Mathematical Exercises on Daly and Extensions

Aurélien Cavelan ${ }^{1}$ Hongyang Sun ${ }^{1}$
${ }^{1}$ ENS Lyon \& INRIA, France.
aurelien.cavelan@ens-lyon.fr hongyang.sun@ens-lyon.fr

June 30, 2016
$3^{\text {rd }}$ JLESC Summer School, Lyon, France.

Exponential Failures

Let $X \sim \operatorname{Exp}(\lambda)$, a random variable for failure inter-arrival time.

$$
\mu=\mathbb{E}(X)=\frac{1}{\lambda}
$$

μ is the MTBF and λ is the error-rate.

- There is an error exactly at time t with probability:

$$
\mathbb{P}(X=t)=\lambda e^{-\lambda t}
$$

- There is at least one error before time t with probability:

$$
\mathbb{P}(X \leq t)=1-e^{-\lambda t} \quad(\mathrm{cdf})
$$

First-Order Approximation and Taylor Series

The Taylor series of a real or complex-valued function $f(x)$, that is infinitely differentiable at a real or complex number a is

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=f(a)+\frac{f^{\prime}(a)}{1!}+\frac{f^{\prime \prime}(a)}{2!}+\ldots
$$

The Taylor series for the exponential function $f(x)=e^{x}$ at $a=0$ is

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\ldots
$$

Therefore, at first-order $e^{\lambda W}=1+\lambda W+o(\lambda)$.
(First-order holds when W is small enough)
$o(\lambda):$ all terms in order of $O\left(\lambda^{x}\right), x>1$ (think of: strictly smaller)
$O(\lambda)$: all terms in order of $O\left(\lambda^{x}\right), x \geq 1$ (think of: smaller or equal)

Methodology

Overhead and Waste

W : work of periodic pattern
$W_{\text {total }}$: total work of application
$\mathbb{E}(W)$: expected execution time of a pattern
$\mathbb{E}\left(W_{\text {total }}\right)$: expected total execution time of application

$$
\begin{aligned}
\mathbb{E}\left(W_{\text {total }}\right) \approx \frac{W_{\text {total }}}{W} \cdot \mathbb{E}(W) & =(1+\text { OvERHEAD }) \cdot W_{\text {total }} \\
& =\frac{1}{1-W_{\text {ASTE }}} \cdot W_{\text {total }}
\end{aligned}
$$

where

$$
\begin{aligned}
\text { OVERHEAD } & =\frac{\mathbb{E}(W)}{W}-1 \\
\text { WASte } & =1-\frac{W}{\mathbb{E}(W)}
\end{aligned}
$$

E.x. $W=100, \mathbb{E}(W)=125 \Rightarrow$ Overhead $=25 \%$, Waste $=20 \%$.

When platform MTBF μ is large, overhead and waste have same order.

Methodology

Steps:

- Compute expected execution time of a pattern $\mathbb{E}(W)$
- Derive Overhead or Waste from $\mathbb{E}(W)$
- Find optimal checkpointing period W (and other parameters)

Parameters

- C: Checkpoint
- R: Recovery
- D: Downtime (for fail-stop errors)
- V: Verification (for silent errors)
- λ^{f} : Fail-stop error rate
- $\lambda^{\text {s }}$: Silent error rate

Fail-stop Errors

- Compute $\mathbb{E}(W)$, assuming C, R are error-free $\mathbb{E}(W)=\left(1-e^{-\lambda^{f} W}\right)\left(\mathbb{E}^{\text {lost }}+D+R+\mathbb{E}(W)\right)+e^{-\lambda^{f} W}(W+C)$ where $\mathbb{E}^{\text {lost }}=\int_{0}^{\infty} t \mathbb{P}(X=t \mid X<W) d t=\frac{\int_{0}^{W} t \lambda^{f} e^{-\lambda^{f} t} d t}{\mathbb{P}(X<W)}$. Integrating by parts: $\mathbb{E}^{\text {lost }}=\frac{1}{\lambda^{f}}-\frac{W}{e^{\lambda^{f} W}-1} \approx \frac{W}{2}$.

Fail-stop Errors

- Compute $\mathbb{E}(W)$, assuming C, R are error-free
$\mathbb{E}(W)=\left(1-e^{-\lambda^{f} W}\right)\left(\mathbb{E}^{\text {lost }}+D+R+\mathbb{E}(W)\right)+e^{-\lambda^{f} W}(W+C)$
where $\mathbb{E}^{\text {lost }}=\int_{0}^{\infty} t \mathbb{P}(X=t \mid X<W) d t=\frac{\int_{0}^{W} t \lambda^{f} e^{-\lambda^{f}} t d t}{\mathbb{P}(X<W)}$.
Integrating by parts: $\mathbb{E}^{\text {lost }}=\frac{1}{\lambda^{f}}-\frac{W}{e^{\lambda^{f} W}-1} \approx \frac{W}{2}$.
$\Rightarrow \mathbb{E}(W)=W+C+\lambda^{f} W\left(\frac{W}{2}+D+R\right)+O\left(\left(\lambda^{f}\right)^{2} W^{3}\right)$
- Derive Overhead $\mathbb{H}(W)$

$$
\mathbb{H}(W)=\frac{\mathbb{E}(W)}{W}-1=\frac{C}{W}+\frac{\lambda^{f} W}{2}+\lambda^{f}(D+R)+O\left(\left(\lambda^{f}\right)^{2} W^{2}\right)
$$

- Optimization $W^{*}=\sqrt{\frac{2 C}{\lambda^{f}}}, \mathbb{H}^{*}=\sqrt{2 \lambda^{f} C}+o\left(\sqrt{\lambda^{f}}\right)$

Fail-stop Errors

- Compute $\mathbb{E}(W)$, assuming C, R are error-free

$$
\mathbb{E}(W)=\left(1-e^{-\lambda^{f} W}\right)\left(\mathbb{E}^{\text {lost }}+D+R+\mathbb{E}(W)\right)+e^{-\lambda^{f} W}(W+C)
$$

where $\mathbb{E}^{\text {lost }}=\int_{0}^{\infty} t \mathbb{P}(X=t \mid X<W) d t=\frac{\int_{0}^{W} t \lambda^{f} e^{-\lambda^{f}} t d t}{\mathbb{P}(X<W)}$. Integrating by parts: $\mathbb{E}^{\text {lost }}=\frac{1}{\lambda^{f}}-\frac{W}{e^{\lambda^{f} W}-1} \approx \frac{W}{2}$.

$$
\Rightarrow \mathbb{E}(W)=W+C+\lambda^{f} W\left(\frac{W}{2}+D+R\right)+O\left(\left(\lambda^{f}\right)^{2} W^{3}\right)
$$

- Derive Overhead $\mathbb{H}(W)$

$$
\mathbb{H}(W)=\frac{\mathbb{E}(W)}{W}-1=\frac{C}{W}+\frac{\lambda^{f} W}{2}+\lambda^{f}(D+R)+O\left(\left(\lambda^{f}\right)^{2} W^{2}\right)
$$

- Optimization $W^{*}=\sqrt{\frac{2 C}{\lambda^{f}}}, \mathbb{H}^{*}=\sqrt{2 \lambda^{f} C}+o\left(\sqrt{\lambda^{f}}\right)$
- Young's first-order approximation; Daly considered second order
- First-order stays the same when C, R are prone to errors

Silent Errors

Similar to fail-stop except:

- $\lambda^{f} \rightarrow \lambda^{s}$
$-\mathbb{E}^{\text {lost }}=W$
- $D=0$
- V : verification

Silent Errors

Similar to fail-stop except:

- $\lambda^{f} \rightarrow \lambda^{s}$
$-\mathbb{E}^{\text {lost }}=W$
- $D=0$
- V : verification
- Compute $\mathbb{E}(W)$, assuming C, R, V are error-free

$$
\begin{aligned}
\mathbb{E}(W) & =W+V+\left(1-e^{-\lambda^{s} W}\right)(R+\mathbb{E}(W))+e^{-\lambda^{s} W} C \\
\Rightarrow & \mathbb{E}(W)=W+V+C+\lambda^{s} W(W+V+R)+O\left(\left(\lambda^{s}\right)^{2} W^{3}\right)
\end{aligned}
$$

- Derive Overhead $\mathbb{H}(W)$

$$
\mathbb{H}(W)=\frac{\mathbb{E}(W)}{W}-1=\frac{V+C}{W}+\lambda^{s} W+\lambda^{s}(V+R)+O\left(\left(\lambda^{s}\right)^{2} W^{2}\right)
$$

- Optimization $W^{*}=\sqrt{\frac{V+C}{\lambda^{s}}}, \mathbb{H}^{*}=2 \sqrt{\lambda^{s}(V+C)}+o\left(\sqrt{\lambda^{s}}\right)$

Fail-stop + Silent

- Compute $\mathbb{E}(W)$, assuming C, R, V are error-free

$$
\begin{aligned}
\mathbb{E}(W)= & \left(1-e^{-\lambda^{f} W}\right)\left(\mathbb{E}^{\text {lost }}+D+R+\mathbb{E}(W)\right) \\
+e^{-\lambda^{f} W}(W+V+ & \left(1-e^{-\lambda^{s} W}\right)(R+\mathbb{E}(W)) \\
& \left.+e^{-\lambda^{s} W} C\right)
\end{aligned}
$$

where $\mathbb{E}^{\text {lost }}=\frac{1}{\lambda^{f}}-\frac{W}{e^{\lambda^{f} W}-1} \approx \frac{W}{2}$.

Fail-stop + Silent

- Compute $\mathbb{E}(W)$, assuming C, R, V are error-free

$$
\begin{aligned}
\mathbb{E}(W)= & \left(1-e^{-\lambda^{f} W}\right)\left(\mathbb{E}^{\text {lost }}+D+R+\mathbb{E}(W)\right) \\
+e^{-\lambda^{f} W}(W+V+ & \left(1-e^{-\lambda^{s} W}\right)(R+\mathbb{E}(W)) \\
& \left.+e^{-\lambda^{s} W} C\right)
\end{aligned}
$$

where $\mathbb{E}^{\text {lost }}=\frac{1}{\lambda^{f}}-\frac{W}{e^{\lambda^{f} W}-1} \approx \frac{W}{2}$.

$$
\begin{aligned}
\Rightarrow \mathbb{E}(W)=W+V+C & +\lambda^{f} W\left(\frac{W}{2}+D+R\right) \\
& +\lambda^{s} W(W+V+R)+O\left(\lambda^{2} W^{3}\right)
\end{aligned}
$$

- Derive Overhead $\mathbb{H}(W)$

$$
\mathbb{H}(W)=\frac{\mathbb{E}(W)}{W}-1=\frac{V+C}{W}+\left(\frac{\lambda^{f}}{2}+\lambda^{s}\right) W+O(\lambda)
$$

- Optimal $W^{*}=\sqrt{\frac{V+C}{\frac{\lambda^{f}}{2}+\lambda^{s}}}, \mathbb{H}^{*}=2 \sqrt{\left(\frac{\lambda^{f}}{2}+\lambda^{s}\right)(V+C)}+o(\sqrt{\lambda})$

Summary

First-order approximation:

	Fail-stop errors	Silent errors	Both errors
Pattern	$W+C$	$W+V+C$	$W+V+C$
Optimal W^{*}	$\sqrt{\frac{C}{\lambda^{f}}}$	$\sqrt{\frac{V+C}{\lambda^{s}}}$	$\sqrt{\frac{V+C}{\lambda^{s}+\frac{\lambda^{f}}{2}}}$
Optimal \mathbb{H}^{*}	$2 \sqrt{\frac{\lambda^{f}}{2} C}$	$2 \sqrt{\lambda^{s}(V+C)}$	$2 \sqrt{\left(\lambda^{s}+\frac{\lambda^{f}}{2}\right)(V+C)}$

Summary

First-order approximation:

	Fail-stop errors	Silent errors	Both errors
Pattern	$W+C$	$W+V+C$	$W+V+C$
Optimal W^{*}	$\sqrt{\frac{C}{\lambda^{f}}}$	$\sqrt{\frac{V+C}{\lambda^{s}}}$	$\sqrt{\frac{V+C}{\lambda^{s}+\frac{\lambda^{f}}{2}}}$
Optimal \mathbb{H}^{*}	$2 \sqrt{\frac{\lambda^{f}}{2} C}$	$2 \sqrt{\lambda^{s}(V+C)}$	$2 \sqrt{\left(\lambda^{s}+\frac{\lambda^{f}}{2}\right)(V+C)}$

Extensions to hierarchical checkpointing

- Disk checkpoint for fail-stop, in-memory checkpoint for silent [Benoit et al., IPDPS'16]
- Buddy/double checkpointing algorithm for fail-stop [Dongarra, Herault, Robert, IPDPS'13]

Observations

Observation 1

For a set \mathcal{X} of independent error sources:

$$
\mathbb{E}(W)=\underbrace{W+o_{f f}}_{\text {error-free time }}+\sum_{x \in \mathcal{X}} \underbrace{\lambda^{\times} W}_{\begin{array}{c}
\text { expected } \\
\text { \# errors } \\
\text { of type } x
\end{array}} \cdot \underbrace{\left(f_{\text {re }}^{\times} \cdot W+\text { Constant }\right)}_{\text {expected re-execution time }}+O(\lambda)
$$

- Off: total overhead in a fault-free execution, i.e., \sum resilience ops.
- f_{re}^{\times}: fraction of re-executed work in case of an type- x error.

Observations

Observation 1

For a set \mathcal{X} of independent error sources:

$$
\mathbb{E}(W)=\underbrace{W+o_{\mathrm{ff}}}_{\text {error-free time }}+\sum_{x \in \mathcal{X}} \underbrace{\lambda^{\times} W}_{\begin{array}{c}
\text { expected } \\
\text { \# errors } \\
\text { of type } x
\end{array}} \cdot \underbrace{\left(f_{\mathrm{re}}^{x} \cdot W+\text { Constant }\right)}_{\text {expected re-execution time }}+O(\lambda)
$$

- $o_{f f}$: total overhead in a fault-free execution, i.e., \sum resilience ops.
- f_{re}^{x} : fraction of re-executed work in case of an type- x error.

Observation 2
The optimal pattern satisfies:

$$
\begin{aligned}
W^{*} & =\sqrt{\frac{O_{\mathrm{ff}}}{\sum_{x \in \mathcal{X}} \lambda^{x} f_{\mathrm{re}}^{x}}} \\
\mathbb{H}^{*} & =2 \sqrt{o_{\mathrm{ff}} \sum_{x \in \mathcal{X}}\left(\lambda^{x} f_{\mathrm{re}}^{x}\right)}+O(\lambda)
\end{aligned}
$$

Observations

Example: Fail-Stop + Silent

$$
\begin{aligned}
\mathbb{E}(W) & =W+\underbrace{V+C}_{o_{\mathrm{ff}}}+\lambda^{f} W(\underbrace{\frac{1}{2}}_{f_{\mathrm{f}}^{f}} W+D+R)+\lambda^{s} W(\underbrace{1}_{f_{\mathrm{re}}^{s}} W+V+R)+O(\lambda) \\
W^{*} & =\sqrt{\frac{O_{\mathrm{ff}}}{\sum_{x \in \mathcal{X}} \lambda^{x} f_{\mathrm{re}}^{\times}}}=\sqrt{\frac{V+C}{\lambda^{s}+\frac{\lambda^{f}}{2}}} \\
\mathbb{H}^{*} & =2 \sqrt{O_{\mathrm{off}} \sum_{x \in \mathcal{X}}\left(\lambda^{x} f_{\mathrm{re}}^{\times}\right)}+O(\lambda)=2 \sqrt{\left(\lambda^{s}+\frac{\lambda^{f}}{2}\right)(V+C)}+O(\lambda)
\end{aligned}
$$

Observations

Exercise: Silent Error with Intermediate Verifications

Observations

Exercise: Silent Error with Intermediate Verifications

$$
\begin{aligned}
\mathbb{E}(W) & =W+\underbrace{n V+C}_{o_{\text {ff }}}+\lambda^{s} W(\underbrace{\frac{1}{2}\left(1+\frac{1}{n}\right)}_{f_{\mathrm{fe}}^{s}} W+\frac{n+1}{2} V+R)+O(\lambda) \\
W^{*} & =\sqrt{\frac{O_{\mathrm{ff}}}{\lambda^{s} f_{\mathrm{re}}^{s}}}=\sqrt{\frac{n V+C}{\frac{1}{2}\left(1+\frac{1}{n}\right) \lambda^{s}}} \\
\mathbb{H}^{*} & =2 \sqrt{O_{\mathrm{ff}} \lambda^{s} f_{\mathrm{re}}^{s}}+O(\lambda)=2 \sqrt{\lambda^{s} \frac{1}{2}\left(1+\frac{1}{n}\right)(n V+C)}+O(\lambda) \\
n^{*} & =\sqrt{\frac{C}{V}}
\end{aligned}
$$

Observations

Exercise: Silent Error with Intermediate Verifications

$$
\begin{aligned}
\mathbb{E}(W) & =W+\underbrace{n V+C}_{o_{\text {If }}}+\lambda^{s} W(\underbrace{\frac{1}{2}\left(1+\frac{1}{n}\right)}_{f_{f e s}^{s}} W+\frac{n+1}{2} V+R)+O(\lambda) \\
W^{*} & =\sqrt{\frac{O_{\mathrm{ff}}}{\lambda^{s} f_{\mathrm{re}}^{s}}}=\sqrt{\frac{n V+C}{\frac{1}{2}\left(1+\frac{1}{n}\right) \lambda^{s}}} \\
\mathbb{H}^{*} & =2 \sqrt{o_{\mathrm{ff}} \lambda^{s} f_{\mathrm{re}}^{s}}+O(\lambda)=2 \sqrt{\lambda^{s} \frac{1}{2}\left(1+\frac{1}{n}\right)(n V+C)}+O(\lambda) \\
n^{*} & =\sqrt{\frac{C}{V}}
\end{aligned}
$$

Extensions

- Using partial/inaccurate verifications to detect silent errors [Bautista-Gomez, HiPC'15]
- (Almost) optimal multi-level checkpointing for fail-stop errors [Presented at JLESC on Tuesday]

Dynamic Programming for Chains

How many intermediate checkpoints? What positions?

1. Find reusable sub-problem (and its optimal solution)
2. Find initialization case

$$
\text { Let } W_{c_{1}, c_{2}}=\sum_{i=c_{1}}^{c_{2}} W_{i}
$$

Objective

Compute optimal $\mathbb{E}\left(c_{2}\right)$

Dynamic Programming for Chains

$$
\mathbb{E}\left(c_{2}\right)=\min _{0 \leq c_{1}<c_{2}}\left\{\mathbb{E}\left(c_{1}\right)+\mathbb{E}\left(c_{1}, c_{2}\right)+C\right\}
$$

Initialization: $\mathbb{E}(0)=0$

Dynamic Programming for Chains

$$
\mathbb{E}\left(c_{2}\right)=\min _{0 \leq c_{1}<c_{2}}\left\{\mathbb{E}\left(c_{1}\right)+\mathbb{E}\left(c_{1}, c_{2}\right)+C\right\}
$$

Initialization: $\mathbb{E}(0)=0$

$$
\begin{aligned}
\mathbb{E}\left(c_{1}, c_{2}\right) & =\left(1-e^{-\lambda W_{c_{1}, c_{2}}}\right)\left(\mathbb{E}_{c_{1}, c_{2}}^{\text {lost }}+R+\mathbb{E}\left(c_{1}\right)+\mathbb{E}\left(c_{1}, c_{2}\right)\right) \\
& +e^{-\lambda W_{c_{1}, c_{2}} W_{c_{1}, c_{2}}}
\end{aligned}
$$

