
Speaker: Hongyang Sun (Vanderbilt University, INRIA)

Joint work with: Guillaume Aupy (INRIA, Univ. Bordeaux), Ana Gainaru
(Vanderbilt University), Valentin Honoré (INRIA, Univ Bordeaux), Padma
Raghavan (Vanderbilt University), Yves Robert (INRIA, ENS de Lyon, UTK)

9th JLECS Workshop, Knoxville, TN, USA

April 15, 2019

Scheduling Stochastic Jobs on HPC
Platforms (and Beyond)

1

HPC Batch Scheduler

• Reservation-Based:
 Relies on (reasonably) accurate runtime estimation from the user/application

 Intended for HPC jobs with (relatively) deterministic and predictive behavior

Time

N
o

d
e

Job

Resource under-estimation

Requested
runtime

Actual
walltime

 Job killed; need to resubmit;
prolonged completion time

 Waste of system resources

Time

N
o

d
e

Job

Resource over-estimation

 Job completed early; but may have
waited longer in queue than needed

 May waste system resources (if no
backfilling possible)

Job killed

Wasted resource??

Requested
runtime

Actual
walltime

2

Execution Time = Wait Time + Runtime

Computing in HPC

3

Stochastic Jobs

• Many scientific applications are stochastic and unpredictable
 Execution time is input-dependent (stochastic)

 Unpredictable even for same input-size (quality matters)

 Large variations (order of magnitude difference)

 Common in many domains (e.g. neuroscience, adaptive mesh refinement)

4

Neuroscience Applications

Range of execution times and I/O traffics for 31 representative neuroscience applications

5

Coping with Stochastic Jobs

• Scheduling Options:
 System-level solution:

- Abandon reservation-based batch scheduling

- Use online (on-the-fly) scheduling not practical

 Application-level solution:

- Develop optimized code to reduce stochasticity

- Better resource estimation (e.g., using ML methods) difficult

6

Coping with Stochastic Jobs

• Scheduling Options:
 System-level solution:

- Abandon reservation-based batch scheduling

- Use online (on-the-fly) scheduling not practical

 Application-level solution:

- Develop optimized code to reduce stochasticity

- Better resource estimation (e.g., using ML methods) difficult

 Our approach:

- Optimization of expected job execution times

- Non-disruptive to existing HPC scheduling model and application
development process

6

Computing in the Cloud

• Several Pricing Models (e.g., using Amazon AWS)
 On-Demand (OD) = pay-what-you-use:

“you pay for compute capacity by the hour or second depending on which
instances you run”

 Reserved-Instances (RI) = Pay-what-you-reserve:

“provide you with a significant discount (up to 75%) compared to On-
Demand pricing”

Data extracted from AWS website
7

• Job Model: Execution time modeled by

a random variable 𝑋 that follows:
 Known probability distribution D
 PDF = f(t) and CDF = F(t)
 Positive support: 𝑋 ∈ [min

𝐷
, max

𝐷
]

Models

8

• Job Model: Execution time modeled by

a random variable 𝑋 that follows:
 Known probability distribution D
 PDF = f(t) and CDF = F(t)
 Positive support: 𝑋 ∈ [min

𝐷
, max

𝐷
]

• Cost Model: If reserve 𝒕𝟏 time and actual execution is 𝒕 time:

 If 𝒕𝟏 ≥ 𝒕, then reservation is enough and job succeeds
 If 𝒕𝟏 < 𝒕, then job is killed; a new reservation (𝒕𝟐 > 𝒕𝟏) is needed

Models

𝐶𝑜𝑠𝑡 = 𝛼𝑡1 + 𝛽min 𝑡1, 𝑡 + 𝛾

Reservation
cost

Usage
cost

Setup
cost

8

Optimization Objective

• The objective is to compute a sequence of increasing reservations:

that minimizes the total expected cost:

Expected total
usage cost

Extra cost incurred for
each failed reservation

9

Solution 1: Characterizing Optimal Sequence

• Existence: optimal sequence (with finite expected cost) exists for
distributions with bounded mean and variance

10

Solution 1: Characterizing Optimal Sequence

• Existence: optimal sequence (with finite expected cost) exists for
distributions with bounded mean and variance

• Property: optimal sequence satisfies the following recursive
relationship for smooth distributions:

 Compute 𝑡𝑖 based on 𝑡𝑖−1 and 𝑡𝑖−2 (as in Fibonacci numbers)

 By default 𝑡0 = 0, it remains to compute 𝑡1
 Bounded search range: 𝑡1

𝑜 ∈ [min
𝐷
, 𝑂(mean + var)]

 Complexity of computing optimal 𝑡1
𝑜 is unclear (rational solution)

10

Solution 1: Characterizing Optimal Sequence

• Existence: optimal sequence (with finite expected cost) exists for
distributions with bounded mean and variance

• Property: optimal sequence satisfies the following recursive
relationship for smooth distributions:

 Compute 𝑡𝑖 based on 𝑡𝑖−1 and 𝑡𝑖−2 (as in Fibonacci numbers)

 By default 𝑡0 = 0, it remains to compute 𝑡1
 Bounded search range: 𝑡1

𝑜 ∈ [min
𝐷
, 𝑂(mean + var)]

 Complexity of computing optimal 𝑡1
𝑜 is unclear (rational solution)

• Heuristic (Brute-Force): Numerical search of optimal 𝑡1
𝑜 in the range 10

• Discrete Transformation: truncate and discretize continuous distribution

Solution 2: Approximating via Discretization

11

• Discrete Transformation: truncate and discretize continuous distribution

Solution 2: Approximating via Discretization

11

• Discrete Transformation: truncate and discretize continuous distribution

• Dynamic Programming: for discrete distribution 𝑋 ~ 𝑣𝑖 , 𝑓𝑖 𝑖=1..𝑛

Solution 2: Approximating via Discretization

Cost of successful
reservation

Cost of failure
 sub-problem

 Initialization:

 Complexity: 𝑂(𝑛2)
11

Performance (Common Prob. Distributions)

• Brute-Force (𝑡1) heuristic has best performance (around 2x of offline optimal)

• Discretization-based heuristics have close performance, much better than
other naïve heuristics

12

Performance (Realistic Workloads)

13

Future Work

• From User’s Perspective (Single Job):
 How to request runtime along with other resources (#nodes, memory)?

 Is checkpointing at the end of some/all reservations useful?
Related to HPC fault tolerance: Trade-off between time wasted due to checkpointing and
time saved for not having to start from scratch

14

Future Work

• From User’s Perspective (Single Job):
 How to request runtime along with other resources (#nodes, memory)?

 Is checkpointing at the end of some/all reservations useful?
Related to HPC fault tolerance: Trade-off between time wasted due to checkpointing and
time saved for not having to start from scratch

• From System’s Perspective (Set of Jobs):
 Are reservation-based schedulers still suitable for stochastic workloads?

 How should scheduling and backfilling be performed (under uncertainty)?

 Is it time to consider new scheduling paradigms (e.g., online, hybrid)?
Preliminary results: on-the-fly scheduling better for both system-level performance
(utilization) and user-level performance (average response time) for single-node stochastic
jobs; work-in-progress for multi-node jobs.

14

Thank you!
Hongyang Sun

hongyang.sun@vanderbilt.edu

[1] G. Aupy, A. Gainaru, V. Honore, P. Raghavan, Y. Robert, H. Sun. (authors in alphabetical order)
Reservation Strategies for Stochastic Jobs. IPDPS, 2019.
[2] A. Gainaru, H. Sun, G. Aupy, Y. Huo, B. Landman, P. Raghavan. On-the-fly Scheduling vs.
Reservation-based Scheduling for Unpredictable Workflows. IJHPCA, 2019.

References

15

mailto:hongyang.sun@Vanderbilt.edu

