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HPC Batch Scheduler

• Reservation-Based:
 Relies on (reasonably) accurate runtime estimation from the user/application

 Intended for HPC jobs with (relatively) deterministic and predictive behavior
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Execution Time = Wait Time + Runtime

Computing in HPC
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Stochastic Jobs

• Many scientific applications are stochastic and unpredictable
 Execution time is input-dependent (stochastic) 

 Unpredictable even for same input-size (quality matters)

 Large variations (order of magnitude difference)

 Common in many domains (e.g. neuroscience, adaptive mesh refinement)
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Neuroscience Applications

Range of execution times and I/O traffics for 31 representative neuroscience applications
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Coping with Stochastic Jobs

• Scheduling Options:
 System-level solution:

- Abandon reservation-based batch scheduling 

- Use online (on-the-fly) scheduling  not practical

 Application-level solution:

- Develop optimized code to reduce stochasticity

- Better resource estimation (e.g., using ML methods)  difficult
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Coping with Stochastic Jobs

• Scheduling Options:
 System-level solution:

- Abandon reservation-based batch scheduling 

- Use online (on-the-fly) scheduling  not practical

 Application-level solution:

- Develop optimized code to reduce stochasticity

- Better resource estimation (e.g., using ML methods)  difficult

 Our approach:

- Optimization of expected job execution times 

- Non-disruptive to existing HPC scheduling model and application 
development process
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Computing in the Cloud

• Several Pricing Models (e.g., using Amazon AWS)
 On-Demand (OD) = pay-what-you-use: 

“you pay for compute capacity by the hour or second depending on which 
instances you run”

 Reserved-Instances (RI) = Pay-what-you-reserve:

“provide you with a significant discount (up to 75%) compared to On-
Demand pricing”

Data extracted from AWS website
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• Job Model: Execution time modeled by 

a random variable 𝑋 that follows:
 Known probability distribution D
 PDF = f(t) and CDF = F(t)
 Positive support: 𝑋 ∈ [min

𝐷
, max

𝐷
]

Models
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• Cost Model: If reserve 𝒕𝟏 time and actual execution is 𝒕 time:

 If 𝒕𝟏 ≥ 𝒕, then reservation is enough and job succeeds
 If 𝒕𝟏 < 𝒕, then job is killed; a new reservation (𝒕𝟐 > 𝒕𝟏) is needed

Models

𝐶𝑜𝑠𝑡 = 𝛼𝑡1 + 𝛽min 𝑡1, 𝑡 + 𝛾

Reservation 
cost
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Optimization Objective

• The objective is to compute a sequence of increasing reservations:

that minimizes the total expected cost:

Expected total
usage cost

Extra cost incurred for 
each failed reservation
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Solution 1: Characterizing Optimal Sequence

• Existence: optimal sequence (with finite expected cost) exists for 
distributions with bounded mean and variance  
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Solution 1: Characterizing Optimal Sequence

• Existence: optimal sequence (with finite expected cost) exists for 
distributions with bounded mean and variance  

• Property: optimal sequence satisfies the following recursive 
relationship for smooth distributions: 

 Compute 𝑡𝑖 based on 𝑡𝑖−1 and 𝑡𝑖−2 (as in Fibonacci numbers)

 By default 𝑡0 = 0, it remains to compute 𝑡1
 Bounded search range:  𝑡1

𝑜 ∈ [min
𝐷
, 𝑂(mean + var)]

 Complexity of computing optimal 𝑡1
𝑜 is unclear (rational solution)
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distributions with bounded mean and variance  

• Property: optimal sequence satisfies the following recursive 
relationship for smooth distributions: 

 Compute 𝑡𝑖 based on 𝑡𝑖−1 and 𝑡𝑖−2 (as in Fibonacci numbers)

 By default 𝑡0 = 0, it remains to compute 𝑡1
 Bounded search range:  𝑡1

𝑜 ∈ [min
𝐷
, 𝑂(mean + var)]

 Complexity of computing optimal 𝑡1
𝑜 is unclear (rational solution)

• Heuristic (Brute-Force): Numerical search of optimal 𝑡1
𝑜 in the range 10



• Discrete Transformation: truncate and discretize continuous distribution

Solution 2: Approximating via Discretization
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• Discrete Transformation: truncate and discretize continuous distribution

• Dynamic Programming: for discrete distribution 𝑋 ~ 𝑣𝑖 , 𝑓𝑖 𝑖=1..𝑛

Solution 2: Approximating via Discretization

Cost of successful 
reservation

Cost of failure
 sub-problem

 Initialization:

 Complexity: 𝑂(𝑛2)
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Performance (Common Prob. Distributions)

• Brute-Force (𝑡1) heuristic has best performance (around 2x of offline optimal)

• Discretization-based heuristics have close performance, much better than 
other naïve heuristics
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Performance (Realistic Workloads)
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Future Work

• From User’s Perspective (Single Job):
 How to request runtime along with other resources (#nodes, memory)?

 Is checkpointing at the end of some/all reservations useful? 
Related to HPC fault tolerance: Trade-off between time wasted due to checkpointing and 
time saved for not having to start from scratch
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Future Work

• From User’s Perspective (Single Job):
 How to request runtime along with other resources (#nodes, memory)?

 Is checkpointing at the end of some/all reservations useful? 
Related to HPC fault tolerance: Trade-off between time wasted due to checkpointing and 
time saved for not having to start from scratch

• From System’s Perspective (Set of Jobs):
 Are reservation-based schedulers still suitable for stochastic workloads?

 How should scheduling and backfilling be performed (under uncertainty)?  

 Is it time to consider new scheduling paradigms (e.g., online, hybrid)?
Preliminary results: on-the-fly scheduling better for both system-level performance 
(utilization) and user-level performance (average response time) for single-node stochastic 
jobs; work-in-progress for multi-node jobs.  
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Thank you!
Hongyang Sun 

hongyang.sun@vanderbilt.edu
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