Towards Optimal Multi-Level Checkpointing

Anne Benoit¹, Aurélien Cavelan¹, Valentin Le Fèvre¹, Yves Robert^{1,2}, Hongyang Sun¹

1. ENS Lyon & INRIA, France 2. University of Tennessee Knoxville, USA

hongyang.sun@ens-lyon.fr

JLESC Workshop, Lyon June 28, 2016

Single-Level Checkpointing

Minimize expected execution overhead $H(W) = \frac{\mathbb{E}(W)}{W} - 1$

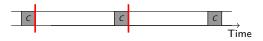


Figure: periodic computing pattern

What is the optimal checkpointing interval?

Single-Level Checkpointing

Minimize expected execution overhead $H(W) = \frac{\mathbb{E}(W)}{W} - 1$

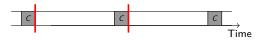


Figure: periodic computing pattern

What is the optimal checkpointing interval?

• Exact solution:

$$H(W) = rac{e^{\lambda R}(rac{1}{\lambda} + D)e^{\lambda(W+C)}}{W} - 1,$$
 use Lambert function

• First-order approximation [Young/Daly]:

$$W_{\text{opt}} = \sqrt{\frac{2C}{\lambda}}$$

 $H_{\text{opt}} = \sqrt{2\lambda C} + \Theta(\lambda)$

Single-Level Checkpointing

Minimize expected execution overhead $H(W) = \frac{\mathbb{E}(W)}{W} - 1$

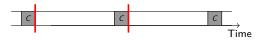


Figure: periodic computing pattern

What is the optimal checkpointing interval?

• Exact solution:

$$H(W) = rac{e^{\lambda R}(rac{1}{\lambda} + D)e^{\lambda(W+C)}}{W} - 1,$$
 use Lambert function

• First-order approximation [Young/Daly]:

$$W_{\text{opt}} = \sqrt{\frac{2C}{\lambda}}$$
$$H_{\text{opt}} = \sqrt{2\lambda C} + \Theta(\lambda)$$

Scalability problem for large-scale platforms

Multi-Level Checkpointing

E.g., Scalable Checkpoint/Restart (SCR) library, Fault Tolerance Interface (FTI)

 \bullet Local memory/SSD, Partner copy/XOR, RS-coding, PFS

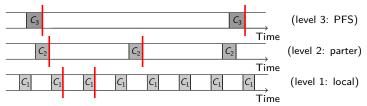
Multi-Level Checkpointing

E.g., Scalable Checkpoint/Restart (SCR) library, Fault Tolerance Interface (FTI)

• Local memory/SSD, Partner copy/XOR, RS-coding, PFS

Two approaches:

• Independent checkpointing:



• Synchronized checkpointing:

Easy because pattern repeats (memoryless property)



Figure: with *N* level-1 checkpoints

• Exact solution: very complicated (which error type occurs first?), equal-length chunks, see [1]

^[1] S. Di, Y. Robert, F. Vivien, F. Cappello. Toward an optimal online checkpoint solution under a two-level HPC checkpoint model, *IEEE TPDS*, 2016.

Easy because pattern repeats (memoryless property)

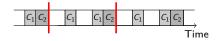


Figure: with *N* level-1 checkpoints

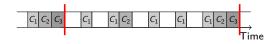
- Exact solution: very complicated (which error type occurs first?), equal-length chunks, see [1]
- First-order approximation:

$$H_{\mathrm{opt}} = \sqrt{2\lambda_1C_1} + \sqrt{2\lambda_2C_2} + \Theta(\lambda)$$

(obtained for some optimal pattern)

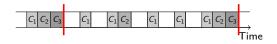
^[1] S. Di, Y. Robert, F. Vivien, F. Cappello. Toward an optimal online checkpoint solution under a two-level HPC checkpoint model, *IEEE TPDS*, 2016.

Difficult because sub-patterns may differ



• Exact solution: unknown

Difficult because sub-patterns may differ



- Exact solution: unknown
- First-order approximation:

$$H_{ ext{opt}} = \sqrt{2\lambda_1C_1} + \sqrt{2\lambda_2C_2} + \sqrt{2\lambda_3C_3} + \Theta(\lambda)$$

(obtained for some optimal pattern)

Difficult because sub-patterns may differ



- Exact solution: unknown
- First-order approximation:

$$H_{\text{opt}} = \sqrt{2\lambda_1 C_1} + \sqrt{2\lambda_2 C_2} + \sqrt{2\lambda_3 C_3} + \Theta(\lambda)$$

(obtained for some optimal pattern)

• Choose optimal set of levels:

Level Overhead
1, 2, 3
$$\sqrt{2C_1\lambda_1} + \sqrt{2C_2\lambda_2} + \sqrt{2C_3\lambda_3}$$

1, 3 $\sqrt{2C_1\lambda_1} + \sqrt{2C_3(\lambda_2 + \lambda_3)}$
2, 3 $\sqrt{2C_2(\lambda_1 + \lambda_2)} + \sqrt{2C_3\lambda_3}$
3 $\sqrt{2C_3(\lambda_1 + \lambda_2 + \lambda_3)}$

k Levels

Theorem

The optimal k-level pattern, under the first-order approximation, has equal-length chunks at all levels:

$$\begin{array}{l} \text{Optimal pattern length: } W^{opt} = \sqrt{\frac{\sum_{\ell=1}^{k} N_{\ell}^{opt} C_{\ell}}{\frac{1}{2} \sum_{\ell=1}^{k} \frac{\lambda_{\ell}}{N_{\ell}^{opt}}}} \\ \text{Optimal $\#$chkpts at level ℓ: $N_{\ell}^{opt} = \sqrt{\frac{\lambda_{\ell}}{C_{\ell}} \cdot \frac{C_{k}}{\lambda_{k}}}, \quad \forall \ell = 1, \ldots, k \\ \text{Optimal pattern overhead: } H_{opt} = \sum_{\ell=1}^{k} \sqrt{2\lambda_{\ell}C_{\ell}} + \Theta(\lambda) \end{array}$$

k Levels

Theorem

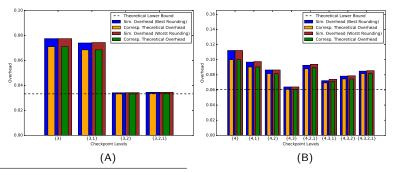
The optimal k-level pattern, under the first-order approximation, has equal-length chunks at all levels:

$$\begin{array}{l} \text{Optimal pattern length: } W^{opt} = \sqrt{\frac{\sum_{\ell=1}^{k} N_{\ell}^{opt} C_{\ell}}{\frac{1}{2} \sum_{\ell=1}^{k} \frac{\lambda_{\ell}}{N_{\ell}^{opt}}}} \\ \text{Optimal $\#$chkpts at level ℓ: $N_{\ell}^{opt} = \sqrt{\frac{\lambda_{\ell}}{C_{\ell}} \cdot \frac{C_{k}}{\lambda_{k}}}, \quad \forall \ell = 1, \ldots, k \\ \text{Optimal pattern overhead: } H_{opt} = \sum_{\ell=1}^{k} \sqrt{2\lambda_{\ell}C_{\ell}} + \Theta(\lambda) \end{array}$$

- Dynamic programming algorithm to choose set of levels
- Rounding for integer solution: $n_{\ell}^{\text{opt}} = \frac{N_{\ell}^{\text{opt}}}{N_{\ell+1}^{\text{opt}}} = \sqrt{\frac{\lambda_{\ell}}{\lambda_{\ell+1}} \cdot \frac{C_{\ell+1}}{C_{\ell}}}$

Simulations

[Set	Source	Level	1	2	3	4
Ī	(A)	Moody	C (s)	0.5	4.5	1051	-
		et al. [1]	MTBF (s)	5.00e6	5.56e5	2.50e6	-
[(B)	Balaprakash	C (s)	10	20	20	100
		et al. [2]	MTBF (s)	3.60e4	7.20e4	1.44e5	7.20e5



[1] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski. Design, modeling, and evaluation of a scalable multi-level checkpointing system. *Supercomputing*, 2010.

[2] P. Balaprakash, L. A. Bautista-Gomez, M.-S. Bouguerra, S. M. Wild, F. Cappello, and P. D. Hovland. Analysis of the tradeoffs between energy and run time for multilevel checkpointing. *PMBS*, 2014.

Explicit formulas for (almost) optimal multi-level checkpointing

$$H_{ ext{opt}} = \sum_{\ell=1}^k \sqrt{2\lambda_\ell C_\ell} + \Theta(\lambda)$$

Limitations:

- First-order approximation (accurate for 10,000s of nodes with MTBF in hours; beyond?)
- Independent errors (correlated failure?)