

off
λfre

and α∗
i = 1

Un
· 1−gi−1gi

(1+gi−1)(1+gi ) for 1 ≤ i ≤ n,

where off =
n−1∑
i=1

Vi + V ∗ + C and fre =
1
2

(
1 +

1
Un

)
with gi = 1 − ri and Un = 1 +

n−1∑
i=1

1 − gi
1 + gi



11/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Summary of results
In a nutshell:

We prove that finding the optimal pattern is NP-hard.
We design an FPTAS (Fully Polynomial-Time Approximation
Scheme) that gives a makespan within (1 + ε) times the optimal
with running time polynomial in the input size and 1/ε.
We show a simple Greedy algorithm works well in practice.

Algorithm to determine a pattern Pattern(W , n,α,D):
Use FPTAS or Greedy (or even brute force for small instances) to
find (optimal) number n of segments and set D of detectors.
Arrange the n − 1 partial detectors in any order.

Compute W ∗ =
√

off
λfre

and α∗
i = 1

Un
· 1−gi−1gi

(1+gi−1)(1+gi ) for 1 ≤ i ≤ n,

where off =
n−1∑
i=1

Vi + V ∗ + C and fre =
1
2

(
1 +

1
Un

)
with gi = 1 − ri and Un = 1 +

n−1∑
i=1

1 − gi
1 + gi



12/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Expected execution time of a pattern

Proposition

The expected time to execute a pattern Pattern(W , n,α,D) is

E(W ) = W +
n−1∑
i=1

Vi + V ∗ + C + λW (R + W αT Aα + dT α) + o(λ)

where A is a symmetric matrix defined by Aij = 1
2

(
1 +

∏j−1
k=i gk

)
for

i ≤ j and d is a vector defined by di =
∑n

j=i

(∏j−1
k=i gk

)
Vi for 1 ≤ i ≤ n.

First-order approximation (as in Young/Daly’s classic formula).

Matrix A is essential to analysis. For instance, when n = 4 we have:

A = 1
2


2 1 + g1 1 + g1g2 1 + g1g2g3

1 + g1 2 1 + g2 1 + g2g3
1 + g1g2 1 + g2 2 1 + g3

1 + g1g2g3 1 + g2g3 1 + g3 2

 .



12/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Expected execution time of a pattern

Proposition

The expected time to execute a pattern Pattern(W , n,α,D) is

E(W ) = W +
n−1∑
i=1

Vi + V ∗ + C + λW (R + W αT Aα + dT α) + o(λ)

where A is a symmetric matrix defined by Aij = 1
2

(
1 +

∏j−1
k=i gk

)
for

i ≤ j and d is a vector defined by di =
∑n

j=i

(∏j−1
k=i gk

)
Vi for 1 ≤ i ≤ n.

First-order approximation (as in Young/Daly’s classic formula).
Matrix A is essential to analysis. For instance, when n = 4 we have:

A = 1
2


2 1 + g1 1 + g1g2 1 + g1g2g3

1 + g1 2 1 + g2 1 + g2g3
1 + g1g2 1 + g2 2 1 + g3

1 + g1g2g3 1 + g2g3 1 + g3 2

 .



13/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Minimizing makespan
For an application with total work Wbase, the makespan is

Wfinal ≈
E(W )

W ×Wbase

= Wbase + H(W )×Wbase,

where H(W ) = E(W )
W − 1 is the execution overhead.

For instance, if Wbase = 100,Wfinal = 120, we have H(W ) = 20%.

Minimizing makespan is equivalent to minimizing overhead!

H(W ) = off
W + λfreW + λ(R + dT α) + o(λ),

fault-free overhead: off =
n−1∑
i=1

Vi + V ∗ + C ,

re-execution fraction: fre = αT Aα.



13/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Minimizing makespan
For an application with total work Wbase, the makespan is

Wfinal ≈
E(W )

W ×Wbase

= Wbase + H(W )×Wbase,

where H(W ) = E(W )
W − 1 is the execution overhead.

For instance, if Wbase = 100,Wfinal = 120, we have H(W ) = 20%.

Minimizing makespan is equivalent to minimizing overhead!

H(W ) = off
W + λfreW + λ(R + dT α) + o(λ),

fault-free overhead: off =
n−1∑
i=1

Vi + V ∗ + C ,

re-execution fraction: fre = αT Aα.



14/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Optimal pattern length to minimize overhead

Proposition

The execution overhead of a pattern Pattern(W , n,α,D) is minimized
when its length is

W ∗ =
√

off
λfre

.

The optimal overhead is

H(W ∗) = 2
√
λofffre + o(

√
λ).

When the platform MTBF µ = 1/λ is large, o(
√
λ) is negligible.

Minimizing overhead is reduced to minimizing the product offfre!
Tradeoff between fault-free overhead and fault-induced
re-execution.



14/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Optimal pattern length to minimize overhead

Proposition

The execution overhead of a pattern Pattern(W , n,α,D) is minimized
when its length is

W ∗ =
√

off
λfre

.

The optimal overhead is

H(W ∗) = 2
√
λofffre + o(

√
λ).

When the platform MTBF µ = 1/λ is large, o(
√
λ) is negligible.

Minimizing overhead is reduced to minimizing the product offfre!
Tradeoff between fault-free overhead and fault-induced
re-execution.



15/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Optimal positions of verifications to minimize fre

Theorem

The re-execution fraction fre of a pattern Pattern(W , n,α,D) is
minimized when α = α∗, where

α∗
k = 1

Un
× 1− gk−1gk

(1 + gk−1)(1 + gk ) for 1 ≤ k ≤ n,

where g0 = gn = 0 and Un = 1 +
∑n−1

i=1
1−gi
1+gi

.
In this case, the optimal value of fre is

f ∗
re = 1

2

(
1 + 1

Un

)
.

Most technically involved result (lengthy proof of 3 pages!).
Given a set of partial verifications, the minimal value of fre does not
depend upon their ordering within the pattern.



15/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Optimal positions of verifications to minimize fre

Theorem

The re-execution fraction fre of a pattern Pattern(W , n,α,D) is
minimized when α = α∗, where

α∗
k = 1

Un
× 1− gk−1gk

(1 + gk−1)(1 + gk ) for 1 ≤ k ≤ n,

where g0 = gn = 0 and Un = 1 +
∑n−1

i=1
1−gi
1+gi

.
In this case, the optimal value of fre is

f ∗
re = 1

2

(
1 + 1

Un

)
.

Most technically involved result (lengthy proof of 3 pages!).
Given a set of partial verifications, the minimal value of fre does not
depend upon their ordering within the pattern.



16/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Two special cases

When all verifications use the same partial detector (g), we get

α∗
k =

{
1

(n−2)(1−g)+2 for k = 1 and k = n
1−g

(n−2)(1−g)+2 for 2 ≤ k ≤ n − 1

Time1 1 − g 1 − g 1

· · ·
· · ·

D∗ C D D D D D∗ C

When all verifications use the perfect detector, we get equal-length
segments, i.e., α∗

k = 1
n for all 1 ≤ k ≤ n.

Time1 1 1 1

· · ·
· · ·

D∗ C D∗ D∗ D∗ D∗ D∗ C



17/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Optimal number and set of detectors

It remains to determine optimal n and D of a pattern
Pattern(W , n,α,D).

Equivalent to the following optimization problem:

Minimize freoff = V ∗ + C
2

(
1 + 1

1 +
∑k

j=1 mj a(j)

)(
1 +

k∑
j=1

mj b(j)

)
subject to mj ∈ N0 ∀j = 1, 2, . . . , k

accuracy: a(j) = 1− g (j)

1 + g (j) relative cost: b(j) = V (j)

V ∗ + C

accuracy-to-cost ratio: φ(j) = a(j)

b(j)

NP-hard even when all detectors share the same accuracy-to-cost ratio
(reduction from unbounded subset sum), but admits an FPTAS.



17/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Optimal number and set of detectors

It remains to determine optimal n and D of a pattern
Pattern(W , n,α,D).

Equivalent to the following optimization problem:

Minimize freoff = V ∗ + C
2

(
1 + 1

1 +
∑k

j=1 mj a(j)

)(
1 +

k∑
j=1

mj b(j)

)
subject to mj ∈ N0 ∀j = 1, 2, . . . , k

accuracy: a(j) = 1− g (j)

1 + g (j) relative cost: b(j) = V (j)

V ∗ + C

accuracy-to-cost ratio: φ(j) = a(j)

b(j)

NP-hard even when all detectors share the same accuracy-to-cost ratio
(reduction from unbounded subset sum), but admits an FPTAS.



17/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Optimal number and set of detectors

It remains to determine optimal n and D of a pattern
Pattern(W , n,α,D).

Equivalent to the following optimization problem:

Minimize freoff = V ∗ + C
2

(
1 + 1

1 +
∑k

j=1 mj a(j)

)(
1 +

k∑
j=1

mj b(j)

)
subject to mj ∈ N0 ∀j = 1, 2, . . . , k

accuracy: a(j) = 1− g (j)

1 + g (j) relative cost: b(j) = V (j)

V ∗ + C

accuracy-to-cost ratio: φ(j) = a(j)

b(j)

NP-hard even when all detectors share the same accuracy-to-cost ratio
(reduction from unbounded subset sum), but admits an FPTAS.



18/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Greedy algorithm

Practically, a Greedy algorithm:

Employs only the detector with highest accuracy-to-cost ratio
φmax = a

b .

Optimal #detectors: m∗ = −1
a +

√
1
a

(
1
b −

1
a

)

Optimal overhead: H∗ =

√
2(C + V ∗)

µ

(√
1

φmax +

√
1− 1

φmax

)

Rounds up the optimal rational solution dm∗e.

The Greedy algorithm has an approximation ratio
√

3/2 < 1.23.



18/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Greedy algorithm

Practically, a Greedy algorithm:

Employs only the detector with highest accuracy-to-cost ratio
φmax = a

b .

Optimal #detectors: m∗ = −1
a +

√
1
a

(
1
b −

1
a

)

Optimal overhead: H∗ =

√
2(C + V ∗)

µ

(√
1

φmax +

√
1− 1

φmax

)

Rounds up the optimal rational solution dm∗e.

The Greedy algorithm has an approximation ratio
√

3/2 < 1.23.



19/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Outline

1 Problem Statement

2 Theoretical Analysis

3 Performance Evaluations

4 Conclusion



20/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Simulation configuration

Exascale Platform:

105 computing nodes with individual MTBF of 100 years
⇒ platform MTBF µ ≈ 8.7 hours.

Checkpoints size of 300GB with throughput of 0.5GB/s
⇒ C = 600s.

Realistic detectors (designed at ANL):

cost recall ACR
Time series prediction D(1) V (1) = 3s r (1) = 0.5 φ(1) = 133
Spatial interpolation D(2) V (2) = 30s r (2) = 0.95 φ(2) = 36
Combination of the two D(3) V (3) = 6s r (3) = 0.8 φ(3) = 133
Perfect detector D∗ V ∗ = 600s r ∗ = 1 φ∗ = 2



20/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Simulation configuration

Exascale Platform:

105 computing nodes with individual MTBF of 100 years
⇒ platform MTBF µ ≈ 8.7 hours.

Checkpoints size of 300GB with throughput of 0.5GB/s
⇒ C = 600s.

Realistic detectors (designed at ANL):

cost recall ACR
Time series prediction D(1) V (1) = 3s r (1) = 0.5 φ(1) = 133
Spatial interpolation D(2) V (2) = 30s r (2) = 0.95 φ(2) = 36
Combination of the two D(3) V (3) = 6s r (3) = 0.8 φ(3) = 133
Perfect detector D∗ V ∗ = 600s r ∗ = 1 φ∗ = 2



21/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Evaluation results

Using individual detector (Greedy algorithm)

Best partial detectors offer ∼9% improvement in overhead.
Saving ∼55 minutes for every 10 hours of computation!



22/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Evaluation results

Mixing two detectors: depending on application or dataset, a detector’s
recall may vary, but its cost stays the same.

Realistic data
again!
r (1) = [0.5, 0.9]
r (2) = [0.75, 0.95]
r (3) = [0.8, 0.99]

φ(1) = [133, 327]
φ(2) = [24, 36]
φ(3) = [133, 196]

m overhead H diff. from opt.

Scenario 1: r (1) = 0.51, r (3) = 0.82, φ(1) ≈ 137, φ(3) ≈ 139
Optimal solution (1, 15) 29.828% 0%
Greedy with D(3) (0, 16) 29.829% 0.001%

Scenario 2: r (1) = 0.58, r (3) = 0.9, φ(1) ≈ 163, φ(3) ≈ 164
Optimal solution (1, 14) 29.659% 0%
Greedy with D(3) (0, 15) 29.661% 0.002%

Scenario 3: r (1) = 0.64, r (3) = 0.97, φ(1) ≈ 188, φ(3) ≈ 188
Optimal solution (1, 13) 29.523% 0%
Greedy with D(1) (27, 0) 29.524% 0.001%
Greedy with D(3) (0, 14) 29.525% 0.002%

The Greedy algorithm works very well in this practical scenario!



23/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Outline

1 Problem Statement

2 Theoretical Analysis

3 Performance Evaluations

4 Conclusion



24/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Conclusion
A first comprehensive analysis of computing patterns with partial
verifications to detect silent errors

Theoretically: assess the complexity of the problem and propose
efficient approximation schemes.

Practically: present a Greedy algorithm and demonstrate its good
performance with realistic detectors.

Future directions

Partial detectors with false positives/alarms

precision(p) = #true errors
#detected errors < 1.

Errors in checkpointing, recovery, and verifications.

Coexistence of fail-stop and silent errors.

Research report available at https://hal.inria.fr/hal-01164445v1

https://hal.inria.fr/hal-01164445v1


24/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Conclusion
A first comprehensive analysis of computing patterns with partial
verifications to detect silent errors

Theoretically: assess the complexity of the problem and propose
efficient approximation schemes.

Practically: present a Greedy algorithm and demonstrate its good
performance with realistic detectors.

Future directions

Partial detectors with false positives/alarms

precision(p) = #true errors
#detected errors < 1.

Errors in checkpointing, recovery, and verifications.

Coexistence of fail-stop and silent errors.

Research report available at https://hal.inria.fr/hal-01164445v1

https://hal.inria.fr/hal-01164445v1


24/24

Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Conclusion
A first comprehensive analysis of computing patterns with partial
verifications to detect silent errors

Theoretically: assess the complexity of the problem and propose
efficient approximation schemes.

Practically: present a Greedy algorithm and demonstrate its good
performance with realistic detectors.

Future directions

Partial detectors with false positives/alarms

precision(p) = #true errors
#detected errors < 1.

Errors in checkpointing, recovery, and verifications.

Coexistence of fail-stop and silent errors.

Research report available at https://hal.inria.fr/hal-01164445v1

https://hal.inria.fr/hal-01164445v1

	Problem Statement
	Theoretical Analysis
	Performance Evaluations
	Conclusion

