
1/14

Mathematical Exercises on Daly and Extensions

Aurélien Cavelan1 Hongyang Sun1

1ENS Lyon & INRIA, France.

aurelien.cavelan@ens-lyon.fr

hongyang.sun@ens-lyon.fr

June 30, 2016
3rd JLESC Summer School, Lyon, France.

aurelien.cavelan@ens-lyon.fr
hongyang.sun@ens-lyon.fr

2/14

Exponential Failures

Let X ∼ Exp(λ), a random variable for failure inter-arrival time.

µ = E(X) = 1
λ

µ is the MTBF and λ is the error-rate.

I There is an error exactly at time t with probability:

P(X = t) = λe−λt (pdf)

I There is at least one error before time t with probability:

P(X ≤ t) = 1− e−λt (cdf)

3/14

First-Order Approximation and Taylor Series

The Taylor series of a real or complex-valued function f (x),
that is infinitely differentiable at a real or complex number a is

f (x) =
∞∑

n=0

f (n)(a)
n! (x − a)n = f (a) + f ′(a)

1! + f ′′(a)
2! + . . .

The Taylor series for the exponential function f (x) = ex at a = 0 is

ex =
∞∑

n=0

xn

n! = 1 + x + x2

2 + . . .

Therefore, at first-order eλW = 1 + λW + o(λ).
(First-order holds when W is small enough)
o(λ): all terms in order of O(λx), x > 1 (think of: strictly smaller)
O(λ): all terms in order of O(λx), x ≥ 1 (think of: smaller or equal)

4/14

Methodology

Overhead and Waste
W : work of periodic pattern
Wtotal: total work of application
E(W): expected execution time of a pattern
E(Wtotal): expected total execution time of application

E(Wtotal) ≈ Wtotal

W · E(W) = (1 + Overhead) · Wtotal

= 1
1 − Waste · Wtotal

where
Overhead = E(W)

W − 1

Waste = 1 − W
E(W)

E.x. W = 100,E(W) = 125⇒ Overhead = 25%,Waste = 20%.
When platform MTBF µ is large, overhead and waste have same order.

5/14

Methodology

Steps:
I Compute expected execution time of a pattern E(W)
I Derive Overhead or Waste from E(W)
I Find optimal checkpointing period W (and other parameters)

Parameters
I C : Checkpoint
I R: Recovery
I D: Downtime (for fail-stop errors)
I V : Verification (for silent errors)
I λf : Fail-stop error rate
I λs : Silent error rate

6/14

Fail-stop Errors

I Compute E(W), assuming C , R are error-free

E(W) = (1−e−λf W)(Elost +D +R +E(W))+e−λf W (W +C)

where Elost =
∫∞

0 tP(X = t|X<W)dt =
∫ W

0 tλf e−λf tdt
P(X<W) .

Integrating by parts: Elost = 1
λf − W

eλf W−1
≈ W

2 .

⇒ E(W) = W + C + λf W (W
2 + D + R) + O((λf)2W 3)

I Derive Overhead H(W)

H(W) = E(W)
W −1 = C

W + λf W
2 +λf (D +R) +O((λf)2W 2)

I Optimization W ∗ =
√

2C
λf , H∗ =

√
2λf C + o(

√
λf)

- Young’s first-order approximation; Daly considered second order
- First-order stays the same when C ,R are prone to errors

6/14

Fail-stop Errors

I Compute E(W), assuming C , R are error-free

E(W) = (1−e−λf W)(Elost +D +R +E(W))+e−λf W (W +C)

where Elost =
∫∞

0 tP(X = t|X<W)dt =
∫ W

0 tλf e−λf tdt
P(X<W) .

Integrating by parts: Elost = 1
λf − W

eλf W−1
≈ W

2 .
⇒ E(W) = W + C + λf W (W

2 + D + R) + O((λf)2W 3)
I Derive Overhead H(W)

H(W) = E(W)
W −1 = C

W + λf W
2 +λf (D +R) +O((λf)2W 2)

I Optimization W ∗ =
√

2C
λf , H∗ =

√
2λf C + o(

√
λf)

- Young’s first-order approximation; Daly considered second order
- First-order stays the same when C ,R are prone to errors

6/14

Fail-stop Errors

I Compute E(W), assuming C , R are error-free

E(W) = (1−e−λf W)(Elost +D +R +E(W))+e−λf W (W +C)

where Elost =
∫∞

0 tP(X = t|X<W)dt =
∫ W

0 tλf e−λf tdt
P(X<W) .

Integrating by parts: Elost = 1
λf − W

eλf W−1
≈ W

2 .
⇒ E(W) = W + C + λf W (W

2 + D + R) + O((λf)2W 3)
I Derive Overhead H(W)

H(W) = E(W)
W −1 = C

W + λf W
2 +λf (D +R) +O((λf)2W 2)

I Optimization W ∗ =
√

2C
λf , H∗ =

√
2λf C + o(

√
λf)

- Young’s first-order approximation; Daly considered second order
- First-order stays the same when C ,R are prone to errors

7/14

Silent Errors

Similar to fail-stop except:
- λf → λs

- Elost = W
- D = 0
- V : verification

I Compute E(W), assuming C ,R,V are error-free

E(W) = W + V + (1− e−λsW)(R + E(W)) + e−λsW C

⇒ E(W) = W + V + C + λsW (W + V + R) + O((λs)2W 3)
I Derive Overhead H(W)

H(W) = E(W)
W −1 = V + C

W +λsW +λs(V +R)+O((λs)2W 2)

I Optimization W ∗ =
√

V +C
λs , H∗ = 2

√
λs(V + C) + o(

√
λs)

7/14

Silent Errors

Similar to fail-stop except:
- λf → λs

- Elost = W
- D = 0
- V : verification

I Compute E(W), assuming C ,R,V are error-free

E(W) = W + V + (1− e−λsW)(R + E(W)) + e−λsW C

⇒ E(W) = W + V + C + λsW (W + V + R) + O((λs)2W 3)
I Derive Overhead H(W)

H(W) = E(W)
W −1 = V + C

W +λsW +λs(V +R)+O((λs)2W 2)

I Optimization W ∗ =
√

V +C
λs , H∗ = 2

√
λs(V + C) + o(

√
λs)

8/14

Fail-stop + Silent

I Compute E(W), assuming C ,R,V are error-free

E(W) = (1− e−λf W)(Elost + D + R + E(W))

+ e−λf W (W + V + (1− e−λsW)(R + E(W))
+ e−λsW C)

where Elost = 1
λf − W

eλf W−1
≈ W

2 .

⇒ E(W) = W + V + C + λf W (W
2 + D + R)

+ λsW (W + V + R) + O(λ2W 3)
I Derive Overhead H(W)

H(W) = E(W)
W − 1 = V + C

W + (λ
f

2 + λs)W + O(λ)

I Optimal W ∗ =
√

V +C
λf
2 +λs

, H∗ = 2
√

(λf
2 + λs)(V + C) + o(

√
λ)

8/14

Fail-stop + Silent

I Compute E(W), assuming C ,R,V are error-free

E(W) = (1− e−λf W)(Elost + D + R + E(W))

+ e−λf W (W + V + (1− e−λsW)(R + E(W))
+ e−λsW C)

where Elost = 1
λf − W

eλf W−1
≈ W

2 .

⇒ E(W) = W + V + C + λf W (W
2 + D + R)

+ λsW (W + V + R) + O(λ2W 3)
I Derive Overhead H(W)

H(W) = E(W)
W − 1 = V + C

W + (λ
f

2 + λs)W + O(λ)

I Optimal W ∗ =
√

V +C
λf
2 +λs

, H∗ = 2
√

(λf
2 + λs)(V + C) + o(

√
λ)

9/14

Summary

First-order approximation:

Fail-stop errors Silent errors Both errors
Pattern W + C W + V + C W + V + C

Optimal W ∗
√

C
λf
2

√
V +C
λs

√
V +C
λs +λf

2

Optimal H∗ 2
√

λf
2 C 2

√
λs(V + C) 2

√(
λs + λf

2

)
(V + C)

Extensions to hierarchical checkpointing
I Disk checkpoint for fail-stop, in-memory checkpoint for silent

[Benoit et al., IPDPS’16]
I Buddy/double checkpointing algorithm for fail-stop

[Dongarra, Herault, Robert, IPDPS’13]

9/14

Summary

First-order approximation:

Fail-stop errors Silent errors Both errors
Pattern W + C W + V + C W + V + C

Optimal W ∗
√

C
λf
2

√
V +C
λs

√
V +C
λs +λf

2

Optimal H∗ 2
√

λf
2 C 2

√
λs(V + C) 2

√(
λs + λf

2

)
(V + C)

Extensions to hierarchical checkpointing
I Disk checkpoint for fail-stop, in-memory checkpoint for silent

[Benoit et al., IPDPS’16]
I Buddy/double checkpointing algorithm for fail-stop

[Dongarra, Herault, Robert, IPDPS’13]

10/14

Observations

Observation 1
For a set X of independent error sources:

E(W) = W + off︸ ︷︷ ︸
error-free time

+
∑
x∈X

λx W︸ ︷︷ ︸
expected
errors
of type x

·
(

f x
re ·W + Constant

)
︸ ︷︷ ︸

expected re-execution time

+O(λ)

I off: total overhead in a fault-free execution, i.e.,
∑

resilience ops.
I f x

re : fraction of re-executed work in case of an type-x error.

Observation 2
The optimal pattern satisfies:

W ∗ =
√ off∑

x∈X λ
x f x

re

H∗ = 2
√

off
∑
x∈X

(λx f x
re) + O(λ)

10/14

Observations

Observation 1
For a set X of independent error sources:

E(W) = W + off︸ ︷︷ ︸
error-free time

+
∑
x∈X

λx W︸ ︷︷ ︸
expected
errors
of type x

·
(

f x
re ·W + Constant

)
︸ ︷︷ ︸

expected re-execution time

+O(λ)

I off: total overhead in a fault-free execution, i.e.,
∑

resilience ops.
I f x

re : fraction of re-executed work in case of an type-x error.
Observation 2
The optimal pattern satisfies:

W ∗ =
√ off∑

x∈X λ
x f x

re

H∗ = 2
√

off
∑
x∈X

(λx f x
re) + O(λ)

11/14

Observations

Example: Fail-Stop + Silent

E(W) = W +V + C︸ ︷︷ ︸
off

+λf W (1
2︸︷︷︸
f f
re

W +D+R)+λsW (1︸︷︷︸
f s
re

W +V +R)+O(λ)

W ∗ =
√ off∑

x∈X λ
x f x

re
=
√

V + C
λs + λf

2

H∗ = 2
√

off
∑
x∈X

(λx f x
re) + O(λ) = 2

√(
λs + λf

2

)
(V + C) + O(λ)

12/14

Observations

Exercise: Silent Error with Intermediate Verifications

E(W) = W + nV + C︸ ︷︷ ︸
off

+λsW
(1

2
(
1 + 1

n
)

︸ ︷︷ ︸
f s
re

W + n + 1
2 V + R

)
+ O(λ)

W ∗ =
√ off
λs f s

re
=
√

nV + C
1
2
(
1 + 1

n
)
λs

H∗ = 2
√

offλs f s
re + O(λ) = 2

√
λs 1

2

(
1 + 1

n

)
(nV + C) + O(λ)

n∗ =
√

C
V

Extensions
I Using partial/inaccurate verifications to detect silent errors

[Bautista-Gomez, HiPC’15]
I (Almost) optimal multi-level checkpointing for fail-stop errors

[Presented at JLESC on Tuesday]

12/14

Observations

Exercise: Silent Error with Intermediate Verifications

E(W) = W + nV + C︸ ︷︷ ︸
off

+λsW
(1

2
(
1 + 1

n
)

︸ ︷︷ ︸
f s
re

W + n + 1
2 V + R

)
+ O(λ)

W ∗ =
√ off
λs f s

re
=
√

nV + C
1
2
(
1 + 1

n
)
λs

H∗ = 2
√

offλs f s
re + O(λ) = 2

√
λs 1

2

(
1 + 1

n

)
(nV + C) + O(λ)

n∗ =
√

C
V

Extensions
I Using partial/inaccurate verifications to detect silent errors

[Bautista-Gomez, HiPC’15]
I (Almost) optimal multi-level checkpointing for fail-stop errors

[Presented at JLESC on Tuesday]

12/14

Observations

Exercise: Silent Error with Intermediate Verifications

E(W) = W + nV + C︸ ︷︷ ︸
off

+λsW
(1

2
(
1 + 1

n
)

︸ ︷︷ ︸
f s
re

W + n + 1
2 V + R

)
+ O(λ)

W ∗ =
√ off
λs f s

re
=
√

nV + C
1
2
(
1 + 1

n
)
λs

H∗ = 2
√

offλs f s
re + O(λ) = 2

√
λs 1

2

(
1 + 1

n

)
(nV + C) + O(λ)

n∗ =
√

C
V

Extensions
I Using partial/inaccurate verifications to detect silent errors

[Bautista-Gomez, HiPC’15]
I (Almost) optimal multi-level checkpointing for fail-stop errors

[Presented at JLESC on Tuesday]

13/14

Dynamic Programming for Chains

E(c2)

c0 c1 c2

How many intermediate checkpoints? What positions?

1. Find reusable sub-problem (and its optimal solution)
2. Find initialization case

Let Wc1,c2 =
∑c2

i=c1
Wi

Objective

Compute optimal E(c2)

14/14

Dynamic Programming for Chains

E(c2)

E(c1, c2)E(c1)

c0 c1 c2

E(c2) = min
0≤c1<c2

{E(c1) + E(c1, c2) + C}

Initialization: E(0) = 0

E(c1, c2) = (1− e−λWc1,c2)
(
Elost

c1,c2 + R + E(c1) + E(c1, c2)
)

+ e−λWc1,c2 Wc1,c2

14/14

Dynamic Programming for Chains

E(c2)

E(c1, c2)E(c1)

c0 c1 c2

E(c2) = min
0≤c1<c2

{E(c1) + E(c1, c2) + C}

Initialization: E(0) = 0

E(c1, c2) = (1− e−λWc1,c2)
(
Elost

c1,c2 + R + E(c1) + E(c1, c2)
)

+ e−λWc1,c2 Wc1,c2

	Recap
	Young
	Task Graphs

