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What’s This Work About?

On large-scale HPC platforms:

Scheduling parallel jobs is important to improve application
performance and system utilization

Handling job failures/errors is critical as fault rates increase
dramatically with size of system

This work combines parallel job scheduling and (silent) error handling for
moldable parallel jobs running on large HPC platforms
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Moldable Parallel Jobs

Moldable jobs can have processor allocations decided by the system
dynamically, but once allocated the processors cannot be changed during
the jobs’ execution

Moldable jobs can easily adapt to the amount of available resources
(contrarily to rigid jobs)

Moldable jobs are easy to design and implement (contrarily to
malleable jobs)

Many computational kernels in scientific libraries are provided as
moldable jobs
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Scheduling Model

n moldable jobs to be scheduled on P identical processors

execution time tj(pj) of each job j (= 1, 2, . . . , n) is a function of
processor allocation pj (= 1, 2, . . . , P)

jobs are subject to arbitrary failure scenarios (i.e., # times to fail),
which are unknown ahead of time (i.e., semi-online)

minimize the makespan (i.e., successful completion time of all jobs)
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Speedup Model

Roofline model: tj(pj) = wj
min(pj ,p̄j )

for some 1 ≤ p̄j ≤ P

Communication model: tj(pj) = wj
pj

+ (pj − 1)cj
where cj is the communication overhead

Amdahl’s model: tj(pj) = wj
( 1−γj

pj
+ γj

)
where γj is the inherently sequential fraction

Mixed Model: tj(pj) = wj (1−γj )
min(p,p̄j ) + wjγj + (pj − 1)cj

combining previous models

Power Model: tj(pj) = wj

p
δj
j

where δj ∈ [0, 1] is a constant parameter

Monotonic model: tj(pj) ≥ tj(pj + 1) and aj(pj) ≤ aj(pj + 1)
i.e., execution time non-increasing and area is non-decreasing

Arbitrary model: tj(pj) is an arbitrary function of pj
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Failure Model
Jobs can fail due to silent errors (or silent data corruptions)
A lightweight silent error detector (of negligible cost) is available to
flag errors at the end of each job’s execution
If a job is hit by silent errors, it must be re-executed (possibly
multiple times) till successful completion

A failure scenario f = (f1, f2, . . . , fn) describes the number of failures each
job experiences during a particular execution.

Example: f = (2, 1, 0, 0, 0) for an execution of 5 jobs.
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Main Results

We proposed two resilient scheduling algorithms with analysis of
approximation ratios∗ and simulation results.

1 A list-based scheduling algorithm, called Lpa-List, and
approximation results for common speedup models.

2 A batch-based scheduling algorithm, called Batch-List, and
approximation result for the arbitrary speedup model.

3 Extensive simulations to evaluate and compare (average and
worst-case) performance of both algorithms against baseline
heuristics.

∗A scheduling algorithm Alg is said to be a c-approximation if its
makespan is at most c times that of an optimal algorithm Opt, i.e.,
TAlg ≤ c · TOpt, for any job set under any failure scenario.
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(1) Lpa-List: Algorithm

Two-phase approach:

Phase 1: Allocate processors to jobs using the Local Processor
Allocation (Lpa) strategy

Minimize a local ratio individually for each job based on the
property of the job
The processor allocation remains unchanged for different
execution attempts of the job

Phase 2: Schedule jobs with fixed processor allocations using the
List Scheduling (List) strategy.

Organize all jobs in a list according to any priority order
Schedule jobs one by one at earliest time (with backfilling if
possible)
If job fails after an execution, insert it back into queue for
rescheduling. Repeat until the job completes successfully
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(1) Lpa-List: Approximations

Speedup Model Approximation Ratio
Roofline 2

Communication 3†

Amdahl 4
Mixed 6
Power Θ(P1/4)

Monotonic/Arbitrary Θ(P1/2)

Pros: Simple to implement, and constant approximation for
common speedup models

Cons: Uncoordinated processor allocation, and high approximation
for monotonic/arbitrary model

†This improves upon the previous best ratio (4) for this model obtained
without failure considerations: [Havill and Mao. Competitive online scheduling of
perfectly malleable jobs with setup times, European Journal of Operational Research,
187:1126–1142, 2008]
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(2) Batch-List: Algorithm
Batched approach:

Different execution attempts of the jobs are organized in batches,
which are executed one after another

In each batch k (= 1, 2, . . . ), all pending jobs are executed a
maximum of 2k−1 times

Uncompleted jobs in each batch will be processed in the next batch

Example: an execution of 5 jobs under a failure scenario f = (0, 1, 2, 4, 7)
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(2) Batch-List: Algorithm + Approximation

For jobs within each batch k (= 1, 2, . . . ):

Near optimal processor allocations (within a factor of 1 + ϵ) using
the Mt-Allotment algorithm‡

Scheduling is done using the List strategy

Approximation Result
The Batch-List algorithm is Θ((1 + ϵ) log2(fmax))-approximation for
arbitrary speedup model, where fmax = maxj fj is the maximum number
of failures of any job in a failure scenario.

‡[Lepère, Trystram, and Woeginger. Approximation algorithms for scheduling
malleable tasks under precedence constraints. European Symposium on Algorithms,
2001]
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Simulation Results — with P =7500, n=500, and λ=10−7

Lpa performs better for roofline model, while Batch performs
better for the other models

Both perform significantly better than MinTime and MinArea
(baselines), which allocate processors to minimize execution time
and area of each job, respectively

Results hold for different job priority rules and parameter settings



13/14

Simulation Results — Summary

Over the whole set of simulations, our best algorithm (Lpa or
Batch) is within a factor of 1.6 of the optimal on average, and
within a factor of 4.2 of the optimal in the worst case

Speedup Model Roofline Communication Amdahl Mix-low-com Mix Power
Lpa Expected 1.057 1.312 1.961 1.896 1.867 1.861

Maximum 1.219 2.241 2.349 1.987 1.995 9.655
Batch Expected 1.158 1.434 1.529 1.548 1.571 1.549

Maximum 1.999 2.449 2.874 3.674 4.164 3.975
MinTime Expected 1.057 2.044 15.567 2.810 2.704 20.386

Maximum 1.219 2.666 49.795 12.611 27.174 61.726
MinArea Expected 114.079 122.199 23.594 16.875 9.686 2.571

Maximum 1217.13 871.38 199.572 259.163 120.9 27.109
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What’s Next?

Theory:

Considering fail-stop errors, and using checkpointing to improve
efficiency of scheduling

Resilient scheduling of workflows of jobs with dependencies

Practice:

Analyzing average-case performance (e.g., when some failure
scenarios occur with higher probability)

Validating performance using realistic datasets with practical job
speedup and failure traces


